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Adiabatic spin dynamics and effective exchange interactions from constrained tight-binding
electronic structure theory: Beyond the Heisenberg regime
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We consider an implementation of the adiabatic spin dynamics approach in a tight-binding description of
the electronic structure. The adiabatic approximation for spin degrees of freedom assumes that the faster
electronic degrees of freedom are always in a quasiequilibrium state, which significantly reduces the numerical
complexity in comparison to the full electron dynamics. Noncollinear magnetic configurations are stabilized
by a constraining field, which allows us to directly obtain the effective magnetic field from the negative of
the constraining field. While the dynamics are shown to conserve energy, we demonstrate that adiabatic spin
dynamics does not conserve the total spin angular momentum when the lengths of the magnetic moments are
allowed to change, which is confirmed by numerical simulations. Furthermore, we develop a method to extract
an effective two-spin exchange interaction from the energy curvature tensor of noncollinear states, which we
calculate at each time step of the numerical simulations. We demonstrate the effect of noncollinearity on this
effective exchange and limitations due to multispin interactions in strongly noncollinear configurations beyond
the regime where the Heisenberg model is valid. The relevance of the results are discussed with respect to
experimental pump-probe experiments that follow the ultrafast dynamics of magnetism.
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I. INTRODUCTION

Adiabatic spin dynamics [1–3] is based on the assumption
that the spin degrees of freedom, corresponding to the direc-
tion of magnetic moment vectors, are much slower than the
electronic degrees of freedom, which are related to changes
of the lengths of magnetic moments. The effective field that
drives the spin dynamics is within this approach obtained
from the gradient of the electronic energy with respect to the
moment directions, where the electronic system is considered
to be in its ground state for a given moment configuration.
Since an arbitrary moment configuration does not correspond
to the absolute ground state, nonequilibrium configurations
need to be stabilized. This can be done exactly by introduc-
ing constraining fields [4–6] or approximately by fixing the
quantization axis for each moment, which does not align the
moments exactly [7]. The main advantages of adiabatic spin
dynamics compared to the standard atomistic spin dynamics
approaches [8,9] are that it does not require a parametrization
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of a classical spin model, such as the Heisenberg model, and
it does not assume constant magnetic moment lengths and
exchange parameters. Dynamical changes of these parameters
could be important for strongly noncollinear states of itinerant
magnets, which can occur, e.g., after ultrafast demagnetiza-
tion by a laser pulse [10] and when approaching the Curie
temperature of the magnet [11–13]. The main disadvantage is
the increased numerical complexity since at each time step
of the dynamics the corresponding electronic ground state
needs to be calculated, which is much more demanding than
dealing with a classical spin model with constant parameters.
Therefore, despite its advantages and conceptual elegance,
adiabatic spin dynamics has not been widely adopted so far.
One example is an application of adiabatic spin dynamics
without constraining fields for a chain of ten Co atoms on
an Au(001) surface [14]. Within their implementation [14],
the electronic structure is only calculated once with density
functional theory (DFT) for the ground state and nonequilib-
rium configurations are implemented without self-consistency
by only rotating the exchange field, which reduces the nu-
merical complexity considerably but can only be expected to
be reliable close to the ground state configuration where a
standard atomistic spin dynamics description would also be
sufficient.

In recent works, the precise relation between the effective
field, energy gradient, and constraining field have been es-
tablished in the context of tight-binding and DFT [15], and
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adiabatic spin dynamics simulations have been performed
within a completely self-consistent tight-binding description
with constraining fields for Fe, Co, and Ni dimers [16], where
agreement with a simple Heisenberg model was found for
small angles between the two magnetic moments of the dimer.
In this work we consider spin dynamics for strongly non-
collinear configurations beyond the Heisenberg regime and
we address two fundamental aspects of adiabatic spin dynam-
ics: the conservation of energy and angular momentum. We
show both analytically and with spin dynamics simulations
that, while energy is conserved as expected, angular momen-
tum is not conserved due to dynamical changes in the lengths
of magnetic moments.

When considering noncollinear states, the question arises
how the exchange interaction Ji j between two spins is affected
in comparison to the ground state. Recently the concept of a
local spin Hamiltonian was introduced [17], which is based
on the energy curvature tensor J αβ

i j and accurately describes
small fluctuations around a reference moment configuration.
While J αβ

i j gives full access to the energy curvature with
respect to rotations of the spins at sites i and j in directions
α, β = x, y, z, it is a quantity that is not straightforward to
interpret in noncollinear states, even for a simple Heisenberg
model. This complication arises from the fact that infinites-
imal rotations of magnetic moments correspond only to the
perpendicular component to the gradient in Cartesian coordi-
nates with respect to the moment directions. It should be noted
however, that despite these difficulties, there are suggestions
on how to evaluate exchange interactions from noncollinear
states [18–24]. We demonstrate here how the curvature tensor
is related to a general two-spin isotropic exchange interaction
and show how an effective exchange interaction Ji j can be ob-
tained. Although this effective exchange does not contain the
full curvature information, it is a useful quantity to character-
ize the effect of noncollinearity on the exchange interaction,
indicating non-Heisenberg behavior. We demonstrate this by
spin dynamics simulations of Fe and Co spin chains with a
phenomenological Gilbert damping, which allows us to track
the effective exchange during the relaxation process back to
the ground state. While we find that the average nearest-
neighbor exchange interaction is increased by about 10% in
our initial random configuration, individual exchange interac-
tions fluctuate very strongly, which could have an impact on
accurately determining the critical temperature of a magnetic
material based on spin dynamics simulations. This should be
contrasted with disordered local moment (DLM) calculations
of exchange parameters [11–13], which provide only an av-
erage change of the exchange interaction due to spin disorder
and do not capture the strong fluctuations that we observe.
Furthermore, we argue that multispin interactions [25–30]
limit the reliability of a two-spin exchange model in strongly
noncollinear configurations, as indicated by our numerical
calculations.

