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Noise-induced synchronization is a phenomenon where several oscillators with different initial conditions
show synchronized motion, even in the absence of a coupling between them, when common stochastic input
signals are injected. The phenomenon has attracted attention from nonlinear science, as well as applied physics,
because it enables environmental noise to be used to synchronize many oscillators and is a necessary condition
for brain-inspired computing. Here we develop a theoretical analysis of noise-induced synchronization in
spin-torque oscillators (STOs). The analytical form for the Lyapunov exponent for the present model we derive
indicates that there are two contributions from input signal to noise-induced synchronization in STOs. The first
is that the input signal directly aligns the phases of the magnetizations, and the second is that the input signal
changes the oscillating amplitude, and the amplitude-phase coupling results in synchronization. The validity of
the analytical results was qualitatively confirmed by numerical simulation. We also show the existence of on-off
intermittency at finite temperature, whose statistical properties are similar to those of other oscillator systems.
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I. INTRODUCTION

A spin-torque oscillator (STO) is a nonlinear oscillator on
the nanoscale in which spin-transfer torque [1–3] excited in
a ferromagnetic/nonmagnetic multilayer drives oscillation of
the magnetization at a frequency in the range of 100 MHz–
10 GHz [4–33]. It is of both fundamental and practical interest
because it is an example of a limit-cycle oscillator [34–36] and
potentially has device applications such as in the recording
heads of high-density hard-disk drives [37] and physical reser-
voir computing [38]. A fascinating phenomenon of nonlinear
oscillators is synchronization, where several oscillators show
frequency and/or phase synchronization. Two mechanisms
for this synchronization have mainly been investigated. The
first is mutual synchronization, where STOs are synchronized
through several coupling mechanisms such as dipole inter-
action and spin-wave propagation [8,9,28,31,32]. The other
mechanism is forced synchronization, where the frequency
and phase of the STOs are locked by an external or self-
feedback signal [7,21,30].

In the field of nonlinear science, another mechanism of
synchronization, namely, noise-induced synchronization, has
been investigated in various oscillator systems [35,39–43].
Noise-induced synchronization is a phenomenon in which
several oscillators with different initial conditions show
synchronized motion when common stochastic signals are
injected. Here, noise and stochastic signal mean (pseudo)
random input in the form of, for example, electric voltage,
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which can be applied to several oscillators simultaneously
and/or be reproducibly applied to an oscillator. Therefore,
noise and stochastic input signal here are different from, for
example, thermal fluctuation in ferromagnets [44]: thermal
noise originates from the internal nature of each oscillator, and
thus its value is independent among the oscillators and cannot
be reproduced. Noise-induced synchronization is classified as
generalized synchronization, where the state of oscillators is
determined by the state of the driving system [35]. The phe-
nomenon is different from mutual synchronization because
interactions among the oscillators are unnecessary for it to
occur. It also differs from forced synchronization because
the input signal does not have periodicity. Noise-induced
synchronization is not only of fundamental interest but also
of practical interest because it enables many oscillators to
be synchronized by, for example, environmental noise with-
out power injection. Recently, noise-induced synchronization
has attracted attention in the field of brain-inspired comput-
ing because it guarantees the computational reproducibility,
called the echo-state property, of physical reservoir computing
[45–47]. However, only a few studies on noise-induced syn-
chronization in STOs have been reported [47–49]. In addition,
the previous work performed numerical simulations at zero
temperature only, and the physical mechanism causing the
synchronization and the role of temperature have not been
revealed.

In this work we develop a theoretical analysis of noise-
induced synchronization in STOs. We focus on a magnetic-
vortex-type STO that has been used in recent experiments
[38,50,51] and use a stochastic magnetic field as input signal.
First we perform a numerical simulation of the magnetization
dynamics at zero temperature and find that synchronization
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FIG. 1. (a) Schematic illustration of a magnetic-vortex STO.
The top (blue) ferromagnetic layer corresponds to the free layer,
while the bottom (orange) ferromagnetic layer corresponds to the
reference layer. The position of the vortex core in the free layer is
X = (X,Y, 0), while the unit vector pointing in the direction of mag-
netization in the reference layer is q. (b) Example of the magnetic
profile in the free layer, where the direction of the magnetic moment
is evaluated from the profile in Ref. [22].

occurs efficiently when the oscillation amplitude is small or
the coupling between the amplitude and phase is large. Sec-
ond, we derive an analytical form for the Lyapunov exponent
for the present model and find that the results of the numerical
simulation are well explained by it. The analytical form for
the Lyapunov exponent implies that there are two ways to
realize the synchronization. The first one is that the input
signal of the magnetic field directly aligns the phases of the
STOs. The second is that the input signal changes the os-
cillating amplitude, which leads to phase alignment through
the amplitude-phase coupling. Third, we perform a numer-
ical simulation at finite temperature. While synchronization
occurs even in the presence of thermal fluctuation, on-off
intermittency is also observed. A statistical analysis clarifies
that on-off intermittency in the STOs plays a similar role to
those found in other oscillator systems.

The paper is organized as follows. In Sec. II we provide a
system description and show the oscillatory behavior of the
vortex core in the absence of a stochastic input signal. In
Sec. III we describe a numerical simulation of noise-induced
synchronization at zero temperature. An analytical theory of
the synchronization is also developed. In Sec. IV we show
the results of a numerical simulation at finite temperature and
study the desynchronized behavior statistically. Our conclu-
sions are summarized in Sec. V.

II. SYSTEM DESCRIPTION

Let us describe the STO under investigation.

A. Thiele equation

We will focus on a magnetic-vortex STO consisting
of a ferromagnetic/nonmagnetic/ferromagnetic trilayer as
schematically shown in Fig. 1(a). The free layer includes
a magnetic vortex [Fig. 1(b)], while the reference layer is
uniformly magnetized. The z axis is perpendicular to the film
plane, while the magnetization in the reference layer is in
the xz plane. It has been confirmed [16,22,26,33] that the
experimental and numerical results are well described by the

Thiele equation [16,52–56]:

− Gez × Ẋ − |D|(1 + ξs2)Ẋ − κ (1 + ζ s2)X + aJJqzez × X

+ caJJR0qxex − cbJJRqxey + cμ∗ez

× H − ηxex − ηyey = 0, (1)

where ei is the unit vector representing the i direc-
tion, X = (X,Y, 0) is the position vector of the vortex
core, while G = 2π pML/γ and D = −(2παML/γ )[1 −
(1/2) ln(R0/R)] consist of the saturation magnetization
M, the gyromagnetic ratio γ , the Gilbert damping constant
α, the thickness L, the disk radius R, and the core radius R0.
The polarity p and chirality c are each assumed to be +1 for
convenience. The normalized distance of the vortex-core posi-
tion from the disk center is s = |X|/R =

√
(X/R)2 + (Y/R)2.

