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Optimizing the topological properties of semiconductor-ferromagnet-superconductor
heterostructures
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We study the electronic properties of a planar semiconductor-superconductor heterostructure, in which a thin
ferromagnetic insulator layer lies in between and acts as a spin filtering barrier. We find that in such a system one
can simultaneously enhance the strengths of all the three important induced physical quantities, i.e., Rashba spin-
orbit coupling, exchange coupling, and superconducting pairing potential, for the hybrid mode by external gating.
Our results show the specific advantage of this stacked device geometry compared to conventional devices. We
further discuss how to optimize geometrical parameters for the heterostructure and complement our numerical
simulations with analytic calculations.
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I. INTRODUCTION

Topological superconductivity can emerge in a spin-orbit
coupled semiconductor-superconductor heterostructure when
the induced Zeeman spin splitting is larger than the induced
superconducting gap [1–18]. In a recent experiment, follow-
ing the theoretical proposals [15,18], experimentalists added
a thin ferromagnetic film on the heterostructure to induce
a Zeeman spin splitting via exchange coupling, and indeed
tunnel spectroscopy signatures of topological superconduc-
tivity have been observed in the absence of an external
magnetic field [19]. More interestingly, the experimental hints
at topological superconductivity only appeared in devices of
a particular geometry, i.e., when the ferromagnetic insulator
and superconductor layers partially overlap, but not in the
nonoverlapping counterparts. This indicates the crucial role
of device geometry in determining the electronic properties
of the heterostructure. As pointed out in Refs. [20–23], the
relative positioning of the ferromagnetic and superconducting
layers on top of the nanowire could affect the electrostatic
potential profile inside the semiconductor as well as the total
strength of the induced Zeeman spin splitting in a delicate
manner. Additionally, it has also been shown via a phe-
nomenological model that topological superconductivity can
appear in a hybrid system when the ferromagnetic film is in-
serted as a spin-filtering barrier separating the semiconductor
and superconductor layers [24,25]. The advantage of such
a proposal using a ferromagnetic spin-filtering layer is the
generic applicability to both quasi-one-dimensional nanowire
and two-dimensional-electron-gas systems. Here, we consider
a microscopic model of the device geometry as shown in
Fig. 1, going beyond the phenomenological model and aiming
to address the following two key questions: first, whether it is
possible to realize topological superconductivity in the device
with realistic physical parameters; and second, how to opti-
mize the topological properties of the heterostructure using
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experimental knobs, e.g., by gating or varying the geometrical
parameters. The answers to the above two questions will be
valuable to the future exploration of topological materials and
devices.

In order to obtain a faithful description of the electronic
properties in the heterostructure, we adopt the method of
microscopic device simulation, in which all the three mate-
rial layers are treated on equal footing and the electrostatic
potential profile inside the semiconductor is calculated by the
self-consistent Thomas-Fermi-Poisson equation.

II. MODEL HAMILTONIAN AND METHOD

The hybrid system we consider in this paper is a pla-
nar semiconductor-ferromagnet-superconductor (N-F-S) het-
erostructure. The material layers stack along the z axis and
extend infinitely in the xy plane, as indicated by the schematic
in Fig. 1(a). The semiconductor, ferromagnetic insulator,
and superconductor layers occupy the region of −dN < z <

0, 0 < z < dF, and dF < z < dF + dS, respectively. In our
model, we assume translational symmetry along the y axis,
and quasitranslational symmetry along the x axis. That is,
we consider a superlattice along the x axis, and impose a
periodic boundary condition on the superlattice boundaries.
The purpose of such a superlattice modeling is to include the
effect of disorder in the two-dimensional (2D) cross section.
It is known that in the absence of disorder in the model,
the proximity effect exhibits geometrical effects incompatible
with experimental observations, and breaking translational
symmetry with a 2D disorder model removes these unphysical
effects [26,27]. This 2D modeling of disorder is an approxi-
mation of the realistic 3D situation, but modeling 3D disorder
is currently out of the scope of any numerical simulation.
The Bogoliubov–de Gennes (BdG) Hamiltonian for the het-
erostructure is