The paper is structured as follows: in Sec. II we discuss
adiabatic spin dynamics and introduce the equation of motion
based on the constraining field. We derive the conservation
of energy in Sec. III and show that angular momentum is not
conserved when magnetic moment lengths are not constant.
We introduce in Sec. IV an effective exchange interaction
and show how it can be calculated from the curvature tensor.

In Sec. V we discuss the tight-binding electronic structure
description with a special focus on the magnetic Stoner con-
tribution and the calculation of the energy curvature tensor.
We apply this formalism in Sec. VI to Fe, Co, and Ni dimers
and Fe and Co spin chains, which allows us to study their
dynamics and test theoretical predictions. We summarize the
results and discuss their consequences for the adiabatic spin
dynamics framework in Sec. VII. In Appendix A we provide
the derivative matrix for rotations of magnetic moments in
Cartesian coordinates. The contribution of a Dzyaloshinskii-
Moriya interaction to the energy curvature tensor is given in
Appendix B.

II. ADIABATIC SPIN DYNAMICS

Adiabatic spin dynamics is based on the assumption that
electronic degrees of freedom are much faster than the dy-
namics of the magnetic moment directions {ei} [1–3], where
i denotes the lattice site. This assumption is rigorously justi-
fied for spin-wave excitations with an energy much smaller
than the Stoner spin splitting [31,32]. Deviations between
adiabatic spin-wave spectra and nonadiabatic spectra based
on the transverse dynamic magnetic susceptibility obtained
from time-dependent DFT have been found for high-energy
spin waves [33,34]. In the spin dynamics simulations that
we consider here, we are dealing with timescales above 1 fs,
whereas the relevant electronic relaxation time is below 1 fs,
which can be estimated from the electron bandwidth [35,36],
supporting the application of the adiabatic approximation.
However, for a complete theoretical description of the ultra-
fast demagnetization by a laser pulse [10], it is important to
take the electron dynamics into account and go beyond the
adiabatic approximation to describe the initial laser-induced
excitation of electrons [36].

Within the adiabatic approximation, the energy depends
only on the moment directions,

E = E ({ei}), (2.1)

and the electronic degrees of freedom can be considered to
be in a quasiequilibrium state with fixed moment directions
and relaxed magnetic moment lengths such that the energy
is minimal with respect to the moment lengths. For the cal-
culation of this electronic state, it is necessary to constrain
the moment directions to point along the required directions
{ei}, as otherwise the system would relax back to the absolute
ground state [4,5].

We implement the constraint on the moment directions by
adding a constraining field Bcon

i to the electronic tight-binding
Hamiltonian Ĥtb,

Ĥ = Ĥtb + Ĥcon, (2.2)

with

Ĥcon = −
∑

i

M̂i · Bcon
i , (2.3)

where M̂i is the total magnetic moment operator at lattice site
i. The constraining field is designed to be perpendicular to
the moment directions, Bcon

i · ei = 0, and constrains therefore
only the moment directions and not their lengths Mi. We
employ the following iterative algorithm for calculating the

224408-2



ADIABATIC SPIN DYNAMICS AND EFFECTIVE … PHYSICAL REVIEW B 105, 224408 (2022)

constraining field [4,5]:

Bcon
i (k + 1) = Bcon

i (k) − [Bcon
i (k) · ei]ei

− B0[mi − (mi · ei )ei], (2.4)

where k is the iteration index, B0 is a free parameter that
can be tuned for optimal convergence, and mi = 〈M̂i〉/Mi

is the output moment direction from the electronic structure
calculation.

Within this constrained tight-binding approach, the effec-
tive field acting on a magnetic moment is given by [15]

Beff
i = −Bcon

i . (2.5)

The equation of motion of the moment directions at zero
temperature is [1,2,9]

ėi = γ

1 + α2
ei × Beff

i + αγ

1 + α2
ei × (

ei × Beff
i

)
, (2.6)

where γ = −gμB/h̄ and we allow for a phenomenological
Gilbert damping α [37]. For the numerical integration of this
equation of motion, we use the implicit midpoint method, see
Ref. [38] for a comparison of integration methods. In this
paper our focus is on the effective field and we refer the ab
initio determination of the damping parameter to the review
in Ref. [9]. For the effects of noncollinearity on damping, see
for example Refs. [39–41].

III. CONSERVATION LAWS

A classical spin Hamiltonian of the typical Heisenberg
form,

Hs = −1

2

∑
i j

Ji jei · e j, (3.1)

with Heisenberg exchange Ji j = Jji, conserves both energy
and total spin angular momentum. In the following we discuss
the conservation of energy and angular momentum in the
context of adiabatic spin dynamics.

A. Energy conservation

The energy within the adiabatic approximation depends
only on the instantaneous magnetic configuration {ei}. After
each time step in the spin dynamics, the system is allowed to
relax back to the quasiequilibrium state corresponding to the
configuration {ei}. Since this relaxation implicitly includes a
coupling to a bath, the system is not closed and the question
arises if and under which conditions energy is conserved.