The dimensionless parameter ξ was introduced to describe the
nonlinear damping in a highly excited state [22], where the
strength of the damping torque increases nonlinearly with in-
creasing s. The magnetic potential energy W is characterized
by κ and ζ via

W = κ

2

(
1 + ζ

2
s2

)
|X|2, (2)

and κ = (10/9)4πM2L2/R [22]. The dimensionless parame-
ter ζ was introduced to explain the linear dependence of the
oscillation frequency on the current [22]. The spin-transfer
torque strength with spin polarization P is aJ = π h̄P/(2e)
[16,56], while the fieldlike torque strength is given by bJ .
The electric current density is denoted by J , where positive
current corresponds to that flowing from the reference to the
free layer, as shown in Fig. 1(a). The unit vector pointing
in the magnetization direction in the reference layer is q =
(qx, 0, qz ). The external magnetic field is denoted as H, while
μ∗ = πMLR. The thermal fluctuation provides a random
torque, whose components obey the fluctuation-dissipation
theorem,

〈ηk (t )η	(t ′)〉 = 2kBT |D|δk	δ(t − t ′), (3)

where T is temperature. In the following we will use the
following values of the parameters found in typical ex-
periments and simulations [22,26,33]: M = 1300 emu/c.c.,
γ = 1.764 × 107 rad/(Oe s), α = 0.01, L = 5 nm, R =
187.5 nm, R0 = 10 nm, P = 0.7, bJ = 0, ξ = 2, and q =
(sin 60◦, 0, cos 60◦). The values of J and ζ are varied, as
mentioned below, because they relate to the ways to realize
noise-induced synchronization. A current I = πR2J of 1 mA
corresponds to a current density J of 0.9 MA/cm2. It was
reported that ζ relates to the material and is on the order of
0.1–1.0 [26]. As explained below, the stochastic input sig-
nal for the synchronization is injected through the magnetic
field, H.

B. Oscillating behavior in the absence of stochastic input signal

Before investigating the synchronization phenomena, let
us show the oscillatory behavior in the absence of stochastic
input signal through H. The results shown here will be used
to develop an analytical theory of synchronization later.

Figure 2(a) shows an example of the time evolution of
s = |X|/R at zero temperature, where the current I = πR2J
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FIG. 2. (a) Time evolution of the normalized distance s from the disk center at zero temperature. The inset shows the dynamical trajectory
in the steady state. (b) Oscillating behavior of X and Y at zero temperature. The oscillation frequency is about 226 MHz. (c) Time evolution of
the normalized distance at T = 300 K.

is 5 mA and ζ = 0.1. Starting near the disk center, the vortex
core moves to an oscillating state. The normalized distance s
of the vortex core approximately saturates to a certain value,
which can be confirmed from the inset of Fig. 2(a) showing
the dynamical orbit of the vortex core in the steady state. In
this sense, s can be regarded as an oscillation amplitude of the
vortex core. The small-amplitude oscillation of s originates
from the spin-transfer torque due to the in-plane component
qx of q appearing as the fifth term of Eq. (1), which breaks
the axial symmetry of the Thiele equation around the z axis.
Figure 2(b) shows the oscillating behavior of X and Y . The
frequency is about 226 MHz, which is a typical value for
vortex STOs [22,26,33]. Note that the analytical form explain-
ing these dynamical behaviors can be derived from Eq. (1).
Neglecting terms related to the small parameters, such as α

and R0/R, the Thiele equation in terms of s and the phase
ψ = tan−1(Y/X ) becomes (see also Appendix A)

ṡ = as − bs3, (4)

ψ̇ = κ

G
(1 + ζ s2), (5)

where a and b are defined as

a = |D|κ
G2

(
J

Jc
− 1

)
, (6)

b = |D|κ
G2

(ξ + ζ ). (7)

The critical current density inducing the oscillation is Jc =
|D|κ/(GaJqz ). Note that Eqs. (4) and (5) are the same as
the equation of motion of a Stuart-Landau oscillator [36].
The Stuart-Landau equation was derived by Landau to de-
scribe the evolution of turbulence phenomenologically, and
its derivation from hydrodynamics was developed by Stuart.
It provides a simple example of nonlinear dynamical systems
having Hopf bifurcation. The solution of s in a steady state is
s0 = √

a/b, whose value is 0.73 for the present parameter and
is close to the value in Fig. 2(a). The oscillation frequency
estimated from Eq. (5), (κ/G)(1 + ζ s2

0)/(2π ), is also con-
sistent with the numerical simulation in Fig. 2(b). Note as
well that the nonlinear parameter ζ of the magnetic potential
can be regarded as a coupling between the amplitude and the
frequency (phase).

At finite temperature, the thermal fluctuation provides a
randomness to X, as can be confirmed from Fig. 2(c) showing
the time evolution of s at T = 300 K. However, the average
value of s and the oscillation frequency are approximately the
same as their values at zero temperature.

Here we should note that the phase ψ (t ) of the vortex-core
position, X, in the xy plane at a time t depends on the initial
condition. Let us imagine two vortex STOs where the vortex
cores, X1 and X2, have different phases at a certain time
t0. In this case the phase difference between the two vortex
cores does not become smaller because they oscillate with
the same frequency. The noise-induced synchronization is a
phenomenon in which these vortex-core positions overlap,
even if the initial states are different, when a stochastic signal
is injected. In the next section we will investigate the phe-
nomenon at zero temperature through a numerical simulation
and analytical treatment.

