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Magnetic hard-direction ordering in anisotropic Kondo systems
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We present a generic mechanism that explains why many Kondo materials show magnetic ordering along
directions that are not favored by the crystal-field anisotropy. Using a renormalization-group (RG) analysis of
single-impurity Kondo models with single-ion anisotropy, we demonstrate that strong fluctuations above the
Kondo temperature drive a moment reorientation over a wide range of parameters, e.g., for different spin values
S and number of Kondo channels N . In tetragonal systems, this can happen for both easy-plane or easy-axis
anisotropy. The characteristic crossing of magnetic susceptibilities is not an artifact of the weak-coupling RG
treatment but can be reproduced in brute-force perturbation theory. Employing the numerical renormalization
group (NRG), we show that for an underscreened moment (S = 1, N = 1) with easy-plane anisotropy, a crossing
of magnetic susceptibilities can also occur in the strong-coupling regime (below the Kondo temperature). This
suggests that collective magnetic ordering of such underscreened moments would develop along the magnetic
hard axis.
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I. INTRODUCTION

Fluctuations are at the heart of many complex ordering
phenomena, leading to the formation of exotic phases of
matter. Examples include nematic order in iron-based super-
conductors [1,2], driven by strong spin fluctuations above the
magnetic ordering temperature [3], and p-wave spin-triplet
superconductivity near ferromagnetic quantum critical points
[4,5]. In the latter case, the required attraction in the p-wave
channel is generated by fluctuations. This mechanism is very
similar in spirit to fluctuation generated Casimir and Van-der-
Waals forces [6].

In itinerant ferromagnets, the coupling between the
magnetic order parameter and soft electronic particle-hole
fluctuations leads to a plethora of exotic ordering phenom-
ena [7]. It is responsible for fluctuation induced first-order
behavior at low temperatures [8–11], observed experimen-
tally in many systems [12–16]. Since the phase space for
electronic fluctuations can be enhanced by deformations of
the Fermi surface, metallic ferromagnets are very suscepti-
ble towards the formation of spin nematic [9], modulated
superconducting [17], or incommensurate magnetic order
[18–22].

Fluctuations can also have counter-intuitive effects upon
the direction of magnetic order parameters. A notable example
is the partially ordered phase of MnSi, in which the helimag-
netic ordering vector rotates away from the lattice favored
directions [23,24]. Magnetic hard-axis ordering in metallic
ferromagnets is fairly wide spread [25,26]. Such a moment
reorientation can arise as combined effect of fluctuations and
magnetic frustration in a local moment model [27]. In an

alternative scenario, the effect was attributed to soft electronic
particle-hole fluctuations in a purely itinerant model with
spin-orbit induced anisotropy [28].

In this paper, we show that electronic fluctuations can drive
magnetic hard-axis ordering in anisotropic Kondo materials.
As first established by Kondo [29], the scattering of elec-
trons by local moments gives rise to logarithmic corrections
to the magnetic susceptibility. In the presence of magnetic
anisotropy, these logarithmic corrections depend upon di-
rection. Near the Kondo scale, these terms can completely
overwhelm the crystal-field anisotropy experienced by the
local moment, driving a moment reorientation.

We identify a generic mechanism for magnetic hard-axis
ordering that fully accounts for the following experimental
facts [25]: (i) all the materials that show hard-axis ordering
are Kondo systems. (ii) The susceptibility crossing occurs
above the magnetic ordering temperature Tc. (iii) In tetragonal
systems the moment reorientation can occur from easy plane
to hard axis [30–33], or the other way round, from easy axis
to hard plane [34,35]. (iv) The effect also occurs in systems
that show a first-order magnetic transition [36,37]. (v) Similar
magnetic hard-axis ordering is observed in Kondo systems
that order antiferromagnetically [38–40].

The paper is organized as follows. In Sec. II, we intro-
duce the S � 1, N-channel single-impurity Kondo model with
single-ion anisotropy. The interplay of Kondo screening and
anisotropy is studied within perturbative RG in Sec. III. We
show that near the Kondo scale the single-ion anisotropy
can change sign, indicative of a reorientation of the dressed
magnetic moment. As illustrated in Sec. IV, this reorienta-
tion might be interpreted as a resonance effect. In Sec. V,

2469-9950/2022/105(22)/224418(12) 224418-1 ©2022 American Physical Society

https://orcid.org/0000-0002-2608-7971
https://orcid.org/0000-0002-1009-6785
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.224418&domain=pdf&date_stamp=2022-06-24
https://doi.org/10.1103/PhysRevB.105.224418


KWASIGROCH, HU, KRÜGER, AND GREEN PHYSICAL REVIEW B 105, 224418 (2022)

we show that the effect can be reproduced by brute-force
second-order perturbation theory, which shows a crossing of
the magnetic susceptibilities for a large range of parameters
and different values of S and N . In Sec. VI, we use the
numerical renormalization group (NRG) to investigate the
strong-coupling behavior of the single channel Kondo model
of an S = 1 spin with single-ion anisotropy and demonstrate
that a crossing of the magnetic susceptibilities can occur far
below the Kondo temperature in systems with easy-plane
anisotropy. Finally, in Sec. VIII, we summarize and discuss
our results.

II. KONDO MODEL

Since the magnetic susceptibility crossing occurs above Tc,
irrespective of the order of the transition and the nature of
the ordered state, the dominant effect can be understood on
the level of a single-impurity Kondo model with single-ion
anisotropy,

Ĥ =
N∑

n=1

|εk|<�∑
k

εkψ
†
knψkn + α�(Ŝz )2

+ 1

N2

N∑
n=1

∑
k,q

∑
γ=x,y,z

Jγ Ŝγ ψ†
knσγ ψqn. (1)

Here ψ†
kn = (c†

kn↑, c†
kn↓) with c†

knσ the creation operator of
an electronic quasiparticle with momentum k and spin σ

in channel n = 1, . . . , N . The first term simply denotes N
identical bands with dispersion εk, subject to an energy cutoff
�. The second term is the single-ion anisotropy of the local
moment spin (S � 1) in a tetragonal crystal, expressed in
units of �. In the following we will investigate both easy-axis
(α < 0) and easy-plane (α > 0) anisotropies. The last term
in the Hamiltonian denotes the Kondo coupling between the
impurity spin and the conduction electrons, where σγ are the
standard Pauli matrices. Assuming tetragonal symmetry we
have Kondo couplings Jxy := Jx = Jy and Jz.

