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We study the three-state antiferromagnetic Potts model on the simple-cubic lattice, paying attention to the
surface critical behaviors. When the nearest-neighboring interactions of the surface is tuned, we obtain a
phase diagram similar to the XY model, owing to the emergent O(2) symmetry of the bulk critical point.
For the ordinary transition, we get yh1 = 0.780(3), η‖ = 1.44(1), and η⊥ = 0.736(6); for the special transition,
we get ys = 0.59(1), yh1 = 1.693(2), η‖ = −0.391(4), and η⊥ = −0.179(5); in the extraordinary-log phase,
the surface correlation function C‖(r) decays logarithmically with decaying exponent q = 0.60(2), however,
the correlation C⊥(r) still decays algebraically with critical exponent η⊥ = −0.442(5). If the ferromagnetic
next-nearest-neighboring surface interactions are added, we find two transition points, the first one is a special
point between the ordinary phase and the extraordinary-log phase, the second one is a transition between the
extraordinary-log phase and the Z6 symmetry-breaking phase, with critical exponent ys = 0.41(2). The scaling
behaviors of the second transition is very interesting, the surface spin-correlation function C‖(r), and the surface
squared staggered magnetization at this point decays logarithmically with exponent q = 0.37(1); however, the
surface structure factor with the smallest wave vector and the correlation function C⊥(r) satisfy power-law
decaying, with critical exponents η‖ = −0.69(1) and η⊥ = −0.37(1), respectively.
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I. INTRODUCTION

Phase transition and critical phenomena are hot topics
in the research of condensed-matter and statistical physics.
At the critical point of a continuous transition, the system
exhibits a variety of singular behaviors characterized by al-
gebraically decaying of correlation functions. Such types of
behaviors also appear on the surface of the system and can
be different to that of the bulk ones [1–5]. Depending on
the strength of the surface interactions, the surface critical
behavior can be classified as “ordinary transition,” “special
transition,” and “extraordinary transition.” Typical examples
can be found in the classical O(n) models [6–8]. Generally,
the ordinary transition can be found without tuning the surface
interactions Js, i.e., it is the same as the bulk ones; if it is
tuned (strengthened), a phase transition may be found, which
is the special point Jsc, and the phase with Js > Jsc is the
extraordinary phase. It is clear that the extraordinary phases of
Ising model are ordered, however, whether there is a special
transition for the surface of the Heisenberg model and what
the extraordinary phase is once controversial [7,9,10]. Simi-
lar problems also exist in the XY model. Until recently, the
research interest in surface critical phenomena was renewed
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by the exotic surface critical behavior in the quantum spin
models [11–14]. A recent theoretical study pointed out that the
extraordinary phase on the surface of the Heisenberg model
may be an “extraordinary-log” phase characterized by loga-
rithmically decaying of the surface correlation function [15],
which has been verified numerically [16]; similar behavior is
also found in the XY model [17].

The above results show that the surface critical phe-
nomenon has many interesting characteristics, which are
worth studying, and the related research are continuing
[18–25]. In this paper, we study the surface critical properties
of the three-state antiferromagnetic Potts model on a simple-
cubic lattice [26–28]. Due to the Z3 symmetry of the spins
and the permutation symmetry of two sets of sublattices, the
ground state of the system breaks the Z6 symmetry, however,
at the bulk critical point, the symmetry of the order parameter
is O(2), which is called “emergent O(2) symmetry” [29,30],
and the corresponding universality class of the phase transi-
tion is the same as the XY model. At such an emergent O(2)
bulk critical point, we explore the surface critical behaviors by
tuning the nearest-neighboring (NN) surface interactions and
the next nearest neighboring (NNN) surface interactions, the
two phase diagrams we obtained are shown in Fig. 1. In the
phase diagram (a), the extraordinary-log phase and the special
point are obtained, which is very similar to the XY model
[7,17]; we can also see that the surface cannot be ordered only
by increasing the strength of the surface NN interactions, this
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FIG. 1. Surface phase diagrams of the antiferromagnetic Potts
model (1): (a) the phase diagram with NNN interactions J ′

s = 0;
(b) the phase diagram with NN interactions Js = 1.