III. SYNCHRONIZATION AT ZERO TEMPERATURE

Here we describe a result of numerical calculation of
Eq. (1) that shows the synchronized behavior of the magnetic-
vortex cores by injecting a stochastic magnetic field and derive
analytical form for the Lyapunov exponent for the present
model. The fourth-order Runge-Kutta method is applied to
solve Eq. (1) numerically. The temperature is assumed to be
zero.

Before showing the results, let us briefly emphasize the
concept of noise-induced synchronization again. Synchro-
nization studied previously is mutual or forced synchroniza-
tion. In mutual synchronization, two (or more) oscillators
having identical or close parameters oscillate with the same
frequency and fixed phase difference through interactions. In
forced synchronization, the oscillation frequency of an oscil-
lator is forcibly changed to that of an external signal. On the
other hand, noise-induced synchronization belongs to gener-
alized synchronization. The generalized synchronization was
proposed in the middle of the 1990s. For example, Ref. [57]
found that dynamical variables of two chaotic systems with
a unidirectional interaction have some relation, even though
the equations of motions, as well as typical timescales, of
the two systems are different and hence the time evolutions
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FIG. 3. (a) Examples of X/R, s, and R, where I = 5.0 mA, ζ = 0.1, tp = 0.25 ns, and hx = 5.0 Oe. (b), (c) Examples of oscillating
behaviors of X/R in two trials (b) immediately after starting the injection of the stochastic signal from t = 200 ns and (c) a long time after
injection. The time evolution of their difference, (X1/R) − (X2/R), is shown in (d). The temperature is zero.

of the dynamical variables of the two systems look different.
Even if the dimensions of two systems are different, sim-
ilar phenomena can be observed. These observations were
different from the conventional synchronization, where the
dynamical variables of two systems change identically except
for the phase difference. Therefore the concept of general-
ized synchronization was introduced. As will be explained in
the following, in the noise-induced synchronization, the fre-
quency of STO does not become identical to that of the input
signal: nevertheless, the phases of different oscillators align.
In this sense, noise-induced synchronization is classified as
generalized synchronization.

A. Numerical simulation

The simulation of Eq. (1) involved solving Eq. (1) for
1000 different initial conditions of the vortex core; see also
Appendix B. Note that the STO includes a single vortex, and
the equation of motion is solved for the 1000 different initial
conditions; i.e., we do not assume 1000 vortex cores in a
single STO. In the following we add a suffix i = 1, 2, . . . , N
(N = 1000) distinguishing the trials of X and Y as Xi and Yi

when necessary.
We solve Eq. (1) without a magnetic field from t = 0 to

t = 200 ns to move the vortex core to the steady oscillating
state. Then we inject a stochastic magnetic field. Note that the
stochastic signal is common to the 1000 trials. Note as well
that the previous models of noise-induced synchronization
have used various stochastic signals, such as Gaussian noise
or impulse noise [35,39–43]. Here we assume a pulse signal,
which has been used in recent experiments [50,51], in the
form of a magnetic field given by

H(t ) = hxR(t )ex, (8)

where R(t ) is a uniform random number in the range [−1, 1]
and is constant during the pulse width tp, while hx deter-
mines the maximum value of the input signal. We again
emphasize that the stochastic input signal given by Eq. (8)
can be simultaneously applied to several oscillators and/or
reproducibly applied to an oscillator. In this sense, stochastic
input signal here is different from thermal fluctuation in fer-
romagnet, whose role will be studied in Sec. IV. In addition
to noise-induced synchronization, Ref. [47] finds stochastic
current-input-driven chaos in a macrospin STO. The phe-
nomenon is beyond the scope of the present work, and we
keep it as a future work.

Figure 3(a) shows examples of X/R, s, and R. Comparing
s with what is shown in Fig. 2(a), we can see that there is
small-amplitude random motion due to the stochastic input
signal. We should emphasize here that the vortex core does
not synchronize to the input signal, i.e., the oscillation fre-
quency of X/R is different from the timescale of the input
signal, such as 1/tp. Thus this phenomenon is different from
forced synchronization. Figure 3(b) shows the oscillations
of two X/R immediately after injecting the stochastic input
signal. Since the two trials have different initial conditions,
their phases are different. However, after a long time passes,
their phases become identical, as can be seen in Fig. 3(c).
Figure 3(d) shows the time evolution of the difference in
X/R between two trials; the difference rapidly, and approxi-
mately monotonically, becomes small. These results indicate
that noise-induced synchronization is achieved by injecting a
stochastic magnetic field.

To clarify the ways to realize the synchronization, let us in-
vestigate the dependence of the synchronized behavior on the
parameters. Figure 4 shows the distributions of the vortex-core
positions at t = 10 μs for 1000 trials. In Fig. 4(a), the current I
and the amplitude-phase coupling parameter ζ are identical to
those in Fig. 3(a), i.e., I = 5 mA and ζ = 0.1. As in the case
shown in Fig. 3 for two trials, many of the vortex-core po-
sitions overlap, indicating that noise-induced synchronization
occurs. Simultaneously, however, there are some trials which
are not synchronized even after a long time passes. We note
that it does not mean the absence of synchronization; rather,
it implies that a time necessary to achieve synchronization
is sufficiently long. Notice that synchronization is efficiently
achieved in all trials when the current magnitude is reduced,
as shown in Fig. 4(b), where I = 2.5 mA and ζ = 0.1. Re-
call that the value of s in a steady state, as estimated from
the analytical theory in Sec. II, s0 = √

a/b, decreases with
decreasing current magnitude through a ∝ J . Therefore the
result shown in Fig. 4(b) indicates that noise-induced synchro-
nization is rapidly achieved when the oscillation amplitude
is small. In addition, synchronization is efficiently achieved
when the coupling between the amplitude and phase is large.
Figure 4(c) shows the distribution of vortex-core positions
when ζ is 0.4. Here the increase in ζ makes the oscillation
amplitude s small, as implied by the analytical result, s0 =√

a/b ∝ √
1/(ξ + ζ ). To separate the ways to realize the syn-

chronization from the one shown in Fig. 4(b), we increase the
current to I = 7.5 mA and simultaneously keep the oscillation
amplitude comparable to that in Fig. 4(a). Again, the vortex
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cores of all trials almost completely overlap, indicating the
appearance of noise-induced synchronization.