III. PERTURBATIVE RG

To analyze the scale dependence of the single-ion
anisotropy α and the Kondo couplings Jxy and Jz, we integrate
out processes to second order in the Kondo couplings that
involve the creation of particles or holes in the infinitesi-
mal energy shells �e−d� < |εk| < �. This procedure, dubbed
“poor man’s scaling,” was first applied by Anderson [41]
to the anisotropic S = 1/2 one-channel Kondo model. For
S = 1/2, anisotropy only enters through the Kondo couplings
Jxy and Jz.

Here we generalize to N channels and an S � 1 impurity
subject to single-ion anisotropy. Moreover, in the spirit of the
conventional RG treatment we rescale to the original cutoff at
each RG step. A detailed derivation of the general RG equa-
tions is given in Appendix A. Since the qualitative behaviour
of the RG flow is the same for all values of S � 1 and N , we
focus on the underscreened case with S = 1 and N = 1 from

now on. The weak-coupling RG equations are

dgz

d�
= g2

xy(1 + α),
dgxy

d�
= gxygz

(
1 − α

2

)
,

dα

d�
= α + g2

xy − g2
z − 3g2

xyα, (2)

where gγ = 2ρJγ are the dimensionless Kondo couplings. For
simplicity, we have adopted the usual assumption [41] of a
constant density of states ρ. The scale parameter � is related
to temperature, � = ln(�/T ).

In the absence of anisotropy, gxy = gz and α = 0, the sys-
tem remains isotropic under the RG flow, as expected. For α =
0, the RG equations for gxy and gz take the familiar form [41].
In the relevant regime of antiferromagnetic Kondo couplings,
the flow is towards strong coupling, gγ → ∞, corresponding
to the Kondo regime.

This picture is incomplete, however, since the anisotropy
in the Kondo couplings generates single-ion anisotropy due to
the (g2

xy − g2
z ) term in the RG equation for α. This leads to a

flow out of the α = 0 plane. For gxy > gz the flow is to positive
α, corresponding to easy-plane anisotropy, while for gxy < gz

an easy-axis anisotropy is generated. Finite α modifies the RG
flow of the Kondo couplings, e.g., easy-plane anisotropy (α >

0) leads to gz growing faster than gxy. The interplay of these
effects initially leads to a “restoration of symmetry” [42] and
ultimately to the moment reorientation that is the main subject
of this work.

In Fig. 1, the evolution of the coupling constants under
the RG is shown. For the trajectories (A), (B), and (C) we
have chosen an easy-plane anisotropy α(0) = 0.1 and initially
isotropic Kondo couplings, gxy(0) = gz(0). In the regime of
weak Kondo coupling (A), α keeps growing, leaving the
regime where the RG equations are valid. This behavior in-
dicates that the single ion anisotropy stabilizes the moment,
preventing Kondo screening. Magnetic hard-axis ordering
therefore does not occur for sufficiently strong anisotropy,
compared to the Kondo coupling, which is consistent with
experimental observations [25].

For (B), the growing splitting of the increasing Kondo
couplings reverse the flow of α at a scale �max, corresponding
to the point where the trajectory crosses the grey surface in
Fig. 1, defined by α + g2

xy − g2
z − 3g2

xyα = 0. At some scale
�0, corresponding to a temperature T0 = �e−�0 , α changes
sign, indicating a reorientation of the moment. At a larger
scale �∗ > �0 the rapidly increasing Kondo couplings diverge,
corresponding to the Kondo temperature TK = �e−�∗

< T0.
The evolution of gxy(�), gz(�) and α(�) resulting in the tra-
jectory (B) are shown in Appendix A.

If the initial Kondo couplings are too large (C), the Kondo
scale is reached before a moment reorientation occurs. Note
that this strong coupling regime lies beyond the validity of
the perturbative RG treatment. The trajectories (A′), (B′), and
(C′) show the completely analogous behavior for the case of
easy-axis anisotropy.

IV. REORIENTATION AS A RESONANCE EFFECT

Treating the exchange between the impurity and the con-
duction electrons perturbatively, we can think of the local
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FIG. 1. RG flow of the single-ion anisotropy α and Kondo cou-
plings gxy, gz. The direction of the flow is shown by blue arrows
and the transparent grey surface separates regions of increasing
and decreasing α. The trajectories (A), (B), (C) correspond to an
initial easy-plane anisotropy α(0) = 0.1 and increasing values of
gxy(0) = gz(0). (A) For weak gγ (0) the anisotropy stabilizes the
moment and supresses Kondo screening. (B) For intermediate val-
ues of gγ (0), α changes sign before gγ diverge. This indicates a
moment reorientation above the Kondo temperature. (C) For large
gγ (0) the Kondo scale is reached before moment reorientation can
occur. (A′), (B′) and (C′) show the analogous behavior for an initial
easy-axis anisotropy α(0) = −0.1.

moment as being dressed with particle-hole fluctuations. If we
trace out the conduction electrons with respect to the Gibbs
thermal ensemble, we obtain the renormalized energies of the
dressed S = 1 impurity with quantum number mS = m,

E (m) = α�m2 + 2J2
∑
k,q,l

n(εq)(1 − n(εk ))

α�(m2 − l2) − (εk − εq)
, (3)

where the l sum is constrained by 1 � |m + l| � 2, Jγ = J
and n(ε) = 1/[1 + exp(ε/T )] is the Fermi function. In the
limits α � 1 and � 	 T , this expression evaluates to

E (m) = α�m2

(
1 − 3

2
g2 ln

�

2T

)
+ const. (4)

We can see that Kondo screening leads to a reduction in the
renormalized anisotropy α that grows with temperature, and
can lead to change in sign of the renormalized α at low enough
temperatures. This is because of stronger resonance between
impurity states with higher energy α�m2 and particle-hole
excitations.

FIG. 2. Susceptibility crossings of the Kondo model with S =
1, Ng2

γ = 0.23 and easy-plane anisotropy α = 0.05 at T0 > TK ,
obtained by second-order perturbation theory. Such moment reori-
entation can be found for all values of N and S � 1 and both signs of
α.

