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Quantum fluctuations in the order parameter of quantum skyrmion crystals
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Traditionally, skyrmions are treated as continuum magnetic textures of classical spins with a well-defined
topological skyrmion number. Owing to their topological protection, skyrmions have attracted great interest
as building blocks in future memory technology. Smaller skyrmions offer greater memory density; however,
quantum effects are not negligible for skyrmions with sizes of just a few lattice constants. In this paper we study
quantum fluctuations around dense skyrmion crystal ground states, and focus on the utility of a discretized order
parameter for quantum skyrmions. The order parameter is found to be a useful indicator of the existence of
quantum skyrmions, and captures the quantum phase transition between two distinct skyrmion phases.
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I. INTRODUCTION

Skyrmions are traditionally thought of as nontrivial tex-
tures of classical spins with a well-defined topological
skyrmion number, also referred to as a winding number or
topological charge. The topological skyrmion number in-
volves a two-dimensional integral over continuum space [1,2].
As such, skyrmions are conventionally assumed to be quite
large objects involving many spins. From a fundamental
physics point of view, it is of interest to see to what extent
one can characterize such nontrivial spin textures involving
far fewer spins, also taking into account the intrinsic quantum
nature of individual spins.

Skyrmions have attracted significant interest in recent
years due to promising future applications in magnetic mem-
ory technology [1–12]. Compared to conventional memory
technology based on regions of uniform magnetization, the
existence or nonexistence of a skyrmion can be used as a more
stable bit due to its topological protection [1,2,13]. Further-
more, skyrmions are considered as promising candidates for
future racetrack memory devices [1–6,14]. Skyrmions may
also find applications as information carriers in spin logic
gates [2,15] and as qubits in quantum computing [16].

A periodic lattice of skyrmions, i.e., a skyrmion crys-
tal (SkX), was first observed in the chiral magnet MnSi
[17]. When aiming for dense memory storage it is nec-
essary to study as small skyrmions as possible [9]. Using
spin-polarized scanning tunneling microscopy, a dense SkX
containing nanometer-sized skyrmions was observed in a
monolayer of Fe on the triangular Ir(111) surface in Ref. [18].
For skyrmions whose size is only a few lattice constants, a
quantum description is necessary [19–22]. We therefore refer
to these skyrmions as quantum skyrmions. The discrete na-
ture of quantum skyrmions casts doubt on their topological
protection, since topological arguments rely on continuum
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descriptions. However, it has been shown that skyrmions are
topologically stable in a real, discrete system [13].

Studying the spin waves and the quantum fluctuations is
important to understand the dynamics of quantum skyrmions
[23–27]. In this paper, we obtain the spin waves on top of
a SkX ground state (GS) reminiscent of that observed in
Ref. [18], as well as a distinct SkX with the same peri-
odicity. Our main focus is on the quantum fluctuations of
the discretized order parameter (OP) for quantum skyrmions
[19,20,28]. Inspired by the work of Ref. [19] we are consider-
ing how to classify the existence of quantum skyrmions when
the topological skyrmion number is not well defined [1,19]. In
Ref. [19], exact diagonalization was used on a 19-site cluster.
We use the Holstein-Primakoff (HP) [29] approach to consider
quantum fluctuations around a classical GS. This involves
certain approximations whose validity will be commented on.
While exact diagonalization involves an exact treatment of the
quantum nature of a limited number of spins, the HP approach
allows us to treat truly periodic lattices of quantum skyrmions.

The paper is organized as follows. Section II introduces the
model and the SkX GSs, while details of the method to obtain
the GSs are reserved for Appendix A. The magnon description
is introduced in Sec. III and the magnon energy spectrum is
discussed in Sec. IV, whereas details of the diagonalization
procedure are given in Appendix B. The main results of the
paper regarding the quantum skyrmion OP are given in Sec. V.
We also consider the sublattice magnetizations in Sec. VI
before providing our conclusions in Sec. VII. In Appendix C
we show the effect of thermal fluctuations on the quantum
skyrmion OP.

II. MODEL AND GROUND STATES

Inspired by the 1 nm × 1 nm skyrmions observed in
Ref. [18], we adopt the following Hamiltonian,

H = Hex + HDM + HA + H4, (1)
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FIG. 1. (a), (c) Skyrmion crystal (SkX) ground state shown on a 10 × 12 lattice with periodic boundary conditions. Colors indicate the z
component of the spins, while the arrows show their projection on the xy plane. The primitive cell of the sublattices is shown in dashed red.
(a) shows the state SkX1, while (c) shows the state SkX2. The parameters are D/J = 2.16, U/J = 0.35, S = 1, K/J = 0.518 for SkX1, and
K/J = 0.519 for SkX2. (b) and (d) show the magnon spectrum Ek/J along the path in the first Brillouin zone (1BZ) sketched in (f), for SkX1
and SkX2, respectively. For SkX1 at K/J = 0.518 and SkX2 at K/J = 0.519 none of the bands cross at any k. An example of an avoided
crossing in the spectrum of SkX2 is shown in (e), where Ek,1 and Ek,2 are plotted along −ky with kx = 0. (g) and (h) show the magnon energies
Ek,1, Ek,9, Ek,14, and Ek,15 for SkX1 and SkX2, respectively. The 1BZ is indicated with black lines.

where

Hex = −J
∑
〈i j〉

Si · S j, (2)

HDM =
∑
〈i j〉

Di j · (Si × S j ), (3)

HA = −K
∑

i

S2
iz, (4)

H4 = U
�∑

i jkl

[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk )

− (Si · Sk )(S j · Sl )]. (5)

Here, Si, with magnitude S, is the spin operator at lattice site
i located at ri. We consider a triangular lattice in the xy plane.
The ferromagnetic exchange interaction is limited to nearest
neighbors, indicated by 〈i j〉. The Dzyaloshinskii-Moriya in-
teraction (DMI) [30,31] favors noncollinear magnetization, as
opposed to the exchange interaction. DMI is possible for the
triangular lattice under consideration because it is assumed to
be on a surface, and so inversion symmetry is broken in the z
direction [2,18,31]. The DMI vector is set to Di j = Dr̂i j × ẑ,
where r̂i j is the unit vector connecting nearest neighbors i and
j, and D > 0 is the strength of the DMI [18]. We also consider
a single-ion easy-axis anisotropy as well as the four-spin inter-
action H4, where the sum is limited to sites i, j, k, l that make
counterclockwise diamonds of minimal area, indicated by �
[18,32]. The four-spin interaction makes both ferromagnetic

and helical states unfavorable, and is instrumental in stabi-
lizing the nanometer-sized SkX [18]. The reduced Planck’s
constant and the lattice constant are set to 1 throughout this
paper, h̄ = a = 1.