The time derivative of the energy is given by

Ė =
∑

iα

∂E

∂eiα
ėiα =

∑
i

∇ei E · ėi. (3.2)

Using the equation of motion (without damping),

ėi = γ ei × Beff
i , (3.3)

we obtain

Ė =
∑

i

∇ei E · (
γ ei × Beff

i

) =
∑

i

γ
[
Beff

i × ∇ei E
] · ei.

(3.4)

Therefore, energy is conserved when the effective magnetic
field is proportional to the energy gradient, i.e.,

Beff
i ∝ − 1

Mi
∇ei E . (3.5)

The effective field in a tight-binding model is given by the
negative of the constraining field and can be related to the
energy gradient at zero temperature via the constraining field
theorem [15],

− 1

Mi
∇ei E = −Bcon

i − 1

Mi

〈∇eiĤtb
〉
, (3.6)

where the expectation value is taken with respect to the
constrained electronic ground state. Therefore, energy is con-
served if the last term above vanishes,

1

Mi

〈∇eiĤtb
〉 = 0, (3.7)

such that

Beff
i = −Bcon

i = − 1

Mi
∇ei E . (3.8)

While for a fundamental Hamiltonian the quantity
〈∇eiĤtb〉 vanishes and energy is conserved since there is no
explicit dependence on the moment directions, such a depen-
dence may arise in a mean-field description, which we discuss
in Sec. V.

B. Angular momentum conservation

The total angular momentum S associated with the mag-
netic moments is given by

S = γ −1M =
∑

i

γ −1Miei. (3.9)

Therefore, angular momentum conservation is equivalent to
the conservation of the total magnetization M. We have to
consider two contributions,

Ṁ =
∑

i

(Ṁiei + Miėi ). (3.10)

The first term vanishes in general only if Ṁi = 0, i.e., for
constant moment lengths. For the second term we find using
the equation of motion Eq. (3.3)∑

i

Miėi =
∑

i

γ Miei × Beff
i . (3.11)

Assuming a Heisenberg-like effective magnetic field,

Beff
i = 1

Mi

∑
j

Ji je j, (3.12)

we obtain ∑
i

Miėi =
∑

i j

γ Ji jei × e j = 0, (3.13)

since by definition Ji j = Jji. Therefore, only the second con-
tribution to Ṁ in Eq. (3.10) can be expected to vanish and
we have to conclude that adiabatic spin dynamics does not
conserve the total angular momentum, as angular momentum
is exchanged with the bath if the moment lengths are not
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constant. We note that
∑

i Miėi = 0 does not imply
∑

i ė = 0
because the moment lengths Mi differ for each site in an
arbitrary noncollinear state without translational invariance.

IV. EFFECTIVE HEISENBERG EXCHANGE
IN NONCOLLINEAR STATES

The energy curvature tensor describes the energy curvature
with respect to pairwise rotations of the magnetic moments
and is defined by

J αβ
i j = − ∂2E

∂e jβ∂eiα
= ∂

(
MiBeff

iα

)
∂e jβ

, (4.1)

where E is the energy of the system. It should be noted that
the derivatives with respect to the moment directions ei are
taken with the constraint of fixed length since they are unit
vectors and can only be rotated. We emphasize that this tensor
J αβ

i j is not equivalent to the exchange tensor Jαβ
i j in a tensorial

Heisenberg model with energy

EJ = −1

2

∑
iα, jβ

Jαβ
i j eiαe jβ. (4.2)

The reason, as we further discuss below, is that for the calcu-
lation of the energy curvature of Eq. (4.2) it is necessary to
take the restriction to unit length into account, which implies
∂e jα/∂e jβ �= δαβ , see Appendix A. Therefore,

J αβ
i j �= Jαβ

i j , (4.3)

and we have to distinguish between the energy curvature ten-
sor and the exchange tensor defined by Eq. (4.2).

The curvature tensor J αβ
i j can still be applied in a lo-

cal spin Hamiltonian [17] and the exchange tensor Jαβ
i j can

be extracted from the curvature tensor by a set of collinear
configurations [42], but not from a single (noncollinear) con-
figuration. Furthermore, we show below how in the case of
isotropic exchange an effective exchange interaction can be
derived from the curvature tensor in noncollinear configura-
tions.

A. Generalized exchange interaction

We consider the following general two-spin isotropic ex-
change energy,

E = −1

2

∑
i j

fi j (ei · e j ), (4.4)

where fi j = f ji (with fii = 0) is a function of ei · e j . The
effective magnetic field acting on spin i is then

Beff
i = 1

Mi

∑
j

f ′
i j (ei · e j )e j, (4.5)

where f ′
i j denotes the derivative of fi j with respect to its argu-

ment ei · e j . We now define the effective exchange interaction
by

Ji j (θi j ) = f ′
i j (ei · e j ), (4.6)

with

ei · e j = cos θi j . (4.7)

Therefore, we write

Beff
i = 1

Mi

∑
j

Ji j (θi j )e j . (4.8)

To take the fixed length of the unit vectors into account, we
have to consider the perpendicular part of this effective field,

Beff
i,⊥ = Beff

i − ei
(
Beff

i · ei
)
. (4.9)

We note that

J ′
i j (θi j ) = ∂Ji j (θi j )

∂θi j
= − f ′′

i j (cos θi j ) sin θi j, (4.10)

implying that J ′
i j (θi j ) is expected to vanish for θi j = 0.