HBdG = h̄2

2

(−∂2
x + k2

y

m∗(z)
− ∂z

1

m∗(z)
∂z + Eb(z)

)
τz

− αR(z)(i∂xσy + kyσx )τz + h(z)σz

+ �(z)τx + U (x, z)τz, (1)

2469-9950/2022/105(22)/224502(8) 224502-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4071-9058
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.224502&domain=pdf&date_stamp=2022-06-01
https://doi.org/10.1103/PhysRevB.105.224502


CHUN-XIAO LIU AND MICHAEL WIMMER PHYSICAL REVIEW B 105, 224502 (2022)

in the basis of (ψe↑, ψe↓, ψh↓,−ψh↑). h̄ is the Planck con-
stant, σx,y,z, τx,y,z are Pauli matrices acting on the spin and
Nambu spaces, and h̄ky is the momentum along the y axis.
m∗(z) is the effective mass of the conduction-band electrons,
with

m∗(z) =

⎧⎪⎨
⎪⎩

mN = 0.023me, z ∈ N,

mF = 0.3me, z ∈ F,

mS = me, z ∈ S.

(2)

Here, the values for the effective masses are chosen accord-
ing to InAs, EuS, and Al, with me being the rest electron
mass [28–30]. Eb(z) is the conduction-band edge profile, with

Eb(z) =

⎧⎪⎨
⎪⎩

−eφ(z), z ∈ N,

�F, z ∈ F,

−μS, z ∈ S.

(3)

Here, �F = 0.5 eV is the insulating gap above the Fermi
energy in the ferromagnetic insulator [30,31], and μS = 11 eV
is the Fermi energy of the bare S layer. Note that we use the
global Fermi energy as a reference energy, and set it to zero.
φ(z) is the electrostatic potential in N, and is obtained by
solving the one-dimensional self-consistent Thomas-Fermi-
Poisson equation in the semiconductor layer,

∂2
z φ(z) = ρ[φ(z)]

ε
, (4)

with ε = 15.5ε0 being the dielectric constant of InAs. The
boundary conditions for the Poisson equation are φ(0) =
W ≈ 0.3 V [20] and φ(−dN) = Vg, which are determined
jointly by the semiconductor-ferromagnet band offset W at
the top and the gate voltage Vg at the bottom of the N layer. In
reality, there is another thin dielectric layer between the semi-
conductor and the back gate, leading to a marginal difference
in the electrostatic potential simulation inside the semicon-
ductor. Thus our simplified modeling of the effect of the back
gate is justified [32]. Here, the charge density ρ includes both
the conduction-band electrons and the valence-band holes in-
side the semiconductor, i.e.,

ρ[φ(z)] = ρe(φ) + ρhh(φ) + ρlh(φ),

ρe(φ) = − e

3π2

(
2mNeφθ (φ)

h̄2

)3/2

,

ρhh/lh(φ) = e

3π2

(
2mhh/lh(−eφ − E0)θ (−eφ − E0)

h̄2

)3/2

,

(5)

where e > 0 is the elementary charge unit, mhh = 0.41me,
mlh = 0.026me are the heavy- and light-hole effective masses
in units of electron mass, E0 = 0.418 eV is the band gap
between conduction and valence bands, and θ (x) is the
Heaviside step function. αR(z) is the strength of Rashba
spin-orbit coupling which is finite only in N. Its strength is
determined by the local electric field

αR(z) = eP2

3

(
1

E2
0

− 1

(E0 + �0)2

)
∂zφ(z), z ∈ N, (6)

from the eight-band k · p theory, with P = 0.9197 eV nm, and
�0 = 0.38 eV [28]. h(z) is the strength of the exchange field

in F with

h(z) = h, z ∈ F, (7)

and zero elsewhere. We assume that the exchange field points
along the z axis and the field strength is a variable to be studied
later, although the estimated strength in EuS is 100 meV <

h < 200 meV. �(z) is the pairing potential in the conven-
tional s-wave superconductor layer [30]

