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Route towards stable homochiral topological textures in A-type antiferromagnets
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Topologically protected whirling magnetic textures could emerge as data carriers in next-generation
post-Moore computing. Such textures are abundantly observed in ferromagnets (FMs); however, their anti-
ferromagnetic (AFM) counterparts are expected to be even more relevant for device applications, as they
promise ultrafast, deflection-free dynamics while being robust against external fields. Unfortunately, such
textures have remained elusive; hence identifying materials hosting them is key to developing this technology.
Here, we present comprehensive micromagnetic and analytical models investigating topological textures in the
broad material class of A-type antiferromagnets, specifically focusing on the prototypical case of α-Fe2O3—an
emerging candidate for AFM spintronics. By exploiting a symmetry-breaking interfacial Dzyaloshinskii-Moriya
interaction (iDMI), it is possible to stabilize a wide topological family, including AFM (anti)merons, bimerons,
and the hitherto undiscovered AFM skyrmions. While iDMI enforces homochirality and improves the stability
of these textures, the widely tunable anisotropy and exchange interactions enable precise control of their core
dimensions. We then present a unifying framework to model the scaling of texture sizes based on a simple
dimensional analysis. As the parameters required to host and tune homochiral AFM textures may be obtained
by rational materials design of α-Fe2O3, it could emerge as a promising platform to initiate AFM topological
spintronics.
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I. INTRODUCTION

Topologically protected magnetic textures such as
skyrmions and bimerons are emerging as prime information
carriers in post-Moore memory and logic devices. Most
research has focused on ferromagnetic (FM) materials, where
examples of such textures are abundant [1–3], but deleterious
effects intrinsic to FM topological textures, such as transverse
deflection due to the skyrmion Hall effect, preclude their
successful integration into devices. As a result, attention has
shifted recently to antiferromagnets (AFMs), comprising
oppositely aligned magnetic sublattices, as they are predicted
to host ultrasmall skyrmions that are stable in the absence
of applied fields and can be driven at very fast speeds [4–6].
However, no examples of isolated AFM skyrmions have yet
been reported in the literature. Recently, there have been
promising results in synthetic antiferromagnets [7,8]. While
these materials solve the issue of lateral deflection, they may
not be able to fully replicate the current-driven “relativistic”
physics of natural AFMs due to their weaker interfacial
exchange [9]. Hence discovering such topological textures in
natural AFMs remains a key goal of the community.

Topological textures are typically stabilized by an in-
homogeneous antisymmetric exchange term called the
Dzyaloshinskii-Moriya interaction (DMI), with the material’s
bulk DMI providing the required energy in many skyrmion-
hosting systems [1]. Materials without bulk DMI can still host

*p.g.radaelli@physics.ox.ac.uk

stable chiral textures if an interfacial DMI (iDMI) is induced
at the material surface [10], usually via an interaction with
an overlayer or underlayer that has strong spin-orbit coupling
[11]. The iDMI tends to favor Néel-type textures of a fixed
chirality—an important feature since spin-torque-driven mo-
tion depends on chirality [12]. Homochiral topological AFM
textures are expected to move consistently and reproducibly
under the action of spin currents at speeds of up to a few km/s,
making them promising as nonvolatile information carriers in
spintronic devices [9,12–14].

Here, we focus on α-Fe2O3, which is a promising material
candidate for AFM spintronics as it exhibits ultralow Gilbert
damping and has exceptionally long and tunable spin diffu-
sion [15,16], it shows a sizable spin-Hall magnetoresistance
[17–19], and its AFM domain configurations can potentially
be switched using pulsed currents through heavy-metal over-
layers [20,21]. We previously reported the discovery of flat
(anti)vortices in α-Fe2O3 thin films coupled to a ferromag-
netic Co overlayer [22] and, more recently, of topological
merons, antimerons, and bimerons in films with a Pt overlayer
[23]. In the latter case, we were able to repeatedly nucleate
and destroy these topological textures via thermally cycling
through the spin-reorientation “Morin” transition, which is
in some ways analogous to a Kibble-Zurek quench [24–26].
Since our observed textures were of both Bloch and Néel
types and thus were not homochiral, we deduced that our
samples had negligible iDMI. Understanding how to tune both
the chirality and scale of AFM topological textures in the
presence of iDMI is crucial for spintronics applications such
as AFM topological racetracks.
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(a) (b)

FIG. 1. (a) The crystal and magnetic structures of AFM α-Fe2O3,
showing a sequence of antiparallel FM layers that we model in our
simulations. The light red and dark blue arrows show the orientation
of the magnetic moments in the two sublattices above TM. The gray
planes separate the two sublattices and host the O atoms. (b) The
simulation configuration, where cells belonging to the two antipar-
allel sublattices are shown in red and blue and the arrows show the
magnetic moment orientation in a given cell for T > TM. The curved
arrows show the AFM coupling between adjacent layers (AOOP) and
the FM coupling between cells in the same layer (A).

α-Fe2O3 crystallizes in the corundum structure (space
group R3̄c) and is an antiferromagnet with a relatively high
Néel temperature (≈960 K) [27]. The magnetic moments
in the antiferromagnetic phase stack with adjacent moments
antiparallel along the c axis, such that moments in each a-b
plane are ferromagnetically coupled [28]; see Fig. 1(a). This
spin arrangement is generally known as A type from the
classic field of perovskite magnetism, and we will use this
terminology herein. α-Fe2O3 also hosts the Morin transition
[29] at TM ≈ 260 K in bulk samples, where the anisotropy
of the Fe3+ ions flips from being a-b easy plane for T > TM

to easy axis along the c axis for T < TM due to a competi-
tion between on-site and dipolar anisotropies [30–33]. The
resulting net anisotropy is strongly temperature dependent
and changes sign at TM. Consequently, both easy-plane and
easy-axis domain morphologies can easily be studied via in
situ temperature variations [17,22,23,33].