V. IMPURITY SUSCEPTIBILITY FROM PERTURBATION
THEORY

We have identified the moment reorientation to a mag-
netic hard direction from the sign change of the single-ion
anisotropy α under the RG flow. In the perturbative regime,
this should correspond to a crossing of the local magnetic
susceptibilities χ

imp
z and χ

imp
x = χ

imp
y , which are defined as

χ imp
γ ≡

∫ β

0
dτ 〈Ŝγ (τ )Ŝγ (0)〉. (5)

Since for certain parameters the moment reorientation oc-
curs above TK one should be able to observe the effect by
calculating the magnetic susceptibilities in second-order per-
turbation theory in the Kondo couplings,

χ imp
γ (T ) = χ free

γ (T ) +
∑
γ ′

Fγ γ ′ (T )g2
γ ′ + O

(
g4

γ

)
, (6)

where χ free denotes the susceptibility of a free S = 1 impurity
with single-ion anisotropy α,

χ free
z = 2e−α�/T

T Z imp
, χ free

x,y = 2
(
1 − e−α�/T

)
α�Z imp

, (7)

with Z imp = 1 + 2e−α�/T . This calculation was first per-
formed by Kondo for the isotropic system [29] and later
generalized to study the effects of a hexagonal crystal field in
dilute alloys [43]. Unfortunately, the authors only calculated
χ

imp
z along the easy direction, not anticipating a susceptibility

crossing close to TK [44].
Since, to the best of our knowledge, results for χ

imp
x,y are

not available in the literature, we present a calculation in
Appendix B, deriving explicit but lengthy expressions for
Fxz = Fyz, Fxx = Fxy = Fyy, and Fzz. As anticipated, a crossing
of the susceptibilities can be obtained in perturbation theory,
regardless of the number of channels N , which simply enters
in the prefactor Ng2

γ of the perturbative correction, for all
S � 1 and both signs of α. In Fig. 2, we show an example
of a susceptibility for S = 1.
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FIG. 3. Impurity contribution to the susceptibility T χ cont
z /S(S +

1) for single-channel S = 1 Kondo models, computed by NRG.
The Kondo coupling gγ = 0.1 results in a Kondo temperature of
TK ∼ 10−5�. The different curves show the isotropic case (α = 0),
and the results for easy-plane (α = 10−5) and easy-axis (α = −10−5)
anisotropies. The results presented here show excellent agreement
with the NRG results of Ref. [45]. The line shows the result from
second order perturbation theory for the isotropic case.

VI. NUMERICAL RENORMALIZATION GROUP

In order to investigate if hard-direction ordering of under-
screened moments could occur in the strong-coupling regime
at temperatures far below the Kondo temperature TK , we em-
ploy the numerical renormalization group (NRG). Previous
NRG studies [45] analyzed the effects of single-ion anisotropy
on the Kondo screening mechanism and on possible non-
Fermi-liquid behavior, but did not investigate the behavior
of magnetic susceptibilities along different directions. The
calculation of transverse magnetic susceptibilities using NRG
has been reported in the literature for related models [46].
It is important to stress that in the strong-coupling regime
the physics will crucially depend on S and N . Here we only
investigate the single-channel Kondo model for S = 1. Details
on our NRG calculations can be found in Appendix C.

In the strong-coupling regime, the experimentally relevant
quantity is not χ

imp
γ , but the impurity contribution to the total

susceptibility, χ cont
γ , defined as the difference between the to-

tal susceptibility of the system with and without the impurity.
As temperature is lowered, the impurity increasingly “out-
sources” its magnetic moment to the conduction electrons.
While the total z-angular momentum is conserved and the
dressed impurity states are eigenstates of Ĵz, the conduction
electrons are carrying an increasing fraction of the impurity’s
angular momentum which is no longer negligible at T ∼ TK .

We first benchmark our NRG results against those of
Ref. [45], where the total susceptibility χ cont

z in the z direction
was calculated for systems with easy-plane and easy-axis
anisotropy. Our NRG results, presented in Fig. 3 show ex-
cellent agreement with the results of that work. However,
the reference did not include the total susceptibility in the
x-direction χ cont

x , which is a dynamical, rather than thermody-
namic quantity, as [Ĥ, Ĵx] �= 0. In this case, the computation
of χ cont

x is equivalent to calculating the entire spectral density
function, which is a more involved process (see Appendix C).

FIG. 4. Impurity contribution to the susceptibility for the single-
channel S = 1 Kondo models with gγ = 0.1 and (a) easy-plane
(α = 10−5) and (b) easy-axis (α = −10−5) anisotropies. Note that
moment reorientation, signalled by a crossing of the susceptibilities,
only occurs in the case of easy-plane anisotropy.

Figure 4 shows the total susceptibilities χ cont
γ for the same

parameters of the anisotropic Kondo model (S = 1, N = 1,
gγ = 0.1, and α = ±10−5) along both, the z axis and direc-
tions in the xy plane. Unlike in the weak-coupling regime
where moment reorientation can occur regardless of the sign
of α, at strong coupling (T � TK ), we only observe a cross-
ing of magnetic susceptibilities in the case of easy-plane
anisotropy (α > 0).

The crossing of total susceptibilities can be understood in
terms of the subspaces with different total angular momentum
Jz. Without Kondo screening the states are product states of
the impurity and conduction electrons. We can divide the Jz =
0 subspace into sectors (m, n) = (0, 0), (1,−1), (−1, 1),
where m, n are the z-angular momenta of the impurity and
conduction electrons, respectively. In the limit T � �, it
costs energy to inject angular momentum into the Fermi sea
and it costs energy for the impurity to have m �= 0. Hence, sec-
tors (1,−1), (−1, 1) are higher in energy than the (0,0) sector
and Kondo exchange gives weak mixing between the sectors.
For the Jz = 1 subspace, the relevant sectors are (m, n) =
(1, 0), (0, 1). These are much closer in energy than Jz = 0
sectors, because the cost of injecting angular momentum into
the Fermi sea can be offset by lowering the m quantum num-
ber of the impurity. The sectors resonate more strongly and
Kondo exchange gives stronger mixing between them. As a
result, the Jz = 1 subspace is lowered in energy more strongly
than the Jz = 0 subspace, allowing for the possibility of a
susceptibility crossing at T � TK .

The negative susceptibility contributions at lowest tem-
peratures in Fig. 4(a) result from the discretization of the
conduction electron band in Wilson’s NRG [47,48]. This
is equivalent to being away from the thermodynamic limit,
where there is a finite number of conduction electron sites Ns,
resulting in a non-zero Curie moment T χ of the free conduc-
tion electrons. When the impurity becomes entangled with the
conduction electrons, it leads to a reduction of the conduction
electron’s Curie moment. This can lead to a negative contribu-
tion contribution in the difference of total susceptibilities with
and without the impurity. The susceptibility crossing takes
place above the temperature where the contribution becomes
negative and is robust against changes of the discretization.
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FIG. 5. The total susceptibilities χ tot
z and χ tot

x,y in the infinitely
narrow bandwidth limit, for (a) S = 1, g = 0.1, α = 0.1, and (b) S =
1, g = 0.1, α = −0.1. Moment reorientation happens in the case of
easy-plane anisotropy.