�(z) = � = 0.35 meV, z ∈ S. (8)

Additionally, in a realistic semiconductor-superconductor hy-
brid material, the S layer is inevitably disordered, e.g., owing
to the oxidization of the outer S layer or the formation of grain
domains in the process of material growth. Here, we model
such a disorder effect by including a 2D disorder potential
U (x, z) in S, which is effectively introducing Fermi energy
fluctuations. Such a fluctuation is assumed to be spatially
uncorrelated, i.e.,

〈U (x, z)U (x′, z′)〉 = U 2
Dδ(x − x′)δ(z − z′), z, z′ ∈ S, (9)

with δ(x) being the delta function. UD is the fluctuation am-
plitude, and 〈·〉 denotes disorder averaging.

To implement the numerical calculation, we first discretize
the continuum Hamiltonian in Eq. (1) on a square lattice
with a lattice constant a = 0.1 nm using KWANT [33], and
then calculate the eigenenergies and eigen wave functions by
diagonalizing the sparse-matrix Hamiltonian.

III. BARE SEMICONDUCTORS

We first consider a bare semiconductor layer, focusing on
the electrostatic potential profile and the corresponding spin-
orbit coupling strength profile in real space. We include the
role of the F layer only as the interface band offset W at the top
boundary of the bare N layer in the self-consistent Thomas-
Fermi-Poisson calculation. Then with the potential and spin-
orbit coupling strength profiles serving as input, we solve for
the eigenstates in a bare N layer and study the dependence of
the state-specific charge density and the spin-orbit coupling
strength on the layer thickness (dN) and gate voltages (Vg).
The charge density is determined essentially only by the gate
voltage Vg, and other parameters such as Zeeman energy or
spin-orbit coupling have little influence on the charge density
in our parameter regime [26]. In the gate voltage range used in
Fig. 2(a), the sheet charge density in the semiconducting layer
ranges from 1.3 to 4.5 e/cm−2.

In Figs. 2(a) and 2(b), we show the spatial profiles of
the electrostatic potential φ(z) and the corresponding spin-
orbit coupling strength αR(z) in a bare N layer of thickness
dN = 40 nm for different values of back-gate voltages. For a
positive back-gate voltage, charge accumulation wells show
up at both the top (N-F interface at z = 0) and the bottom
(N-substrate interface at z = −40 nm) of the layer, but with
an opposite sign of spin-orbit coupling strengths. Otherwise,
a more negative gate voltage would increase the slope of the
electrostatic potential profile, thereby enhancing the spin-orbit
coupling strength. In addition, due to the screening effect of
accumulation electrons in the semiconductor, the strength of
spin-orbit coupling is stronger at the N-F interface than in the
bulk.
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FIG. 1. (a) Schematic of the semiconductor-ferromagnet-
superconductor heterostructure studied in the current work. The
material layers stack along the z axis and extend in the xy plane. The
electrostatic environment inside the semiconductor is determined
jointly by the semiconductor-ferromagnet band offset W and the
bottom gate voltage Vg. (b) Band edge profile of the conduction-band
electrons in the heterostructure.

With the calculated electrostatic potential and spin-orbit
coupling strength profile as input, we then obtain the eigenen-
ergies and eigenfunctions in the bare N layer by solving the
following normal Hamiltonian,

HNψ (n)(x, z) = E (n)ψ (n)(x, z),

HN = − h̄2

2mN

(
∂2

x + ∂2
z

) − eφ(z) − iαR(z)∂xσy, (10)

where E (n) and ψ (n)(x, z) are the eigenenergies and eigenfunc-
tions for HN. The state-specific spin-orbit coupling strength is
defined as

α
(n)
R =

∑
σ=↑,↓

∫
dxdzαR(z)|ψ (n)

σ (x, z)|2. (11)
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FIG. 2. (a) and (b) Profiles of band edge and spin-orbit coupling
strength in a 40-nm-thick bare N layer for different gate voltages.
(c) Strength of spin-orbit coupling for the particular eigenstate clos-
est to the Fermi surface (E = 0) as a function of gate voltage. Jumps
in the curve indicate the switch between adjacent eigenstates, and
dots denote the eigenstates with E = 0. (d) Wave-function profiles
of the eigenstates corresponding to the colored dots in (c) for the
40-nm-thick bare N layer.

