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We investigate dimerized quantum spin systems using the spin functional renormalization group approach
proposed by Krieg and Kopietz [Phys. Rev. B 99, 060403(R) (2019)] which directly focuses on the physical
spin correlation functions and avoids the representation of the spins in terms of fermionic or bosonic auxiliary
operators. Starting from decoupled dimers as initial condition for the renormalization group flow equations,
we obtain the spectrum of the triplet excitations as well as the magnetization in the quantum paramagnetic,
ferromagnetic, and thermally disordered phases at all temperatures. Moreover, we compute the full phase
diagram of a weakly coupled dimerized spin system in three dimensions, including the correct mean-field critical
exponents at the two quantum critical points.
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I. INTRODUCTION

Dimerized spin systems are quantum Heisenberg magnets
where a dominant antiferromagnetic interaction between two
neighboring spins, which form a dimer unit, enforces a singlet
ground state at small magnetic fields [1–3]. The system is
then a quantum paramagnet which does not exhibit long-range
magnetic order. Low-energy excitations above this ground
state can be viewed as gapped bosonic quasiparticles whose
density can be controlled by the external magnetic field H .
As the magnetic field increases, these excitations undergo two
separate Bose-Einstein condensation (BEC) quantum phase
transitions: in D = 3 spatial dimensions the first transition
is characterized by the emergence of XY antiferromagnetic
order at a critical field Hc1. When the magnetic field is further
increased, there is a second transition at H = Hc2 to a fully
polarized ferromagnetic state. These BEC quantum phase
transitions and the associated intrinsic quantum fluctuations of
dimerized quantum spin systems have attracted considerable
interest in recent years, both experimentally and theoretically
[1–15]. Prominent materials which have been shown to be
well described by quantum dimer models include TlCuCl3

[1,4,6–8,10,15,16,18–20], KCuCl3 [5,17,19], and BaCuSi2O6

[11–14,21], among many others [3].
The basic features of the phase diagram of dimerized quan-

tum spin systems have already been revealed in 1970 via
mean-field theory [22]. However, in several respects the mean-
field results compare poorly with experiments. For example,
mean-field theory fails to reproduce the power law behav-
ior of the critical temperature that is expected for the BEC
quantum phase transition and has been observed experimen-
tally [3,4,6,7,9,12,15]. Another drawback of this mean-field
approach is that it does not directly deal with the physical spin
operators but with auxiliary spin-1/2 operators which capture
only the two lowest states of the dimer. While this reduction of
the Hilbert space allows for a simple mean-field description of
the quantum paramagnetic phase, it breaks down at elevated

temperatures, where the higher states cannot be neglected, as
well as for small magnetic fields, where the Zeeman splitting
between the excited states becomes small. A more sophisti-
cated method to study dimerized spin systems is based on
the representation of the spin operators in terms of suitably
defined auxiliary bosons [3,4,8,10,11,13,15,16,20]. However,
this strategy also has some disadvantages: first of all, the
mapping to auxiliary Bose operators obscures the direct con-
nection to the physical spin operators which tends to obscure
the physical interpretation of the results. Moreover, the Hilbert
space of the Bose operators contains unphysical states which
should be eliminated by means of some projection procedure,
such as an infinite on-site repulsion. At elevated temperatures,
one furthermore has to account for the thermal reweighting of
the dimer states by an appropriate ansatz [10].

In this work, we study dimerized quantum spin systems
using the functional renormalization group (FRG) approach
to quantum spin systems recently developed in Refs. [23–28].
Our spin FRG approach generalizes and extends earlier
work by Machado and Dupuis [29] who developed a lattice
FRG group approach for classical spin systems. Although
later the lattice FRG was also used to study bosonic quan-
tum lattice models [30–34], the direct application of this
method to quantum spin systems was not possible due
to some technical difficulties related to the existence of
the average effective action of quantum Heisenberg models
with spin-rotational invariance. In Refs. [23–28] we have
developed several strategies to avoid these technical diffi-
culties. In contrast to methods based on auxiliary bosons
[3,4,8,10,11,13,15,16,20], our spin FRG directly manipulates
the physical spin correlation functions, thus circumventing
all issues associated with the expression of quantum spins
in terms of bosonic or fermionic auxiliary degrees of free-
dom. We show in particular that a straightforward truncation
of the spin FRG flow equations yields good results for the
excitation spectrum and thermodynamics of weakly coupled
dimers outside of the antiferromagnetic XY phase at all
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temperatures and magnetic fields, including the critical fields
where the system exhibits BEC quantum phase transitions.
We also obtain the correct (mean-field) critical exponents at
the BEC quantum critical points in dimension D = 3, and
compute corrections to the lower critical field due to quantum
fluctuations.

The rest of this work is organized as follows: In Sec. II
we define a model Hamiltonian for a dimerized quantum
spin system and discuss its phase diagram qualitatively. In
Sec. III, we then formulate the spin FRG for our dimerized
quantum spin systems, develop a truncation strategy for the
flow equations, and present our FRG results for the mode
spectrum and the phase diagram. Finally, in Sec. IV we con-
clude with a summary of our main results and an outlook on
future research directions. In two appendices we give addi-
tional technical details: in Appendix A we explicitly give the
imaginary-time-ordered spin correlation functions of a single
dimer involving up to four spins which are needed to calculate
the initial values of the vertices in our spin FRG flow equa-
tions. Appendix B contains a brief description of our spin FRG
formalism.

II. DIMERIZED QUANTUM SPIN SYSTEMS

The essential physics of dimerized quantum spin systems is
described by the following quantum Heisenberg spin Hamil-
tonian:

H = 1

2

∑
i j

2∑
nm=1

(
J⊥

i j,nms⊥
i,n · s⊥

j,m + J‖
i j,nmsz

i,nsz
j,m

)

+ A
∑

i

si,1 · si,2 − H
∑

i

2∑
n=1

sz
i,n. (1)

Here, si,n = (sx
i,n, sy

i,n, sz
i,n) = (s⊥

i,n, sz
i,n) are spin-1/2 operators

associated with dimer i = 1, . . . , N at magnetic site n = 1, 2.
The dimers are coupled antiferromagnetically via the inter-
dimer exchange couplings Jα

i j,nm > 0 (where α = ⊥, ‖), which
are assumed to be small compared to the antiferromagnetic
intradimer exchange A > 0. Last, H is the Zeeman energy
associated with an external magnetic field in z direction.
Such a system is illustrated schematically in the inset of
Fig. 1.