is closely related to the fact that the two-dimensional antifer-
romagnetic Potts model is not ordered even the temperature is
down to zero [31]. However, NNN ferromagnetic interactions
can induce the Z6 symmetry-breaking phase at finite temper-
ature for the two-dimensional antiferromagnetic Potts model
[32], and this inspires us to add NNN ferromagnetic interac-
tions to the surface of the three-dimensional antiferromagnetic
Potts model; the results for this case are summarized in phase
diagram (b) where a new special point with very interesting
scaling behaviors is found.

The paper is arranged as follows: In Sec. II, we introduce
the model and method; in Sec. III, we present the numerical
results, including the refined bulk critical point, the critical
behaviors about the ordinary transition, the extraordinary-log
phase, and the two special points; we conclude our paper in
Sec. IV.

II. MODEL AND METHOD

The antiferromagnetic Potts model we studied is defined
on the simple-cubic lattice,

H = J
∑
〈i, j〉

δσi,σ j + Js

∑
〈i, j〉s

δσi,σ j − J ′
s

∑
〈〈i, j〉〉′

δσi,σ j , (1)

J , Js, and J ′
s are the strengths of the NN bulk interactions, the

NN surface interactions, and the NNN surface interactions,
respectively, noting that the NNN surface interactions are
ferromagnetic. The Potts spin σi = 1–3, which can be mapped
to a unit vector on the plane,

�σi = (cos θi, sin θi ), (2)

with θi = 2πσi/3. Such mapping shows the symmetry of the
spin, the variables we studied are based on such vectors.

The Monte Carlo algorithm we adopt is a combination of
the local update (Metroplis algorithm) and a global update
(cluster algorithms) [27]. For the case of J ′

s �= 0, the system
has both antiferromagnetic and ferromagnetic interactions,
the global update is a mixture of the Swendsen-Wang [33]
and Wang-Swendsen-Kotecký algorithms [27], The high ef-
ficiency of the algorithm enables us to perform simulations
for the systems with sizes up to L = 128. In the simulations,
the periodic boundary condition is applied along the x and
y directions, whereas the open boundary condition is applied
along the z direction.

The bulk variables we sampled include the squared (stag-
gered) magnetization m2

s , the magnetic susceptibility χs, and
the Binder ratio Qs, which are defined as

m2
s = 〈

M2
s

〉
, (3)

χs = N (
〈
M2

s

〉 − 〈|Ms|〉2), (4)

Qs =
〈
M2

s

〉2〈
M4

s

〉 , (5)

where T is the temperature and Ms is defined as

Ms = 1

N

∑
�R

(−1)x+y+z �σ �R. (6)

Here �R = (x, y, z) is the coordination, and N = L3 is the num-
ber of sites of the lattice.

We also sample the correlation function C(r) and correla-
tion length ξ ,

C(r) = 〈�σi · �σi+r〉, (7)

ξ =
(
m2

s /F − 1
)1/2

2
√∑d

i=1 sin2
( ki

2

) , (8)

where �k is the “smallest wave vector” along the x direction—
i.e., �k ≡ (2π/L, 0, 0); the “structure factor” F is define as

F = 1

N2

˝∣∣∣∣∣∣
∑

�R
(−1)x+y+zei�k· �R �σ �R

∣∣∣∣∣∣
2̨

. (9)

Generally, in a critical phase, correlation ratio ξ/L assumes a
universal nonzero value in the thermodynamic limit L → ∞;
in a disordered phase, correlation length ξ is finite, and ξ/L
drops to zero, whereas in an ordered phase, ξ/L diverges
quickly since the structure factor F vanishes rapidly. There-
fore, similar to the Binder ratio Qs, ξ/L is also very useful in
locating the critical point of phase transition.