B. Determining the effective exchange

We can now calculate the energy curvature tensor J αβ
i j

from the effective field Eq. (4.9). We assume a reference
coordinate system where ei = ẑ and e j is rotated by an angle
θi j in the xz plane. Here it is crucial that we take the derivative
of the effective field, Eq. (4.9), with respect to unit vectors,
see Appendix A. We obtain for i �= j,

J xx
i j = Ji j (θi j ) cos2 θi j + sin θi j cos θi jJ

′
i j (θi j ), (4.11)

J yy
i j = Ji j (θi j ), (4.12)

J xz
i j = −Ji j (θi j ) sin θi j cos θi j − sin2 θi jJ

′
i j (θi j ), (4.13)

J xy
i j = J yx

i j = J yz
i j = J zx

i j = J zy
i j = J zz

i j = 0. (4.14)

The effective exchange Ji j (θi j ) can therefore be obtained
from J yy

i j in the coordinate system as specified above. The

yy component of J αβ
i j in this reference coordinate system

corresponds to variations of the moment directions perpen-
dicular to the plane that they span. In a general case, we
can always rotate the tensor J αβ

i j from a global coordinate
system to this specific reference coordinate system for each
pair (i, j). From these results, we see that even for an ideal
Heisenberg exchange with J ′

i j = 0, we have J xx
i j �= J yy

i j and
J xz

i j �= 0 in a noncollinear state with θi j �= 0, which could be
mistaken for non-Heisenberg behavior. For the contribution
of a Dzyaloshinskii-Moriya interaction (DMI) [43,44] to the
energy curvature tensor, see Appendix B.

We check the consistency of Eqs. (4.11)–(4.13) by ap-
plying them to results previously obtained for an Fe dimer
without spin-orbit coupling [17], where the second moment
is rotated by an angle θ . We obtain J12 and J ′

12 from J yy
12

and plug these quantities into Eqs. (4.11) and (4.13), which
are shown together with the previously calculated exchange
parameters in Fig. 1. The agreement is excellent and the
small deviations are due to approximations made in the cal-
culation of the curvature tensor, see Ref. [17]. For a dimer
without spin-orbit coupling, the two-spin exchange interaction
Eq. (4.4) is expected to be exact, which we confirm in Fig. 2
by comparing the exact effective field obtained from the con-
straining field with the effective field Eq. (4.9) obtained from
the exchange J12 = J yy

12 via Eq. (4.8). We note that for systems
consisting of more than two magnetic moments, multispin
interactions [25–30] can also contribute to the effective field
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12 [Eq. (4.11)]

J xz
12 [Eq. (4.13)]

FIG. 1. Comparison of the energy curvature components J xx
12 and

J xz
12 of an Fe dimer [17] with results obtained from Eqs. (4.11)–(4.13)

by setting J12 = J yy
12 .

and the two-spin exchange interaction cannot be expected to
provide the exact effective field.

When calculating the energy curvature tensor J αβ
i j from

the adiabatic energy Eq. (2.1), which produces an effective
field that is perpendicular to the moment directions due to
the minimization with respect to the moment lengths, it is not
necessary to explicitly take the fixed unit length of the unit
vectors ei and e j into account for i �= j, i.e., it is allowed to just
take the Cartesian derivatives with respect to the components
eiα and e jβ . This follows from the fact that the restriction
of unit length is equivalent to setting the component of the
gradient ∇ei parallel to ei to zero, see Eq. (4.9). If the gradient
of the energy has no such parallel component, it is therefore
not necessary to apply this restriction. For the second deriva-
tive ∂/∂e jβ , we have to project out the component parallel
to e j ,

∇e j

∂E

∂eiα

∣∣∣∣
⊥

= ∇e j

∂E

∂eiα
− e j

(
e j · ∇e j

∂E

∂eiα

)
. (4.15)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

θ (rad)

0.0

0.1

0.2

0.3

0.4

0.5

g
μ

B
B

1
x

(e
V

)

exact Beff
1x

J12(θ)

J12(0)

FIG. 2. Comparison of the exact effective magnetic field Beff
1x ,

acting on the first moment of an Fe dimer when the second moment
is rotated by θ [17], with the effective field obtained from the effec-
tive exchange J12(θ ) and from the Heisenberg model with constant
exchange J12(0).

For i �= j we can pull the derivative with respect to eiα in front
and use that e j · ∇e j E = 0,

∇e j

∂E

∂eiα

∣∣∣∣
⊥

i �= j= ∇e j

∂E

∂eiα
− ∂

∂eiα
e j

(
e j · ∇e j E

) i �= j= ∇e j

∂E

∂eiα
.

(4.16)

Therefore, the projection is then not required for i �= j. This
consideration does not apply to the tensorial Heisenberg
model Eq. (4.2) and the exchange energy Eq. (4.4) above since
the corresponding effective fields have a parallel component,
which requires us to take the restriction to unit length explic-
itly into account.

In summary, the effective exchange interaction Ji j can be
obtained from the following procedure:

(1) Calculate the energy curvature tensor J αβ
i j .

(2) For each pair (i, j), rotate J αβ
i j to the coordinate sys-

tem where ei = ẑ and e j lies in the xz plane.
(3) Set Ji j = J yy

i j .

V. TIGHT-BINDING MODEL

The tight-binding electronic structure model employed
here is implemented in the software package CAHMD [45]
and is based on a Hamiltonian that consists of a hopping term
Ĥ0, a local charge neutrality term Ĥlcn, and a Stoner term
ĤSt [16,46,47],

Ĥtb = Ĥ0 + Ĥlcn + ĤSt. (5.1)

The hopping term is in second quantization given by

Ĥ0 =
∑

i�, j�′,σ

ti�, j�′ ĉ†
i�σ ĉ j�′σ , (5.2)

which describes the hopping of an electron from state j�′σ
to i�σ with hopping amplitude ti�, j�′ and creation and an-
nihilation operators ĉ†

i�σ and ĉ j�′σ . The index i�σ indicates
the lattice site, orbit, and spin, respectively. We use a Slater-
Koster parametrization [48] of the hopping parameters in a
nonorthogonal basis which is based on Ref. [49]. It has been
shown that such a tight-binding model provides a numerically
efficient and valid description of transition metal elements and
alloys [50] both for collinear and noncollinear magnetic con-
figurations, based on comparisons with DFT calculations [51].