In this paper, we present our micromagnetic model for
A-type antiferromagnets and confirm its validity through ana-
lytical calculations. We use this model to explore the effects
of iDMI on a wide family of topological textures in the
easy-plane and easy-axis phases of α-Fe2O3 by analytical cal-
culations and micromagnetic simulations. We find that such
textures become homochiral, making them ideal for spin-
tronics applications where they can potentially be moved at
ultrafast speeds via spin-orbit torques [14]. Moreover, their
stability and size can be carefully controlled as a function
of the material parameters to achieve the requirements for
applications. A key prediction of this paper is that antifer-
romagnetic skyrmions should be stable in this system below
the Morin transition for a wide range of physically realistic
material parameters, which can be precisely engineered both
during growth and in situ, making this an exciting and promis-
ing platform for their experimental discovery.

II. MICROMAGNETIC MODEL

A. General approach for A-type antiferromagnets

The application of micromagnetic modeling techniques
and code such as MUMAX3 [34] to ferromagnetic bulk, films,
and multilayers is extremely well documented. While some
applications to antiferromagnets can also be found in the
literature [35,36], it is not immediately obvious that these
techniques can be applied to all antiferromagnets. Generally,
one considers the micromagnetic scale to be much larger
than the atomic scale, so that various magnetic interactions
(exchange, anisotropy, and dipolar) can be replaced by their
continuum counterparts. This assumption does not hold for an
antiferromagnet, since the magnetization changes sign within
every unit cell. In the case of A-type antiferromagnets such as
α-Fe2O3 the situation is somewhat simpler, since these mate-
rials consist of ferromagnetic layers stacked in an antiparallel
manner along an axis.

Here, we choose to model a generic A-type antiferromagnet
as a set of layers stacked along the z axis of our simulation
space [Fig. 1(b)]. We consider the magnetic moments to be
antiferromagnetically coupled along the z axis and ferromag-
netically coupled in the x-y plane. Akin to previous models of
synthetic antiferromagnets [7,8], here the micromagnetic cell
in the x-y plane is chosen to be much larger than the lattice
parameter a, whereas its size along the z axis corresponds
to the spacing of the ferromagnetic sublayers (1/6 of the
lattice parameter c). The key energy terms are the exchange,
anisotropy, dipolar, and interfacial Dzyaloshinskii-Moriya in-
teractions, whose forms are given in Appendix A. Accounting
for all of these energy terms accurately makes our model both
general and widely applicable, allowing it to be extended to
include additional energy terms and potentially leading to a
variety of further studies of A-type AFMs.

Our approach differs from previous micromagnetic models
of antiferromagnets [35,36], since here the spatial separation
of the layers along the z axis has a physical meaning and we
treat the dipolar fields organically rather than neglecting them
entirely. The dipolar fields require special attention as they are
typically long-range interactions, whereas all the other terms
are short-range interactions between adjacent moments and
are subsumed into scale-independent macroscopic parameters
(see Appendix B). In essence, whereas the dipolar interaction
decreases very rapidly at macroscopic distances, as expected
for an antiferromagnet, its short-range component results in an
in-plane (IP) anisotropy, so that the effective anisotropy of an
A-type antiferromagnet, Keff, is the the sum of a dipolar com-
ponent Kdip and of an on-site component Kos (if any exists).
This is entirely physical, and the fine balance of Kos and Kdip

is indeed the origin of the Morin transition in α-Fe2O3 [32].
While this accounts for the largest component of the dipolar
fields, there may also be some small effects due to stray fields
at the uncompensated surface layers, and any such effects will
be included in our simulations.

It should be noted that our model has a number of lim-
itations applying to all A-type antiferromagnets. Firstly, as
already mentioned, the large antiferromagnetic exchange in-
teraction along the z axis ensures that spins in adjacent layers
are antiparallel. Therefore no variations in textures along
the z axis can be studied as this model does not accurately
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(a) Néel meron (b) Distorted antimeron (c) Néel Bimeron (d) Néel Skyrmion

FIG. 2. (a)–(d) A gallery of topological textures in α-Fe2O3, based on our micromagnetic simulations. In all cases only a single magnetic
layer is shown. The black arrows represent the in-plane spin directions, and the color contrast corresponds to the z component of magnetization.
The green scale bar in the bottom-right corner of each panel is 100 nm.

reproduce the atomic-scale interactions along this direction.
By contrast, our approach is well suited to studying mag-
netic textures that are modulated in the x-y plane. In this
paper we only consider very thin films, with total thickness
much smaller than the characteristic length scale for mag-
netic variations along the z direction; hence this limitation
will have a negligible effect on our simulations. Secondly,
the dynamics at the nanometer length scale, primarily AFM
spin waves, cannot be accurately simulated using this model
[35], making it inappropriate for studying certain subsets of
dynamical phenomena. Since our focus is the study of steady-
state magnetization configurations via energy minimization,
this drawback will also not affect our results.

There are a few additional caveats in the specific case of
α-Fe2O3. Firstly, this system has a weak bulk DMI, which
causes a small canting of the two sublattices when T > TM

leading to a small ferromagnetic component [30,37]. We
neglect such a bulk DMI and its associated small canting
throughout, as analytical calculations suggest that it cannot
by itself stabilize IP-modulated topological textures. It should
be noted that the small canting will become relevant if we
want to extend the model to incorporate the effect of exter-
nally applied magnetic fields, which are not discussed here.
Additionally, this system has a weak basal plane anisotropy
due to its trigonal crystal structure, which favors the forma-
tion of a set of three 120◦ domains and their time-reversed
counterparts when T > TM; however, this anisotropy is orders
of magnitude weaker than the uniaxial on-site anisotropy [31]
and is therefore neglected here.

B. Micromagnetic simulations

Our simulations were performed using MUMAX3
[34,38,39], an open-source micromagnetics package utilizing
finite-element simulations to model magnetic structures on
the nanometer to micrometer length scales. This is ideal for
topological textures, which tend to be around 100 nm or
smaller [1,23]. The micromagnetic solver compares several
energy terms as discussed in Sec. II A. For each simulation,
the system was initialized with a certain configuration
(meron, skyrmion, etc.), which was allowed to evolve using
the conjugate gradient method [38] to minimize its energy.
Given that we are considering topological structures, which
are generally protected from collapsing due to a finite energy

barrier, the minimization procedure should only alter their size
and geometry in a manner determined by the competition of
the relevant energy terms, independent of the exact procedure
used; for example, evolving the texture dynamically using
the Landau-Lifshitz-Gilbert equation with large damping [40]
should result in the same final topology. A texture whose
final topology (after energy minimization) is identical to the
initial topology is considered “stable” in these simulations,
though it is generally metastable with respect to a uniform
spin configuration. Minimized configurations for the key
topological textures studied here can be found in Fig. 2.