One might be interested in the temporal evolution into the
synchronized state. Figure 5 compares the time evolutions of
the oscillation amplitude s of a single trial and its average. The
average is defined as

s =

√√√√(
1

N

N∑
i=1

Xi

R

)2

+
(

1

N

N∑
i=1

Yi

R

)2

. (9)

According to the definition, s becomes small when the vortex
cores have different phases and thus

∑N
i=1 Xi and

∑N
i=1 Yi

become zero. On the other hand, when synchronization is
achieved, s becomes identical to the oscillation amplitude of
a single trial. The values of I and ζ in Fig. 5 are (a) 5.0 mA
and 0.1, (b) 2.5 mA and 0.1, and (c) 7.5 mA and 0.4, as in the
case of Fig. 4. Comparing Figs. 5(a) and 5(b), we find that fast
synchronization is achieved when the oscillation amplitude is
small, where the amplitude of a single trial is almost over-
lapped by the averaged amplitude in Fig. 5(b). This is because
the differences among the vortex-core positions are also small.
On the other hand, the times required for s to reach a single-
trial value of s are nearly the same for the cases shown in
Figs. 5(a) and 5(c), although the number of the synchronized
vortex cores is different [Figs. 4(a) and 4(c)]. This is because
differences among the vortex-core positions can be large when

the oscillation amplitude is large; therefore a relatively long
time is necessary to achieve synchronization. Note that the
strength of the input signal hx is the same for every plot in
Fig. 5, and the dependence of the time for synchronization on
the strength of input signal is shown in Appendix C.

B. Analytical theory

The results of the numerical simulation indicate that there
are two ways of realizing noise-induced synchronization ef-
ficiently. The first one is to reduce the oscillation amplitude
s. The second one is to use materials with a large amplitude-
phase coupling ζ . Here we develop an analytical theory of the
synchronization and reveal the physics behind it.

First, we should note that synchronization among the vor-
tex cores occurs when the torque due to the stochastic input
signal depends on the core position; if the torque due to the
input signal is independent of the core position, all cores are
moved uniformly by the torque, and the distance between
them does not decrease. Note that the Thiele equation for
s and ψ in the presence of a stochastic input signal, with
leading-order terms only, becomes

ṡ = as − bs3 + cμ∗

GR
hxR(t ) cos ψ, (10)

ψ̇ = κ

G
(1 + ζ s2) − cμ∗

GRs
hxR(t ) sin ψ, (11)
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FIG. 5. Time evolutions of the oscillation amplitude s0 of a single trial (black) and its average (blue), where the values of I and ζ are
(a) 5.0 mA and 0.1, (b) 2.5 mA and 0.1, and (c) 7.5 mA and 0.4. The maximum value of the input signal of the magnetic field is hx = 5.0 Oe.
The temperature is zero. In (b) the amplitude of a single trial is almost overlapped by the averaged amplitude.
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where we can confirm that the torques acting on s and ψ

depend on the core position (phase) through the terms pro-
portional to hxR(t ) cos ψ and hxR(t ) sin ψ . The dependences
of these torques on the phase ψ can be explained as follows.
According to Eq. (1), the main contribution of the magnetic
field is to move the vortex core in the direction of the field,
i.e., Ẋ ∝ H. Let us imagine that the vortex core rotates around
the disk center in a counterclockwise direction, as is schemat-
ically shown in Fig. 6, where we have assumed that R > 0.
In this case the torque due to the magnetic field moves the
vortex core in the positive x direction. When the vortex core is
located in the region of X > 0 (X < 0), the torque due to the
magnetic field tends to increase (decrease) the oscillation am-
plitude; see Fig. 6(a), where δs is the change in the oscillation
amplitude from s0. Thus the dependence of the torque acting
on s on the phase can be described by a function of cos ψ .
Similarly, when the vortex core is in the region of Y > 0 (Y <

0), the direction of the torque due to the magnetic field has an
antiparallel (parallel) component to the oscillating direction,
which decreases (increases) the instantaneous frequency of
the vortex core; see Fig. 6(b), where the arrows with dψ/dt
indicate the oscillation directions. Thus the dependence of the
torque acting on ψ is described by the function of − sin ψ .

These phase-dependent torques lead to synchronization as
follows. First, notice that the torque due to the stochastic
input signal acting on the phase is inversely proportional to
the oscillation amplitude s, as can be seen in the second term
on the right-hand side in Eq. (11). This is because the phase
change due to torque becomes large when the core is close
to the pole (disk center); in fact, when the core is at the
disk center, any small torque can change the phase from 0 to
2π . Therefore when the oscillation amplitude s is small, the
torque due to the input signal becomes large and efficiently
aligns the phases. Second, note that Eq. (11) depends on
the oscillation amplitude s through the amplitude-phase cou-
pling, described by the term ζ s2. The vortex cores oscillating
with different amplitudes experience unequal torques, which

reduce the separation between the core positions. The first
explains the synchronization shown in Fig. 4(b), while the sec-
ond one explains the synchronization in Fig. 4(c). Although
these physical pictures are for a vortex STO, we believe that
the considerations presented here are also applicable to the
other STO types; see Appendix D.

These physical interpretations can be ascertained from a
different viewpoint. Let us derive an analytical form for the
Lyapunov exponent, which is an inverse of a timescale char-
acterizing the evolution of the difference between two phases,
δθ (t ) = θ1(t ) − θ2(t ) as |δθ (t )| 	 |δθ (0)|eλt . A negatively
large Lyapunov exponent means that δθ (t ) decays rapidly,
i.e., a fast synchronization is achieved. We will use the phase
reduction method developed in Refs. [36,42], which pro-
vides a general description of nonlinear oscillator systems and
naturally includes the amplitude-phase coupling [14,15,27].
In particular, let us introduce a generalized phase θ , which
changes with a time-independent frequency. As mentioned in
Sec. II, the unperturbed Thiele equation has the same form as
the Stuart-Landau oscillator. Therefore the generalized phase
in the present system can be defined as

θ = ψ + ζκ

Gb
ln

s

s0
. (12)

The concept of the phase reduction method developed in
Ref. [36] is to describe any phenomena related to synchro-
nization by the generalized phase, θ . The difference between
ψ and θ is as follows. The phase ψ is the phase representing
the vortex-core position in a polar coordinate. It changes with
the frequency f = (κ/G)(1 + ζ s2)/(2π ) as ψ = 2π f t . The
frequency f of ψ clearly depends on the oscillation amplitude
s. Therefore, while the frequency f in unperturbed limit-cycle
state is f0 = (κ/G)(1 + ζ s2