By tuning the parameters to D/J = 2.16 and US2/J =
0.35 the GS is a SkX with a periodicity of five lattice sites
in the x direction and six chains in the y direction, at least in
the region 0 � K/J � 0.8 of easy-axis anisotropy. This is the
same periodicity as the best commensurate approximation to
the SkX observed in Ref. [18]. We find a quantum phase tran-
sition (QPT) between two distinct SkX states with the same
periodicity, named SkX1 and SkX2. The QPT occurs at a
transition point K = Kt , where 0.518 < Kt/J < 0.519, which
is determined by the classical GS energy of the two phases.
SkX1 is shown for K/J = 0.518 in Fig. 1(a), while SkX2 is
shown for K/J = 0.519 in Fig. 1(c). They are separated by the
location of the center of the skyrmion, which is placed exactly
at a specific lattice site in SkX1, but has moved approximately
one quarter lattice constant to the left of a specific lattice site
in SkX2. Reference [19] also found that the center of the
skyrmion relocated when tuning a parameter in the Hamilto-
nian, there in response to an increasing magnetic field. Here,
the center relocates due to stronger easy-axis anisotropy, since
the DMI and easy-axis anisotropy terms favor SkX2, while the
exchange and four-spin interaction terms favor SkX1.

Each phase appears very similar at all considered K , ex-
cept that the absolute value of the z component of all spins
increases with increasing K . For both phases, the magnetic
unit cell consists of 15 lattice sites hosting one skyrmion; see

224416-2



QUANTUM FLUCTUATIONS IN THE ORDER PARAMETER … PHYSICAL REVIEW B 105, 224416 (2022)

Fig. 2(a). This is nearing the lower limit of skyrmion size
on a triangular lattice [9,19,21]. The Hamiltonian in Eq. (1)
is symmetric under spin inversion, i.e., time-reversal sym-
metric, so states with all spins flipped compared to those in
Figs. 1(a) and 1(c) are degenerate in energy. Additionally,
SkX2 is degenerate with a state where the center relocates
by the same length to the right. If these SkXs were created
by cooling down an unordered magnetic state in a suitable
material, domain walls would probably appear between the
degenerate states [18,33].

A sizable value of D/J is needed in our model to stabilize
the quantum skyrmions. DMI originates from spin-orbit cou-
pling (SOC), which is a relativistic effect, and therefore D is
usually much smaller than J in real materials [2,31,34]. How-
ever, methods of tuning the value of J using external lasers
[7,8], even to the point of an exchange free magnet [9], have
recently been put forth. Therefore, studying materials with
D > J in the laboratory has become feasible. Additionally, in
the material in Ref. [18], the large nuclear number of Ir leads
to a strong SOC and therefore enhances the DMI. Moreover,
the nearest-neighbor exchange interaction is unusually weak
due to the strong hybridization of Fe and Ir, which is also
why the four-spin interaction is not negligible [18]. While
our parameter set differs from that given in Ref. [18], we are
modeling a similar material, namely a ferromagnetic mono-
layer on the surface of a heavy metal which gives rise to
strong SOC and a weak nearest-neighbor exchange interaction
[2,18]. However, achieving D/J = 2.16 in a real material still
might require tuning J [8] to a lower value.

We also present results as functions of the easy-axis
anisotropy. Ordinarily, this is considered to be a constant value
due to the magnetocrystalline anisotropy in a given material
[18,23–25]. Therefore one would need to look at different ma-
terials in order to observe the changes in the results. However,
a method to tune the value of K in a material by applying
mechanical strain, even managing to change its sign and so
change its nature to an easy-plane anisotropy, has recently
been discovered [35,36]. Motivated by this, we will discuss
a tunable easy-axis anisotropy K . Since the phase transition
between SkX1 and SkX2 occurs at zero temperature by tuning
a parameter in the Hamiltonian, we identify it as a QPT.

III. MAGNON DESCRIPTION

Reference [37] introduces a method of performing the
HP transformation in noncollinear magnetic ground states.
For each lattice site the approach introduces rotated coordi-
nates through an orthonormal frame {êi

1, êi
2, êi

3} with êi
3 = mi.

Here, mi = (sin θi cos φi, sin θi sin φi, cos θi ) is a unit vector
along the spin at lattice site i in the classical GS. Fur-
thermore, êi

1 = (cos θi cos φi, cos θi sin φi,− sin θi ) and êi
2 =

(− sin φi, cos φi, 0). The HP transformation is then intro-
duced as Si3 = Si · êi

3 = S − a†
i ai, Si± = Si · êi

±, êi
± = êi

1 ±
iêi

2, Si+ = √
2Sai, and Si− = √

2Sa†
i . Assuming small spin

fluctuations, we truncate at second order in magnon operators
and therefore neglect magnon-magnon interactions [26,37].
The assumption of small spin fluctuations should be valid at
low temperatures compared to the lowest magnon energy; see
Appendix C.

Let N be the number of lattice sites and N ′ = N/15 the
number of magnetic unit cells. The Fourier transform (FT) is
introduced as ai = 1√

N ′
∑

k eik·ri a(r)
k , assuming lattice site i is

located on sublattice r. The sum over momenta k covers the
first Brillouin zone (1BZ) of sublattice r.