The simulation is split into cuboid cells, each assigned a
magnetic moment corresponding to the sublattice magnetiza-
tion that is constant in each cell. Full details of the simulation
parameters used are given in Appendix B. The demagnetizing
field is calculated automatically in the software by convolv-
ing the magnetization field with the demagnetizing kernel
[34], resulting in a demagnetization contribution to the total
energy. In all our simulations this results in an effective easy-
plane anisotropy of strength Kdip ≈ 530 kJ/m3 perpendicular
to the z axis, consistent with our discussion of the dipolar
fields in Sec. II A. By applying an additional uniaxial on-site
anisotropy of strength Kos along the z axis, we can simulate
a Morin-like transition by varying Kos around Kdip. The ef-
fective anisotropy constant is given by Keff = Kos − Kdip and
can switch sign from positive to negative, corresponding to
out-of-plane (OOP) or IP orientations below or above the
Morin transition, respectively. Performing a set of simulations
without the demagnetizing fields and a readjusted anisotropy
constant instead (Kdip = 0, Keff = Kos) resulted in identical
scaling of topological textures (see Sec. S3 of the Supplemen-
tal Material [41]). This suggests that any other effects of the
demagnetizing fields are negligible when studying the static
properties of topological textures. In our simulations, we also
apply an iDMI of strength D (in the range ≈ 0.5–3 mJ/m2)
only to the topmost layer, thereby simulating a symmetry-
broken magnetic surface hosting an interfacial antisymmetric
exchange [11].

III. ANALYTICAL CALCULATIONS

Extensive analytical work has been performed to un-
derstand the shape and size scaling of skyrmions [5,6,42–
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44]. Other topological textures, such as merons [45–47]
and bimerons [14,48–51], have also been receiving attention
recently. Complicated winding textures such as these are dif-
ficult to study analytically, especially when their functional
forms are not known exactly. One possible simplification
is to impose a particular functional form for the texture,
usually called an “ansatz.” This often makes the problem
solvable analytically, yielding an exact scaling that can be
usefully compared with more realistic simulations. We calcu-
lated the exchange, anisotropy, and iDMI energy for a linear
(anti)meron ansatz (see Appendix C) in order to derive the
associated texture sizes and directly compare them with our
micromagnetic simulations. The main purpose of this exercise
is to provide a means of verifying our micromagnetic model,
as well as to understand how the various textures scale with
the material parameters.

Our approach here is analogous to calculations we have
performed previously [23,52] but with the addition of the
iDMI energy [10]. As discussed above, the dipolar field acts
as an effective IP anisotropy to first order; therefore this was
not included directly in our analytical calculations but rather
rolled into the anisotropy. Merons are similar to flat vortices,
but with an OOP core that results in a topological charge. For
such textures, the effect of the iDMI is relatively straightfor-
ward, since it tends to stabilize circular homochiral textures
of the Néel type. Using a linear meron ansatz, the analytical

expression for the meron radius R is (Appendix C 1)

R = lw(κ +
√

κ2 + 1) = 3
4 F, (1)

where the final term in the above equation relates the meron
“radius” R, which is the only free parameter of this spe-
cific ansatz, to the full width at half maximum (FWHM)
F of the texture, which can be determined from the sim-
ulations. In Eq. (1), the characteristic length scale is lw =
η
√

A/|Keff|, and we have introduced the dimensionless pa-
rameter κ = κ0Deff/

√
A|Keff|, which describes how strongly

the iDMI energy affects the textures relative to the exchange
and anisotropy. Deff = D/N is the rescaled iDMI parameter,
where N is the total number of layers in our model system.
Clearly, R → lw in the limit Deff → 0. η and κ0 are ansatz-
dependent numerical constants; their values for a linear meron
are derived in Appendix C 1.

By contrast, the situation for antimerons is more complex,
since they are composed of sectors of alternating chirality. In
the presence of iDMI the energetically favored Néel sectors
contract, as the iDMI energy prefers tight spirals, resulting in
an elongated (elliptical) antimeron. There are two key parame-
ters that can be extracted by minimizing the antimeron energy
(see Sec. S1 of the Supplemental Material [41]), namely, the
radius R and distortion parameter λ, giving

R = lw
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Fshort
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where lw, κ , η, and κ0 are defined in the same way as for
a meron. C ≈ 2 is a numerical integration constant. Here,
Flong and Fshort correspond to the FWHM along the long
and short axes of the antimeron, respectively. In our cal-
culation, we confined the antimeron to a region of radius
Rd, representing a cutoff on the effect of the antimeron
distortion, which would otherwise extend to infinity as a con-

sequence of the analytical approach. These equations have
an exact, albeit complicated, solution for R and λ for gen-
eral κ and lw if Rd is given; therefore we solve Eqs. (2)
and (3) iteratively for given A, Keff, and D. The results are
convergent for all parameter values relevant here, given a
reasonable initial guess of λ (see Sec. S1 of the Supplemental
Material [41]).

(a) (b) (c)

FIG. 3. Radius R of meron textures, based on micromagnetic simulations (black squares) and analytical calculations (blue curves). The
iDMI was included in all cases. A, |Keff|, and D were varied in (a), (b), and (c), respectively, with the rest of the parameters kept constant.
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(a) (b) (c)

FIG. 4. Radius R of antimeron textures, based on micromagnetic simulations (black squares) and analytical calculations (blue curves). The
iDMI was included in all cases. A, |Keff|, and D were varied in (a), (b), and (c), respectively, with the rest of the parameters kept constant.