To some extent the numerical discretization mimics that in a
realistic system there is a finite density of impurities and hence
a finite number of conduction electron sites per impurity, even
in the thermodynamic limit. It would be interesting to self-
consistently account for the Kondo-lattice using dynamical
mean-field theory.

VII. REORIENTATION IN THE INFINITELY NARROW
BANDWIDTH LIMIT

For the sake of completeness, we note here that we also
observe magnetic reorientation in the less experimentally rel-
evant limit of an infinitely narrow band (� → 0), where it
suffices to look at a single electron site coupled to the impu-
rity. In the case S = 1, this results in the Hamiltonian

Ĥ = g[Ŝ+c+
↓ c↑ + Ŝ−c+

↑ c↓ + Ŝz(c+
↑ c↑ − c+

↓ c↓)] + α(Ŝz )2,

(8)
where for simplicity we keep the Kondo coupling g = gγ to be
isotropic. The Hilbert space contains a total of 12 states, and
since the Hamiltonian conserves the total spin, the 12 × 12
matrix is block-diagonal and the largest matrices to be diago-
nalized are two 2 × 2 matrices which can be done by hand.
From the eigenstates |i〉 and corresponding energies Ei, it
is straightforward to compute the total susceptibilities along
different directions,

χ tot
z = 1

T

∑
i

e−Ei/T 〈i|(Ĵ z )2|i〉, (9)

χ tot
x =

∑
i, j

e−Ei/T − e−Ej/T

E j − Ei
|〈i|Ĵx| j〉|2, (10)

where Ĵα = Ŝα + ŝα denote the total spin operators.
The total susceptibilities are shown in Fig. 5. Similar to

the NRG results, for S = 1, there is only a crossing of total
susceptibilities for α > 0, the easy-plane case, but not the
other way around. We would like to stress again that although
the NRG results are similar, they are valid in a very different
limit.

VIII. DISCUSSION

We have presented a perturbative RG analysis of the single-
impurity Kondo model with single-ion anisotropy. Our main
finding is that fluctuations near the Kondo temperature TK can

drive a reorientation of the moment away from the lattice
favored direction at T0 > TK . This hard-direction ordering
occurs over a wide range of parameters and for different
types of anisotropy. As additional proof of principle, we have
shown that a crossing of magnetic susceptibilities occurs in
second-order perturbation theory, for all values of N and
S � 1.

It is important to stress that magnetic hard-direction or-
dering could occur even at temperatures above T0, since the
RKKY interaction, JRKKY

γ ∼ g2
γ , is significantly enhanced

along the hard direction, e.g., for a system with easy-
plane anisotropy we find gz > gxy significantly above T0.
As a result, the susceptibility along this direction would
diverge first, giving rise to magnetic hard-direction order-
ing.

Using NRG, we investigated the strong-coupling behav-
ior of the underscreened S = 1 single channel Kondo model
with single-ion anisotropy. We found that in this regime
a crossing of magnetic susceptibilities can occur, but only
in systems with easy-plane anisotropy. While the NRG re-
sults are robust at strong coupling, they crucially depend
on the Hilbert space truncation and energy discretization in
the intermediate temperature regime [49,50], making it im-
possible to numerically resolve susceptibility crossings and
compare with our perturbative calculations. One would ex-
pect that with increasing coupling strength the effect becomes
more asymmetric and eventually only survives in systems
with easy-plane anisotropy. This might explain why this
case is more frequently observed in experiments [25]. It
would be interesting to investigate the strong coupling be-
havior of Kondo models with different S and N , as well
as of closely related Coqblin-Schrieffer models, which bet-
ter describe systems with strong spin-orbit coupling. For
the latter, we found susceptibility crossings in perturbation
theory and at strong coupling in the infinitely narrow band
limit.

The mechanism presented here is rooted in the interplay
of Kondo fluctuations and anisotropy on the single-impurity
level. This would explain why hard-direction ordering is
observed in a range of Kondo lattice systems, irrespective of
the order and universality of the magnetic phase transition
[25] and for both ferromagnetic [26] and antiferromagnetic
ordering [38–40].

Advances in Nanotechnology and scanning tunneling mi-
croscopy have led to a revival of the Kondo effect [51], thanks
to unprecedented control on the level of single magnetic
adatoms on metallic surfaces [52–54] or artificial magnetic
elements in quantum dots [55,56]. Such experiments could in
principle probe the fluctuation-driven reorientation of a single
magnetic impurity.

We argue that the magnetic hard-direction ordering ob-
served in a wide range of Kondo materials is predominantly
driven by strong Kondo fluctuations. This mechanism might
be further enhanced by soft electronic particle-hole fluctua-
tions that can lead to moment reorientation near ferromagnetic
critical points [28]. Such a combined mechanism could be at
play in YbNi4P2 which shows strong quantum critical fluctu-
ations [34].

Our work shows that strong fluctuations in anisotropic
Kondo materials can drive magnetic hard-direction
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ordering. It is to be expected that the interplay of collective
critical fluctuations and Kondo physics will lead to many
more unexpected ordering phenomena that are yet to be
revealed.
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APPENDIX A: DERIVATION OF THE PERTURBATIVE
RG EQUATIONS

The partition function of the single-impurity Kondo model
(1) can be written down in the path integral,

Z =
∫

DS(τ ) D[ψ†
kn(τ )ψkn(τ )] e−S0−U , (A1)

where S(τ ) = (Sx(τ ), Sy(τ ), Sz(τ )) is the impurity spin,
ψ†

kn(τ ) = (c†
kn↑(τ ), ckn↓(τ )) the Grassmann variables de-

scribing the conduction electrons, and

S0 =
∫ β

0
dτ

N∑
n=1

|εk|<�∑
k

ψ†
kn(τ )(∂τ + εk )ψkn(τ )

+Simp[S(τ )], (A2)

U =
∫ β

0
dτ

N∑
n=1

∑
k,q

∑
γ=x,y,z

Jγ Sγ (τ )ψ†
kn(τ )σγ ψqn(τ ). (A3)

S0 is the action corresponding to the Hamiltonian Ĥ0 =∑
k,n,σ εkc†

knσ cknσ + α�(Ŝz )2 and Simp[S(τ )] is the action of a
free impurity with a spin quantum number S and Hamiltonian
Ĥimp = α�(Ŝz )2. This latter action contains the necessary
terms that enforce constraints satisfied by S(τ ). We do not
give an explicit form here, which will depend on the represen-
tation used, e.g., Abrikosov pseudofermions, spin-coherent
states, Schwinger bosons, etc., and is not important for
subsequent representation-independent calculations. Note
also that every sum over electron momenta k includes the
normalization factor of 1/

√
Ns, where Ns is the number of

electron lattice sites.