The curves in Fig. 2(c) show the strength of the spin-orbit
coupling for the eigenstate closest to the Fermi surface as
a function of gate voltage. It shows that a more negative
gate voltage tends to enhance the spin-orbit coupling strength
for the particular eigenstate. This is because a more negative
back-gate voltage would increase the electric field across the
material, and at the same time push the electronic wave func-
tion towards the N-F interface [see Fig. 2(d)], where the local
spin-orbit coupling strength is the strongest. Additionally, the
gray-color curve in Fig. 2(c) shows that a thinner N layer
would induce an even stronger spin-orbit coupling strength for
the eigenstates at the cost of allowing fewer transverse modes
within the same gate voltage range.

IV. N-F-S HETEROSTRUCTURES

We now consider a semiconductor-ferromagnet-
superconductor heterostructure. The peculiarity of the
hybrid system is that all the three material layers are stacking
on top of the adjacent layer and that a thin ferromagnetic
insulator layer is inserted between the semiconductor and
superconductor layers, as shown in the schematic in Fig. 1(a).
In this section, we aim to figure out the effects of gate voltages
and geometrical parameters on the electronic and topological
properties in the hybrid system.

A. Electronic properties

For the hybrid states which are potentially responsible
for topological superconductivity, they obtain the induced
spin-orbit coupling, exchange coupling, and superconducting
pairing potential by distributing their wave functions inside
the semiconductor, ferromagnetic insulator, and supercon-
ductor layers, respectively. We thus define the weight of an
eigenstate inside the particular material layer as follows,

wi =
∑

σ=↑,↓

∑
η=e,h

∫
(x,z)∈�i

dxdz|ψση(x, z)|2, (12)

where i = N, F, or S, and �i denotes the space occupied by
the corresponding material layer. Normalization of the wave
function constrains that

wN + wF + wS = 1. (13)

In the parameter regime the current work focuses on, i.e.,
h 
 �F and � 
 μS, the induced exchange coupling and su-
perconducting pairing potential have a direct proportionality
with the weights in F and S layers, i.e.,

hind ≈ wFh, �ind ≈ wS�, (14)

with h and � being the bare values. On the other hand, for
the induced spin-orbit coupling strength, we need to take into
account its spatial dependence and define

αind
R ≈

∑
σ=↑,↓

∑
η=e,h

∫
(x,z)∈�N

dxdzαR(z)|ψση(x, z)|2. (15)

In Fig. 3, we show the calculated four quantities wN/F/S and
αind

R of the eigenstate closest to the Fermi energy (E = 0)
as a function of gate voltage (Vg) for different combinations
of geometrical parameters (dN, dF, dS). In order to eliminate
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FIG. 3. Electronic properties, i.e., disorder averaged wN/F/S and αind
R , of N-F-S heterostructures with different geometrical parameters.

Each column has the same parameter set of (dN, dF, dS) in units of nm. For other physical parameters, we choose h = 100 meV, ky = 0, and
UD = 0.5 eV.

the dependence on a particular disorder configuration and
to make our findings more generic, all these quantities are
averaged over 150 different disorder realizations in the model
calculation. Furthermore, we choose the amplitude of the
disorder potential fluctuation to be UD = 0.5 eV, so that the
hybridization between the semiconductor and superconductor
is strong enough and that the simulation results do not depend
on the precise value of UD.

Column (i) of Fig. 3 shows the calculated wi and
αind

R for an N-F-S heterostructure with geometrical param-
eters (dN, dF, dS) = (50, 0.5, 20) in units of nm. Here, the
thickness of the F layer is chosen to be comparable to the pen-
etration length in the insulator, i.e., dF ∼ λF = h̄/

√
2mF�F.