IV. SIMPLE EASY-PLANE TOPOLOGICAL TEXTURES

A. Merons

As merons require easy-plane anisotropy and therefore are
observed in α-Fe2O3 for T > TM [23], we use values of Kos

such that Keff < 0. We performed micromagnetic simulations
of isolated merons using our model for the case of zero
iDMI as a consistency check (see Sec. S3 of the Supple-
mental Material [41]). To study the effects of iDMI, we also
performed a set of meron simulations with nonzero D and
compared their sizes with the analytical expression in Eq. (1)
[Figs. 2(a) and 3]. As expected, the presence of iDMI enforces
a specific chirality, making all such merons Néel type. The
scaling with A and |Keff| is, to lowest order, similar to that
found for the case of a meron without iDMI [23], and the
functional form that we determined analytically provides a
satisfactory approximation to the simulations. The key trends
are that the meron radius increases if we increase the strength
of the exchange or DMI, while decreasing rapidly as we
increase the strength of the IP anisotropy. There appears to be
some difference in the actual FWHM values when comparing
the simulations and analytics, which is not surprising, since
the numerical prefactors contained in lw and κ are strongly
affected by the choice of the ansatz; calculations for a differ-
ent ansatz would give different numerical factors [52]. The
qualitative agreement between our computational model and
analytical calculations demonstrates that our approach is both
reasonable and internally consistent.

B. Antimerons

We performed simulations of isolated antimerons with
iDMI and found that they were indeed stable and distorted
[Fig. 2(b)]. We have therefore calculated the effective radius
R of the simulated antimeron using Eq. (2) and compared it
with the analytical values (Fig. 4). The analytical curve was
calculated iteratively using Eqs. (2) and (3) for the same set
of values of A, |Keff|, and D used in the simulations and with
the cutoff radius Rd set to the simulation radius. It should be
noted that varying Rd, even by an order of magnitude, has a
minimal effect on the resulting analytical radius.

Here, the antimeron radius increases with increasing ex-
change strength, is roughly independent of the iDMI strength,
and decreases rapidly as the IP anisotropy increases. The

scaling of antimerons as a function of A, |Keff|, and D is
qualitatively similar to that of merons; however, there is again
a slight difference between the analytical and simulated radius
due to the ansatz choice. While the scalings of the distor-
tion with the various energy terms match qualitatively, the
analytically calculated value of the distortion parameter λ is
consistently smaller compared with the value extracted from
the simulations, by a factor of ∼3–5; see Sec. S4 of the
Supplemental Material [41]. Despite these caveats, the scaling
behaviors of R in both the analytical and simulated antimerons
match reasonably well, and they both predict that antimerons
should distort in the presence of iDMI.

V. COMPOUND EASY-PLANE TOPOLOGICAL TEXTURES

A. Bimerons and topologically trivial meron pairs

In our previous study [23] we reported the observation
of meron-antimeron pairs in α-Fe2O3, which could be either
topologically trivial meron pairs (TTMPs) or topologically
nontrivial bimerons, depending on whether the core polariza-
tion of the constituent (anti)merons are aligned or antialigned,
respectively [Fig. 2(c)]. Since constructing an analytical
model for such compound objects using a realistic ansatz is
difficult, we investigated their properties using micromagnetic
simulations. We initialize a meron-antimeron pair in the sys-
tem that is either a TTMP or a bimeron in the IP state (Keff <

0) by placing a meron in one-half of the simulation and an
antimeron in the other half with the desired core polarities.
We then allow them to relax naturally into their preferred
configurations. We observe that neither TTMPs nor bimerons
are stable in the absence of iDMI. The observed collapse in-
dicates that the competition between exchange and anisotropy
energies alone is insufficient to stabilize such textures, despite
the supposed topological protection of bimerons.

If we introduce iDMI into the system, bimerons become
stable over a very wide parameter range, even when initialized
at very close distances (�150 nm; Fig. 5), whereas TTMPs
are only stable if they start a long way apart, at which point
they could be considered as isolated merons and antimerons.
This makes phenomenological sense as bimerons have a net
topological charge and therefore should be prevented from
collapsing due to a finite energy barrier afforded by iDMI,
which is expected to be absent in TTMPs. For small values
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(a) (b) (c)

(d) (e)

FIG. 5. (a) Relaxed Néel bimeron intercore distance seq as a function of A and Keff for D = 2 mJ/m2. The simulation points are given
by solid black circles. (b)–(e) Snapshots of the relaxed configuration in one of the layers for several points in the diagram, where the arrows
represent the IP spin direction and the color contrast represents the z component of the magnetization as in Fig. 2. The green scale bar in the
bottom-right corner of (b)–(e) is 100 nm. The images correspond to the following values: (b) A = 14 pJ/m, Keff = −17 kJ/m3; (c) A = 19
pJ/m, Keff = −17 kJ/m3; (d) A = 14 pJ/m, Keff = −10 kJ/m3; and (e) A = 19 pJ/m, Keff = −10 kJ/m3.

of A, the intercore distance remains large for all values of
|Keff|, whereas for larger values of A the intercore distance
is highly tunable as a function of |Keff|. Fundamentally, the
size scaling for tightly bound bimerons can depend only on
the dimensionless parameter κ and the length scale lw, as
introduced in Secs. III and VII. It should be noted that the
antimeron component is distorted, causing the bimeron to lose
circular symmetry [49].

While our simulations do not address the question of the
barrier height directly, we can make some general observa-
tions. Assuming a quadratic potential around the equilibrium
intercore (anti)meron separation seq, we can approximate the
energy of the bimeron (up to quadratic order) as

E = α + βs + γ s2, (4)

where α, β < 0, and γ > 0 are unknown phenomenolog-
ical parameters that enforce a positive-curvature quadratic
with s > 0. For a certain simple ansatz, such as the lin-
ear bimeron (see Appendix C 2), we can identify these
three parameters with the micromagnetic parameters A, Deff,
and Keff, respectively, up to some numerical factors. As
a result, we can derive the equilibrium separation seq =
−β/(2γ ) ∝ Deff/Keff and the barrier height � = E (0) −
E (s) = β2/(4γ ) = −0.5βseq ∝ D2

eff/Keff. It is clear from our
simulation data that the exchange strength A does play a
role in determining the bimeron size and therefore likely
the barrier height, which is not accounted for in the linear
bimeron solution, meaning that the relationship between the
phenomenological and micromagnetic parameters is in reality
more complicated. Regardless of the exact expression, these
considerations indicate that the route towards experimentally
realizing closely bound, stable bimerons is to maximize � and
minimize seq at the same time, which requires increasing both
D and Keff.