1. Perturbative corrections

We begin the renormalization group procedure by integrat-
ing out “fast” fermion modes ψ†

kn(τ ) with �e−d� < |εk| < �.
To second order in the Kondo exchange U , the renormalized
actions can be written as

S ′
0 =

∫ β

0
dτ

|εk|<�e−d�∑
k,n

ψ†
kn(τ )

(
∂τ + εk

)
ψkn(τ )

+Simp[S(τ )], (A4)

U ′ =
∫ β

0
dτ

|εk,q|<�e−d�∑
k,q,n

∑
γ=x,y,z

Jγ Sγ (τ )ψ†
kn(τ )σγ ψqn(τ )

− 1

2
〈U2〉conn.

fast , (A5)

where the expectation value is taken with respect to the part
of S0 describing the fast modes. We write − 1

2 〈U2〉conn.
fast as the

following sum:

− 1
2 〈U2〉conn.

fast = u1J2
xy + u2J2

z + u3JzJxy, (A6)

and we will now go through the calculation of each of the
coefficients u1, u2, and u3. The J2

xy coefficient u1 is given by
the following expectation value:

u1 = −
∫

dτ1dτ2

N∑
n,m=1

<∑
k,k′

>∑
q,q′

× (S+(τ2)S−(τ1) ckm↑(τ2)c†
k′n↑(τ1)

×〈c†
qm↓(τ2)cq′n↓(τ1)〉

+ S−(τ2)S+(τ1) ckm↓(τ2)c†
k′n↓(τ1)

×〈c†
qm↑(τ2)cq′n↑(τ1)〉)

= −ρd��

∫
dτ1dτ2

∑
n

<∑
k,k′

sign(τ2 − τ1)e−|τ2−τ1|�

× (S+(τ2)S−(τ1) ckn↑(τ2)c†
k′n↑(τ1)

+ S−(τ2)S+(τ1) ckn↓(τ2)c†
k′n↓(τ1)) ≡ u(1)

1 + u(2)
1 ,

(A7)

where we have used that
∑>

q,q′ 〈c†
qmσ (τ2)cq′nσ (τ1)〉 =

δmnρd��sign(τ2 − τ1)e−|τ2−τ1|� in the limit β� → ∞. It
is useful to introduce new variables τ = 1

2 (τ1 + τ2) and
� = τ2 − τ1, and split the integration over � into the � > 0
and � < 0 regimes.

u(1)
1 = −ρd��

∑
n

<∑
k,k′

∫
dτ

( ∫
�>0

d� e−��

×〈τ |e�Ĥ0/2ĉkn↑Ŝ+e−�Ĥ0 ĉ†
k′n↑Ŝ−e�Ĥ0/2|τ 〉

+
∫

�<0
d� e��

×〈τ |e−�Ĥ0/2ĉ†
k′n↑Ŝ−e�Ĥ0 ĉkn↑Ŝ+e−�Ĥ0/2|τ 〉

)
,

(A8)

where we have transformed to the operator representation of
the expansion of the partition function in powers of Jγ , and
|τ 〉 are the path-integral coherent states in terms of which
the partition function is written down. Integrating over �, we
obtain

u(1)
1 = −ρd��

∑
n

<∑
k,k′

∫
dτ

×
〈
τ

∣∣∣∣
Ŝ+Ŝ−ĉkn↑ĉ†

k′n↑
�(1 + α(1 − 2Ŝz ))

+ Ŝ−Ŝ+ĉ†
k′n↑ĉkn↑

�(1 + α(1 + 2Ŝz ))

∣∣∣∣τ
〉

= 2ρd�
∑

n

<∑
k,k′

∫
dτ c†

kn↑(τ )ck′n↑(τ )

× ((1 − α(1 − 2S(S + 1)))Sz(τ ) − 2α(Sz(τ ))3)
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− 2Nρ2�d�

∫
dτ (1 − α(1 − 2Sz(τ ))

× (S(S + 1) − (Sz(τ ))2 + Sz(τ )) + O(α2), (A9)

where we have neglected terms proportional to εk�
−1 in the

first line and terms second order in α in the second line.
Following the same steps, we obtain for the second term in
Eq. (A7),

u(2)
1 = −ρd��

∑
n

<∑
k,k′

∫
dτ

×
〈
τ

∣∣∣∣
Ŝ−Ŝ+ĉkn↓ĉ†

k′n↓
�(1 + α(1 + 2Ŝz ))

+ Ŝ+Ŝ−ĉ†
k′n↓ĉkn↓

�(1 + α(1 − 2Ŝz ))

∣∣∣∣τ
〉

= − 2ρd�
∑

n

<∑
k,k′

∫
dτ c†

kn↓(τ )ck′n↓(τ )

× ((1 − α(1 − 2S(S + 1)))Sz(τ ) − 2α(Sz(τ ))3)

− 2Nρ2�d�

∫
dτ (1 − α(1 + 2Sz(τ )))

× (S(S + 1) − (Sz(τ ))2 − Sz(τ )). (A10)

Putting u(1)
1 and u(2)

1 together, we obtain the coefficient of the
J2

xy term,

u1 = 2ρd�
∑

n

<∑
k,k′

∫
dτ

× (c†
kn↑(τ )ck′n↑(τ ) − c†

kn↓(τ )ck′n↓(τ ))

× ((1 − α(1 − 2S(S + 1)))Sz(τ ) − 2α(Sz(τ ))3)

+ 4Nρ2d�(1 − 3α)�
∫

dτ (Sz(τ ))2 + O(α2).

(A11)

The J2
xy coefficient contains terms proportional to (Sz(τ ))2,

which renormalize α by 4NJ2
xyρ

2d�(1 − 3α), as well as terms
proportional to c†

σ (τ )cσ (τ )Sz(τ ) and c†
σ (τ )cσ (τ )(Sz(τ ))3. For

S = 1, (Sz(τ ))3 = Sz(τ ), and both of these renormalize Jz. For
S > 1, terms proportional to c†

σ (τ )cσ (τ )(Sz(τ ))3 generate a
new coupling that is not present in the original model. We will
neglect these for S > 1 and only keep terms proportional to
c†
σ (τ )cσ (τ )Sz(τ ), which renormalize Jz. (Note that our result

is exact for S = 1.) We thus obtain the following renormaliza-
tion of Jz

dJz = 2ρJ2
xyd�

{
(1 + α) for S = 1
[1 − α(1 − 2S(S + 1))] for S > 1 .