Introducing the total and staggered dimer spin operators as

Si = si,1 + si,2, (2a)

T i = si,1 − si,2, (2b)

respectively, we can rewrite the Hamiltonian (1) as

H = H0 + V + const, (3)

where

H0 =
N∑

i=1

hi, (4a)

hi = A

2
S2

i − HSz
i (4b)

FIG. 1. Schematic depiction of the phase diagram of a dimerized
spin system as a function of the FRG deformation parameter �. At
the beginning of the flow (where � = 0 and J�=0 = 0) the dimers
are completely decoupled. Then the T = 0 phase diagram consists
only of the quantum paramagnetic (QPM) and the ferromagnetic
(FM) phase, separated by a quantum critical point at H = A. When
the interdimer exchange couplings J� are turned on with increasing
deformation parameter �, this quantum critical point grows into an
additional phase exhibiting antiferromagnetic XY ordering in D = 3
dimensions. The new quantum critical points at the critical fields Hc1

and Hc2, respectively, separate the QPM and FM phases from the XY
phase. Inset: Visualization of a pair of spin dimers, with intradimer
exchange A and (deformed) interdimer exchange couplings J�.

is the Hamiltonian of a collection of N decoupled dimers, and

V = 1

2

∑
i j

(
J⊥

T,i jT
⊥
i · T⊥

j + J‖
T,i jT

z
i T z

j

+ J⊥
S,i jS

⊥
i · S⊥

j + J‖
S,i jS

z
i Sz

j

)
(5)

describes the exchange interactions between the dimers. Note
that by writing down the exchange Hamiltonian (5), we have
assumed for simplicity that the two magnetic sites of a given
dimer are equivalent, such that Jα

i j,11 = Jα
i j,22. The relevant

exchange couplings for α = ⊥, ‖ are then given by

Jα
S,i j = 1

2

(
Jα

i j,11 + Jα
i j,12

)
, (6a)

Jα
T,i j = 1

2

(
Jα

i j,11 − Jα
i j,12

)
. (6b)

For inequivalent magnetic sites, there is an additional Si · T j

exchange coupling. However, we will see below that for
weakly coupled dimers at low energies, this additional cou-
pling does not give rise to relevant interaction processes
because the dynamics of the total and staggered spin operators
are well separated in energy.

Before proceeding further, it is instructive to consider the
Hamiltonian (4b) of a single dimer in more detail. Its eigen-
states are given by the singlet state

|s〉i = 1√
2

(|↑↓〉i − |↓↑〉i ), (7)

and the three Zeeman-split triplet states,

|t+〉i = |↑↑〉i, (8a)

|t0〉i = 1√
2

(|↑↓〉i + |↓↑〉i ), (8b)

|t−〉i = |↓↓〉i. (8c)
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The corresponding eigenenergies are

Es = 0, (9a)

E+ = A − H, (9b)

E0 = A, (9c)

E− = A + H. (9d)

From these energies it is obvious that at the magnetic field
H = A an isolated dimer exhibits at zero temperature a quan-
tum phase transition from the singlet state, which is a quantum
paramagnet, to the fully polarized + triplet state. At finite
temperatures T = 1/β > 0 the four dimer states are thermally
occupied, with Boltzmann factors

p0 = pse−βE0
, (10a)

p± = pse−βE±
, (10b)

ps = 1

1 + e−βE+ + e−βE0 + e−βE− . (10c)

These Boltzmann factors and the associated eigenenergies
fully determine all correlation functions of the single dimer.
It turns out that with our truncation of the FRG flow equa-
tions we need time-ordered single-dimer correlation functions
involving up to four powers of the spin operators. In spite
of the simplicity of the single-dimer Hamiltonian, these
correlation functions have a highly nontrivial frequency
dependence. We summarize the relevant expressions in
Appendix A.

The interdimer exchange V in Eq. (5) has a twofold
effect on the properties of a single dimer: first, it en-
dows the eigenenergies (9) with a dispersion, and second,
it enables interaction between the different eigenstates of
the isolated dimer. This also leads to the emergence of a
new phase at the quantum critical point H = A of the iso-
lated dimer: in dimension D = 3, this phase exhibits XY
antiferromagnetic long-range order as indicated in Fig. 1,
while in D = 2 and D = 1 it corresponds to a Berezinskii-
Kosterlitz-Thouless or a Luttinger liquid phase, respectively
[3].

III. FRG FLOW EQUATIONS FOR DIMERIZED
QUANTUM SPIN SYSTEMS

A. Spin FRG

The spin FRG approach proposed in Ref. [23] and further
developed in Refs. [24–28] is based on a formally exact renor-
malization group flow equation for the generating functional
of connected spin correlation functions. As such, it does not
require projecting the physical spin operators onto auxiliary
bosons or fermions with restricted Hilbert spaces. In fact, the
spin FRG combines the old spin-diagram technique developed
by Vaks, Larkin and Pikin [35–37] with modern FRG meth-
ods [38–43]. It turns out that the spin FRG flow equation is
formally equivalent to the bosonic Wetterich equation [23],
which allows us to utilize the established diagrammatic FRG
techniques for bosons [41], thus avoiding the more com-
plicated diagrammatic rules of the spin diagram technique

[35–37]. The nontrivial SU (2) algebra of the spin operators
is taken into account via nontrivial initial conditions for the
flow equations.

To set up the spin FRG in the context of our dimerized
spin system (1), we replace the interdimer exchange couplings
Jα

a,i j (where a = S, T ) by deformed couplings Jα
�,a,i j . Here, the

continuous parameter � ∈ [0, 1] plays the role of the flowing
cutoff in the FRG. The deformed couplings Jα

�,a,i j are to be
chosen such that Jα

�=1,a,i j = Jα
a,i j , while for � = 0 the model

should be simple enough to allow for a controlled solution.
For a dimerized spin system, a natural choice is Jα

�=0,a,i j = 0.
In this case, the Hamiltonian at the initial scale is given by the
Hamiltonian (4) of decoupled dimers, which is exactly solv-
able and already contains information on both the quantum
disordered state at low magnetic fields and temperatures as
well as on the quantum phase transition to the ferromagnetic
state at elevated magnetic fields; see Appendix A. The phase
diagram resulting from this flow is schematically depicted in
Fig. 1.

In the following, we will consider the FRG flow of a
special hybrid functional ��[ϕ] which generates irreducible
vertices with the following properties: the vertices should be
(a) one-line irreducible with respect to all three components
of the staggered spin propagators; (b) one-line irreducible
with respect to the two transverse components of the total
spin propagators; and (c) the vertices should be interaction-
irreducible with respect to cutting a longitudinal interdimer
interaction between the total spins. The explicit construction
of a functional ��[ϕ] with these properties has been discussed
in Refs. [25,27] and is reviewed in Appendix B. At imaginary
time τ , the superfield ϕα

a,i(τ ) then corresponds for a = S and
α = x, y to the local transverse magnetization, for a = S and
α = z to the fluctuating part of the local interdimer longitudi-
nal exchange field, and for a = T and α = x, y, z to the three
components the local staggered spin. The six components of
the superfield ϕ = [ϕα

a,i(τ )], where the flavor index a = S, T
refers to the total and the staggered spin of a given dimer, are
then explicitly given by

[
ϕα

a,i(τ )
] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕx
S,i(τ )

ϕ
y
S,i(τ )

ϕz
S,i(τ )

ϕx
T,i(τ )

ϕ
y
T,i(τ )

ϕz
T,i(τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
Sx

i (τ )
〉〈

Sy
i (τ )

〉
ϕi(τ )〈
T x

i (τ )
〉〈

T y
i (τ )

〉〈
T z

i (τ )
〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where the longitudinal total-spin exchange field ϕi(τ ) is
defined in Appendix B, see also Ref. [25]. The different
treatment of the longitudinal total spin of a dimer is neces-
sitated by the U (1) spin-rotational symmetry around the z
axis of the Hamiltonian (4) of decoupled dimers at the initial
scale, which implies that the longitudinal magnetization field
has no dynamics at � = 0 when the coupling between the
dimers is switched off [25]. For details on the derivation of
this functional and the associated flow equations, we refer to
Appendix B and to Refs. [23,25].