The magnon-independent terms, H0, correspond to the
classical Hamiltonian. It can be shown that linear terms in
magnon operators vanish when expanding around the GS [37].
The quadratic terms may be written

H2 = 1

2

∑
k

a†
kMkak, (6)

where a†
k = (a(1)†

k , a(2)†
k , . . . , a(15)†

k , a(1)
−k, . . . , a(15)

−k ) and

Mk =
(

ηk ν∗
−k

νk η∗
−k

)
. (7)

The matrix elements are expressed as

ηr,s
k =ηrδr,s + Seik·δ(r,s)�r,s

+ , (8)

νr,s
k =νrδr,s + Seik·δ(r,s)�r,s

− , (9)

ηr = 2S
∑

s

[
J(r,s)ê

r
3 · ês

3 − D(r,s) · (
êr

3 × ês
3

)]

− KS
[
1 − 3

(
êr

3 · ẑ
)2] − 4S3

∑
stu

U(r,s,t,u)
[(

êr
3 · ês

3

)(
êt

3 · êu
3

)

+ (
êr

3 · êu
3

)(
ês

3 · êt
3

) − (
êr

3 · êt
3

)(
ês

3 · êu
3

)]
, (10)

νr = − KS
(
êr

1 · ẑ
)2

, (11)

�r,s
± = − J(r,s)ê

r
± · ês

− + D(r,s) · (êr
± × ês

−)

+ 2S2

(∑
tu

U(r,s,t,u)
[(

êr
± · ês

−
)(

êt
3 · êu

3

)

+ (
êr
± · êu

3

)(
ês
− · êt

3

) − (
êr
± · êt

3

)(
ês
− · êu

3

)]
+

∑
s′u

U(r,s′,s,u)
[(

êr
± · ês′

3

)(
ês
− · êu

3

)

+ (
êr
± · êu

3

)(
ês′

3 · ês
−
) − (

êr
± · ês

−
)(

ês′
3 · êu

3

)]
+

∑
s′t

U(r,s′,t,s)
[(

êr
± · ês′

3

)(
êt

3 · ês
−
)

+ (
êr
± · ês

−
)(

ês′
3 · êt

3

) − (
êr
± · êt

3

)(
ês′

3 · ês
−
)])

. (12)

Here, δ(r,s) is the shortest vector connecting a site on sublattice
r to a site on sublattice s. J(r,s) = J and D(r,s) = Dδ(r,s) × ẑ
if there exist sites i ∈ r, j ∈ s such that i and j are nearest
neighbors. Otherwise J(r,s) = 0 and D(r,s) = 0. U(r,s,t,u) = U
if there exist sites i ∈ r, j ∈ s, k ∈ t, l ∈ u such that i, j, k, l
make a counterclockwise diamond of minimal area. Other-
wise U(r,s,t,u) = 0. Since the orthonormal frame {êi

1, êi
2, êi

3} is
equal for any i ∈ r it is replaced by {êr

1, êr
2, êr

3} to facilitate the
FT.
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IV. MAGNON SPECTRA

Diagonalizing [38] and applying a bosonic commutator
gives

H2 =
∑

k

15∑
n=1

Ek,n

(
b†

k,nbk,n + 1

2

)
. (13)

The 15 energy bands are numbered from top to bottom, and
plotted for a path in the 1BZ in Figs. 1(b) and 1(d). The
definition of the points in the 1BZ and its precise structure are
given in Appendix A. The number of bands corresponds to the
number of sublattices in the GS. A selection of magnon ener-
gies are shown in the full 1BZ in Figs. 1(g) and 1(h). Possible
experimental techniques to measure these collective excita-
tions include spin-resolved electron-energy-loss spectroscopy
[25], neutron scattering, and Brillouin light scattering [4].
Compared to earlier studies of SkX magnon spectra [23–27],
our results offer new insight into their behavior in zero exter-
nal magnetic field.

Note the significant difference between the magnon spec-
trum of SkX1 in Figs. 1(b) and 1(g) compared to that of SkX2
in Figs. 1(d) and 1(h). A striking difference is that in SkX1 the
energy spectrum obeys E (kx, ky) = E (−kx, ky) = E (kx,−ky),
while in SkX2 E (kx, ky) = E (−kx, ky) 	= E (kx,−ky ). The
lower symmetry of the magnon spectrum is attributed to the
lower symmetry of the GS. The lower symmetry of SkX2
compared to SkX1 is also what clearly identifies it as a sep-
arate phase. Both the SkX1 GS and the SkX2 GS show a
symmetry under combined real space mirror operation about
the xz plane and spin inversion. Meanwhile, only SkX1 shows
symmetry under combined mirror operation about the yz plane
and spin inversion. In both states, for any nearest-neighbor
spins mr and ms with nearest-neighbor vector δ(r,s), there ex-
ists a pair mr = (mrx,−mry, mrz ) and ms = (msx,−msy, msz )
with nearest-neighbor vector δ(r,s) = (δ(r,s)x,−δ(r,s)y ). By in-
specting the matrix elements and applying theory concerning
the diagonalization method [38,39], this can be used to show
that the matrices M(kx, ky) and M(−kx, ky) defined in Eq. (7)
give the same energy eigenvalues. Hence, symmetry under
combined mirror operation about the xz plane and spin in-
version leads to mirror symmetry about the kykz plane for
the magnon spectrum. The broken symmetry under combined
mirror operation about the yz plane and spin inversion in SkX2
leads to a broken mirror symmetry about the kxkz plane for its
magnon spectrum, unlike SkX1.