(A12)
The J2

z coefficient u2 is given by

u2 = −
∑

σ

N∑
n,m=1

<∑
k,k′

>∑
q,q′

∫
dτ1dτ2 Sz(τ2)Sz(τ1)

× ckmσ (τ2)c†
k′nσ

(τ1) 〈c†
q′mσ (τ2)cqnσ (τ1)〉

= −4Nρ2d�

∫
dτ (Sz(τ ))2, (A13)

where we have followed the same steps as for the J2
xy coeffi-

cient u1. Hence, the J2
z term renormalizes α by −4NJzρ

2d�.
Combining the renormalization of α from the J2

xy and J2
z terms,

its overall renormalization is given by

dα = 4NJ2
xyρ

2d�(1 − 3α) − 4NJ2
z ρ2d�. (A14)

Finally, for the coefficient u3 of the JxyJz term we obtain

u3 = 2

(
1 − α

2

)
ρd�

∑
n

<∑
k,k′

∫
dτ

× (c†
k′n↓(τ )ckn↑(τ )S+(τ ) + H.c.), (A15)

corresponding to a renormalization of the Jxy coupling,

dJxy = 2ρd�JxyJz

(
1 − α

2

)
. (A16)

2. Rescaling

In the neighborhood of the Fermi surface defined by |εk| <

�, we can approximate the sum over k states as
∑

k

∝
∫

dk⊥dk‖, (A17)

where dk⊥ and dk‖ correspond to local changes in compo-
nents of k perpendicular and parallel to the Fermi surface,
respectively. In particular, k⊥ measures the perpendicular dis-
tance to the Fermi surface in k space. We will also assume a
constant density of states throughout the Fermi surface neigh-
borhood, as well as a linear energy dispersion εk ∝ k⊥. With
the above assumptions in mind, the following rescaling will
restore the energy cutoff, which has been reduced to �e−d�

by integrating out the fast modes

k⊥ → e−d�k⊥, τ → ed�τ,

c†
nσ (k⊥, k‖, τ ) → ed�/2c†

nσ (k⊥, k‖, τ ). (A18)

The only couplings that will acquire naive scaling as a result
are

α → ed�α, β → e−d�β. (A19)

3. RG equations

Combining the rescaling and the perturbative corrections
(A12), (A14), and (A16), we obtain the following RG equa-
tions:

dgz

d�
= g2

xy

⎧⎨
⎩

(1 + α) for S = 1,

(1 + α)[1 − α(1 − 2S(S + 1))] for S > 1,

dgxy

d�
= gxygz

(
1 − α

2

)
,

dα

d�
= α + N

(
g2

xy − g2
z

) − 3Ng2
xyα, (A20)

where we have introduced the dimensionless couplings gxy :=
2Jxyρ and gz := 2Jzρ. For N = 1 and S = 1, the RG equa-
tions reduce to those given in Eqs. (2). It is important to
note that while for S = 1, the RG remains self contained,
for S > 1, additional terms that are higher power in the spin
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FIG. 6. The evolution of α, gz and gxy as a function of � for the
parameters S = 1, N = 1, α(0) = 0.1, gγ (0) = 0.3, corresponding
to the trajectory (B) in Fig. 1.

operators are generated. These were not present in the original
anisotropic Kondo model and have been neglected. In a more
complete treatment, one might include such terms and follow
the renormalization of the full crystal-field Hamiltonian in
terms of Stevens operators. From the numerical integration
of the RG equations we obtain the scale dependence of the
Kondo couplings and the single-ion anisotropy for any given
initial values. In Fig. 6, the functions gz(�), gxy(�) and α(�)
that correspond to trajectory (B) in Fig. 1 are shown.

APPENDIX B: SECOND-ORDER
PERTURBATION THEORY

In this Appendix, we provide details of the perturbative
expansion of the magnetic impurity susceptibilities. To second
order in the Kondo couplings the susceptibilities have the
general form

χ imp
γ = χ free

γ +
∑
γ ′

g2
γ ′Fγ γ ′ , (B1)

where χ free
γ (T, α) are the susceptibilities of a free spin subject

to single-ion anisotropy α. For general spin S, we obtain

χ free
x,y =

S∑
m=−S

e−α�m2/T

4Z imp

×
[

(1 − e−α�(1−2m)/T )
S(S + 1) − m2 + m

α�(1 − 2m)

+ (1 − e−α�(1+2m)/T )
S(S + 1) − m2 − m

α�(1 + 2m)

]
,

(B2)

χ free
z =

S∑
m=−S

m2e−α�m2/T

T Z imp
, (B3)

where

Z imp =
S∑

m=−S

e−α�m2/T . (B4)

We start by calculating χ
imp
z which requires the evaluation

of Fzx = Fzy and Fzz. We obtain

Fzx = Fzy = 1

4

∑
k,k′,q,q′

N∑
n,m=1

∫
dτ1dτ2dτ

×〈T̂ (Ŝ+(τ1)ĉ†
kn↓(τ1)ĉk′n↑(τ1) + H.c.)

× (Ŝ+(τ2)ĉ†
q′m↓(τ2)ĉqm↑(τ2) + H.c.)

× (Ŝz(τ )Ŝz(0) − 〈Ŝz(τ )Ŝz(0)〉)〉
= 1

2

∫
dτ1dτ2dτ 〈T̂ (Ŝz(τ )Ŝz(0) − T χ free

z )

× Ŝ+(τ1)Ŝ−(τ2)C(τ1 − τ2)〉, (B5)

where the expectation values are taken with respect to Ĥ0, T̂
is the time-ordering operator, and

C(τ1 − τ2) =
∑

k,k′,q,q′

N∑
n,m=1

〈T̂ ĉ†
kn↓(τ1)ĉq′m↓(τ2)〉

× 〈T̂ ĉk′n↑(τ1)ĉ†
qm↑(τ2)〉

= N
∑
k,q

n(−εk )n(εq)e−|τ1−τ2|(εk−εq ), (B6)

where n(εq) = (1 + eβεq )−1. Splitting the integration into two
regions, τ1 > τ2 and τ1 < τ2, and integrating over τ first, we
obtain

Fz,x/y = N

8Z imp

S∑
m=−S

{
e−α�m2/T [S(S + 1) − m2 + m]

×
[(

m2

T
− χ free

z

)
A2m−1,1−2m − mB1−2m

]

+ [S(S + 1) − m2 − m]