The local charge neutrality term is given by

Ĥlcn = 1

2
Ulcn

∑
i

(
n̂i − n0

i

)(
n̂i − n0

i

)

≈ Ulcn

∑
i

n̂i
(
ni − n0

i

) + Edc
lcn, (5.3)

where we apply a mean-field approximation and the double-
counting contribution is

Edc
lcn = −1

2
Ulcn

∑
i

[
n2

i − (
n0

i

)2
]
. (5.4)

Here

n̂i =
∑
�σ

ĉ†
i�σ ĉi�σ (5.5)

224408-5



SIMON STREIB et al. PHYSICAL REVIEW B 105, 224408 (2022)

counts the number of electrons at site i and n0
i is the pre-

scribed number of electrons per site with ni = 〈n̂i〉. The local
charge neutrality term is similar to a Coulomb interaction
and favors a charge-neutral state, which is exactly enforced
in the limit Ulcn → ∞. In practice, Ulcn should be a large
positive quantity [50,51] and we use here Ulcn = 5 eV [47,52].
If all atoms are geometrically and chemically equivalent, the
local charge neutrality term is only required for noncollinear
magnetic configurations that break the equivalence. Finally,
we describe the spin splitting with a Stoner contribution ĤSt

to the Hamiltonian, which we discuss in Sec. V A, and we
explain the consequences for the calculation of the energy
curvature tensor in Sec. V B. We note that we do not include
spin-orbit coupling in this work.

A. Stoner model

For the construction of the Stoner contribution ĤSt to the
Hamiltonian, it is crucial to ensure that〈∇eiĤSt

〉 = 0, (5.6)

such that the energy is conserved. In some previous
works [15,17], a Stoner term of the following form was used:

Ĥold
St = −1

2

∑
i��′

I��′Mi�ei · M̂i�′ , (5.7)

where this requirement is not fulfilled and it is not possible
to obtain a conserved total energy. Since we consider the
conservation of energy as a necessary requirement for our spin
dynamics simulations, we use instead the following Stoner
term within a mean-field approximation [16,46,47]:

ĤSt = −1

4

∑
i��′

I��′M̂i� · M̂i�′ ≈ −1

2

∑
i��′

I��′Mi� · M̂i�′ + Edc
St ,

(5.8)

where the double-counting term is given by

Edc
St = 1

4

∑
i��′

I��′Mi� · Mi�′ . (5.9)

The inclusion of the energy contribution Edc
St is required to

fulfill the condition 〈∇eiĤSt〉 = 0.

B. Calculation of the energy curvature tensor

The procedure in Sec. IV B to obtain the effective ex-
change interaction Ji j requires the energy curvature tensor
J αβ

i j . For the calculation of J αβ
i j within the above specified

tight-binding description, we have to evaluate the gradient
of the Stoner term, ∇e j ĤSt, see Ref. [17] for details on
the formalism. While this is straightforward for the previous
implementation, Eq. (5.7), in the case of our current imple-
mentation, Eq. (5.8), this involves the calculation of

∂

∂e jβ
Mi�α ≈ Mi�

∂eiα

∂e jβ
= Mi�δi jδαβ, (5.10)

which we estimate by assuming that all orbital contribu-
tions point along the same direction, Mi� = Mi�ei. Taking
here the full derivative, ∂eiα/∂eiβ = δαβ , results in unphysi-
cal contributions to the energy gradient tensor which can be

FIG. 3. Time evolution of the magnetic moment components ex

and ey for Ni, Fe, and Co dimers (black, red, and blue, respectively).
Calculations are performed without damping. Note that since the
calculation was performed without damping, the z component of the
magnetic moment is kept constant. The curves are for one atom.
The other atom has an inverted dynamics due to the symmetry of
the system.

projected out and do not affect the physically relevant contri-
butions [17]. We observe that the approximation in Eq. (5.10)
does not result in accurate results when comparing the effec-
tive exchange Jc

i j calculated from the energy curvature tensor
given by Eq. (3.23) in Ref. [17] with the exchange obtained
from the exact energy curvature tensor calculated by numeri-
cal differentiation of the constraining field. However, it turns
out that an alternative result Jsc

i j based on the curvature of the
band energy, Eq. (3.28) in Ref. [17], which is analogous to
Eq. (11) in Ref. [53], gives more accurate results within the
approximation (5.10). For example, for the Fe chain discussed
in Sec. VI B, we obtain in the ferromagnetic ground state:

Jexact
i,i+1 = 0.1298 eV, (5.11)

Jc
i,i+1 = 0.1057 eV, (5.12)

Jsc
i,i+1 = 0.1308 eV. (5.13)

Furthermore, in the case of an Fe dimer, we have also con-
firmed the reliability of Jsc

i j in noncollinear configurations.
Therefore, we will use in the following Jsc

i j to provide an
estimate of the exchange interaction Ji j . We note that more
rigorous results could be achieved by calculating ∂

∂e jβ
Mi�α

self-consistently together with the energy curvature tensor,
which is beyond our current implementation.