The resonance peaks and dips in the curves in Fig. 3 denote
the presence of a semiconductor-superconductor hybrid state
in the heterostructure, with its peak and dip values indicating
the corresponding strength of the physical quantities. In con-
trast, those relatively flat curves represent states essentially
localized in the superconducting layer, because they have
wS ∼ 1 and wN ∼ 0. Here, both wF and wS of the hybrid
mode increase when the applied back-gate voltage becomes
more negative, because the wave functions are pushed towards
the F and S side by the applied electric field. Surprisingly, al-
though wN decreases in this gating process, the strength of the
induced spin-orbit coupling is still increasing, since a stronger
spin-orbit coupling strength in N (see Fig. 2) compensates the
loss of its weight. Thereby we see the simultaneous enhance-

ment of all the three important quantities αind
R , hind, �ind in the

N-F-S heterostructure by external gating.
From column (ii) to column (iv) in Fig. 3, we show the

calculated wi and αind
R for heterostructures with different geo-

metrical parameters, in order to see how the thickness of each
material layer affects the wave-function distributions and the
induced quantities. In column (ii), we set the N layer thickness
dN = 20 nm as compared to dN = 40 nm in column (i). Al-
though the optimized induced quantities (αind

R ∼ 7 meV nm,
wF ∼ 0.5 × 10−2, wS ∼ 0.5) are similar to those in column
(i), the number of available hybrid modes within the voltage
range is reduced from three to only one owing to a narrower
confinement in the N layer. On the other hand, when the
F layer thickness is larger than its decay length (dF  λF),
as shown in column (iii) of Fig. 3, the semiconductor and
superconductor layers become decoupled. Especially for the
modes at Vg ∼ −0.3 V and Vg ∼ 0.0 V, they have wN ∼ 1 and
wS ∼ 0, which means that the semiconductor states cannot
be proximitized with superconductivity when the ferromag-
netic insulator barrier is too thick. Finally, if we reduce the
thickness of the S layer, we will find that both the strength
of the spin-orbit coupling and the exchange coupling of the
hybrid modes increase but at the cost of a reduced proximity
superconducting gap. Note that the hybrid-state peaks and
dips in column (iv) are much broader than those in the other
columns. This is because the level spacing in a thinner S
layer becomes larger (δE ∝ d−2

S ), thus giving rise to bigger
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FIG. 4. Topological phase diagram, gaps, and band diagrams of N-F-S heterostructures. The geometrical parameters are (dN, dF, dS) =
(40, 0.5, 20) in units of nm for the upper panel, and (40, 0.5, 5) for the lower panel.

statistical fluctuations in the disorder averaging. Furthermore,
as shown in the wF plot of column (iv), the induced exchange
coupling for the superconducting states (flat curves beside the
resonance peaks or dips) increases. An enhanced exchange
coupling in the superconducting states will reduce the BCS
gap, thus giving a weaker topological protection.

B. Topological phase diagrams and gaps

We now consider the topological phase diagrams and
the topological gaps for an N-F-S heterostructure. The
key questions to address in this section include whether
topological superconductivity can be realized with realistic
physical parameters and how to optimize the topological
properties via external gating and geometrical parame-
ters. Based on the numerical results in the previous sec-
tion, we first choose the hybrid state at Vg ∼ −0.3 V
for (dN, dF, dS) = (40 nm, 0.5 nm, 20 nm), because it has a
strong semiconductor-superconductor hybridization as well
as large induced spin-orbit coupling strength and exchange
coupling. The corresponding topological phase diagram in the
(Vg, h) plane is shown in Fig. 4(a). The purple area denotes the
topological phase, while the white area the trivial phase. For
the optimal value of the gate voltage, i.e., V ∗

g ∼ −0.314 V, the
topological phase transition takes place at about h ∼ 60 meV,
which is smaller than the typical exchange coupling in a
ferromagnetic insulator material, e.g., hEuS ∼ 150 meV [34].
In Fig. 4(b), we further give the evolution of the excitation
gap as a function of h at the optimal gate voltage. We find that
the topological gap of the hybrid state [blue line in Fig. 4(b)]
can be larger than 0.2� in large h. In addition, as indicated
by the orange line in Fig. 4(b), as h in the F layer increases, it
will also reduce the BCS gap in the superconductor. Here, the
BCS gap (EBCS) is defined as the lowest excitation energy for
states essentially localized inside the superconducting layer