×
[(

m2

T
− χ free

z

)
A−2m−1,2m+1 + mB1+2m

]}
,

(B7)

where for m �= −n

Anm = Te−mα�/T

α�(n + m)

[
(e−nα�/T − 1)F

(
nα�

T

)

+ (emα�/T − 1)F

(
mα�

T

)]
(B8)

and

An,−n = (1 − enα�/T )F ′
(

nα�

T

)
− F

(
nα�

T

)
. (B9)
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For the function Bn we obtain

Bn = 1

T

[
F ′′

(
nα�

T

)
(e−nα�/T − 1)

− F ′
(

nα�

T

)
(e−nα�/T + 1)

]
. (B10)

The functions Anm and Bn depend on the integral

F (t ) =
∫ β�

−β�

dx
∫ β�

−β�

dy
f (x) f (y)

x + y + t
, (B11)

and its derivatives F ′(t ) and F ′′(t ). Here f (x) = (1 + ex )−1 is
the Fermi function and in all cases it is understood that the
singular contribution from integrating over a narrow region
around x + y + t = 0 is excluded, as all singular contributions
cancel anyway in the perturbative expansion of χ

imp
γ . In the

case of the integral F (t ), this corresponds to simply taking
the Cauchy principal value. In the limit β� → ∞, we can
approximate the integral F (t ) as follows,

F (t ) ≈ −2β� ln 2 − t ln
β�

2

+
∫ ∞

−∞
dx

∫ ∞

−∞
dy (x + y + t )

× ln

∣∣∣∣x + y + t

e

∣∣∣∣ f ′(x) f ′(y). (B12)

In this approximation, the derivatives are given by

F ′(t ) ≈ − ln
β�

2
+

∫ ∞

−∞
dx

∫ ∞

−∞
dy ln |x + y + t |

× f ′(x) f ′(y),

F ′′(t ) ≈
∫ ∞

−∞
dx

∫ ∞

−∞
dy (x + y + t )

× ln

∣∣∣∣x + y + t

e

∣∣∣∣ f ′′(x) f ′′(y). (B13)

Figure 7 shows the behavior of the approximated integrals
for F (t ), F ′(t ), and F ′′(t ). Note that whenever we present
results for high temperatures T � �, the nonapproximated
versions of F (t ) and its derivatives are used.

For the expansion coefficient Fzz, we simply obtain

Fzz = β

∫
dτ1dτ2(〈(Ŝz )4〉 − 〈(Ŝz )2〉2)C(τ1 − τ2)

= − F (0)

2T Z imp

[ ∑
m

m4e−m2α�/T − (
T χ free

z

)2
]
. (B14)

In order to compute the perturbative corrections to χ
imp
x =

χ
imp
y , we need to compute the coefficients Fxz and Fxx = Fxy.

The resulting expressions are quite lengthy and to the best of
our knowledge have not been calculated before. The coeffi-
cients can be written as

Fxz =
∫

dτ1dτ2dτ
〈
T̂

(
Ŝx(τ )Ŝx(0) − T χ free

x

)

× Ŝz(τ1)Ŝz(τ2)C(τ1 − τ2)
〉
, (B15)

FIG. 7. The figure shows the behavior of the three integrals
contained in the definitions of F (t ) and its derivatives in the limit
β� → ∞, that are given in Eqs. (B12) and (B13). The asymptotic
behavior, as |t | → ∞, of the three integrals contained in F (t ), F ′(t )
and F ′′(t ) is given by t ln(|t |/e), ln |t | and 1/t, respectively.

Fxx = 1

4

∫
dτ1dτ2dτ

〈
T̂

(
Ŝx(τ )Ŝx(0) − T χ free

x

)

× (Ŝ+(τ1)Ŝ−(τ2) + H.c.)C(τ1 − τ2)
〉
. (B16)

We take τ2 > τ1 (by symmetry equivalent to the region
τ2 < τ1) and split the integration over τ into three regions
depending on its position relative to τ1, τ2. We finally integrate
over τ1, τ2 to obtain

Fxz = N

8α�Z imp

∑
m

e−α�m2/T

×
{
κ (−m)

[
m2

1 − 2m
(A0,0 − A1−2m,0)

+ (m − 1)2

1 − 2m
(A0,1−2m − A0,0e−(1−2m)α�/T )

+ m(m − 1)

1 − 2m
(A1−2m,0 − A0,1−2m)

]

+ κ (m)

[
m2

1 + 2m
(A0,0 − A1+2m,0)

+ m(m + 1)

1 − 2m
(A1+2m,0 − A0,1+2m)

+ (m + 1)2

1 + 2m
(A0,1+2m − A0,0e−(1+2m)α�/T )

]}

− NT

2
χ free

x χ free
z A0,0, (B17)
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where we have defined κ (m) = S(S + 1) − m(m + 1), for
brevity. A similar calculation gives

Fxx = N

16α�Z imp

∑
m

e−α�m2/T

×
{
κ2(m)

A−1−2m,1+2m − A0,1+2m

1 + 2m

+ κ (m)κ (−m)
A−1−2m,1+2m − A−4m,1+2m

1 − 2m

+ κ (m)κ (−m)
A2m−1,1−2m − A4m,1−2m

1 + 2m

+ κ2(−m)
A2m−1,1−2m − A0,1−2m

1 − 2m

+ κ (m)κ (m + 1)
A0,1+2m − A−3−2m,4+4m

3 + 2m

+ κ (m)κ (−m)
A1−2m,0 − A−4m,1+2m

1 + 2m

+ κ (−m)κ (−m + 1)
A0,1−2m − A2m−3,4−4m

3 − 2m

+ κ (m)κ (−m)
A4m,1−2m − A1+2m,0

2m − 1
+ κ (m)κ (m + 1)

× A−2m−3,4+4m − A−2m−3,2m+3e−(1+2m)α�/T

1 + 2m

+ κ2(−m)
A1−2m,0 − A1−2m,2m−1e(1−2m)α�/T

1 − 2m
+ κ (−m)κ (−m + 1)

× A2m−3,4−4m − A2m−3,3−2me−(1−2m)α�/T

1 − 2m

+ κ2(m)
A1+2m,0 − A1+2m,−1−2me−(1+2m)α�/T

1 + 2m

− 4α�χ free
x κ (m)A−2m−1,1+2m

− 4α�χ free
x κ (−m)A2m−1,1−2m

}
. (B18)

In this section, we have derived analytic expressions for
the impurity susceptibilities χ

imp
z and χ

imp
x = χ

imp
y to second

order in the Kondo couplings gz, gxy and for general values
of N , S and the single-ion anisotropy α. In the isotropic limit
α = 0, gxy = gz = g, and letting β� → ∞, we recover the
following analytic result:

χ imp
γ = χ free

γ [1 + Ng2F ′(0)]

= S(S + 1)

3T
[1 − Ng2 ln(Cβ�)], (B19)

where C = 0.385. This analytic result was used to benchmark
our calculations.