B. Comparison with experiments

When comparing the present results with our recent ex-
periments [23], we are faced with an apparent contradiction.
Experimentally, we observed that merons had varied chirality,
which seems to rule out the presence of significant iDMI;
however, we also observed meron-antimeron pairs that ap-
peared to be quite robust, demonstrating that their lifetimes
must be extremely long and implying that the associated en-
ergy barrier to annihilation is large. In our simulations, this
is only possible in the presence of iDMI. These contrasting
observations suggest that an alternative mechanism not ac-
counted for in our micromagnetic model might be responsible
in the real system for the apparent stability of these pairs.
In terms of the phenomenological model discussed earlier,
this means that some additional energy term, other than the
exchange, anisotropy, and iDMI considered throughout, likely
contributes to the barrier height �. An alternative explanation
is that the potential landscape is locally flat, allowing both
bimerons and TTMPs to be trapped by local defects even in
the absence of an “intrinsic” potential barrier. This implies
that our phenomenological model would need to go beyond
the quadratic approximation, such that the intercore force need
not always increase with distance.

For practical implementation of homochiral bimerons in
α-Fe2O3-based racetrack applications, we cannot rely on de-
fects or other local pinning mechanisms to achieve stability
because the bimerons must be mobile. Therefore we require
bimerons to exist in a local energy minimum at a small inter-
core distance seq between the meron and antimeron as well as
a large energy barrier � to prevent bimeron annihilation. Our
simulations clearly imply that we should be able to engineer
the material parameters in such a way as to achieve this goal
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(a) (b)

FIG. 6. (a) Néel skyrmion stability window as a function of A and Keff for D = 1 mJ/m2. The color scale represents the relaxed FWHM of
the skyrmions, and the black area shows the region where the skyrmion was found to radially collapse and therefore was unstable. The A and
Keff values for which simulations were performed are shown by solid black circles. (b) Keff-vs-A curves at constant skyrmion radius, calculated
for the smallest size for which a skyrmion can be stabilized in our simulations (given by the Fav value next to each curve). Symbols and colors
correspond to different iDMI strengths.

and that this can only be achieved by topologically protected
bimerons (rather than TTMPs) in the presence of a reasonably
strong iDMI.

VI. EASY-AXIS TOPOLOGICAL TEXTURES
(SKYRMIONS)

Here, we discuss the possibility to stabilize antiferromag-
netic skyrmions in α-Fe2O3. These have not been observed
experimentally thus far but, as we demonstrate here, are stable
in our simulations over a wide range of material parameter
values. In α-Fe2O3, a skyrmion can only exist in the easy-axis
phase (T < TM); their experimental discovery would signif-
icantly increase the flexibility of the system, as topological
textures have previously only been observed for T > TM

[23]. It is worth pointing out that the Morin temperature can
be raised well above room temperature by chemical doping
[23,33], allowing practical exploitation of such skyrmions. As
in the case of bimerons and of skyrmions in other systems
without bulk DMI, it is necessary to have a sizable iDMI
to stabilize these textures. We therefore initialized a Néel
skyrmion with Keff > 0 (i.e., an easy-axis anisotropy along z)
in the presence of an iDMI. An example of such a skyrmion
can be seen in Fig. 2(d), and the full stability window for a
range of A, Keff, and D values is shown in Figs. 6(a) and 6(b).
For a wide range of micromagnetic parameters, the skyrmion
remained stable and either grew or shrunk to an equilibrium
size. As expected, these skyrmions are always Néel type,
which is favored by the iDMI. Consequently, when we ini-
tialized a Bloch-type skyrmion, the spins globally rotated into
the Néel configuration.

We can also study the tuning of physical parameters (A and
Keff) required to minimize the skyrmion size in our system for
a given D [see Fig. 6(b)]. The data in Fig. 6 point towards a
threshold radius, below which the skyrmions spontaneously
evaporate via radial collapse [53,54]. This is likely due to a

breakdown in the micromagnetic regime (where the finite cell
size is on the same order as the length scale of variations).
Hence the sizes shown in Fig. 6(b) in fact represent an upper
limit to the minimum achievable skyrmion size in this material
system, and in reality, smaller skyrmions that cannot be rea-
sonably simulated using micromagnetics may also be stable.
This shows the potential to generate ultrasmall antiferromag-
netic skyrmions for practical applications in α-Fe2O3.

As can be seen in Fig. 6(b), increasing the iDMI strength
D or decreasing the exchange coupling A increases the max-
imum anisotropy Keff for which skyrmions are stable. Given
the nature of the Morin transition, increasing the strength
of Keff for T < TM at fixed A corresponds to reducing the
temperature of the system. Therefore, to maximize the thermal
stability window for skyrmions in α-Fe2O3, we need to engi-
neer films with small A and large D. Based on our previous
data, this thermal stability window is already of the order of
20 K for the smallest value of D considered here (see Ap-
pendix B). This is important to understand, as applications for
AFM skyrmions require a large window of thermal stability.

To conclude this section, we emphasize a key prediction
of our micromagnetic model: The long-sought-after antiferro-
magnetic skyrmion should be stable and therefore observable
in α-Fe2O3 and potentially other A-type antiferromagnets.
While the possibility of stabilizing skyrmions in easy-axis
AFMs with iDMI has been studied previously, we push this
further by proposing a specific system where the material
parameters are appropriate, or can be engineered to be appro-
priate in a well-understood manner, for their stabilization and
experimental verification.