0)/(2π ), as explained in Sec. II, an
instantaneous frequency of the vortex core in the presence
of a perturbation (random input signal in the present case)
generally differs from f0 because an instantaneous oscillation
amplitude s could be different from s0. On the other hand,
the generalized phase used in the phase reduction method is
defined so that it grows monotonically with a fixed frequency
of f0 even in the presence of perturbation [36], and thus an
instantaneous s differs from s0. To satisfy this requirement,
we introduce θ defined by Eq. (12). It is also noticed that θ

becomes identical to ψ on the limit-cycle trajectory, where
s = s0. The theory is applicable when the perturbation is
small, while it is no longer applicable for large excitations
such as noise-induced chaos [47]. The theory of phase reduc-
tion [36] argues that a response of a nonlinear oscillator to a
weak perturbation can be described by the phase sensitivity
function, which is defined as

Z(θ ) = ∇θ |X=X0 , (13)

where X0 is the solution of the equation of motion in the
unperturbed system, while ∇ is the gradient with respect to
the spatial coordinate, X/R, normalized by the disk radius R.
In Eq. (12), s =

√
(X/R)2 + (Y/R)2 and ψ = tan−1(Y/X ) de-

pend on X/R. In the present case, the unperturbed solution is
the vortex core rotating around the disk center with amplitude
s0 and frequency (κ/G)(1 + ζ s2

0)/(2π ). Therefore the phase
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FIG. 7. (a), (b) Examples of oscillating behaviors of X/R in two trials (a) immediately after injection of the stochastic signal and (b) long
after injection. The time evolution of their difference, (X1/R) − (X2/R), is shown in (c). The maximum value of the input signal of the magnetic
field is hx = 5.0 Oe. The temperature is 300 K.

sensitivity function becomes

Z(θ ) =

⎛
⎜⎝

1
s0

(− sin θ + ζκ

Gb cos θ
)

1
s0

(
cos θ + ζκ

Gb sin θ
)

0

⎞
⎟⎠. (14)

The equation of motion of the generalized phase in the pres-
ence of a stochastic input signal in the x direction becomes

dθ

dt
= κ

G

(
1 + ζ s2

0

) − cμ∗

GRs0
hxR(t )

(
sin θ − ζκ

Gb
cos θ

)
.

(15)
Reference [42] developed a formula for the Lyapunov ex-
ponent λ of noise-induced synchronization in terms of the
phase sensitivity function, where the input signal is assumed
to be Gaussian noise. While pulse input signals are used in
experiments on, for example, physical reservoir computing
[50,51], it is convenient for us to assume Gaussian noise from
a theoretical viewpoint. Note that the theory still provides a
qualitative description of synchronization by a pulse input
signal when the pulse width is sufficiently shorter than the
oscillation period [58,59]; see also Appendix E. Therefore,
for a while, let us replace the pulse input signal hxR with
a Gaussian one h̃xR̃(t ), where R̃(t ) satisfies 〈R̃(t )R̃(t ′)〉 =
δ(t − t ′). Then, according to Ref. [42], the Lyapunov expo-
nent becomes

λ = − 1

4π

(
cμ∗h̃x

GR

)2 ∫ 2π

0
dθ

(
dZx

dθ

)2

= −
(

cμ∗h̃x

2GRs0

)2[
1 +

(
ζκ

Gb

)2]
. (16)

Equation (16) indicates that the Lyapunov exponent becomes
negatively large when the oscillation amplitude s0 is small
or the amplitude-phase coupling ζ is large. It again explains
the results of the numerical simulations shown in Fig. 4. In
Appendix E we show the value of the Lyapunov exponent
evaluated numerically and discuss a qualitative comparison
with Eq. (16).

IV. SYNCHRONIZATION AT FINITE TEMPERATURE

Here we show the results of the numerical simula-
tion on noise-induced synchronization at finite temperature.

Recall that noise and stochastic input signal in previous sec-
tions mean (pseudo) random input, which can be applied to
several oscillators simultaneously and/or reproducibly applied
to an oscillator. On the other hand, the thermal fluctuation (or
noise) added here originates from an internal nature of ferro-
magnet placed at finite temperature. The thermal fluctuation is
independent among the oscillators and cannot be reproduced.
In this sense, the stochastic input signal is sometimes called
common input signal (or noise signal) [42], while the thermal
fluctuation is independent noise.

A. Synchronized behavior

Let us first show the oscillatory behavior between two
trials. Figures 7(a) and 7(b) respectively show the time evo-
lutions of X/R in two trials immediately after injection of
the stochastic input signal and a long time after injection.
Figure 7(a) indicates that when only a short time has passed
since injection of the stochastic input signal, the two trials
are not synchronized, similar to what was found at zero tem-
perature in Fig. 3(b). However, as can be seen in Fig. 7(b),
even after a long time has passed, two trials still do not show
synchronization. Figure 7(c) shows the time evolution of the
difference between two X/R. Note that the difference is non-
monotonic, contrary to the monotonic decrease found at zero
temperature in Fig. 3(d). Even after the difference becomes
small, it randomly increases again. These results indicate that
stochastic input signal causes synchronization, but thermal
fluctuation causes desynchronization.

Next let us investigate the desynchronized behavior from
another viewpoint. Figures 8(a)–8(c) show the time evolutions
of the oscillation amplitude s of a single trial and its average
for various values of I and ζ . In Fig. 8(a), the average ampli-
tude sometimes becomes comparable to that of a single trial,
indicating that synchronization is achieved. However, thermal
fluctuation prevents the synchronized state from stabilizing,
and thus the average amplitude often becomes smaller than
that of a single trial. When the oscillation amplitude is small,
the synchronized state remains for a relatively long time, as
shown in Fig. 8(b). This is because the time necessary to
achieve synchronization is relatively short, as explained in
Fig. 5(b), and therefore, even when the vortex-core positions
are randomly deviated, they immediately synchronize again.
On the other hand, when the oscillation amplitude is large, the
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FIG. 8. Time evolutions of the oscillation amplitude s0 of a single trial (black) and its average (brown), where the values of I and ζ are
(a) 5.0 mA and 0.1, (b) 2.5 mA and 0.1, and (c) 7.5 mA and 0.4. The maximum value of the input signal of magnetic field is hx = 5.0 Oe. The
temperature is 300 K.

synchronized state is often broken even when the amplitude-
phase coupling is large; see Fig. 8(c). This is because the time
for synchronization is relatively long even at zero temperature,
as explained in Fig. 5(c), and thermal fluctuation can easily
prevent synchronization.