The definition of the surface variables are very similar to
the bulk ones, but the spins in Eqs. (6), (7), and (9) should be
restricted to the surface ones. For clarity, we add a subscript
1 to the surface variables, i.e., the surface squared magneti-
zation, the surface magnetic susceptibility, the surface Binder
ratio, the surface structure factor, and the surface correlation
length are written as m2

s1, χs1, Qs1, F1, and ξ1, respectively,
except the surface correlation functions, which are written
as C‖(r) and C⊥(r); both C‖(r) and C⊥(r) are calculated as
Eq. (7); for C‖(r), both site i and i + r are on the surface; for
C⊥(r), site i is on the surface but site i + r is in the bulk, and
the line from i to i + r is perpendicular to the surface.

III. RESULTS

A. Refine the bulk critical point

The simple-cubic antiferromagnetic Potts model has ever
been studied by Monte Carlo simulations in Refs. [27,28],
whose critical exponents coincide with the XY universality
class, however, the accuracy is not very high. More accurate
numerical results about the critical exponents can be found in
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FIG. 2. Squared magnetization m2
s and correlation ratio ξ/L of

the simple-cubic antiferromagnetic Potts model (1).

Ref. [30], whereas the interactions studied there are antiferro-
magnetic along the x and y directions but ferromagnetic along
the z direction, such mixed interactions do not change the
universality class of the phase transition but lead to a different
(bulk) critical point. In the current paper, before studying the
surface critical behaviors, we refine the buk critical point for
the simple-cubic antiferromagentic model (with full antiferro-
magnetic interactions). As shown in Fig. 2, the bulk transition
is clearly indicated by the bulk squared magnetization m2

s and
the correlation ratio ξ/L. It can also be shown by the bulk
Binder ratio Qs, which is not shown here. In the vicinity of the
critical point, ξ/L and Qs satisfy the finite-size scaling (FSS)
[34,35] formula,

Q = a0 +
kmax∑
k=1

ak (T − Tc)kLkyt + bLy1 , (10)

where Q is ξ/L or Qs and Tc is the critical point; yt > 0 is the
thermal critical exponent, y1 < 0 is the correction-to-scaling
exponent, a0, ak , and b are unknown parameters.

The data fitting of ξ/L, with fixed y1 = −1, gives Tc =
1.226 03(1) and yt = 1.490(3); The fitting of Qs gives Tc =
1.226 02(2) and yt = 1.483(10). Here we can see that al-
though the Binder ratio is widely used in determining the
critical point, it is not necessarily the best one; similar ex-
amples can also be found in Refs. [36,37]. We chose the
better one Tc = 1.226 03(1) to be our final result, which will
be used as the starting point of the study of surface critical
behaviors in the next subsections. We can also see that the
value of the critical exponent yt is consistent with that of the
XY universality class [38,39].
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FIG. 3. Surface squared magnetization m2
s1 and correlation ratio

ξ1/L of the antiferromagnetic Potts model (1) with T = T bulk
c =

1.226 03 and the NNN surface interaction J ′
s = 0.

B. Ordinary transition

Exactly at the bulk critical point T bulk
c = 1.226 03, we per-

form simulations with the open boundary condition along the
z direction and periodic boundary conditions along the x and
y directions, and the surface interactions are set as Js = J = 1
and J ′

s = 0. In this case, the surface critical behaviors origi-
nates from the bulk correlations, which is called the “ordinary
transition”. The data of the surface squared magnetization m2

s1,
the surface correlation function C‖, the surface structure factor
F1, and the surface correlation C⊥ are fit according to the
scaling formulas,

m2
s1L2 = c + L2yh1−2(a + bLy1 ), (11)

C‖(L/2) = L−1−η‖ (a + bLy1 ), (12)

F1L2 = c + L2yh1−2(a + bLy1 ), (13)

C⊥(L/2) = L−1−η⊥ (a + bLy1 ), (14)

where yh1, η‖, and η⊥ are critical exponents; y1 < 0 is the
correction-to-scaling exponents; a, b, and c are unknown
parameters, with c the analytical part of m2

s1L2 or F1L2,
originating from the contribution of short-term correlations.
Although mathematically Eqs. (11) and (13) are equivalent to

m2
s1 = cL−2 + L2yh1−4(a + bLy1 ), (15)

F1 = cL−2 + L2yh1−4(a + bLy1 ), (16)

respectively, technically, in the fitting of m2
s1, the right-hand

side of (15) or (16) will be dominated by the first term and
the fitting result of yh1 is often unreliable if the value of yh1

is smaller than 1, which is exactly the case in the ordinary
transition.