(wS ≈ 1). However, in this scenario, since the BCS gap is
always larger than the topological gap, it does not affect the
topological properties of the heterostructure in an essential
way. For comparison, we also show the topological phase
diagram and gap evolution for the heterostructure with a thin-
ner S layer (dN = 5 nm), because as shown in Fig. 3, this
would enhance the induced spin-orbit coupling and exchange
coupling at the cost of a smaller induced superconducting
gap. Figures 4(d) and 4(e) show that the minimal critical
exchange coupling h∗ ∼ 25 meV indeed decreases compared
to the thick S layer scenario. However, the topological gap
is now smaller than 0.2� at large h, and what is more the
BCS gap closes at h ∼ 80 meV, thus making the S layer tran-
sition to a normal metal. Thus for a thinner S layer, although
the topological phase transition requires a weaker exchange
coupling strength, both the topological and BCS gaps in the
hybrid system are reduced.

V. ANALYTIC UNDERSTANDING

In this section, we use the wave-function approach to un-
derstand the electronic properties of an N-F-S heterostructure.
We consider a one-dimensional spinless double quantum well
model for studying the wave-function distribution in the hy-
brid system [32,35]. In the parameter regime of our interest,
the spin-orbit coupling in N, the exchange field in F, and
the superconductivity in S only play a perturbative role in
determining the wave-function distribution. Thereby we use
the following simplified model Hamiltonian for our analytic
calculation,

H = h̄2

2

(
−∂z

1

m(z)
∂z + k2

x + k2
y

m(z)

)
+ V (z). (16)
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FIG. 5. Traces of E = 0 for a one-dimensional spinless model of
an N-F-S heterostructure with geometrical parameters (dN, dF, dS) =
(20, 0.3, 50) in units of nm.

Here, V (z) is the conduction-band edge profile, with

V (z) =

⎧⎪⎨
⎪⎩

−μN, −dN < z < 0,

�F, 0 < z < dF,

−μS, dF < z < dF + dS,

(17)

where we model the N and S layers as square quantum wells
and the F layer as an insulating barrier between them. We are
particularly interested in when a topological phase transition
happens. For this reason, we solving for the eigenstates at the
Fermi energy (which in our convention is E = 0) and at zero
momentum,

H (kx = 0, ky = 0)ψ (z) = 0, (18)

with ψ (z) being the wave function along the stacking direc-
tion. The ansatz of the bound-state wave function is

ψ (z) =

⎧⎪⎨
⎪⎩

A sin[kN(z + dN)], −dN < z < 0,

Be−κFz + CeκF (z−dF ), 0 < z < dF,

− sin[kS(z − dF − dS)], dF < z < dF + dS,

(19)

with k2
N = 2mNμN/h̄2, κ2

F = 2mF�F/h̄2, k2
S = 2mSμS/h̄2. By

matching the wave function and its derivative at z = 0 and
z = dF, we have

A = κF sin φS cosh φF + kS cos φS sinh φF

κF sin φN
,

B = eφF
κF sin φS + kS cos φS

2κF
,

C = κF sin φS − kS cos φS

2κF
, (20)

where the dimensionless phases are φN = kNdN, φF = κFdF,
φS = kSdS. The transcendental equation determining the
bound-state solution is

AkN cos φN + BκF − CκFe−φF = 0. (21)

Figure 5 shows the traces of E = 0 states in the (μS, μN)
plane and the weights in different parts. In Fig. 5(a), the red
vertical lines denote the S-like states, while those dark blue
horizontal lines denote the N-like states, and the anticross-
ings indicate the N-S hybridization. Both the energy levels
and the weights are periodic functions of μS, which means
the calculated physical quantities in the clean limit depend
sensitively on the Fermi energy in the superconductor. Such

a Fermi energy dependence, which is not observed in realistic
devices, can be eliminated by performing a disorder averaging
in calculating the physical quantities. For the S-like states, the
analytic form of the wave function can be obtained by setting
A → 0, B → 0 in Eq. (19), because the fraction of wave func-
tion in the N layer is negligible. The wave function now is