B. On-off intermittency

In the last section we showed that the thermal fluctuation
prevents synchronization; see Figs. 8(a) and 8(c). Even when
synchronization is realized, it is sometimes broken by the
random torque, as shown in Fig. 8(b). This is in contrast to
the synchronization at zero temperature in Fig. 5(b), where
the synchronized state is sustained once it is realized. A tran-
sition between synchronized and desynchronized states, or
equivalently, the appearance of a slip in the phase difference,
has been found in a wide variety of nonlinear oscillators and
is called on-off intermittency [35,42,60–68]. On-off intermit-
tency is caused by a combination of a common input signal
(stochastic magnetic field in the present system) or coupling
and independent noise (thermal noise), and, for example, it
triggers self-annealing that enhances the efficiency of learning
in chaotic neural networks [69]. On-off intermittency is char-
acterized by the statistical distribution of the interval between
neighboring bursts, called the laminar length. Here we analyze
the laminar length of noise-induced synchronization in STOs.

Figure 9(a) shows the time evolution of the phase differ-
ence |ψ1 − ψ2| between two trials, where we use a relatively

large value of hx to realize synchronization frequently.
Figure 9(b) shows the definition of the laminar length for the
present case. Note that events with a short laminar length
frequently happen. On the other hand, events with a long
laminar length rarely happen. This does not necessarily mean
that synchronization is absent; if synchronization is sustained,
bursts rarely happen.

Figure 9(c) shows the distribution of laminar lengths in a
relatively short-length region. To obtain this result, we use
the 10 times of the simulation results between 3200 ns and
9600 ns. We find that the distribution obeys a power law with
an exponent close to −1.5. The distribution in a relatively long
length region, shown in Fig. 9(d), shows a deviation from the
power law, which is partly due to the difficulty in observing
events with a long laminar length, as mentioned above. Note
that various oscillator systems have been found to have a
similar power law [61,62,67], including the Stuart-Landau
oscillator [42]. The similarity originates from the fact that the
vortex-core dynamics described by the Thiele equation are
mathematically similar in structure to the Stuart-Landau os-
cillator, as explained in Sec. II.

V. CONCLUSION

We investigated noise-induced synchronization in vortex
STOs theoretically and found results that would be of interest
to researchers in magnetism and nonlinear science. First, we
performed a numerical simulation at zero temperature and
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found that synchronization efficiently occurs when the oscilla-
tion amplitude is small and/or the amplitude-phase coupling is
strong. Second, we developed an analytical theory of synchro-
nization and revealed the physics behind the numerical results.
The analytical form for the Lyapunov exponent implies that
there are two ways to realize noise-induced synchronization.
The first one is that the stochastic input signal provides a
torque that directly affects the phase and leads to phase align-
ment, and the second is that the stochastic input signal changes
the oscillation amplitude, which results in aligning the phases
by changing the oscillation frequency. The first one leads
to synchronization for small-amplitude oscillations while the
second plays a role when the amplitude-phase coupling is
finite. The oscillation amplitude can be controlled by the
bias current magnitude, while the amplitude-phase coupling
depends on the ferromagnetic materials. Therefore the results
presented here provide directions for designing experiments
in the future. Third, we performed a numerical simulation at
finite temperature and found that thermal fluctuations cause
on-off intermittency. A statistical analysis of the laminar
length of the on-off intermittency reveals a power law similar

to that of the different nonlinear oscillators found in nonlinear
science.
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APPENDIX A: EXPLICIT FORMS
OF THE THIELE EQUATION

The Thiele equation in terms of X and Y is explicitly given
by

Ẋ = asX − aψY + |D|(1 + ξs2)

G2 + (1 + ξs2)2D2
(caJJqxR0 − cμ∗Hy) − G

G2 + (1 + ξs2)2D2
(cbJJqxR − cμ∗Hx )

− |D|(1 + ξs2)

G2 + (1 + ξs2)2D2
ηx − G

G2 + (1 + ξs2)2D2
ηy, (A1)

Ẏ = aψX + asY − G

G2 + (1 + ξs2)2D2
(caJJqxR0 − cμ∗Hy) − |D|(1 + ξs2)

G2 + (1 + ξs2)2D2
(cbJJqxR − cμ∗Hx )

+ G

G2 + (1 + ξs2)2D2
ηx − |D|(1 + ξs2)

G2 + (1 + ξs2)2D2
ηy, (A2)

where Hx and Hy are the x and y components of the magnetic field H, and as and aψ are given by

as = GaJJqz − |D|κ (1 + ξs2)(1 + ζ s2)

G2 + (1 + ξs2)2D2
, (A3)

aψ = Gκ (1 + ζ s2) + |D|(1 + ξs2)aJJqz

G2 + (1 + ξs2)2D2
. (A4)

In terms of s and ψ , the Thiele equation becomes

ṡ = ass + (caJJqxR0 − cμ∗Hy)/R

G2 + (1 + ξs2)2D2
[|D|(1 + ξs2) cos ψ − G sin ψ]

− (cbJJqxR − cμ∗Hx )/R

G2 + (1 + ξs2)2D2
[G cos ψ + |D|(1 + ξs2) sin ψ]

− Gηψ/R

G2 + (1 + ξs2)2D2
− |D|(1 + ξs2)ηs/R

G2 + (1 + ξs2)2D2
, (A5)

ψ̇ = aψ − (caJJqxR0 − cμ∗Hy)/R

G2 + (1 + ξs2)2D2
[|D|(1 + ξs2) sin ψ + G cos ψ]

1

s

+ (cbJJqxR − cμ∗Hx )/R

G2 + (1 + ξs2)2D2
[G sin ψ − |D|(1 + ξs2) cos ψ]