The data fitting with y1 = −1, gives yh1 = 0.780(3) (from
m2

s1), yh1 = 0.782(4) (from F1), η‖ = 1.44(1), and η⊥ =
0.736(6); these values coincide with those of the XY model
[7] and satisfy the scaling laws,

η‖ = d − 2yh1, (17)

2η⊥ = η‖ + η, (18)

with d = 3 the dimension of the system and η = 0.0385 the
exponent of the bulk correlation.

C. Special transition and extraordinary phase by tuning
the NN surface interaction Js

Exactly at the bulk critical point T bulk
c = 1.226 03, we tune

the NN surface interaction Js to see whether there is a spe-
cial transition, this is confirmed by the behaviors of surface
squared magnetization m2

s1 and the surface correlation ratio
ξ1/L as shown in Fig. 3. This transition can also be detected by
the Binder ratio Qs1, which is not shown here. The data of ξ1/L
or Qs1 in the vicinity of the special point satisfy the scaling
formula (10) with T replaced by Js and the critical exponent yt

replaced by ys; the fitting with y1 = −1 gives the critical point
Jsc = 2.041 19(40) and the critical exponent ys = 0.59(1). We
can see that the value of ys is consistent with that of the XY
model [7].
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FIG. 4. (a) Log-log plot of m2
s1, C‖(L/2), and F1 versus ln(L/L0)

for the antiferromagnetic Potts model (1) with T = T bulk
c = 1.226 03,

Js = 5, and J ′
s = 0; L0 = 1.54 is taken for all three variables. (b) Log-

log plot of the surface correlation C⊥(L/2).

Exactly at the special transition point Jsc = 2.041 19, we
investigate the scaling behaviors of the surface squared mag-
netization m2

s1, the surface correlation function C‖, the surface
structure factor F1, and the surface correlation C⊥; they also
satisfy the FSS formulas (11)–(14), respectively. Alterna-
tively, m2

s1 and F1 can also be fit by Eqs. (15) and (16),
respectively, because in the current case yh1 > 1.5, the right-
hand side of the equation is dominated by the second term,
whereas the first one behaves like a correction-to-scaling
term. The data fitting gives yh1 = 1.693(2) (from m2

s1), yh1 =
1.694(4) (from F1), η‖ = −0.391(4), and η⊥ = −0.179(5),
these results coincide with those of the XY model and satisfy
the scaling laws (17) and (18). For Js > Jsc, we find that the
system is in the extraordinary-log phase, characterizing by
the logarithmically decaying of correlation function C‖(r) and
related variables [15–17]. Figure 4(a) shows a typical case of
Js = 5, and the data can be fit according to

m2
s1 = a[ln(L/L0)]−q, (19)

C‖(L/2) = a[ln(L/L0)]−q, (20)

F1 = a[ln(L/L0)]−q′
, (21)

where q and q′ are the critical exponents and a and L0 are
nonuniversal parameters. From the fitting of C‖, we get q =
0.60(2) and L0 = 1.54(9); from the fitting of m2

s1 and F1, we
get q = 0.61(1) and q′ = 1.61(1), respectively. We can see
that the values of q and q′ are consistent with those of the XY
model [17] and satisfy the relation q′ = 1 + q. It should be
noted that in the fitting of m2

s1 and F1, we have set the value of
L0 fixed at 1.54, such a trick is the same as that in Ref. [17] for
the XY model. For the surface correlation function C⊥(L), we
find that it is still decaying algebraically as shown in Fig. 4(b),
therefore, we fit it according to Eq. (14) with y1 = −1, and we
get η⊥ = −0.442(5).