For a given value of the deformation parameter �, the
vertex expansion of our hybrid generating functional is of the
form
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��[ϕ] = βN f� +
∫

K

∑
a=S,T

[
�+−

�,aa(−K, K )ϕ−
a (−K )ϕ+

a (K ) + 1

2!
�zz

�,aa(−K, K )ϕz
a(−K )ϕz

a(K )

]

+
∫

K1K2K3

δ(K1 + K2 + K3)

[ ∑
a=S,T

�+−z
�,aaS (K1, K2, K3)ϕ−

a (K1)ϕ+
a (K2)ϕz

S (K3)

+�+−z
�,T ST (K1, K2, K3)ϕ−

T (K1)ϕ+
S (K2)ϕz

T (K3) + �+−z
�,ST T (K1, K2, K3)ϕ−

S (K1)ϕ+
T (K2)ϕz

T (K3)

+ 1

2!
�zzz

�,T T S (K1, K2, K3)ϕz
T (K1)ϕz

T (K2)ϕz
S (K3) + 1

3!
�zzz

�,SSS (K1, K2, K3)ϕz
S (K1)ϕz

S (K2)ϕz
S (K3)

]
+O(ϕ4), (12)

where K = (k, iω) is a collective label for momentum k
and Matsubara frequency iω; the corresponding integration
and delta symbols are defined as

∫
K = (βN )−1 ∑

k,iω and

δ(K ) = βNδk,0δω,0, respectively. Here ϕ±
a = (ϕx

a ± iϕy
a )/

√
2

denote the spherical transverse field components and the field-
independent contribution f� can be identified with the flowing
free energy per dimer. Note that in writing down the vertex
expansion (12), we already took into account two symmetries
of the Hamiltonian (1): the global U (1) spin-rotational sym-
metry around the z axis that corresponds to spin conservation,
as well as the invariance under exchange of the two magnetic
sites; i.e., si,1 ↔ si,2 or T i ↔ −T i. The former implies that
only vertex functions with the same number of + and −
labels are finite, while the latter requires all vertices to have
an even number of T labels. In doing so, we have of course
neglected the possibility of spontaneous symmetry breaking
that is necessary to describe the XY ordered phase of dimer-
ized spin systems in dimension D = 3 [2–4]. Although it is
possible to extend our spin FRG approach to include also the
XY ordering, this is beyond the scope of the present work.
The two-point vertex functions determine the flowing spin
propagators via

G⊥
�,a(K ) = 1

�+−
�,aa(−K, K ) + J⊥

�,a,k − J⊥
a,k

, (13a)

G‖
�,T (K ) = 1

�zz
�,T T (−K, K ) + J‖

�,T,k − J‖
T,k

, (13b)

G‖
�,S (K ) = 
�(K )

1 + J‖
�,S,k
�(K )

, (13c)

where Jα
�,a,k is the Fourier transform of Jα

�,a,i j and


�(K ) = −�zz
�,SS (−K, K ) − 1

J‖
S,k

(14)

is the interaction-irreducible longitudinal spin susceptibility
[25]. The decoupled-dimer initial conditions for these propa-
gators are listed in Eqs. (A8). Note that the propagators (13)
are the two-spin correlation functions, which directly deter-
mine quantities of experimental interest like the dynamical
spin structure factor.

For the explicit calculations in this work, we assume that
the dimers form a simple cubic lattice in three dimensions
with lattice constant a, and that all interdimer exchange

interactions are isotropic. This setup is illustrated in Fig. 2.
Then we can write the flowing exchange couplings as

Jα
�,a,k = Jα

a,k=0γ�,k, (15)

with γ α
�=0,k = 0 and γ α

�=1,k = γ α
k . Here,

γk = 1
3 [cos(kxa) + cos(kya) + cos(kza)] (16)

is the nearest-neighbor form factor, which satisfies −1 �
γk � 1. For the deformation scheme, we use a Litim regulator
[44], given by

γ�,k = sgn(γk)

{
�, � < |γk|
|γk|, � � |γk|

}
= γk − sgn(γk)(|γk| − �)�(|γk| − �), (17)

such that

∂�γ�,k = sgn(γk)�(|γk| − �). (18)

Physically, the flow then corresponds to increasing the band-
width of all exchange interactions from 0 to the final value
2. This deformation scheme has the advantage that closed
loop integrations that frequently appear in the spin FRG flow
equations can be performed analytically as follows:∫

k
(∂�γ�,k)F�(γ�,k) = n(�)[F�(�) − F�(−�)]. (19)

Here,
∫

k = N−1 ∑
k, F�(γ�,k) is an arbitrary function of the

deformed exchange coupling, and

n(�) =
∫ 1

�

dε ν(ε) (20)

FIG. 2. Illustration of a simple cubic lattice of dimers (D) in three
dimensions. The dimers interact via (deformed) isotropic interdimer
exchange couplings J�. The two spins that form a given dimer
interact with each other via the intradimer exchange A.
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FIG. 3. Diagrammatic representation of the tadpole flow equa-
tions (23). The filled circles with n external legs represent n-point
vertices. The labels of each leg are collected into xi = (αisiKi ). The
crossed circle with a wavy line represents the flowing exchange field
φ�. Dots above one of these elements signify a scale derivative ∂�.

is an effective number of states between dimensionless ener-
gies � and 1, with the density of states

ν(ε) =
∫

k
δ(γk − ε) (21)

of the exchange interaction. The two functions n(�) and ν(ε)
can be computed once for a given structure factor and can then
be used subsequently in all flow equations. We stress at this
point that the spin FRG approach is applicable to any lattice
structure. Different lattices only modify the density of states
ν(ε), without altering the form of the spin FRG flow equa-
tions. Here, we consider an isotropic simple cubic lattice both
for simplicity and to facilitate a direct comparison to quantum
Monte Carlo results in Sec. III D. For any unfrustrated lattice,
we furthermore expect qualitatively similar results.