VII. PHENOMENOLOGICAL SCALING

Finally, we discuss the size scaling of various topological
textures described herein and demonstrate that our micromag-
netic simulations recreate the phenomenological scaling one
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(a) (b)

FIG. 7. (a) Rescaled radii of simulated merons (black squares) and antimerons (red circles) as a function of κ ′ = Deff/
√

AKeff compared
with the corresponding linear meron (antimeron) ansatz, Eq. (1) [Eq. (2)]. (b) Rescaled radii of skyrmions (black squares) and bimerons
(red circles). In each case the solid symbols show the smaller textures in the approximately linear scaling regime, and open symbols show
larger textures where the energy landscape is very flat. An analytical linear bimeron model and two different types of skyrmion ansatz [42,43]
are shown for comparison. The blue line is a linear fit to the small radii bimerons. The vertical green dashed line shows the well-known
upper stability threshold for skyrmions at κ ′ = 4/π , demonstrating that our skyrmions do not reach this threshold for any material parameters
considered herein.

can expect from simple dimensional analysis. The three ma-
terials parameters in our simulations have dimensions [A] =
J/m, [Keff] = J/m3, and [Deff] = J/m2. With these, we can
form a single dimensionless parameter κ ′ = Deff/

√
AKeff and

a length scale l ′
w = √

A/Keff. All length scales in the problem
must therefore be proportional to l ′

w multiplied by a dimen-
sionless function of κ ′; this is consistent with our analytical
calculations [Eqs. (1) and (2)]. Hence, if we were to divide
all the relevant sizes of the textures, as extracted from our
simulations, by l ′

w, we would expect the results to scale as
a function of κ ′ only. This is demonstrated in Fig. 7, where
the texture radii are rescaled by lw = η

√
A/Keff, which is

the relevant length scale for the linear (anti)meron ansatz as
discussed above (see Sec. III), and then plotted as a function
of κ ′. This analysis has two purposes: firstly, to compare the
simulated textures with various analytical models presented
here and other skyrmion models [42,43] in the literature and,
secondly, to establish whether or not our simulations have
reached equilibrium, which is a precondition for scaling.

Concerning the first point, for the (anti)meron textures
[Fig. 7(a)] it is clear that our linear ansatz models reproduce
the observed functional scaling to a good approximation, only
differing by numerical factors of the order of 1, which is
consistent with our discussions throughout. The same is not
true for bimerons [Fig. 7(b)], which clearly display a dif-
ferent functional dependence from the linear approximation
(see Sec. S2 of the Supplemental Material [41]), although
the sizes are of the correct order of magnitude. We also re-
port the scaling for our AFM skyrmions, which is in good
agreement with established skyrmion models in the literature
within the range of stability. A straightforward observation
is that skyrmions are generally much smaller than bimerons
in the whole range of parameters we explored, suggesting

that they might be more suitable textures for applications of
A-type antiferromagnets. Additionally, while many analytical
skyrmion models predict a stability threshold for larger κ ′,
they fail to predict the lower threshold for κ ′. This is because
these are all continuum models that do not account for the
atomic nature of the system, which becomes important as the
skyrmion approaches smaller length scales.

Turning to the second point, there is a clear distinction
between smaller and larger skyrmions or bimerons; while
smaller textures scale roughly linearly with κ ′, larger textures
do not obey any obvious scaling. This is likely because they
have not reached their equilibrium radii due to the locally flat
energy landscape about the equilibrium (which can be seen
by studying the solutions in Ref. [42]). In this regime, a range
of different sized textures are observed within the simulation
tolerances for a given κ ′. We remark that the textures we are
interested in for applications, namely, those that are small, are
also those that fortuitously obey the expected scaling law as a
function of κ ′. We also note that this spread of texture sizes for
a given κ ′ is not necessarily just an artifact of the simulations,
as local strain and thermal fluctuations could also lead to this
effect in a real system and this will be most pronounced when
the energy landscape is locally flat near the equilibrium.

VIII. SUMMARY

We have presented a comprehensive micromagnetic model
for A-type antiferromagnets and applied it to the study of
topological textures in α-Fe2O3 with interfacial DMI. Firstly,
we verified our model by comparing simulated Néel merons
and distorted antimerons with corresponding analytical cal-
culations. Given the simplicity of our analytical ansatz, the
consistency between the simulated and analytical scalings of
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these textures is remarkable. Then, we used our model to
analyze the properties of Néel bimerons in the presence of
iDMI and compared their stability and scaling behavior with
those in our recent experiments. Finally, we demonstrated
that α-Fe2O3 can also host the long-sought-after Néel anti-
ferromagnetic skyrmions and discussed the requirements to
experimentally stabilize and observe such textures. We em-
phasize that our results here demonstrate that a wide family of
homochiral topological textures can be stabilized in both the
IP phase and OOP phase of this material, making α-Fe2O3 an
ideal platform for exploring beyond-Moore device architec-
tures exploiting AFM topological textures.
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APPENDIX A: ENERGY TERMS

For our models we include four energy terms in a con-
tinuous form, these being the exchange, uniaxial anisotropy,
dipolar, and iDMI energies as follows:

EEx =
∫∫∫

A

[(
∂m̂
∂x

)2

+
(

∂m̂
∂y

)2]
d3r, (A1)

EAn =
∫∫∫

−Keff(û · m̂)2 d3r, (A2)

EDip =
∫∫∫

−1

2
(	μ · 	h) d3r, (A3)

EDMI = t
∫∫

D

(
mx

∂mz

∂x
− mz

∂mx

∂x
+ my

∂mz

∂y
− mz

∂my

∂y

)
d2r.

(A4)

A, Keff, and D are the exchange, uniaxial anisotropy, and iDMI
constants, respectively. m̂ is the unit magnetization vector
field of the sublattice, û is the anisotropy axis, 	μ is the local
magnetic moment, 	h is the local dipolar field, and t is the
“effective range” of the iDMI (see below) [10,40]. The mi-
cromagnetic simulations utilize a discretized version of these
equations [34,38,39]. In our model, an exchange interaction
of the form in Eq. (A1) only applies to the ferromagnetic
interactions between adjacent cells in the same layer (we
recall that the interlayer exchange strictly enforces antiparallel
alignment between adjacent layers in this model). Note that
Keff > 0 yields an easy axis parallel to û whereas Keff < 0
yields an easy plane perpendicular to û. Equation (A4) re-
quires the iDMI energy to be uniform throughout a thickness
t [10], which we assume to correspond to the thickness of
a single AFM layer. This is different from the other three
energy terms, which are volume integrals, whereas the iDMI

contribution comes from a surface integral. This implies no
loss of generality, provided we assume that the textures are
not modulated along ẑ.