VI. DYNAMICS AND EFFECTIVE EXCHANGE
OF SPIN-DISORDERED STATES

A. Fe, Co, and Ni dimers

To test the tight-binding implementation of the CAHMD
code [45], we have considered dimers of Fe, Co, and Ni with
a lattice constant of 2.0 Å and studied their dynamics. We took
initially an angle of θ = 20◦, with θ being the angle between
the magnetic moments, and performed the calculations with
and without damping. The results without damping showed
a good agreement with previous work [16], with the results
shown in Fig. 3.
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FIG. 4. Time evolution of the z component of the Fe dimer
moment directions. Calculations were performed with the damping
α = 0.5. The orange color of the atoms stands for the initial con-
figuration, whereas the different colored arrows represent the final
configurations concerning their respective color in the legend.

For the systems with damping, we focused on the case of
Fe. Here we used a large damping α = 0.5 to let the system
quickly relax to the ground state starting from different mag-
netic configurations (e.g., θ = 20◦, θ = 80◦, and θ = 120◦),
as shown in Fig. 4. In the cases of θ = 20◦ and θ = 80◦,
the dimer relaxed to a ferromagnetic (FM) state. For the an-
gle θ = 120◦, the Fe dimer relaxed to the antiferromagnetic
(AFM) configuration. This is in agreement with the sign of
the exchange coupling parameter calculated for each starting
configuration, see Fig. 5, as well as with the results shown
in Ref. [16] where a stable ground state can be found around
θ = 180◦.

Previous works have reported the nature of the AFM
behavior of a few 3d metals by analyzing the different orbital-
orbital contribution to the total exchange parameters in a

FIG. 5. The calculated exchange parameter J for different angles
when varying a single magnetic moment in the Fe dimer (right axis)
and the calculated magnetic moment for each one of these magnetic
configurations (left axis).

0 20 40 60 80 100

t (fs)

−0.02

−0.01

0.00

Δ
E

(e
V

)

ΔEband

−ΔEdc

FIG. 6. Time evolution of the change of the band energy (
Eband)
and double counting (
Edc) contributions to the total energy E =
Eband + Edc of a ten atom Fe spin chain in a noncollinear configura-
tion without damping, demonstrating energy conservation.

crystal [54,55], in particular, Fe having a strong AF contri-
bution coming from the T2g-T2g orbitals, therefore it is not
surprising that the Fe dimer has a negative exchange coupling
for a given magnetic configuration. In Fig. 5 one can see
the dependence of the exchange parameter Ji j as a function
of the angle between the magnetic moments. Note that there
is a discontinuity around 70◦ and that is due to the abrupt
change to the magnetic moment from approximately 3.0 μB

for small angles to 1.22 μB at θ = 120◦, revealing the strong
non-Heisenberg behavior for this system.

Additionally, we also performed calculations for Fe and
Co dimers using an orthogonal tight-binding basis, initially
applied in Ref. [56]. The results (data not shown) show that
the electronic structure is very similar to the one obtained
using the nonorthogonal basis. This leads to similar exchange
parameters and therefore similar dynamics of the magnetic
moments compared to the ones presented in this section.

B. Fe chain

We consider next the dynamics of an Fe spin chain with a
lattice constant of 2.486 Å, which consists of ten atoms with
periodic boundary conditions. We first check the analytical
results on the conservation of energy and nonconservation
of angular momentum by running a short 100 fs simulation
without damping, starting from a randomly oriented spin con-
figuration given by the maximally noncollinear configuration
indicated in the inset of Fig. 10. Figure 6 shows that the
change of the double counting contribution Edc compensates
the change of the band energy Eband such that the total energy
is conserved within a numerical accuracy that depends on the
chosen time step length. Here, with time steps of 0.1 fs, the
fluctuations are of the order of several μeV. The nonconserva-
tion of angular momentum can be seen in Fig. 7, which shows
the components of the total magnetization vector M. We note
that if we artificially constrain the moment lengths to a fixed
value, angular momentum is conserved in our simulations as
expected.

Next, we switch on a damping of α = 0.01 and let the
spin chain relax. We track the nearest neighbor exchange
interactions, magnetic moments, and energy, which are shown
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FIG. 7. Time evolution of the change 
M of the components
of the total magnetization M of a ten atom Fe spin chain from a
noncollinear configuration without damping.

in Figs. 8 and 9, respectively. While the magnetic moments
show only small fluctuations of the order of 1%, the nearest-
neighbor exchange can vary by more than 50% and the
average is increased by about 10% compared to the ferro-
magnetic ground state. Both energy and exchange are mostly
relaxed after a simulation time of 4000 fs, but the individual
magnetic moments still oscillate slowly and have not reached
their ground-state value of 3.4 μB.