B. Tadpole resummation

At finite magnetic field H and temperature T , the system
possesses a finite magnetization M. In addition to the n-point
vertex functions, we should then also keep track of the renor-
malization group flow of the longitudinal interdimer exchange
field

φ� = −J‖
�,S,k=0M�, (22)

which is determined by the flowing magnetization M�. Ne-
glecting for the moment all terms in the flow equations for the
irreducible vertices involving loop integrations, we find that
the flow of the exchange field generates the following infinite
hierarchy of flow equations for the n-point vertices with n � 2
external legs,

∂��
α1...αn
�,a1...an

(K1, . . . , Kn) = �
α1...αnz
�,a1...anS (K1, . . . , Kn, 0)∂�φ�.

(23)
Graphically, these flow equations correspond to the tadpole
diagrams displayed in Fig. 3. Integrating the tadpole flow
equation (23) from 0 to � and iterating we obtain the explicit
solution

�
α1...αn
�,a1...an

(K1, . . . , Kn)

=
∞∑

m=0

φm
�

m!
�

α1...αn

m︷︸︸︷
z...z

0,a1...an S...S︸︷︷︸
m

(K1, . . . , Kn,

m︷ ︸︸ ︷
0, . . . , 0). (24)

We now note that by definition of our hybrid functional
��[ϕ] given in Eq. (B6) of Appendix B (see also Ref. [25])
the initial vertex functions appearing on the right-hand side
of the solution (24) can be related to lower-order vertex

functions by taking derivatives with respect to the magnetic
field H ,

�
α1...αn

m︷︸︸︷
z...z

0,a1...an S...S︸︷︷︸
m

(K1, . . . , Kn,

m︷ ︸︸ ︷
0, . . . , 0)

= ∂m
H �

α1...αn
0,a1...an

(K1, . . . , Kn). (25)

Therefore, we can write the solution (24) of the tadpole flow
equation (23) as

�
α1...αn
�,a1...an

(K1, . . . , Kn)

=
∞∑

m=0

φm
�

m!
∂m

H �
α1...αn
0,a1...an

(K1, . . . , Kn)

= �
α1...αn
0,a1...an

(K1, . . . , Kn)
∣∣
H→H+φ�

. (26)

Hence, the resummation of the tadpole diagrams shown in
Fig. 3 alone simply yields the mean-field shift of the magnetic
field

H → H + φ� = H − J‖
�,S,k=0M� (27)

in all vertex functions. Properly including this shift during
the flow proves to be crucial to obtain physically meaningful
results in the following calculations.

In a simple truncation where only these tadpole diagrams
are taken into account, the flowing staggered spin propagators
are given by

G⊥
�,T (K ) = M0(iω + A − H − φ�) − 2m0A

(E+
�,k + iω)(E−

�,k − iω)
, (28a)

G‖
�,T (K ) = 2(ps − p0)A(

E0
�,k + iω

)(
E0

�,k − iω
) , (28b)

where

M0 = p+ − p− (29)

is the magnetic moment of an isolated dimer and

m0 = p+ − ps, (30)

where the Boltzmann factors should be evaluated at the flow-
ing magnetic field H + φ�. Note that m0 corresponds to the
difference in occupation of the two lowest energy states of an
isolated dimer and thus measures whether the dimer is closer
to the disordered singlet state or the fully polarized + triplet
state. The flowing dispersion relations of the three triplet states
are in this approximation given by

E±
�,k =

√(
A + M0

2
J⊥
�,T,k

)2

− 2m0AJ⊥
�,T,k

∓
(

M0

2
J⊥
�,T,k + H + φ�

)
, (31a)

E0
�,k =

√
A2 + 2(ps − p0)AJ‖

�,T,k. (31b)

Because M0 and m0 are complicated functions of temperature
and (flowing) magnetic field determined by the exact dimer
correlation functions, the properties of the triplet modes (31)
vary considerably over the phase diagram. In particular, for
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FIG. 4. Zero-temperature triplet dispersions for a simple cubic
lattice with interdimer exchange couplings J⊥

T,k=0 = J‖
T,k=0 = J0 =

0.2 A, for (a) H = 0.7 A in the quantum paramagnetic phase, and
(b) H = 1.5 A in the ferromagnetic phase.

T  A and H < Hc1 the system is in the quantum paramag-
netic regime (M ≈ 0); in this case we also have M0 ≈ 0 ≈ p0

and m0 ≈ −ps ≈ −1. Then the triplet dispersions (31) reduce
at the end of the flow to

E±
k ≈

√
A2 + 2AJ⊥

T,k ∓ H, (32a)

E0
k ≈

√
A2 + 2AJ‖

T,k, (32b)

in agreement with calculations for dimerized quantum spin
systems based on the random-phase approximation [5,17,21].
These dispersions are shown in Fig. 4(a). It is then easy to see
that the gap of the lowest (+) triplet dispersion vanishes at the
magnetic field

Hc1 =
√

A2 + 2AminkJ⊥
T,k < A, (33)

which gives a first approximation for the lower quantum crit-
ical field of the dimerized spin system. This value of the
quantum critical field of course still lacks corrections due to
quantum fluctuations [9] described by the loop integrations
neglected in Eq. (26). In Sec. III D we will explicitly calculate
the effect of quantum fluctuations on the critical fields.

Another regime where our general expressions (32) sim-
plify is the ferromagnetic phase where M ≈ 1. Assuming
T  A and H > Hc2 we then have M0 ≈ 1 ≈ m0 and ps ≈
0 ≈ p0. Then the two high-energy triplet modes disappear
completely from the propagators (28), so that at the end of the
flow we obtain a spin-wave like dispersion for the remaining
low-energy mode,

E+
k ≈ A − H + J‖

S,k=0 − J⊥
T,k; (34)

see Fig. 4(b). The gap of this mode vanishes at the upper
critical field

Hc2 = A + J‖
S,k=0 − minkJ⊥

T,k > A. (35)

Note that at the quantum critical points themselves, the + dis-
persion in Eqs. (32) and (34) is at long-wavelengths quadratic
in k for generic interdimer exchange couplings. Therefore, the
dynamical critical exponent is z = 2, as expected for BEC
quantum critical points [3]. When approaching either of the
quantum critical fields i = 1, 2 at zero temperature, the gap of
the + mode furthermore vanishes as |H − Hci|, implying the
correlation length critical exponent ν = 1/z = 1/2 [3].

Next, consider the regime of elevated temperatures (above
the antiferromagnetic dome) and for flowing magnetic fields
H + φ� ≈ A, that is, in the vicinity of the critical field of the
isolated dimer. Then we may approximate m0 ≈ 0 and the
flowing dispersion E+

�,k of the lowest triplet state vanishes
as well. However, since the energy E+

�,k also cancels out of
the associated propagator (28a), this corresponds to a simple
level crossing instead of a phase transition. At this point, this
mode changes from a hole-like excitation with ω < 0 to a
particle-like excitation with ω > 0.