ψ (z) =
{

sin(φS)eκF (z−dF ), 0 < z < dF,

− sin[kS(z − dF − dS)], dF < z < dF + dS,

(22)

in the regime of κ−1
F = λF � dF. The corresponding weight

in F is

wF =
∫ dF

0 dz|ψ (z)|2∫ dF

0 dz|ψ (z)|2 + ∫ dF+dS

dF
dz|ψ (z)|2

≈ sin2(φS )λF

dS − sin(2φS)/2kS
≈ λF

2dS
, (23)

where in the last line we take the average value for the
sinusoidal functions in a μS period, i.e., sin2(φS ) → 1/2 and
sin(2φS ) → 0. Thereby, using hind ≈ wFh in Eq. (14), we can
estimate the BCS gap by

EBCS ≈ � − hind ≈ � − hλF/2dS, (24)

where for s-wave superconductivity in the absence of
spin-orbit coupling in the metallic superconductor, the BCS
gap is reduced linearly by the induced exchange coupling. By
setting EBCS = 0 we immediately have h∗ = 2�dS/λF to be
the strength of the critical exchange coupling for closing the
BCS gap. This analytic result is consistent with the numerical
simulations shown in Figs. 4(b) and 4(e), where the BCS
gap for a thinner S layer closes at a much smaller exchange
coupling strength.

VI. DISCUSSIONS

Here, we elaborate on how to choose the thickness of S
and F layers for optimal electronic and topological proper-
ties in a semiconductor-superconductor heterostructure with a
spin-filtering ferromagnetic layer. In general, a thicker S layer
would induce a larger topological gap as well as a larger BCS
gap in the heterostructure, thus giving a clearer experimental
signature and a better topological protection. This is in con-
trast with semiconductor-superconductor heterostructures in
the presence of an externally applied magnetic field. There
a thinner S layer is always preferred because the depairing
effect from the orbital effect of the magnetic field can be
mitigated only in a superconductor with a reduced cross-
section area. On the other hand, since the effective Zeeman
spin splitting in N-F-S heterostructures is induced by the
exchange coupling inside the F layer, the F film is expected
to have an optimal thickness such that a finite and strong
exchange coupling can be induced in the hybrid material but
without decoupling the semiconductor-superconductor hy-
bridization. We estimate the optimal F thickness to be around
the corresponding penetration length, i.e., dF ∼ λF, with λF

being extracted from tunneling conductance measurements.
As for the N thickness, there is always a tradeoff between a
larger number of available states within the back-gate voltage
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range (thicker N layer) and stronger spin-orbit coupling
strength (thinner N layer). Since a systematic investigation
on the relation between the semiconductor thickness/diameter
and the strength of Rashba spin-orbit coupling is still missing,
an experimental study even on a bare semiconductor layer
would be very useful to understand the electronic properties.
Finally, gating is an important knob in tuning the electronic
properties of an N-F-S heterostructure. Here, we find that a
hybrid state obtained by a more negative gating generically
has better electronic properties for topological superconduc-
tivity, i.e., a larger induced superconducting gap, stronger
induced Zeeman splitting, and a stronger strength of spin-orbit
coupling. Therefore, varying the back-gate voltage to a more
negative value would be a good choice for finding topological
states with optimized properties and protection.

VII. CONCLUSIONS

In conclusion, we have studied the electronic proper-
ties of an N-F-S heterostructure with planar geometry. By

microscopic device simulation, we show that topological
superconductivity can be realized in these devices with re-
alistic physical parameters. We also figure out how gating
and varying the geometrical parameters could optimize the
electronic and topological properties of the hybrid states in
the device. Although the focus of this work is on the planar
device geometry, all the analyses and findings should carry
over to nanowire-based devices as well, as long as a thin
ferromagnetic layer lies in between the semiconductor and
superconductor layers.
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