For SkX1, the magnon gap at the � point, � ≡ mink Ek,
is caused by a combination of the easy-axis anisotropy and
the DMI. Hex and H4 involve inner products of spins, and are
independent of a global rotation of all spins. Therefore, they
should not cause a gap at the � point. HA and HDMI protect
the GS from a global rotation of all spins, i.e., they break
continuous rotational symmetry [26], and therefore they both
contribute to the gap at the � point. Figure 2(b) shows how
the gap changes when K is tuned. Unlike ferro- and antifer-
romagnets, the gap decreases when the easy-axis anisotropy
is increased in the SkX1 phase. For SkX2, the magnon gap
has moved slightly away from the � point toward positive
ky. We attribute this to the lower symmetry of the SkX2
state. Interestingly, the gap becomes an increasing function
of K in the SkX2 phase. This further illustrates the difference

FIG. 2. (a) The magnetic unit cells of SkX1 and SkX2 which
are separated by a quantum phase transition (QPT) at K = Kt . The
numbering of the sublattices is included, which was chosen so that
the spin with the largest absolute value of mrz is sublattice r = 10.
(b) The magnon gap � = mink Ek. The dependence of the gap on
the easy-axis anisotropy changes at the QPT. (c) Quantum skyrmion
order parameter (OP), QBL, given per magnetic unit cell. The clas-
sical value is 1 in both phases. Notice that the degree of quantum
fluctuations increases when the magnon gap decreases. The quantum
fluctuations are stronger in SkX1 compared to SkX2, and hence
QBL is a good OP to characterize the QPT. (d) M4 and M9 are
shown, which are the sublattice magnetizations with the strongest
fluctuations in SkX2 and SkX1, respectively. The parameters are
D/J = 2.16, U/J = 0.35, and S = 1. Calculated values are shown
with markers, while dotted lines are added for visualization.

between the SkX1 and SkX2 phases, and lies at the heart of
why the system transitions to the new phase at strong easy-
axis anisotropy; see Appendix A. Apart from the dependence
of the magnon gap on K and a finite number of K values where
two bands cross [40], the magnon spectrum in each phase is
very similar at all considered values of K .

V. QUANTUM SKYRMION ORDER PARAMETER

The topological skyrmion number counts the number of
times the magnetization wraps the unit sphere [1]. It relies
on a continuum description, and is inherently classical. A
discretized version of the skyrmion number is introduced in
Ref. [28] as the total solid angle spanned by the spins, divided
by the solid angle of a sphere, 4π . In Ref. [20], the spin
products are replaced by correlation functions to obtain
a quantum mechanical analog of the topological invariant
[19,20]. The expression is here adapted to general S and we

224416-4



QUANTUM FLUCTUATIONS IN THE ORDER PARAMETER … PHYSICAL REVIEW B 105, 224416 (2022)

use the atan2 function to get the correct value of the solid
angle for all possible combinations of three spins [41]. The
quantum skyrmion OP is

QBL = 1

2π

∑
〈i jk〉

atan2
(〈Ni jk〉, 〈Di jk〉

)
, (14)

where 〈Ni jk〉 = 〈Si · (S j × Sk )〉/S3 and 〈Di jk〉 = 1 + (〈Si ·
S j〉 + 〈Si · Sk〉 + 〈S j · Sk〉)/S2. The sum is taken over all
nonequivalent triangles of nearest neighbors, oriented coun-
terclockwise [20]. When treating a discrete system of quantum
spins, QBL is analogous to the topological invariant of the
corresponding classical GS. However, since it is no longer
topological in a rigorous sense [19], we name it the quantum
skyrmion OP.

For the two SkXs in Figs. 1(a) and 1(c) the classical value
QBL,0 is an integer per magnetic unit cell, QBL,0/N ′ = 1. The
value confirms the presence of one skyrmion in the magnetic
unit cell. For the degenerate states with all spins flipped com-
pared to SkX1 and SkX2, QBL,0/N ′ = −1. Since its sign does
not distinguish skyrmions and antiskyrmions, it makes most
sense to discuss the absolute value of QBL. We choose to
work exclusively with the SkXs that have QBL,0/N ′ = 1 in this
paper. To avoid any confusion in the following we will not put
absolute values on the quantum skyrmion OP.

The aim of this paper is to go beyond the classical, integer-
valued QBL,0 for the skyrmion OP. In Ref. [19], they defined
the quantum scalar chirality as an approximation to QBL, and
considered its utility as a quantum skyrmion OP. Within the
HP approach, the quantum scalar chirality would be Q =
(1/8π )

∑
〈i jk〉〈Ni jk〉. The phases SkX1 and SkX2 contain tri-

angles where 〈Ni jk〉 > 0 and 〈Di jk〉 < 0, and therefore the
quantum scalar chirality is a poor approximation to QBL in
these SkXs. In the HP approach we can calculate the quantum
fluctuations in QBL directly, and then check whether QBL is a
good OP for quantum skyrmions.

After inserting the HP transformation to second order
in magnon operators, we write Ni jk = Ni jk,0 + Ni jk,1 + Ni jk,2

and Di jk = Di jk,0 + Di jk,1 + Di jk,2. The terms to zeroth order
in magnon operators are the classical values. The expectation
values of the linear terms vanish in the diagonalized frame,
and so 〈Ni jk,1〉 = 〈Di jk,1〉 = 0. The quadratic parts are

Ni jk,2 = 1

2S

( − 2êi
3 · (

ê j
3 × êk

3

)(
a†

i ai + a†
j a j + a†

kak
)

+ [
êi
− · (

ê j
− × êk

3

)
aia j + êi

− · (
ê j
+ × êk

3

)
aia

†
j

+ êi
− · (

ê j
3 × êk

−
)
aiak + êi

− · (
ê j

3 × êk
+
)
aia

†
k

+ êi
3 · (

ê j
− × êk

−
)
a jak + êi

3 · (
ê j
− × êk

+
)
a ja

†
k

]
+ H.c.

)
, (15)

where H.c. denotes the Hermitian conjugate of the preceding
term, and

Di jk,2 = 1

2S

( − 2êi
3 · (

ê j
3 + êk

3

)
a†

i ai − 2ê j
3 · (

êi
3 + êk

3

)
a†

j a j

− 2êk
3 · (

êi
3 + ê j

3

)
a†

kak + [
êi
− · ê j

−aia j

+ êi
− · ê j

+aia
†
j + êi

− · êk
−aiak + êi

− · êk
+aia

†
k

+ ê j
− · êk

−a jak + ê j
− · êk

+a ja
†
k

] + H.c.
)
. (16)

It is assumed that i ∈ r, j ∈ s, and k ∈ t to introduce the FT
in these expressions. Simultaneously, the sum over sites i jk
is replaced by a sum over sublattices rst , including peri-
odic boundary conditions (PBCs) [42], times the number of
magnetic unit cells. To calculate the expectation values, the
transformation matrix in Eq. (B1) is used to transform to the
diagonal basis. Focusing on quantum fluctuations, the temper-
ature is set to zero. Then, the only contribution comes from the
commutator in the terms 〈bk,nb†

k,n〉 = 1 + 〈b†
k,nbk,n〉, where

〈b†
k,nbk,n〉 = 0 at zero temperature. All other operator combi-

nations give zero expectation value in the diagonalized basis.
An example of a FT is aia j = 1

N ′
∑

k

∑
k′ eik·ri a(r)

k eik′ ·r j a(s)
k′ .