It is important to realize that beyond the simple limits
discussed above, the flowing triplet dispersions (31) contain
information on the entire phase diagram through the Boltz-
mann factors of the isolated dimer as well as through the
flowing magnetization M�. This is similar to the thermal
reweighting of the dimer states proposed in Ref. [10]. In
particular, the condition that the gap of the lowest + triplet
mode vanishes yields an estimate for the full phase transition
curve of the antiferromagnetic dome, which will be discussed
in Sec. III C and in Fig. 6 below.

Last, let us also give the flowing transverse total spin
propagator and the longitudinal interaction-irreducible total
spin susceptibility in the tadpole approximation. The former
is given by

G⊥
�,S (K ) = M0

H + φ� + M0J⊥
�,S,k − iω

, (36)

while the interaction-irreducible total spin susceptibility is


�(K ) = δω,0∂H M0(H + φ�). (37)

In the regimes of interest to us the effects of both of these
total spin correlation functions on the flow of the other cor-
relation functions can be neglected. To justify this, we note
that transverse total spin correlation function is negligible
in the quantum paramagnetic phase because M0 ≈ 0, and
in the ferromagnetic phase at large magnetic fields because
then it only has a single pole at high energies ∼H , which is
not thermally excited. As far as the longitudinal interaction-
irreducible total spin susceptibility in Eq. (37) is concerned, it
is only relevant close to the quantum critical point H = A of
the isolated dimer, see Appendix A. As this point lies deep in
the antiferromagnetic dome where our theory is not applicable
in its present form anyway, we may also neglect it.

To conclude this section, let us point out that already
on the tadpole level, the spin FRG contains two infi-
nite resummations—self-consistent mean-field theory and a
random-phase approximation—of the interdimer exchange
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FIG. 5. Graphical representation of (a) the flow equation (38) of
the free energy and (b) the flow equation (39) of the exchange field.
Solid lines with arrows represent the flowing transverse staggered
propagator G⊥

�,T (K ) and dashed lines the longitudinal staggered
propagator G‖

�,T (K ). An additional slash marks the corresponding
single-scale propagator Ġα

�,T (K ). The rest of the notation is the same
as in Fig. 3.

couplings. Both of these are inherently nonperturbative. Thus,
any truncation of the spin FRG flow equations goes beyond
a simple perturbation expansion in the interdimer exchange.
While small interdimer exchange couplings make the trun-
cation of the spin FRG flow equations at a low loop order a
more controlled approximation, such a truncation can conse-
quently also yield reasonable results for larger values of these
exchange couplings.

C. Thermal fluctuations

At finite temperatures, thermodynamic quantities such
as the magnetization or the specific heat are expected to
be dominated by thermal fluctuations of the dispersive
triplet excitations. To take these properly into account, we
should include the terms involving loop-integrations on the
right-hand sides of the corresponding flow equations. The
flow equation for the free energy is

∂� f� − 1

2
φ2

�∂�R‖
�,S,k=0

=
∫

K
G⊥

�,T (K )∂�R⊥
�,T,k + 1

2

∫
K

G‖
�,T (K )∂�R‖

�,T,k, (38)

while the scale-dependent exchange field satisfies the flow
equation

�zz
�,SS (0, 0)∂�φ� + ∂�

(
R‖

�,S,k=0φ�

)
= −

∫
K

�+−z
�,T T S (−K, K, 0)Ġ⊥

�,T (K )

−1

2

∫
K

�zzz
�,T T S (−K, K, 0)Ġ‖

�,T (K ). (39)

Graphical representations of these flow equations are shown
in Fig. 5. Here, the staggered single-scale propagators are
defined as [25,41]

Ġα
�,T (K ) = ∂Gα

�,T (K )

∂Jα
�,T,k

∂�Jα
�,T,k = −[

Gα
�,T (K )

]2
J̇α
�,T,k,

(40)
where J̇α

�,T,k = ∂�Jα
�,T,k, and

Rα
�,T,k = Jα

�,T,k − Jα
T,k, (41a)

R‖
�,S,k = − 1

J‖
�,S,k

+ 1

J‖
S,k

(41b)

are the staggered spin and the longitudinal total spin regula-
tors, see Refs. [25,26] and Appendix B.

A general feature of our spin FRG flow equations for
dimerized spin systems, already apparent in Eqs. (38) and
(39), is that each loop integration is proportional to powers
of the flowing interdimer exchange couplings Jα

�,a,k. Since we
aim to describe dimerized spin systems where these couplings
are weak compared to the interdimer exchange A that we treat
exactly via the initial conditions of the spin FRG flow, we
expect that a simple one-loop truncation of the flow equations
already yields reasonable results. For our purpose it is there-
fore sufficient to approximate all vertex functions appearing
on the right-hand sides of the flow equations (38) and (39)
by their tadpole approximations discussed in the preceding
Sec. III B. That is, we neglect all loop integrations (which
give corrections of higher order in the Jα

a ) in their respective
flow equations, but self-consistently replace the magnetic field
according to Eq. (27) in all dimer correlation functions. The
exact flow equation (38) of the free energy then reduces to

∂� f� − 1

2
M2

�∂�J‖
�,S,k=0

= 1

β

∫
k

J̇⊥
�,T,k

∂

∂J⊥
�,T,k

∑
r=±

ln
(
1 − erβEr

�,k
)

+ 1

2β

∫
k

J̇‖
�,T,k

∂

∂J‖
�,T,k

∑
r=±

ln
(
1 − erβE0

�,k
)
, (42)

while the flow equation (39) for the exchange field re-
duces to the following flow equation for the scale-dependent
magnetization M�,

∂�[M� − M0(H + φ�)]

=
∫

k
J̇⊥
�,T,k

∂

∂J⊥
�,T,k

∑
r=±

r fB
( − rβEr

�,k

)
∂H Er

�,k

− 1

2

∫
k

J̇‖
�,T,k

∂

∂J‖
�,T,k

[
1 + 2 fB

(
βE0

�,k

)]
∂H E0

�,k. (43)

Here, fB(x) = 1/(ex − 1) is the Bose function.
The flow equations (42) and (43) have an simple interpre-

tation in terms of the scale derivatives of the free energies
of the bosonic triplet modes and their magnetic field deriva-
tives, respectively. The remaining loop integrations in both
of these flow equations are of the form given in Eq. (19).
Hence, with the Litim regulator (17) the flow equations (42)
and (43) reduce to ordinary differential equations which can
be straightforwardly integrated numerically. The resulting
magnetization is shown in Fig. 6 for interdimer exchange cou-
plings J⊥

T,k=0 = J‖
T,k=0 = J0 = 0.2 A, as function of magnetic

field and temperature. One clearly sees the quantum para-
magnetic phase at small and the ferromagnetic phase at large
magnetic fields, as well as the thermally disordered phase at
elevated temperatures. At intermediate fields and low tem-
peratures, there is additionally the XY -ordered dome, where
the flow equation (43) is no longer applicable. Numerically,
the boundary of this dome is determined from the critical
softening of the lowest (+) triplet mode and the associated
peak in the susceptibility derivative ∂2M/∂H2, as shown in
Fig. 7(a).
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FIG. 6. Magnetization of a dimerized spin system in dimension
D = 3 as function of magnetic field H and temperature T for in-
terdimer exchange couplings J⊥

T,k=0 = J‖
T,k=0 = J0 = 0.2 A, obtained

from the numerical solution of the flow equation (43). The black
dots are the positions of the extrema of the susceptibility derivative
∂2M/∂H2; see Fig. 7(a). The black line interpolates between these
points. The gray dome enclosed by this line corresponds to the
antiferromagnetic XY phase. There, our flow equation (43) is no
longer valid because we do not consider a finite XY order parameter.