Figure 8 shows a representative sample of our results.
In line with our RG results, no crossing of the susceptibil-
ities χ

imp
x,y and χ

imp
z takes place for large α, regardless of

the strength of the isotropic Kondo coupling g = gxy = gz.
Similarly, in line with our RG analysis, for small anisotropy
α, crossing only takes place above a critical Kondo coupling.

(b)

(d)(c)
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FIG. 8. The crossing of the susceptibilities χ imp
z and χ imp

x,y in
second order perturbation theory for different choices of the param-
eters S, N, gγ , α: (a) S = 1 with easy-plane anisotropy α = 0.05 and
isotropic Kondo interaction Ng2

γ = 0.23. Note that the crossing takes
place at a temperature, where the Kondo corrections to χ free

z are about
10% and to χ free

x,y are about 40%. (b) S = 1 with easy-axis anisotropy
α = −0.05 and isotropic Kondo interaction Ng2

γ = 0.22. (c) S = 1
with easy-plane anisotropy α = 0.05 and isotropic Kondo interaction
Ng2

γ = 0.34. The difference between χ imp
z and χ imp

x,y is much smaller
than the difference between χ free

z and χ free
x,y above the crossing temper-

ature of T ≈ 0.07�, indicating a reduction of the effective positive
α by Kondo screening, in line with RG results. The effective α turns
negative when χ imp

z > χ imp
x,y , which also agrees with RG analysis.

Note that χ imp
z remains greater than χ imp

x,y for temperatures as low
as half of the splitting between the Sz eigenstates, where there is

a second crossing, and note also that χ imp
z → Ng2

xy

α�
�= 0 as T → 0.

This second crossing and the low-temperature limit are not observed
in RG, which takes into account feedback from higher order terms.
(d) S = 5/2 in the presence of easy-plane anisotropy α = 0.01 and
isotropic Kondo interaction of Ng2

γ = 0.23.

We also note here that the crossing of susceptibilities can be
observed for any S � 1 and any N , over a particular range of
parameters α, gγ .

APPENDIX C: DETAILS ON NRG CALCULATION

In this Appendix, we summarize our particular implemen-
tation of the NRG routine to calculating the susceptibility of
the Kondo model presented in Figs. 3 and 4. In the NRG
method, the continuum conduction band is logarithmically
discretized in energy and the electronic part of the Hamil-
tonian is mapped to a semi-infinite chain with exponentially
decaying hopping, with the impurity placed at the zeroth site.
We start off with the impurity coupled to a single electronic
site via the Kondo exchange and the Hamiltonian is then
diagonalized iteratively. At every iteration, (i) a new site of the
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chain is added to the Hamiltonian, (ii) the new Hamiltonian
is then diagonalized, and (iii) high energy states are thrown
away. In this way, we zoom into lower and lower energy
scales that are relevant at low temperatures. Details of the
NRG method can be found in the comprehensive reviews of
Refs. [57,58].

Reference [45] used NRG to calculate the total sus-
ceptibility of Kondo models with easy-axis and easy-plane
anisotropies but only in the z direction, where the cor-
responding magnetization commutes with the Hamiltonian.
This susceptibility is a thermodynamic observable that can be
computed using the fluctuation-dissipation theorem

χz = 1

T (n)

∑
i(n)

e−Ei(n)/T (n)〈i(n)|(Ĵ z )2|i(n)〉, (C1)

where Ĵ z = Ŝz + ŝz is the total angular momentum operator in
the z direction and i(n) indexes the energy eigenstates at the
nth NRG iteration. The energy scale at the nth iteration sets
the temperature at which the observables will be worked out
most accurately

T (n) = �−(n−1)/2. (C2)

We have extended the calculation of Ref. [45] to other
directions by computing the susceptibility in the x direction

χx =
∑

i(n), j(n)

e−Ei(n)/T (n) − e−Ej(n)/T (n)

Ej(n) − Ei(n)
|〈i(n)|Ĵx| j(n)〉|2, (C3)

where the appropriate limit needs to be taken in case of degen-
erate eigenstates Ei(n) = Ej(n). We emphasise that, unlike χz,
χx is a dynamical observable that is sensitive to a broad range
of energy scales, not just energies of order T (n), and an ac-
curate calculation requires more eigenstates to be kept at each
NRG iteration. We refer to the reader to the excellent review
of Ref. [58] for a detailed discussion of the difficulties asso-
ciated with calculating dynamical observables. To maximize

the number of eigenstates that can be kept at each iteration,
we made use of conserved observables: charge q and total
angular momentum Jz. The Hamiltonian is block-diagonal
with respect to subspaces labeled Jz and q, which allowed
us to speed up the routine. We have also used particle-hole
symmetry and spin reflection symmetry to analytically relate
degenerate energy eigenstates with charges 2ns − q ↔ q and
total angular momenta Jz ↔ −Jz through the following uni-
tary transformations that commute with the Hamiltonian:

|2ns − q〉 = exp

[
− π

2

ns∑
i=1

(ci↓ci↑ − c†
i↑c†

i↓)

]
|q〉,

| − Jz〉 = exp

[
− iπ Ŝy − π

2

ns∑
i=1

(c†
i↑ci↓ − c†

i↓ci↑)

]
|Jz〉,

(C4)

where ns is the number of electronic sites in the semi-infinite
chain, which are indexed by i. We have thus been able to de-
crease the number of eigenstates that need to be independently
parametrized and stored by a factor of four, allowing us to
keep more eigenstates in the NRG routine.

We benchmarked our NRG calculations by comparing our
results for χz against those of Ref. [45]. In order to do this
accurately, we have used the same parameters

� = 2, g = 2Jρ = 0.1,

TK = W
√

ge−1/g = 1.4 × 10−5W , (C5)

where � is the NRG discretisation parameter and TK the
Kondo temperature (Note that our definition of J is half the
value of the corresponding definition used in Ref. [45]). Sim-
ilarly to this work, we have ensured that the truncation energy
is around 10T (n) and the energy gap is at least 0.01T (n) at
the point of truncation. There is excellent agreement between
our NRG results for χz, given in Fig. 3 and those presented in
Ref. [45].
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