APPENDIX B: MICROMAGNETIC PARAMETERS
OF α-Fe2O3

In our simulations, the cell size along the z axis was fixed at
0.228 nm, corresponding to 1/6 of the unit cell and the spac-
ing between AFM layers [27]. The simulation size and cell
size were adjusted for each different texture type to ensure a
good compromise between simulation time and texture scales
in each case, given that the skyrmion and bimeron simula-
tions took an order of magnitude longer than the (anti)meron
simulations. In all cases, different cell dimensions and total
simulation dimensions were checked and found to be con-
sistent, and all satisfied the micromagnetic guideline of a
maximum angle between adjacent moments of no more than
20◦ (in the x-y plane); hence the choices made throughout are
purely a matter of convenience.

The sublattice saturation magnetization of α-Fe2O3 is 920
kA/m [27]. The IP exchange constant A in α-Fe2O3 (i.e., the
ferromagnetic interaction between cells in the same layer) is
around 14–17 pJ/m [23] depending on the exchange parame-
ters used to calculate it [27,55], and this can be altered further
via doping or strain [56,57], justifying the range of values A =
10–20 pJ/m used here. The AFM coupling between adjacent
layers was similarly calculated to be AOOP = −20.1 pJ/m and
is kept constant throughout. As the long-range dipolar fields
are negligible, the corresponding z-axis magnetic exchange
length lex = √

2A/(μ0m2
s ) (where ms is the weak canted fer-

romagnetic moment) will be much larger than the simulation
size along z, so we expect negligible texture variation in this
dimension (consistent with all our simulations). We have ad-
ditionally confirmed that altering the cell size along z has no
discernible effect on the textures, thereby further justifying
our approach.

In α-Fe2O3, the effective anisotropy constant Keff re-
sults from a competition of on-site and dipolar interactions
[30–32], with the Morin transition TM occurring when these
two interactions balance. This competition can be tuned by
strain, chemical doping, and reversible ionic control to alter
TM or destroy the transition altogether [31,33,57]. As both the
on-site and dipolar anisotropies are temperature dependent,
the value of Keff varies systematically on either side of TM, and
these values can be calculated and directly compared with our
simulation data. For example, using the representative values
A = 14 pJ/m and D = 0.75 mJ/m2, the maximum anisotropy
value for which we observed stable skyrmions was Keff = 3.5
kJ/m3 [see Fig. 6(b)]. Based on a thin film with TM = 240 K,
similar to that used in our previous experiments [23], this
maximum anisotropy corresponds to a temperature of ap-
proximately 219 K, meaning that we estimate the skyrmion
stability window to be on the order of 20 K below TM, which
is certainly a feasible range for practical observation of these
textures. As we are not aware of any work studying or en-
gineering possible iDMI strengths in α-Fe2O3 systems, we
have used values of D throughout that are akin to those used
in other theoretical studies [5,11,42] and to those found in
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the large body of work on topological-texture-hosting Co-Pt
heterostructures [58].

As briefly outlined in Sec. II A, the dipolar fields can be
approximately decomposed into two parts: the short-range
dipole interaction, which is generally taken to contribute to
the anisotropy energy and is therefore not included in the
model separately, and the long-range part, which is com-
puted directly in the form of a demagnetization field [40].
In a natural collinear antiferromagnet, the net magnetization
is zero, and so is the demagnetization field, but the short-
range component of the dipolar interaction still contributes
to the anisotropy. In our “model” A-type antiferromagnet,
each magnetic cell has an exactly antiparallel counterpart in
a vertically adjacent layer. Therefore the calculated demag-
netization field has a quadrupolar character and decays very
rapidly. Although there are no macroscopic demagnetization
fields and there is no shape anisotropy, the short-range part
of the quadrupolar interaction still generates an anisotropy,
inducing a strong preference for the moments to lie in the
x-y plane even when the on-site anisotropy energy density
is set to zero. This situation is very similar to that of “real”
α-Fe2O3, since the Morin transition occurs precisely when the
easy-axis on-site anisotropy exactly balances the perpendic-
ular easy-plane dipolar anisotropy. As our simulations use a
cuboidal configuration rather than stacked honeycomb layers,
we would not expect the dipolar anisotropy to be exactly the
same as for the real material, but the order of magnitude
should be correct. In fact, our calculated dipolar anisotropy is
approximately 60% of the known value for α-Fe2O3. For now,
we observe that our model A-type antiferromagnet provides a
good physical account of the real material, provided that the
dipolar anisotropy calculated by the micromagnetic code is
properly taken into account.

APPENDIX C: ANALYTICAL CALCULATIONS

In polar coordinates, the linear (anti)meron ansatz
for the unit magnetization vector m̂ = ( sin θ cos(φ +
ξ ),± sin θ sin(φ + ξ ), cos θ ) is

θ (r) =
{πr

2R for r � R
π
2 for r > R,

(C1)

where the + (−) sign corresponds to a meron (antimeron) and
R is the “(anti)meron radius,” representing the typical size
of our texture. The angle φ is the in-plane azimuthal angle,
whereas ξ is an additional phase angle that determines the
overall chirality. The dipolar interaction will only be consid-
ered as a contribution to the anisotropy, so energy terms of the
form in Eq. (A3) will not appear explicitly in the analytical
calculations below. As all the calculations herein will be for
the above-Morin state with an easy-plane anisotropy (Keff <

0), we will drop the “−” sign in Eq. (A2) above, and the
absolute value |Keff| will be used throughout and designated
as K for simplicity.