With the explicit numerical solution of the flow equations
(42) and (43) for the free energy and the magnetization, we
can furthermore verify the various thermodynamic critical
exponents that are expected for BEC quantum critical points

in three dimensions. At low enough temperatures the relevant
power laws are [3]

|Hci(T ) − Hci| ∝ T 3/2, i = 1, 2, (44a)

M(Hc1) ∝ T 3/2, (44b)

1 − M(Hc2) ∝ T 3/2, (44c)

c(Hci ) ∝ T 3/2, i = 1, 2, (44d)

where Hci(T ) denotes the critical fields as function of tem-
perature, and c(H ) = −T ∂2 f /∂T 2 is the specific heat of the
dimerized spin system. Our results for these quantities are
displayed in Figs. 7(b)–7(d) on a log - log scale, showing
good agreement with the power laws (44). It is furthermore
apparent that these asymptotic power laws can only be ob-
served in a small temperature window [9]. For example, for
the critical field shown in Fig. 7(b) the power law is obeyed
up to T ≈ 0.02 A = 0.1J0. Attempting to fit the critical field
with a power law in a larger temperature window yields too
large exponents in the range 1.7–2.1, in agreement with pre-
vious theoretical predictions and experimental observations
[3,4,6,7,9,20]. Ultimately, this can be traced back to the fact
that the long-wavelength limit of the triplet dispersions breaks
down rather quickly away from the quantum critical point
because of the relative smallness of the interdimer exchange
compared to the intradimer exchange [7,9,20].

In dimensions D < 3, a qualitatively similar phase diagram
can be obtained from the solution of the flow equation (43)
for the magnetization. Unlike in D = 3 however, the gap

FIG. 7. (a) Gap minkE+
k of the lowest triplet mode and susceptibility derivative ∂2M/∂H2 as function of the magnetic field H at temperature

T = 0.02 A. We also show log-log plots of the temperature dependence of (b) the critical fields, (c) the magnetization at the quantum critical
fields, and (d) the specific heat at the quantum critical fields, with the expected T 3/2 power laws for comparison. All plots are obtained from
the numerical solution of the flow equations (42) and (43), for interdimer exchange couplings J⊥

T,k=0 = J‖
T,k=0 = J0 = 0.2 A.
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FIG. 8. Diagrammatic representation of the flow equations (45)
for the staggered two-point vertices. The meaning of the graphical
elements is the same as in Figs. 3 and 5.

of the lowest triplet mode no longer closes in reduced di-
mensions at finite temperatures. This reflects the increased
relevance of quantum fluctuations, which require a more so-
phisticated truncation of the spin FRG flow equations that
also takes triplet-triplet interactions into account. We leave
this problem for future work. However, even in this case an
estimate for the critical field of the Berezinskii-Kosterlitz-
Thouless or Luttinger liquid phase transition in D = 1 or 2
can be obtained from the peak in the susceptibility deriva-
tive, beyond which the magnetization flows to unphysical
values.

D. Quantum fluctuations

At larger values of the interdimer exchange couplings
and low temperatures, quantum fluctuations can also become
important in the quantum paramagnetic phase. In particular,
quantum fluctuations renormalize the lower critical field Hc1

given in Eq. (33) [9]. To investigate this effect, we need
only consider the spin FRG flow equations for the staggered
two-point vertex functions at zero temperature, which are
given by

∂��+−
�,T T (−K, K )

=
∫

Q
�++−−

�,T T T T (−K,−Q, Q, K )Ġ⊥
�,T (Q)

+ 1

2

∫
Q

�+−zz
�,T T T T (−K, K,−Q, Q)Ġ‖

�,T (Q), (45a)

∂��zz
�,T T (−K, K )

=
∫

Q
�+−zz

�,T T T T (−Q, Q,−K, K )Ġ⊥
�,T (Q)

+ 1

2

∫
Q

�zzzz
�,T T T T (−Q, Q,−K, K )Ġ‖

�,T (Q), (45b)

and shown graphically in Fig. 8. Since we aim to describe
the quantum paramagnetic phase at T = 0, the magnetiza-
tion vanishes for all values of the deformation parameter �,
M� = 0, so that there are no tadpole corrections to the ver-
tex functions. Neglecting higher-order loop corrections as in
Sec. III C, we may approximate the four-point vertices in the
above flow equations (45) by their initial values which reflect
the nontrivial quantum dynamics of the staggered spin of an
isolated dimer. As shown in Appendix A, for the frequency-
arguments needed in the flow equations (45), the initial values

of the three different four-point vertices associated with the
staggered spin are

�++−−
0,T T T T (−iω,−iν, iν, iω) = 1

A3
[A2 + (H − iω)(H − iν)]

×
[

A2 −
(

H − iω + iν

2

)2]
,

(46a)

�+−zz
0,T T T T (−iω, iω,−iν, iν) = 1

2A3
[A4 − (H − iω)2(iν)2],

(46b)

�zzzz
0,T T T T (−iω, iω,−iν, iν) = 1

2A3
[3A4 − (iω)2(iν)2

− A2(iω)2 − A2(iν)2]. (46c)

Then it turns out that the staggered two-point vertex functions
can be parametrized as

�+−
�,T T (−K, K ) = A

2
(1 + σ⊥

� ) − A

(
H − iω

AZ⊥
�

)2

+ J⊥
T,k,

(47a)

�zz
�,T T (−K, K ) = A

2
(1 + σ

‖
�) − A

(
iω

AZ‖
�

)2

+ J‖
T,k, (47b)

where σα
� and Zα

� are flowing renormalizations of ex-
change and quasiparticle residue, respectively, with initial
conditions σα

0 = 0 and Zα
0 = 1. The transverse and lon-

gitudinal components of these couplings satisfy the flow
equations

∂�σ⊥
� = (Z⊥

� )2
∫

k
J̇⊥
�,T,k

∂

∂J⊥
�,T,k

4A2 − ε2
�(J⊥

�,T,k)