1

s

+ Gηs/R

G2 + (1 + ξs2)2D2

1

s
− |D|(1 + ξs2)ηψ/R

G2 + (1 + ξs2)2D2

1

s
, (A6)

where ηs = ηx cos ψ + ηy sin ψ and ηψ = −ηx sin ψ +
ηy cos ψ also satisfy the fluctuation-dissipation theorem,

Eq. (3). Note that |D|/G 	 α 
 1, and therefore the term
G2 + (1 + ξs2)2D2 can be approximated as G2. Note also
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FIG. 10. Distribution of 1000 initial states near the disk center.

that R0/R 
 1; thus the terms related to aJJqxR0 are small,
which can be confirmed from the results in Fig. 2(a), where
the oscillation amplitude of s in the steady state is small.
Furthermore, the terms proportional to sin ψ and cos ψ

become zero in an oscillating state after averaging over the
oscillation period. Then, neglecting the magnetic field and
random torque, Eqs. (A5) and (A6) reduce to Eqs. (4) and (5).
Similarly, in the presence of a stochastic input signal through
the magnetic field, the leading-order terms of Eqs. (A5) and
(A6) provide Eqs. (10) and (11).

APPENDIX B: PREPARATION OF THE INITIAL STATES

We prepared 1000 initial states of the vortex core by nu-
merically solving Eq. (1) in the absence of a current or field.
The temperature was set to 300 K to obtain natural initial
states of the vortex core. Figure 10 shows the distribution of
initial states in the xy plane obtained in the numerical simula-
tion, where the vortex cores stay near the disk center, which
is an energetically stable state, and is randomly distributed
due to thermal fluctuation. The temperature is set to 0 K after
preparing the initial state when the numerical simulation is
performed at zero temperature.

APPENDIX C: DEPENDENCE OF TIME
FOR SYNCHRONIZATION ON STRENGTH

OF INPUT SIGNAL

Here we show the dependence of the time for synchro-
nization on the strength of input signal. Recall that Fig. 5(a)

shows the time evolutions of the oscillation amplitude s and
its average over 1000 trials at zero temperature for I = 5.0
mA, ζ = 0.1, and hx = 5.0 Oe. For comparison, these time
evolutions are shown in Figs. 11(a) and 11(b) for hx = 2.5 Oe
and hx = 10 Oe. The results indicate that fast synchronization
is achieved when the strength of the input signal is large.
We also performed similar numerical simulations at finite
temperature. Here, when the strength of the input signal is
small, the average oscillation amplitude does not saturate to
that of a single trial, as shown in Fig. 11(c). Even when the
strength of the input signal is large, the thermal fluctuation
prevents a completely synchronized state and causes on-off
intermittency, as shown in Fig. 11(d).

APPENDIX D: NOISE-INDUCED SYNCHRONIZATION
IN MACROSPIN STO

The analytical theory developed in Sec. III indicates that
there are two ways to realize noise-induced synchronization
in STOs. The first one is that the input signal provides a
torque directly leading phase alignment. The second one is
that the input signal changes the oscillation amplitude, and
the amplitude-phase (frequency) coupling leads to alignment
of the phases. The first one works well when the vortex core is
close to a pole, while the second becomes efficient when the
amplitude-phase coupling is large. Although the results are
for vortex STOs, we consider that the physical picture can be
applied to the other types of STO qualitatively.

The insights provided above might solve a controversial is-
sue in previous work. References [47,49] study noise-induced
synchronization in macrospin STOs. While both papers focus
on the same type of STO consisting of a perpendicularly
magnetized free layer and an in-plane magnetized reference
layer, Ref. [47] reported that noise-induced synchronization is
achieved, while Ref. [49] argues that an additional magnetic
anisotropy is necessary for realizing synchronization. Note
that the stochastic input signal in these references is injected
through the current and thus the spin-transfer torque provides
stochastic torque.

First, note that Ref. [47] investigated the dynamics over a
wide range of input intervals and strengths, while Ref. [49]
studied a single set of parameters. Second, note that the first
way in which the input signal directly aligns the phases seems
to be inefficient because the oscillation occurs far away from
the pole, which is the north pole along the perpendicular (z)
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direction in their geometry [47,49]. Note that the oscillation
amplitude of the macrospin magnetization in Ref. [49] is
relatively large; in fact, the magnetization oscillates almost
entirely in the xy plane. Furthermore, the second way related
to the amplitude-phase coupling becomes zero in the STO
studied in Refs. [47,49], in contrast with the vortex STO where
it remains finite. This difference arises from the magnetization
alignment in Refs. [47,49]. Note that the oscillation ampli-
tude of the STO in these references corresponds to the tilt
angle of the macrospin magnetization from the z axis, which
can be modulated by the current magnitude. As mentioned,
the magnetization in the reference layer in Refs. [47,49] is
in-plane magnetized. In such a case, when the macrospin
magnetization comes close to the xy plane, the direction of
the spin-transfer torque also lies in the xy plane. Therefore
the stochastic input signal does not change the amplitude
(tilted angle) efficiently. Accordingly, the second way does
not work. Thus it was for this reason that noise-induced syn-
chronization was not found in Ref. [49]. At the same time we
should notice that the additional magnetic anisotropy prevents
the magnetization from moving close to the xy plane, which
makes the second way efficient. On the other hand, Ref. [47]
found synchronization in the same type of STO because they
investigated a wide range of current strengths. In a different
geometry studied in Ref. [48], where the free layer is also
in-plane magnetized, the spin-transfer torque can change the
amplitude even in a large-amplitude oscillating state. There-
fore noise-induced synchronization was also observed in that
situation.

APPENDIX E: LYAPUNOV EXPONENT

Here we show the value of the Lyapunov exponent
evaluated from the numerical simulation of the Landau-
Lifshitz-Gilbert equation and compare it with Eq. (16). It will
be shown that the formula explains the dependence of the
Lyapunov exponent on the parameters qualitatively, although
a quantitative comparison is difficult. This is because, as men-
tioned in Sec. III B, we use pulse input signals, as in the case
of experiments, while it is convenient for theory to assume
Gaussian noise.