Only k′ = −k contributes to the expectation value, and so we
get a factor eik·(ri−r j ) = e−ik·δ(r,s) . For more details of how the
expectation values are calculated, see Appendix B.

We calculate the expectation values 〈Nrst 〉 and 〈Drst 〉 for
the 30 nonequivalent triangles involving nearest-neighbor
sites at sublattices rst , and then insert these in QBL/N ′ =
(1/2π )

∑
〈rst〉 atan2(〈Nrst 〉, 〈Drst 〉). The results for QBL/N ′ are

shown in Fig. 2(c) as a function of the easy-axis anisotropy
K . We see that QBL/N ′ remains clearly nonzero, and so is a
good quantum skyrmion OP. It is evident that the quantum
fluctuations do not destroy the skyrmion nature of the GS.
The jump in QBL/N ′ at the transition point Kt shows that it is
also a good OP for the QPT between two quantum skyrmion
phases, SkX1 and SkX2. This is in contrast to the classical
version which is the same in both phases. The jump in the
OP indicates that the transition between SkX1 and SkX2 is a
discontinuous QPT and not a quantum critical phenomenon.

In SkX2, QBL/N ′ approaches 1 from below with increasing
K , indicating that the quantum fluctuations in SkX2 barely
affect its skyrmion nature. SkX1 contains four triangles in
the magnetic unit cell where 〈Drst 〉 < 0, while SkX2 contains
only two such triangles. In reference to the sublattice num-
bering in Fig. 2(a) an example of a triangle with 〈Drst 〉 < 0
that applies to both phases is r = 6, s = 7, t = 3. In SkX1
at K/J = 0.50 we find that Nrst,0 ≈ 0.36, 〈Nrst,2〉 ≈ 0.02,
Drst,0 ≈ −0.11, and 〈Drst,2〉 ≈ 0.06 in these triangles. Hence,
the quantum fluctuations have a significant effect on their con-
tribution to the total solid angle. Meanwhile, in SkX2, there
are two triangles where 0 < Nrst,0 � 1, 0 < 〈Nrst,2〉 � Nrst,0,
Drst,0 ≈ −0.47, and 〈Drst,2〉 ≈ 0.07 for K/J = 0.53. There-
fore, the quantum fluctuations have a negligible effect on their
contribution to the total solid angle. While there are 30 trian-
gles contributing to QBL/N ′, we suggest this difference in the
subset of triangles with 〈Drst 〉 < 0 explains the much smaller
effect of quantum fluctuations on the quantum skyrmion OP
in SkX2 compared to SkX1.

The quantum fluctuations in the OP, i.e., the deviation
of QBL/N ′ from the classical value QBL,0/N ′ = 1, increases
with decreasing magnon gap; see Figs. 2(b) and 2(c). This is
understood from the fact that quantum fluctuations become
less energetically costly with lower magnon gap. In Fig. 2 we
employ a higher density of K/J values between 0.2 and 0.3
because there are interesting topological magnon features in
this region [40]. We find that these features do not affect the
quantum fluctuations. A higher density is also used around
Kt where the gap and the fluctuations change more rapidly as
functions of K . It is emphasized that new GSs are found at
each value of K .
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The classical version, QBL,0, is zero for all coplanar states,
except for a set of exceptional states where three neighbor-
ing spins give Ni jk,0 = 0 and Di jk,0 < 0. As pointed out in
Ref. [28], QBL,0 is not defined in such a case because the
sign of the spanned solid angle of 2π is ambiguous. If one
considers a system where such exceptional states are possible,
one would need to consider whether such coplanar states are
special cases of skyrmions, or, adjust the definition of QBL,0

so that all possible coplanar states give QBL,0 = 0. Our results
indicate that the fluctuations 〈Ni jk,2〉, 〈Di jk,2〉 always have
smaller absolute values than the classical values Ni jk,0, Di jk,0,
even when |Ni jk,0| � 1. Hence, a coplanar state which has
QBL,0 = 0 will likely give QBL = 0 also when including quan-
tum fluctuations. Therefore, QBL should in general be a good
OP for the existence of quantum skyrmions.

Probing QBL in an experiment could involve measuring the
spin correlation functions in Eq. (14). The spin-spin correla-
tion functions in 〈Di jk〉 can be measured by neutron scattering
[43,44] or magnetostriction experiments [45]. Information
about the FT of the three-spin correlation function 〈Ni jk〉, also
referred to as the scalar spin chirality, can be extracted for very
small momenta using Raman scattering [46,47]. Proposals to
access information about the FT of the scalar spin chirality at
finite momenta include neutron scattering [48] and resonant
inelastic x-ray scattering [49].

VI. MAGNETIZATION

We define the magnetization of sublattice r as

Mr = 1

N ′
∑
i∈r

〈Si3〉 = S − 1

N ′
∑

k

〈
a(r)†

k a(r)
k

〉
. (17)

In SkX1 we find the strongest quantum fluctuations for the
two sublattices to the left and to the right of the central up
spin. In our chosen numbering these are sublattices 9 and 11;
see Fig. 2(a). In SkX2 sublattices 3 and 4 show the strongest
quantum fluctuations. We show M4 and M9 as functions of K
for both phases in Fig. 2(d). We see that the corrections to
the classical value Mr = S are less than 11%, supporting the
validity of the HP approach. Again, we see that the fluctua-
tions increase with decreasing gap. The spins at sublattice 10
show the weakest quantum fluctuations in both phases, which
remain less than 1% for all considered K .