We also study the case of Js = 10 and get q = 0.63(2),
q′ = 1.64(2), L0 = 1.2(1), and η⊥ = −0.444(7). The values
of q and q′ coincide with the cases of Js = 5 and the XY model
[17], which means the critical behaviors of the extraordinary-
log phase of the O(2) surface are universal.

In the low temperature, the order parameter of the antifer-
romagnetic Potts model on the simple-cubic lattice breaks the
Z6 symmetry [30], therefore, one may ask whether the surface
can be ordered with such symmetry breaking when the surface

FIG. 5. Surface critical behaviors of the antiferromagnetic Potts
model (1) with T = Tc = 1.226 03 and Js = 1: (a) surface suscepti-
bility χs1; (b) surface squared magnetization m2

s1; (c) surface structure
factor F1; and (d) the surface Binder ratio Qs1.

interactions are strengthened. However, by performing the
simulations with much larger Js, we find that the surface is al-
ways in the extraordinary-log phase, and it cannot be ordered
by the strengthening of Js. This may be related to the fact
that in the limit of Js → ∞, the decoupled two-dimensional
antiferromagnetic Potts model cannot be ordered even if the
temperature is zero [31]. However, as we will show in the
next subsection, the Z6 symmetry-breaking surface can be
reached by adding the NNN ferromagnetic interactions J ′

s on
the surface.

D. New special transition induced by next-nearest
interactions J′

s

When the NNN ferromagnetic interactions J ′
s is added

to the surface, we can find two phase transitions as shown
by the behaviors of the surface susceptibility χs1 in Fig. 5(a).
In the intermediate region J ′

sc1 < J ′
s < J ′

sc2 with J ′
sc1 ≈ 0.41

and J ′
sc2 ≈ 0.85, the scaling behaviors of χs1 is very different

from that in region J ′
s < J ′

sc1 or J ′
s > J ′

sc2. As we will show
later, in this region, the system is in the extraordinary-log
phase. Therefore, the peak of χs1 at J ′

sc1 ≈ 0.41 indicates a
special transition point, similar to that studied in the above
subsection. The second transition at J ′

sc2, which we call the
“new special point,” is revealed not only by the surface sus-
ceptibility χs1, but also by the surface squared magnetization
m2

s1 and surface structure factor F1 as shown in Figs. 5(b) and
5(c), respectively; however, the signature of the Binder ratio
Qs1 for this transition is not obvious as shown in Fig. 5(d).

We can see that the second peak of χs1 diverges much
slower than the first one, namely, the singularity of such a
transition is very weak. The transition point J ′

sc2 ≈ 0.85 is
obtained by the position of such a peak of the largest system
with size L = 128; however, considering the finite-size effect,
the critical point in the thermodynamic limit should be a
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FIG. 6. (a) Log-log plot of F1 versus ln(L/L0) using the values
of L0 fit from m2

s1, listed in Table I; (b) log-log plot of F1 versus L.

little smaller than this one. A more accurate estimation of the
critical point can be obtained from the scaling behavior of the
structure factor F1, which satisfies the logarithmic decaying
in the region J ′

sc1 < J ′
s < J ′

sc2 but a power-law scaling at the
transition point J ′

sc2 = 0.815; this is demonstrated in Fig. 6.
In the region J ′

sc1 < J ′
s < J ′

sc2, we check the FFS behaviors
of F1 for several cases, and the results of data fitting, according
to Eq. (21), are listed in Table I. In this region, m2

s1 and C‖ also
satisfy the logarithmic decaying; the fitting results, according
to Eqs. (19) and (20), are also listed in Table I. These results
claim that in this region the system is in an extraordinary-
log phase; the critical exponents q and q′ in this phase are
universal and satisfy the relation q′ = 1 + q as that in the XY
model [17]. In this phase, the correlation C⊥ still satisfies the
power-law scaling formula (14), the fitting results of η⊥ for
several cases are also listed in Table. I.