2Aε�(J⊥
�,T,k)

+ (Z‖
�)2

∫
k

J̇‖
�,T,k

∂

∂J‖
�,T,k

A

2ε�(J‖
�,T,k )

, (48a)

∂�Z⊥
�

(Z⊥
� )3

= −(Z⊥
� )2

∫
k

J̇⊥
�,T,k

∂

∂J⊥
�,T,k

A2 + 2ε2
�(J⊥

�,T,k)

4Aε�(J⊥
�,T,k)

− (Z‖
�)2

∫
k

J̇‖
�,T,k

∂

∂J‖
�,T,k

ε�(J‖
�,T,k)

4A
, (48b)

and

∂�σ
‖
� = (Z⊥

� )2
∫

k
J̇⊥
�,T,k

∂

∂J⊥
�,T,k

A

ε�(J⊥
�,T,k)

+ (Z‖
�)2

∫
k

J̇‖
�,T,k

∂

∂J‖
�,T,k

3A2 − ε2
�(J‖

�,T,k )

2Aε�(J‖
�,T,k)

, (49a)

∂�Z‖
�

(Z‖
�)3

= −(Z⊥
� )2

∫
k

J̇⊥
�,T,k

∂

∂J⊥
�,T,k

ε�(J⊥
�,T,k)

2A

− (Z‖
�)2

∫
k

J̇‖
�,T,k

∂

∂J‖
�,T,k

A2 + ε2
�(J‖

�,T,k)

4Aε�(J‖
�,T,k)

, (49b)
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FIG. 9. (a) Exchange and quasiparticle residue renormalizations
of the triplet modes at T = 0 in the quantum paramagnetic regime at
the end of the flow for � = 1, as function of the interdimer exchange
coupling J⊥

T,k=0 = J‖
T,k=0 = J0. (b) Renormalized lower quantum crit-

ical field Hc1,r = Z⊥
�=1

√
A2(1 + σ⊥

�=1) − 2AJ⊥
T,k=0 as function of the

interdimer exchange coupling J⊥
T,k=0 = J‖

T,k=0 = J0, with the mean-
field result Hc1 [Eq. (33)] for comparison. The gray circles are the
quantum Monte Carlo results of Ref. [9].

where

εα
�(J ) = Zα

�

√
A2(1 + σα

�) + 2AJ (50)

are the flowing dispersion relations of the triplet modes at
zero temperature. These flow equations are again of the form
of Eq. (19) and with the Litim regulator (17) reduce to ordi-
nary differential equations. Note especially that for isotropic
flowing interdimer exchange couplings J⊥

�,T,k = J‖
�,T,k, the

respective flow equations (48) and (49) for the transverse
and longitudinal renormalizations are identical. Hence, σ⊥

� =
σ

‖
� = σ� and Z⊥

� = Z‖
� = Z� in this case. The resulting renor-

malization of the triplet modes and the lower quantum critical
field at the end of the flow are shown in Fig. 9 for interdimer
exchange couplings J⊥

T,k=0 = J‖
T,k=0 = J0 as function of J0. It

can be seen that for interdimer exchange couplings J0 � 0.2 A,
quantum fluctuations lead to a significant renormalization of
the triplet dispersions and consequently of the lower quantum
critical field. On the other hand, the triplet modes remain
well defined, Z ≈ 1, even for larger interdimer exchange cou-
plings. Note especially that our result for the dependence of
the lower quantum critical field on the interdimer exchange
agrees both qualitatively and quantitatively rather well with

the quantum Monte Carlo simulation results of Ref. [9] at all
values of the interdimer exchange.

IV. SUMMARY AND OUTLOOK

The present work has established the applicability and
power of the recently developed spin FRG formalism [23–28]
for dimerized quantum spin systems. Using a deforma-
tion scheme where the spin-correlation functions of isolated
dimers define the initial conditions for the FRG flow, we
have shown that even relatively simple truncations of the
flow equations yield quantitatively accurate results for the
spectrum and thermodynamics in the entire quantum para-
magnetic, ferromagnetic, and thermally disordered phases. In
particular, we have found that retaining the tadople diagrams
to all orders generates a self-consistent mean-field correction
to the magnetic field, which acts as a chemical potential for the
triplet excitations. With this key ingredient, we have solved
the flow equations for the free energy and the magnetization
in a one-loop truncation. The critical softening of the lowest
triplet mode has then allowed us to determine the critical
magnetic field for the phase transition to the antiferromagnetic
XY phase at all temperatures. At low enough temperatures,
our flow equations have furthermore recovered the established
critical exponents that are expected for the two BEC quantum
critical points. Last, we have demonstrated that we can also
include quantum fluctuations in the quantum paramagnetic
phase by deriving and solving flow equations that describe the
renormalization of the triplet modes, and thereby also of the
lower quantum critical field, at zero temperature.

An alternative functional renormalization group approach
to quantum spin systems is based on the representation of the
spin-operators in terms of Abrikosov pseudofermions [45–51]
or Majorana fermions [52] and the numerical solution of
the resulting truncated fermionic FRG flow equations. Ap-
parently, so far this pseudofermion FRG approach has not
been applied to dimerized spin systems. Our spin FRG sug-
gests that this would require a proper parametrization of the
quantum dynamics encoded in four-spin correlations of an
isolated dimer, which seems to be rather difficult within the
pseudofermion FRG.

Finally, let us point out that this work can be extended
in several directions: On the one side, one could investigate
also the antiferromagnetically ordered phase, in principle in
arbitrary dimensions. On the other side, it would be interesting
to study the interactions and damping of the triplet modes,
in particular in the quantum critical regimes that are already
accessible with the present setup of the spin FRG. Finally, it
might be interesting to consider dimerized spin systems on
more complicated lattices, such that quantitative comparisons
with experiments come within reach.
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APPENDIX A: TIME-ORDERED CORRELATION
FUNCTIONS OF AN ISOLATED DIMER

The isolated dimer consisting of two S = 1/2 spins is
central to our formulation of the spin FRG for dimerized
quantum spin systems, because its imaginary time-ordered
correlation functions define the initial condition of the FRG
flow at Jα

�=0,s,i j = 0. Therefore, we devote this Appendix to
a short overview of the salient features of the isolated dimer,
and the computation of the relevant correlation functions. The
Hamiltonian of an isolated dimer reads

h = A

2
S2 − HSz; (A1)

see Eq. (4b). Here, S = s1 + s2 denotes the total spin operator
of the dimer as defined in Eq. (2), where s1 and s2 are two in-
dependent spin-1/2 operators. In the singlet-triplet eigenbasis
of the dimer Hamiltonian (A1) that is discussed in Sec. II, the
staggered and total spin operators explicitly read

T + =

⎛
⎜⎝

0 0 0 1
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ = (T −)†, (A2a)