1. Analytical meron

We start by studying a linear meron, which is an extension
of a calculation we have done previously [23,52], but with an
iDMI term now included. We showed in Refs. [23,52] that the

exchange and anisotropy energy terms are independent of any
phase angle ξ . This is not the case for the iDMI energy, which
contains a term that explicitly depends on ξ . Using Eq. (A4),
the resulting integral is

EDMI = −Dt cos ξ

∫∫ (πr

2R
+ cos θ sin θ

)
drdφ. (C2)

As the first term comes from ∂θ/∂r, it is only nonzero for
r � R. Moreover, it can be easily seen that for r > R, θ = π/2
and hence cos θ = 0, so we only need to integrate the above
expression in the range 0 < r � R. Due to the axial symmetry,
the integrand is independent of φ; hence the angular integral
results in a factor of 2π . Performing the radial integral gives

EDMI = − 1
2 DRt cos ξ (π2 + 4). (C3)

The exchange and anisotropy energies from our previous
calculations [23] are

EEx = 2πANt
[
C + ln

(Rd

R

)]
, (C4)

EAn = π2 − 4

2π
KNtR2, (C5)

where C ≈ 2 is a numerical constant that results from one of
the integrals. Similar numerical integration constants appear
throughout the equations presented here, and it should be
understood that these are a consequence of the ansatz chosen,
such that repeating these calculations with a different ansatz
will result in a different constant. N is the number of AFM
layers of thickness t , such that Nt is the total thickness of the
film and Rd is a large length scale that is introduced to remove
the infinite energy contribution from the whirling IP textures
at large distances and will be discussed further in Sec. S1 of
the Supplemental Material [41]. It is easy to see that Rd will
not affect the energy minimization below, so it can later be
set to infinity. We can then combine Eqs. (C3)–(C5) to get the
total energy of an analytical linear meron

ET = 2πANt
[
C − ln

( R

Rd

)]
+ π2 − 4

2π
KNtR2

− 1

2
DRt cos ξ (π2 + 4). (C6)

As only the iDMI energy term has a chiral component (i.e.,
depends on ξ ), if we minimize (C3) with respect to ξ , we
can find the equilibrium chirality: ξ = 2nπ for integer n and
positive D or ξ = (2n + 1)π for negative D. We take ξ = 0
for convenience, which corresponds to a Néel meron of a fixed
chirality and is an energy minimum under the assumption of
a positive D, as is used in the simulations. One can also use
the iDMI energy term to estimate the critical iDMI required to
enforce homochirality by comparing with the thermal energy
at room temperature. We see that DcritRt (π2 + 4) = 2kBT
and, accordingly, for the smallest observed texture radius and
the value of t used throughout, Dcrit ≈ 0.07 mJ/m2, i.e., Dcrit

is much smaller than the minimum value of iDMI otherwise
considered here. We rescale the total energy by the film thick-
ness and define an effective DMI strength Deff = D/N . By
minimizing the total energy with respect to R we can find the
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equilibrium meron radius

R = π

2K (π2 − 4)

[
1

2
Deff(π

2 + 4)

±
√

1

4
D2

eff(π
2 + 4)2 + 8AK (π2 − 4)

]
. (C7)

In the limit of no iDMI or of thick films (such that Deff →
0), the result above reduces to that found previously in the
absence of iDMI [23]. Furthermore, as all the terms in the
square root are positive with our conventions, the “−” sign in
the above expression would give a negative radius, which is
unphysical and is therefore eliminated. As the z component of
the normalized magnetization is given by cos(πr/2R), we find
that mz = 0.5 when r = 2R/3; hence comparing the meron
radius R with the FWHM F , we obtain F = 4R/3.

To compare our results with previous analytical studies,
e.g., Ref. [42], we introduce the characteristic length scale lw
and a dimensionless parameter κ defined as

lw = π

√
2A

(π2 − 4)K
= η

√
A

K
,

κ = (π2 + 4)

[4
√

2(π2 − 4)]

Deff√
AK

= κ0
Deff√

AK
. (C8)

lw is equivalent to the meron radius when Deff → 0, and
κ is the unique dimensionless parameter that can be formed
given the parameters involved, up to numerical factors (see
Sec. VII). This allows us to express the meron radius in a
simplified form

R = lw(κ +
√

κ2 + 1). (C9)

2. Other key analytical equations

Here, we present a brief description of the other equa-
tions relevant to this work, particularly for the scaling
comparisons in Figs. 7(a) and 7(b). Firstly, the derivation of
the linear antimeron largely follows the above and is given
in full in Sec. S1 of the Supplemental Material [41]. The key
difference with this derivation and that of the linear meron
is the loss of circular symmetry in the presence of an iDMI;
this leads to the introduction of an additional parameter λ

that describes this distortion and can be determined by min-
imizing the energy in a similar way to the antimeron radius.
The resulting coupled equations in terms of the parameters

lw and κ are

R = lw

⎡
⎣1

2
κ

(
λ− 1

λ

)
+

√
1

4
κ2

(
λ− 1

λ

)2

+ 1

2

(
λ2+ 1

λ2

)⎤
⎦,

(C10)

λ = κR

2lw
[
C + ln

(Rd
R

)] +
√

1 +
{

κR

2lw
[
C + ln

(Rd
R

)]}2

.

(C11)

The distorted linear bimeron, as a first-order analytical
approximation to the scaling behavior of a bimeron, is shown
by the red line in Fig. 7(b). Clearly, this gives a reasonable
prediction of the texture scales for the parameter values con-
sidered here but falls off rapidly both at larger and smaller
κ . Critically, this simple model predicts that bimerons should
be stable with significantly weaker iDMI than the lower bound
we show here, and this is largely a failure of the continuum ap-
proximation used in the analytical calculations as the texture
sizes tend towards the atomic scale where the discrete nature
of the crystal will become critical. This is discussed further
in Sec. S2 of the Supplemental Material [41]. The relevant
coupled equations, which were solved iteratively to give the
line discussed above, are

R = πλDeff

K
∝ lwκλ, (C12)

0 = Aγ

(
2λ − 2

λ3

)
− 1

2
πDeffR. (C13)

The two skyrmion models that are used to compare with
our simulation data, namely, the Walker ansatz [43] and the
model presented by Büttner et al. [42], have the following
equations, respectively, describing their radius as a func-
tion of the same phenomenological parameters we have used
throughout.

R/lw = πD

√
A

16AK2 − π2DK2
, (C14)

R/lw = εκ ′ρ
ID(ρ)

IK (ρ)
. (C15)

Here, ε ≈ 0.272 is a numerical constant, ρ is a parameter
that depends on κ ′ and lw and controls the skyrmion profile,
and ID and IK are functions of this parameter. R is implicitly
defined in the second equation, since ρ itself depends on R.
Therefore in order to plot the associated curve in Fig. 7(b), we
solved this equation iteratively for many sets of values of the
parameters κ ′ and lw.
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