An important point should be emphasized about the
extraordinary-log phase is that the surface susceptibility χs1

is divergent in this phase; such a property is very different
from that of the ordinary phase or the extraordinary phase
with long-range order. Technically, this property can help us
to detect whether a surface is in an extraordinary-log phase. It
should be noted that currently, it not a trivial work to distin-
guish an extraordinary-log phase from a long-range ordered
phase numerically without theoretical precognition especially
when the value of the long-range order is relatively small.

At the transition point J ′
sc2 = 0.815, F1 satisfies a power-

law formula aL−1−η‖ , where η‖ = −0.69(1). The correlation
function C⊥ also satisfies the power-law (14), and the critical
exponent η⊥ = −0.37(1). However, the m2

s1 and C‖ at this

TABLE I. Fitting results of m2
s1, C‖, and F1, where m2

s1 and C‖ are
fit according to Eqs. (19) and (20), respectively; F1 is fit according to
(21) when J ′

s < J ′
sc2 but a power-law formula aL−1−η‖ when J ′

s = J ′
sc2.

In fitting of C‖ and m2
s1, we let L0 free to be fit, wherease in the fitting

of F1, we fix L0 as that of m2
s1.

J ′
s q (C‖) L0 q

(
m2

s1

)
L0 q′ η⊥

0.55 0.61(3) 2.0(7) 0.59(3) 2.63(9) 1.56(4) −0.43(1)
0.65 0.56(2) 1.36(10) 0.60(2) 0.89(5) 1.59(1) −0.43(1)
0.75 0.55(2) 0.90(16) 0.57(1) 0.44(9) 1.57(1) −0.38(1)

J ′
sc2 q (C‖) L0 q

(
m2

s1

)
L0 η‖ η⊥

0.815 0.37(1) 2.3(3) 0.38(1) 1.13(9) −0.69(1) −0.37(1)

FIG. 7. (a) F1L−1−η‖ = F1L0.31 versus J ′
s; the dashed line is the

critical point; (b) data collapse: F1L0.31 versus (J ′
s − 0.815)Lys with

ys = 0.41.

point still satisfy the logarithmically decaying formulas (19)
and (20) with exponent q = 0.37(1) as shown in Table I.

In the range of J ′
s > J ′

sc2, the surface is in a long-range
ordered phase, the structure factor F1 decays much faster,
which satisfies neither a logarithmically decaying formula
nor a simple power-law formula; this is also demonstrated in
Fig. 6.

In order to further explore the critical behaviors of the
new special point, we plot F1L−1−η‖ = F1L0.31 versus J ′

s in
Fig. 7(a), and we can see that F1L−1−η‖ plays the role of a
dimensionless variable, similar to the Binder ratio; Fig. 7(b)
is the data collapse plot of F1L0.31 versus (J ′

s − 0.815)Lys with
critical exponent ys = 0.41. More rigorously, one can fit the
data of F1 in the vicinity of J ′

s = 0.815 by the scaling formula,

F1 = L−1−η‖

[
a0 +

kmax∑
k=1

ak (J ′
s − J ′

sc2)kLkys + bLy1

]
, (22)

which gives η‖ = −0.69(1), J ′
sc2 = 0.815(2), and ys =

0.41(2), these results are consistent with those applied in the
data collapse in Fig. 7(b), thus, giving a self-consistent check.

To summarize, for the new special transition, it is mainly
characterized by the the following critical behaviors:

J ′
sc2 = 0.815(2), (23)

ys = 0.41(2), (24)

F1 ∼ aL−1−η‖ , with η‖ = −0.69(1), (25)

m2
s1 ∼ a[ln(L/L0)]−q, with q = 0.38(1), (26)

C‖ ∼ a[ln(L/L0)]−q, with q = 0.37(1), (27)

C⊥ ∼ aL−1−η⊥ , with η⊥ = −0.37(1). (28)

E. Symmetries of the surface

After we studied the phase transitions, we give a short
description about the symmetries of the model. The three-state
antiferromagnetic Potts model is well known for the emergent
O(2) symmetry at the bulk critical point, although the ground
state is Z6 symmetry breaking, which is ordered by entropy.
An interesting question is what the surface symmetry is.