VII. CONCLUSION

We studied a weakly exchange-coupled magnetic mono-
layer where the Dzyaloshinskii-Moriya interaction and the
four-spin interaction conspire to create a dense skyrmion crys-
tal. A quantum phase transition between two distinct skyrmion
crystals, driven by a tunable easy-axis anisotropy, was found.
The magnon spectrum was derived and discussed for both
quantum skyrmion phases. The discrete and quantum natures
of small skyrmions are not negligible, and hence the contin-
uum and classical topological invariant is rendered ill-defined.
We proceeded to study the quantum fluctuations in the
discretized order parameter of quantum skyrmions. The order
parameter proved to be a good indicator of the presence of
quantum skyrmions. Furthermore, it managed to capture the
quantum phase transition between distinct skyrmion phases,

signaled by a jump in the order parameter at a particular
value of the easy-axis anisotropy. It was found that quantum
fluctuations do not adversely affect the skyrmion nature of
quantum skyrmions compared to their classical ground states.
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APPENDIX A: GROUND STATES

1. Periodicity

To obtain the classical GS we replace the spin operators
in the Hamiltonian in Eq. (1) by Si = Smi, where S is the
spin quantum number, and mi is a unit vector determining
the direction of the spin at lattice site i. The GS is then the
set {mi} which minimizes H ({mi}). A challenge is that the
periodicity of potential SkXs is a priori unknown, and so
any calculation involving a finite number of lattice sites with
PBCs will suffer from finite-size effects. We therefore first
determine the parameters which give a SkX with the desired
periodicity, before finding the best state with that periodicity.

The approach starts from the SkX construction
detailed in the supplementary material of Ref. [18].
Among the SkX states covered there, the one which
gives the lowest energy in our model is used as a trial
state and named SkXt. SkXt is constructed using QM =
2π x̂/λx, QK = 2π ŷ/(λy

√
3/2), φ̃i = QM · ri, θ̃i = QK · ri,

and mi = (sin φ̃i cos θ̃i/| cos θ̃i|, cos φ̃i sin θ̃i, cos φ̃i cos θ̃i ).
Here λx is the periodicity in the x direction in units of the
lattice constant, while λy is the periodicity in the y direction in
units of

√
3/2 lattice constants. SkXt arranges skyrmions in a

centered rectangular lattice. The periodicities λx and λy used
to specify the GS refer to the conventional unit cell of the
centered rectangular lattice, which contains two skyrmions
here. It is possible to consider any rational values of λx and
λy and still make finite-sized lattices with correct PBCs.

Figure 3 shows the four individual contributions, as well
as the total classical Hamiltonian for SkXt. The exchange
and easy-axis anisotropy terms, see Figs. 3(a) and 3(c), prefer
a ferromagnetic GS, which is achieved with λx = 1, λy = 2.
Special values λx = 1 and general λy, as well as λy = 1 or
λy = 2 and general λx, give helical states. Some of these are
favored by the DMI contribution, see Fig. 3(b), while all are
disfavored by the four-spin interaction, see Fig. 3(d). In addi-
tion, λx = 2, λy = 4 gives a coplanar state, which, along with
the helical states (also coplanar), yields a lower HA compared
to the noncoplanar skyrmion-like states; see Fig. 3(c). Among
the possible SkXt states, the DMI term prefers a helical state
with λx ≈ 3.4, λy = 1. Figure 3(f) shows the similar helical
state with λx = 3.5, λy = 1.

When focusing on SkXt states, it is clear that the value of
the easy-axis anisotropy has no effect on the periodicity unless
it is the dominant energy in the system. However, the true GS
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FIG. 3. (a)–(d) The individual contributions to the classical
Hamiltonian of the trial skyrmion crystal state SkXt as a function
of the periodicities in the x and y directions. The energies are given
per lattice site, and were calculated with periodicity-dependent lattice
sizes in order to implement correct periodic boundary conditions.
(e) The total energy of SkXt, which is minimal for λx = 5, λy = 6.
(f) SkXt for λx = 5, λy = 6 as well as λx = 3.5, λy = 1 which is a
helical state that is strongly favored by HDM and strongly disfavored
by H4. The parameters are D/J = 2.16, U/J = 0.35, K/J = 0.10,
and S = 1.

will adjust the z components of its spins to take advantage of
an increased K . We kept K in the region 0 � K/J � 0.8 in
this paper and ensured that it did not affect the periodicity
of the GS. The total classical Hamiltonian for SkXt states,
see Fig. 3(e), is minimized for λx = 5, λy = 6 at D/J = 2.16
and US2/J = 0.35, and that SkXt state is shown in Fig. 3(f).
To be specific, we tuned the parameters to ensure that |λx −
5|, |λy − 6| < 0.001 minimizes the total energy of SkXt. This
also shows how U/J must be tuned to get the same GS if one
considers different S. We have set S = 1 and U/J = 0.35 in
this paper.

2. Obtaining the ground states

We employ two methods of searching for the GSs, namely
Monte Carlo simulated annealing [26,27,33,50–55] and self-
consistent iteration [23–25]. We obtained the lowest-energy
states using the iterative approach, and therefore explain it in
detail here. Knowing the periodicity, we can work with the
15-site magnetic unit cell with PBCs [42]; see Fig. 2(a) and
compare to Figs. 1(a) and 1(c). The magnetization on each
site is set to mi = (sin θi cos φi, sin θi sin φi, cos θi ), where the
inclination θi and the azimuth φi are the familiar angles in
spherical coordinates. We start from both a random set of
angles and the trial state SkXt. Let n ∈ N be the number of it-
erations completed. Then, for each spin the magnetic torques,
T θ

i = ∂θn
i
H and T φ

i = ∂φn
i
H , are calculated. These are used

to set new angles θn+1
i = θn

i − αT θ
i and φn+1

i = φn
i − αT φ

i ,

where α is the mixing parameter [25]. We used αJ = 0.001
and 0.0001. The iterations are repeated until self-consistency
is reached.