The Fe spin chain also allows us to demonstrate the
limitations of the effective exchange interaction in strongly
noncollinear states due to multispin interactions that are
not included in the two-spin exchange energy Eq. (4.4). In
Fig. 10 we compare the exact effective field obtained from
the constraining field with the effective field obtained from
the exchange interaction Ji j via Eqs. (4.8) and (4.9) under
a continuous transformation of the moment directions from
the ferromagnetic state to a random noncollinear state. Close
to the collinear configuration, the agreement is nearly per-
fect both with the field obtained from Ji j updated for each
configuration and from constant J fm

i j obtained from the ferro-
magnetic ground state. We find an improved agreement with
the updated Ji j over J fm

i j for increasingly noncollinear states,
but in strongly noncollinear states the effective exchange Ji j is

0 200 400 600 800 1000

t (fs)

0.10

0.12

0.14

0.16

0.18

0.20

J
(e

V
)

Ji,i+1

average Ji,i+1

FM reference

FIG. 8. Relaxation of the nearest-neighbor exchange Ji,i+1 of a
ten atom Fe spin chain from a noncollinear configuration with damp-
ing α = 0.01.
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0.0
0.1
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0.3
0.4
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FIG. 9. Relaxation of the magnetic moment lengths Mi of a ten
atom Fe spin chain from a noncollinear configuration with damping
α = 0.01. Inset: Total energy E .

insufficient to obtain the correct effective field. This is differ-
ent from the dimer case where the effective exchange gives
the exact effective field. Therefore, we attribute this failure of
the isotropic two-spin exchange to multispin interactions that
are not included in an effective pair exchange formalism,
since the isotropy could only be broken by spin-orbit cou-
pling, which is not included in the tight-binding Hamiltonian
Eq. (5.1) considered here.

C. Co chain

We also investigated a chain of ten Co atoms along x
direction with a lattice constant of 2.5 Å in Fig. 11. The
Gilbert damping is set to 0.05 in order to guarantee fast re-
laxation from the initial random state, which is the same as
for the Fe chain, see inset of Fig. 10. The magnetic moment
length of each spin is M = 2.35 μB and approximately con-
stant during the relaxation process with a maximal deviation
of 
M = 0.04 μB.

0.0 0.2 0.4 0.6 0.8 1.0

non-collinearity

−0.04

−0.03

−0.02

−0.01

0.00

g
μ

B
B

0
z

(e
V

)

exact field

field from Jij

field from J fm
ij

0.0 0.5 1.0

−1.0
−0.5

0.0
0.5
1.0

eiz

FIG. 10. Comparison of the z component of the exact effective
field acting on the magnetic moment at site i = 0 in a periodic ten
atom Fe spin chain with effective fields obtained from the effective
exchange interaction Ji j and its ferromagnetic ground-state value J fm

i j .
The noncollinearity parameter describes a continuous transformation
from a collinear state to a random noncollinear state, as illustrated in
the inset by the z components of the moment vectors ei.
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0 1000 2000 3000 4000

t (fs)

0.4

0.5

0.6

0.7

0.8

M̄

FIG. 11. Time evolution of the normalized average magnetic mo-
ment M̄ for a ten atom chain of Co (M̄ = 1 is the fully ferromagnetic
state). The inset shows the spin configuration (black arrows) after
equilibration.

Surprisingly, the normalized magnetization relaxes not to
a ferromagnetic but to a spiral state (see inset in Fig. 11),
which does not depend on a particular choice of the damp-
ing parameter α. From the total energy (per atom) of both
the ferromagnetic state E = 3.558 eV and the spiral state
E = 3.561 eV (so 
E = 3 meV = 0.021Ji,i+1), it is revealed
that the spiral state is only metastable and not the ground
state. Since the dynamics is driven by the exact effective field
Beff

i = −Bcon
i , it is unclear which spin-spin exchange mecha-

nism stabilizes the spiral state. Simulating the time-resolved
Heisenberg exchange (Fig. 12) shows a strong ferromagnetic
coupling between the nearest-neighbor magnetic moments
(Ji,i+1 > 0); the second nearest-neighbor couplings are typi-
cally two orders of magnitude smaller and antiferromagnetic
(Ji,i+2 < 0). Spiral states in 3d transition metal chains have
been previously reported [57,58]. No spiral ground state was
found for Co, but in the case of Fe a spiral state was obtained
for lattice constants below the bulk value of 2.486 Å and a
ferromagnetic ground state for the bulk value [58], which is
consistent with the result for the Fe chain above.

Classical atomistic magnetization dynamics from a
Heisenberg spin Hamiltonian shows opposite to the tight-

0 100 200 300 400 500
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0.18

0.20
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V
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Ji,i+1

average Ji,i+1

Spiral reference

FM reference

FIG. 12. Relaxation of the nearest-neighbor exchange Ji,i+1 of
a ten atom Co spin chain from a noncollinear configuration with
damping α = 0.05.
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FIG. 13. Dynamics of the exact effective field (black solid lines)
and the effective field related to a Heisenberg spin Hamiltonian with
dynamical determined J’s (red dotted lines) for one atom in a chain
of ten Co atoms. The different panels show the different Cartesian
components of the fields.

binding dynamics a relaxation to the ferromagnetic state (not
shown here). Thus, the noncollinearity could result from mul-
tispin higher order exchange. To test this hypothesis, we
compare the exact field (black line) with the effective field re-
lated to the Heisenberg spin Hamiltonian (red line) in Fig. 13.
Into the latter, the dynamically determined J’s enter. There
are clear deviations between the two fields, corroborating the
presence of multispin exchange mechanisms. Unfortunately,
there is no expression similar to the two-spin case [17,53,59]
for multispin exchange interactions with constraining fields,
which will be a focus of future studies.

VII. SUMMARY AND DISCUSSION

In this work we have considered adiabatic spin dynamics
within a tight-binding electronic structure theory based on
constraining fields. Furthermore, we have developed a method
of extracting effective exchange interactions Ji j from the
energy curvature tensor J αβ

i j in noncollinear configurations.
The effective exchange goes beyond the simpler Heisenberg
exchange, as it includes all contributions to the two-spin ex-
change interaction up to infinite order, resulting in an effective
exchange interaction that depends on the magnetic configura-
tion. Within the spin dynamics simulations, we can track the
evolution of the effective exchange and its dependence on the
magnetic configuration.