Let us first explain the evaluation method of the Lyapunov
exponent. We use a method similar to that developed in our
past work [70], which is based on Ref. [71]. The inverse of the
Lyapunov exponent is the timescale characterizing the evolu-
tion of the difference between two solutions of Eq. (1) with
slightly different initial conditions. Therefore, at a certain time
t0, we introduce u(1)(t0) = x(t0) + εn, where x(t0) = X/R of
Eq. (1). The factor εn represents x and u(1), where 0 < ε 

1, and n is a unit vector pointing in an arbitrary direction.
Both x(t0) and u(1)(t0) evolve to x(t0 + �t ) and u(1)(t0 + �t ),
according to Eq. (1), where �t is time increment of the nu-
merical simulation. Since δu(1) = u(1)(t0 + �t ) − x(t0 + �t )
is the evolution of the difference between two solutions of
Eq. (1), a temporal Lyapunov exponent at t = t0 + �t is ob-
tained as

λ(1) = 1

�t
ln

|δu(1)|
ε

. (E1)

Next we define u(2)(t0 + �t ) = x(t0 + �t ) + (ε/|δu(1)|)
δu(1), which satisfies |u(2)(t0 + �t ) − x(t0 + �t )| = ε.

Solving Eq. (1), we obtain the temporal Lyapunov exponent
at t = t0 + 2�t as

λ(2) = 1

�t
ln

|δu(2)|
ε

, (E2)

where δu(2) = u(2)(t0 + 2�t ) − x(t0 + 2�t ). In general,
at t = t0 + n�t , we introduce u(n+1)(t0 + n�t ) =
x(t0 + n�t ) + (ε/|δu(n)|)δu(n) and evaluate the time
evolutions of x(t0 + n�t ) and u(n+1)(t0 + n�t ) to
x[t0 + (n + 1)�t] and u(n+1)[t0 + (n + 1)�t], respectively.
Then the temporal Lyapunov exponent at t = t0 + (n + 1)�t
is obtained as λ(n+1) = (1/�t ) ln(|δu(n+1)|/ε), where
δun+1 = u(n+1)[t0 + (n + 1)�t] − x[t0 + (n + 1)�t]. The
Lyapunov exponent is obtained as

λ = lim
N→∞

1

N

N∑
i=1

λ(i). (E3)

Note that Eq. (E3) corresponds to the first (or maximum)
Lyapunov exponent, λ1. In general, in an M-dimensional
phase space (M ∈ N), there are M Lyapunov exponents,
λ1 � λ2 � · · · � λM. The value of Eq. (E3) is expected to
be saturated to λ1 and becomes independent from the choice
of the direction n of the initial perturbation [71] because,
repeating the procedure, the direction of the perturbation,
δu(n), naturally becomes parallel to the direction of the most
expanded direction. Since the first Lyapunov exponent mainly
determines the time necessary for synchronization in the
present system, we call λ1 the Lyapunov exponent and use
the symbol λ, for simplicity. Note also that the present system
is a nonautonomous system because of the presence of the
time-dependent input signal. Equation (E3), strictly speaking,
provides the conditional first Lyapunov exponent [47], which
is restricted to the expansion rate of the vortex-core position,
X. In the present study we use ε = 1.0 × 10−5 and �t = 5
ps, hx = 15 Oe, and N = 4 × 106 pulses for the stochas-
tic input signal. The perturbation is added starting from
t0 = 200 ns, i.e., the Lyapunov exponent is evaluated from
the time at which the injection of stochastic input signal
begins.

Figure 12(a) shows an example of the evolution of the
Lyapunov exponent, i.e., λ1(t0 + n�t ) = ∑n

i=1(1/n)λ(i)(t0 +
i�t ) when I = 2.5 mA and ζ = 0.1. While it changes dras-
tically at the initial stage due to an arbitrary choice of
the direction of the initial perturbation, the value rapidly
tends to saturate. Figure 12(b) shows the dependence of the
Lyapunov exponent, numerically estimated by Eq. (E3), on
the current I when ζ = 0.1. The value of the Lyapunov
exponent negatively increases with the current decreasing. Re-
member that s0 in Eq. (16) depends on the current density J as
s0 ∝ √

J − Jc. Therefore the Lyapunov exponent in Eq. (16)
is expected to become negatively large with the current mag-
nitude decreasing, which is consistent with the numerically
evaluated value in Fig. 12(b). The result shown in Fig. 12(b)
appropriately reproduces this prediction. Figure 12(c) shows
the dependence of the Lyapunov exponent on ζ when I =
4.8 mA, where the Lyapunov exponent, Eq. (E3), evaluated
numerically increases with ζ increasing. Note that not only
ζ explicitly appeared in Eq. (16) but also s0 ∝ √

1/(ξ + ζ )
and b ∝ (ξ + ζ ) affect the theoretical value in Eq. (16);

224407-11



IMAI, TSUNEGI, NAKAJIMA, AND TANIGUCHI PHYSICAL REVIEW B 105, 224407 (2022)

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 200  5000  10000  15000  20000

ζI (mA)t (ns)

)c()b()a(

λ
1
 (

G
H

z)

λ
1
 (

G
H

z)

λ
1
 (

G
H

z)

-0.0075

-0.007

-0.0065

-0.006

-0.0055

-0.005

-0.0045

-0.004

 2.4  2.6  2.8  3  3.2  3.4
-0.011

-0.01

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

 0.1  0.15  0.2  0.25  0.3

FIG. 12. (a) Time evolution of the Lyapunov exponent for I = 2.5 mA and ζ = 0.1. Dependences of the Lyapunov exponent on (b) current
I and (c) the amplitude-phase coupling parameter ζ , where ζ = 0.1 in (b) and I = 4.8 mA in (c). The temperature is zero, while hx is 15 Oe.

therefore the dependence is relatively complex. For the
present parameter, however, the second term on the right-
hand side is dominant, except ζ 	 0, and the dependence
of Eq. (16) on ζ is approximately given by ζ 2/(ξ + ζ ).
Thus Eq. (16) predicts that the Lyapunov exponent negatively

increases with ζ increasing, which is consistent with the nu-
merical results in Fig. 12(c). Summarizing these results, we
conclude that Eq. (16) well explains the dependence of the
numerically evaluated Lyapunov exponent qualitatively and
thus reflects the physics behind synchronization.
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