At K/J = 0.518 the end result is the SkX1 state shown in
Fig. 1(a), while at K/J = 0.519 the end result is the SkX2
state shown in Fig. 1(c). We emphasize that the SkXs we
find as GSs have lower energy than the trial states SkXt

used to determine the periodicity. The 15 sublattices in
the GSs are equal, centered rectangular lattices with prim-
itive vectors a1 = (5/2,−3

√
3/2) and a2 = (5/2, 3

√
3/2).

Their 1BZ is a nonregular hexagon with vertices at
(±52π/135, 0) and (±2π/135,±2π/3

√
3). We define the

points � = (0, 0), X = (52π/135, 0), M = (π/5, π/3
√

3),
S = (2π/135, 2π/3

√
3), and Y = (0,−2π/3

√
3) in the 1BZ,

as shown in Fig. 1(f).
We performed several checks on the proposed GSs. Start-

ing from random states on larger lattices and using Monte
Carlo did not yield any states with lower energy. More con-
vincingly, it can be shown that requiring the coefficients of
linear terms in the Hamiltonian to be zero is equivalent to
requiring that the zero-order terms H0 are in an extremum,
∂θi H0 = ∂φi H0 = 0. By calculating the coefficients of the
linear terms from the proposed GSs, we get zero within nu-
merical accuracy.

In the numerics, we set h̄ = a = J = S = 1 so that all
quantities are dimensionless. In the numerical GSs obtained
with 15 free spins in the magnetic unit cell, the spins show
small, O(10−7), deviations from the symmetries discussed
in Sec. IV. By requiring these apparent symmetries to be
exact, we find alternative GSs with the same energy to
O(10−15). These small deviations from the apparent symme-
tries of the classical GSs are therefore viewed as numerical
artifacts, which have minor effects on the results. The maxi-
mum absolute values of the coefficients of linear terms in the
Hamiltonian are O(10−7) due to these artifacts, while exactly
symmetric GSs give O(10−10) coefficients of linear terms. All
numerical results presented in this paper are accurate down
to O(10−7) or better. Achieving accuracy down to O(10−10)
should be possible by requiring the numerical GSs to be
exactly symmetric, but the corrections would not be visible
in any plots presented here.

3. Energy correction and net magnetization

Bosonic commutators were used to write the quadratic
terms in the Hamiltonian on the form in Eq. (6), and these
yield quantum corrections to the GS energy. Also, the diag-
onalized H2 in Eq. (13) gives a nonzero contribution at zero
temperature, and so the expectation value of the Hamiltonian
is

〈H〉 = H0 + N ′

2

∑
r

(νr − ηr ) + 1

2

∑
k

15∑
n=1

Ek,n, (A1)

where H0 is the classical GS energy. We plot H0 and 〈H〉 in
Fig. 4(a). Notice that quantum corrections lower the energy
of the skyrmions, which means that quantum fluctuations sta-
bilize skyrmion crystals. Hence, it is the quantum skyrmions,
and not the classical GSs, which are the preferred states of
the system. This is completely analogous to the HP treatment
of antiferromagnets. The same has previously been found for
skyrmions in a magnetic field [19,23]. The plot of 〈H〉 − H0

in Fig. 4(b) is much closer to being linear than the other
plots of quantum fluctuations in Fig. 2. By inspecting the
calculated values we find that the magnitude of the slope in-
creases slightly for increasing K in both phases. It appears that
changes in 〈H〉 are dominated by the fact that the Hamiltonian
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FIG. 4. (a) The classical ground state (GS) energy H0 and the
expectation value of the Hamiltonian up to second order in magnon
operators, 〈H〉, given per lattice site. Their difference is shown in
(b). In (c) the net magnetization mz of the GS is shown as a function
of the easy-axis anisotropy K . Notice the jump at the QPT between
SkX1 and SkX2. The parameters are the same as those in Fig. 2.

depends linearly on K . Also, gradual changes in the GS to
take advantage of higher K are more important than the value
of the magnon gap, since even in SkX2, where the gap is
an increasing function of K , the magnitude of the slope of
〈H〉 − H0 increases with K .

In the main text, we determined the transition point K = Kt

of the QPT between SkX1 and SkX2 from the classical GS
energy H0. One could also include quantum fluctuations of the
energy, and use 〈H〉 to determine the transition point. SkX1
remains a local minimum in the classical H0 for K > Kt , and
hence the linear terms in the Hamiltonian remain zero. There-
fore, it is possible to use updated versions of SkX1 at K > Kt

and perform calculations of the quantum fluctuations around
these states. We then find that also for K > Kt SkX1 has lower
〈H〉 than SkX2. However, at K = K̃t , with 0.526 < K̃t/J <

0.527, the gap in the magnon spectrum of SkX1 closes. The
matrix Mk in Eq. (7) is no longer positive definite for SkX1,
and so the method in Ref. [56] must be used to diagonalize
the system [38]. This yields complex energy eigenvalues for
SkX1 at K > K̃t indicating that SkX1 becomes dynamically
unstable [57]. Hence, if determined using 〈H〉 rather than H0,
SkX1 is the preferred state up to K = K̃t , at which point a
QPT to the dynamically stable SkX2 takes place.

The SkX1 GSs have a small net magnetization, mz =∑
i miz/N , as opposed to the SkX2 states and the trial SkXt

state which have zero net magnetization. The net magnetiza-
tion is plotted in Fig. 4(c), and it is negative for the SkX1
states with spin up at the center. The Hamiltonian in Eq. (1)
does not have Ising symmetry but it would still be natural to
assume that the net magnetization of a SkX GS is zero, since
there is no external magnetic field. We believe the small net
magnetization of SkX1 is simply due to the fact that such
a configuration allows a lower total energy from the four

competing contributions to the Hamiltonian when placing a
dense SkX on the triangular lattice.

APPENDIX B: DIAGONALIZATION METHOD

The matrix Mk in Eq. (7) is Hermitian, M†
k = Mk, while

its block elements obey η
†
k = ηk and νT

k = ν−k. Mk is also
positive definite in this bosonic system. Therefore, we employ
the matrix generalization of the Bogoliubov transformation
introduced in Ref. [38] to diagonalize the Hamiltonian. Then,
we are guaranteed that the excitation spectrum is real [38],
and hence that the system is stable [57]. In Ref. [58], we used
the method described in Refs. [39,56] because the matrix Mk

was not positive definite in all phases. We have confirmed
that all results in this paper are the same when using either
diagonalization method.