In particular, we considered Ni, Fe, and Co dimers, and
Fe and Co spin chains consisting of ten atoms each. The
results show that both moment lengths and effective exchange
interactions depend dynamically on the magnetic configura-
tion. For strongly noncollinear states in particular, the results
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demonstrate a breakdown of a Heisenberg model description,
which assumes constant moment lengths and exchange inter-
actions. In the case of the Fe chain, the magnetic moments
only change by a few percent but the exchange interaction is
strongly affected by noncollinearity, with an increase of the
average nearest-neighbor exchange by about 10% compared
to the ferromagnetic ground state. For strongly noncollinear
states, the two-spin exchange interaction is insufficient to
obtain the correct effective field due to multispin interactions.

We have also shown that adiabatic spin dynamics at zero
electronic temperature without any additional damping con-
serves the energy but not the total angular momentum. The
adiabatic approximation implicitly introduces a coupling of
the electronic system to a bath in order to keep the electrons
in a quasiequilibrium state. At zero temperature, heat cannot
be transferred to the bath, δQ = T δS = 0, which explains
the conservation of energy despite the coupling to such a
bath. Angular momentum, however, can be transferred even
at zero temperature when the magnetic moment lengths are
not constant. Our approach has the advantage that it includes
the change of moment lengths in noncollinear configurations,
which is a more accurate description of the physics than
assuming constant moments. In any real system, the spin
dynamics is coupled to the lattice, which allows a transfer
of angular momentum between the lattice and the magnetic
moments. The disadvantage of this adiabatic description is
that it does not model this angular momentum transfer on a
microscopic level and only takes it into account implicitly by a
change of moment lengths without including the impact on the
lattice. Future work will be required to establish how angular
momentum conservation can be restored when including the
lattice dynamics within this adiabatic framework.

As a final remark, we note that the conservation laws
analyzed here in Sec. III might have implications on how to
interpret experimental pump-probe experiments, such as the
ones published in Ref. [10]. The dynamics of the angular
momentum of the electron system and its transfer to a bath
is, according to this analysis, distinctly different for collinear
and noncollinear systems. Even if the experiment is made
for a system that initially is collinear, say a ferromagnet,
any transient excited state that has a noncollinear magnetic
structure will open up for new channels of angular momentum
transfer that could be relevant for how to understand these
types of experiments. Further studies of the model presented
here will hopefully clarify this point. To this end, it might be
necessary to simulate directly the electron dynamics without
adiabatic approximation, see, e.g., recent works on ultrafast
spin dynamics based on tight-binding models [60,61].
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APPENDIX A: DERIVATIVE MATRIX

Naively, one would expect ∂e jα/∂e jβ = δαβ , which is how-
ever not valid for a unit vector since the Cartesian components
are not independent. Instead, the derivative matrix evaluated at
e j = sin θ ex + cos θ ez is given by

∂e jα

∂e jβ
=

⎛
⎝ cos2 θ 0 − sin θ cos θ

0 1 0
− sin θ cos θ 0 sin2 θ

⎞
⎠

αβ

, (A1)

which we obtain from the gradient of a unit vector in spherical
coordinates,

∇e j e jα (θ, φ) = ∂e jα

∂θ
eθ + 1

sin θ

∂e jα

∂φ
eφ, (A2)

with

e j =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ (A3)

and

eθ =
⎛
⎝cos θ cos φ

cos θ sin φ

− sin θ

⎞
⎠, eφ =

⎛
⎝− sin φ

cos φ

0

⎞
⎠. (A4)

APPENDIX B: DZYALOSHINSKII-MORIYA
INTERACTION

Here we consider an additional DMI contribution to the
generalized exchange in Sec. IV A [43,44],

EDMI = −1

2

∑
i j

Di j · (ei × e j ), (B1)

with Di j = −D ji and Dii = 0. Such a contribution is allowed
if spin-orbit coupling is taken into account and inversion sym-
metry is broken. The DMI results in the following effective
magnetic field in the reference coordinate system (with ei = ẑ
and e j in the xz plane),

Beff
ix = 1

Mi

∑
j

(
Dz

i je jy − Dy
i je jz

)
, (B2)

Beff
iy = 1

Mi

∑
j

(−Dz
i je jx + Dx

i je jz
)
, (B3)

Beff
iz = 0. (B4)

Combining the effective exchange and this DMI, we obtain in
the reference coordinate system (for i �= j)

J xx
i j = Ji j (θi j ) cos2 θi j + sin θi j cos θi j

[
J ′

i j (θi j ) + Dy
i j

]
, (B5)

J xy
i j = Dz

i j, (B6)

224408-10



ADIABATIC SPIN DYNAMICS AND EFFECTIVE … PHYSICAL REVIEW B 105, 224408 (2022)

J xz
i j = −Ji j (θi j ) sin θi j cos θi j

− sin2 θi j
[
J ′

i j (θi j ) + Dy
i j

]
, (B7)

J yx
i j = −Dz

i j cos2 θi j − Dx
i j sin θi j cos θi j, (B8)

J yy
i j = Ji j (θi j ), (B9)

J yz
i j = Dx

i j sin2 θi j + Dz
i j sin θi j cos θi j, (B10)

J zβ
i j = 0. (B11)

We note that the contributions with J ′
i j (θi j ) and Dy

i j cannot
be distinguished here from a single configuration and they
both change sign under exchange i ↔ j, see Eq. (4.10). From
a collinear state aligned along the z axis, we can obtain the
components Dz

i j of the DMI, in agreement with Ref. [42].
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