As shown in Fig. 8, in the ordinary phase (J ′
s = 0), the

histogram visualizes the disorder properties of the surface
staggered magnetization; this confirms that the surface is dis-
order, and the critical behaviors are purely induced by the
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FIG. 8. Histograms of the surface staggered magnetization of the antiferromagnetic Potts model (1); in all the cases, the strength of the
surface NN interactions is Js = 1.

bulk criticality. For the extraordinary-log phase, we show two
cases; for the case of J ′

s = 0.65, we can see that symmetry
of the order parameter is O(2) when the system size reaches
L = 32, although we can still find the shadow of the Z6 sym-
metry when the system size is small (L = 16); for the case
of J ′

s = 0.75, we can see that the Z6 symmetry persists to
show its effect when the system size is L = 32, however, the
effect is relatively weak comparing to that of L = 16, thus, we
infer that in the thermodynamic limit, the symmetry should be
O(2). Such a property is important; it is also helpful for us to
numerically distinguish the extraordinary-log phase from an
ordered surface with a small value of long-range order.

When J ′
s is large enough, the surface is ordered, and the Z6

symmetry is very obvious; this is also shown in Fig. 8 with
J ′

s = 1.0.

IV. CONCLUSION AND DISCUSSION

To summarize, we have studied the surface critical behav-
iors of the three-state antiferromagnetic Potts model on the
simple-cubic lattice; we obtain a phase diagram similar to the
XY model by tuning the NN surface interactions; the univer-
sality classes of the special transition and extraordinary-log
phase are the same as the XY model. A long-range-order
surface which breaks the Z6 symmetry and a new type of
special transition between such an ordered phase and the
extraordinary-log phase is obtained by tuning the NNN ferro-
magnetic surface interactions. At such a new special transition
point, the scaling behaviors are very interesting; the surface
squared magnetization m2

s1 and the surface correlation func-
tion C‖ satisfy the logarithmic decaying with exponent q =
0.37(1), but the structure factor F1 and the correlation function
C⊥ still satisfy the power-law decaying with critical exponents
η‖ = −0.69(1) and η⊥ = −0.37(1), respectively. We also vi-
sualized the symmetries of different phases of the surface
where the extraordinary-log phase is shown to conserve O(2)
symmetry.

We have to stress that all our conclusions about the new
special transition are based on the assumption that it is a

second-order phase transition, which does not rule out the
possibility of other types of phase transitions, such as the
Berezinskii-Kosterlitz-Thouless (BKT) transition.

In the classical XY model, although the symmetry of
the bulk critical point is also O(2), the surface cannot be
ordered because of the Mermin-Wagner-Hohenberg theorem
[40,41], therefore, such a new type of special transition can-
not appear in the classical XY model; discrete Hamiltonian
symmetry and emergent O(n) symmetry of bulk criticality
seems a necessary condition for such a new type of special
transition, such as the clock model in Ref. [43], where the
new transition is detected by an angular order parameter,
although the critical points are not exactly located; the FSS
analysis show that in the extraordinary-log phase the scal-
ing dimension of the Z6 field changes continuously with the
surface interactions, which is very similar to the continuous
changing of critical exponents in BKT transition; however,
the logarithmically decaying exponent q of the surface cor-
relation function is still universal; consistent with the result
found in the XY model [17] the result found in the current
paper.

In addition to the emergent O(2) critical point, other emer-
gent O(n) critical points have also been found in systems
with discrete symmetry of the Hamiltonian [30,42]. It is ob-
viously an important and interesting question to study such a
new special transition and related critical properties in these
models.
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