The diagonalization [38],

a†
kMkak = (a†

kT †
k )[(T −1

k )†MkT −1
k ](Tkak) = b†

kDkbk,

where Dk is diagonal, preserves the bosonic com-
mutator relations for the diagonalized operators bk =
(bk,1, . . . , bk,m, b†

−k,1, . . . , b†
−k,m)T . For a system with m

degrees of freedom, the matrices are of size 2m × 2m. In our
system, m = 15, i.e., the number of sublattices in the GS.

Unlike fermionic systems, the excitation spectrum is
not simply the eigenvalues of Mk, and the transformation
matrix Tk is paraunitary, T −1

k = J T †
k J [38], rather than

unitary. Here, J is a diagonal matrix whose first m di-
agonal elements are 1, and final m diagonal elements are
−1. Since Mk is positive definite, its Cholesky decompo-
sition, Mk = K†

k Kk, exists, where Kk is upper triangular.
The algorithm presented in Ref. [38] then proceeds to
find orthonormal eigenvectors wk,1, . . . ,wk,2m and eigenval-
ues Ek,1, . . . , Ek,2m of the Hermitian matrix KkJK†

k . It can
be shown that Ek,n = −E−k,n+m for n � m, where Ek,n >

0 and E−k,n+m < 0. The m positive eigenvalues are the
excitation spectrum of the system [38]. To complete the di-
agonalization, the unitary matrix Wk = [wk,1| . . . |wk,2m] is
constructed from the orthonormal eigenvectors and the diag-
onal matrix Dk = diag(Ek,1, . . . , Ek,m,−Ek,m+1, . . . ,−Ek,2m)
is constructed from the eigenvalues Ek,n. The inverse of the
transformation matrix, T −1

k , is then calculated row by row
from KkT −1

k = WkD1/2
k starting at the last row.

The transformation matrix can be written

Tk =
(

Uk V ∗
−k

Vk U ∗
−k

)
. (B1)

Then, using ak = T −1
k bk the transformation to the diagonal

basis is given by

a(r)
k =

m∑
n=1

(
U †

k,r,nbk,n − V †
k,r,nb†

−k,n

)
, (B2)

a(r)†
−k =

m∑
n=1

(−V T
−k,r,nbk,n + U T

−k,r,nb†
−k,n

)
. (B3)
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TABLE I. Quantum skyrmion order parameter, QBL, as a func-
tion of temperature T . (a) and (b) show the results in SkX1 at
K/J = 0.10 and K/J = 0.50 where the magnon gap is �/J ≈ 0.59
and �/J ≈ 0.13, respectively. (c) Results in SkX2 at K/J = 0.53
where the magnon gap is �/J ≈ 0.11. The remaining parameters are
D/J = 2.16,U/J = 0.35, and S = 1.

(a) SkX1, K/J = 0.10, �/J ≈ 0.59

T/J 0.0 0.2 0.4 0.6 0.8 1.0
QBL/N ′ 0.949 0.947 0.923 0.876 0.811 0.736

(b) SkX1, K/J = 0.50, �/J ≈ 0.13

T/J 0.00 0.04 0.08 0.12 0.16 0.20
QBL/N ′ 0.897 0.896 0.893 0.885 0.875 0.863

(c) SkX2, K/J = 0.53, �/J ≈ 0.11

T/J 0.00 0.06 0.12 0.18 0.24
QBL/N ′ 0.99971 0.99970 0.99967 0.99961 0.99953

From this transformation, we find that at zero temperature

〈
a(r)†

k a(r)
k

〉 =
m∑

n=1

V T
k,r,nV

†
k,r,n, (B4)

〈
a(r)

k a(s)
−k

〉 =
m∑

n=1

U †
k,r,n(−V †

−k,s,n), (B5)

〈
a(r)

k a(s)†
k

〉 =
m∑

n=1

U †
k,r,nU

T
k,s,n, (B6)

〈a(r)†
k a(r)

−k〉 = 0, 〈a(r)
k a(s)

k 〉 = 0, and 〈a(r)
k a(s)†

−k 〉 = 0. These are
used extensively in the paper to calculate quantum fluctua-
tions.

APPENDIX C: THERMAL EFFECTS ON
ORDER PARAMETER

To include thermal fluctuations when calculating expec-
tation values of operator combinations, one also takes into
account that

〈b†
k,nbk,n〉 = BE(Ek,n) = 1

eEk,n/T − 1
(C1)

according to Bose-Einstein statistics. Here, T is the temper-
ature, and we have set Boltzmann’s constant kB = 1. As an
example,

〈aia j〉 = 1

N ′
∑

k

m∑
n=1

(eik·δ(r,s) (−V †
−k,r,n)U †

k,s,nBE(Ek,n)

+ e−ik·δ(r,s)U †
k,r,n(−V †

−k,s,n)[1 + BE(Ek,n)]).

Table I, panel (a), shows the results for the quantum
skyrmion OP in SkX1 at K/J = 0.10. There, the magnon
gap is �/J ≈ 0.59. At least when T � � the thermal effects
do not adversely affect the utility of QBL in indicating the
presence of quantum skyrmions. The conclusion is the same
when considering a lower magnon gap in SkX1 in Table I,
panel (b). In fact, it seems thermal fluctuations have a lesser
effect when viewed in terms of T/� here. This is due to the
fact that the valley around the global minimum of Ek,15 is
sharper at K/J = 0.50 than at K/J = 0.10. Like the quantum
fluctuations, SkX2 is also less affected by thermal fluctuations
compared to SkX1; see Table I, panel (c). We suggest the
reason is the same as that given when discussing the quan-
tum fluctuations in Sec. V. If the weak exchange coupling
is J ≈ 1 meV, then the temperatures considered in Table I
correspond to T � 10 K.
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