T z =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠, (A2b)

S+ =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎠ = (S−)†, (A2c)

Sz =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎠, (A2d)

where we ordered the states in ascending order corresponding
to their eigenenergies, assuming that the singlet has the lowest
energy. The partition function of the isolated dimer is

Z = 1

ps
= 1 + e−βE+ + e−βE0 + e−βE−

, (A3)

where the eigenenergies are given in Eq. (9). From the corre-
sponding free energy,

f0 = − 1

β
ln Z, (A4)

we obtain the magnetization,

M0 = −∂ f0

∂H
= p+ − p−, (A5)

and the static longitudinal susceptibility,

χ0 = ∂M0

∂H
= β

(
p+ + p− − M2

0

)
. (A6)

The Boltzmann weights are given in Eq. (10). To gain some in-
tuitive understanding of the behavior of the isolated dimer, we
plot in Fig. 10 the magnetization (A5) and static susceptibility
(A6) as functions of the applied magnetic field for various
temperatures. Because of the time reversal symmetry of the
dimer Hamiltonian (A1), we can focus on H > 0 without loss

FIG. 10. (a) Magnetization (A5) and (b) susceptibility (A6) of
the isolated dimer, as function of applied magnetic field for different
temperatures.

of generality. At zero temperature and for magnetic fields H
smaller than the intradimer exchange A, the dimer is in the
singlet state, ps = 1. Precisely at H = A, the dimer undergoes
a field induced quantum phase transition into the fully polar-
ized + triplet state with p+ = 1. Thus, at zero temperature
the magnetization is a simple step function, M0(T = 0) =
�(H − A). At finite temperatures, on the other hand, all dimer
states are thermally occupied according to their respective
Boltzmann factors (10), implying a smooth magnetization
curve. Saturation is no longer reached once the temperature
is sufficient to excite nonmagnetic states. Further increasing
the temperature results in the magnetization becoming more
linear, with a slope proportional to the inverse temperature.
Correspondingly, the susceptibility exhibits a single δ-like
peak at the critical field H = A, which widens and becomes
field independent in leading order towards high temperatures.

For the initial conditions of the vertex expansion, we
require the imaginary-time ordered connected n-point corre-
lation function of the staggered and total dimer spin as well.
They are defined as

δ(ω1 + · · · + ωn)Gα1...αn
0, S...S︸︷︷︸

m

T ...T︸︷︷︸
n−m

(iω1, . . . , iωn)

=
∫ β

0
dτ1 . . .

∫ β

0
dτnei(ω1τ1+...+ωnτn )

×〈T Sα1 (τ1) . . . Sαm (τm)T αm+1 (τm+1) . . . T αn (τn)〉connected.

(A7)
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Here, T denotes time-ordering in imaginary time, and the
imaginary time dependence of the operators is in the Heisen-
berg picture. We also used the energy conservation to factor
out the frequency-δ, which is defined as δ(ω) = βδω,0. In fre-
quency space, the connected spin correlation functions (A7)

can be calculated efficiently using their spectral representa-
tions. Since the eigenenergies (9) of the Hamiltonian (A1) as
well as the matrix representations (A2) of the spin operators
are known, one can carry out the required Fourier transforma-
tion explicitly [37]. The two-point functions are given by

G+−
0,T T (iω,−iω) = G⊥

0,T (iω) =
∑
r=±

ps − pr

A − r(H − iω)
, (A8a)

Gzz
0,T T (iω,−iω) = G‖

0,T (iω) = 2A(ps − p0)

A2 + ω2
, (A8b)

G+−
0,SS (iω,−iω) = G⊥

0,S (iω) = M0

H − iω
, (A8c)

Gzz
0,SS (iω,−iω) = G‖

0,S (iω) = δω,0χ0. (A8d)

Note that the longitudinal total spin has no dynamics, G‖
0,S (iω) ∝ δω,0, reflecting the U (1) spin-rotational symmetry of the

dimer Hamiltonian (A1) around the direction of the magnetic field. The finite longitudinal and mixed transverse-longitudinal
three-point functions are

Gzzz
0,T T S (iω1, iω2, iω3) = −δ(ω3)M0G‖

0,T (iω3), (A9a)

Gzzz
0,SSS (iω1, iω2, iω3) = δ(ω2)δ(ω3)M0

(
1 − 3β−1χ0 − M2

0

) = δω2,0δω3,0∂Hχ0, (A9b)

and

G+−z
0,T T S (iω1, iω2, iω3) = G⊥

0,T (iω1) − G⊥
0,T (−iω2)

iω3
− δ(ω3)

[ ∑
r=±

r pr

A − r(H − iω1)
+ M0G⊥

0,T (iω1)

]
, (A10a)

G+−z
0,T ST (iω1, iω2, iω3) = G⊥

0,S (iω1)

M0
[G‖

0,T (iω3) − G⊥
0,T (iω1)], (A10b)

G+−z
0,ST T (iω1, iω2, iω3) = G⊥

0,S (iω1)

M0
[G‖

0,T (iω3) − G⊥
0,T (−iω2)], (A10c)

G+−z
0,SSS (iω1, iω2, iω3) = G⊥

0,S (iω1)

M0
[−G⊥

0,S (−iω2) + M0G‖
0,S (iω3)]. (A10d)

For the calculation of the quantum fluctuations in Sec. III D, we also require the initial conditions of the staggered four-point
vertices, which are determined by the staggered four-point correlation functions of the isolated dimer via the tree expansion; see
Eq. (B13) and Refs. [23,26,41]. After some tedious calculations we find that the different components of the staggered four-spin
correlation functions of an isolated dimer are given by the following expressions:

G++−−
0,T T T T (iω1, . . . , iω4) = [2(A + H ) + iω3 + iω4][2(A − H ) − iω3 − iω4]

2H + iω3 + iω4

×
∑
r=±

r(pr − ps)

[A − r(H − iω1)][A − r(H − iω2)][A − r(H + iω3)][A − r(H + iω4)]
+ [δ(ω1 + ω3) + δ(ω1 + ω4)]

×
{ ∑

r=±

pr

[A − r(H − iω1)][A − r(H − iω2)]
+ 4A2 ps

[A2 − (H − iω1)2][A2 − (H − iω2)2]
− G⊥

0,T (iω1)G⊥
0,T (iω2)

}
,

(A11a)

G+−zz
0,T T T T (iω1, . . . , iω4)

=
∑
r=±

r pr

[A − r(H − iω1)][A − r(H + iω2)]

(
1

H + iω2 + iω3
+ 1

H + iω2 + iω4

)

− ps
∑
r=±

{
1

[A + r(H − iω1)](A − riω3)

(
1

A + r(H + iω2)
+ 1

A + riω4

)
+ (iω3 ↔ iω4)

}
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− 2Ap0(iω3 − iω4)2

(H + iω2 + iω3)(H + iω2 + iω4)
(
A2 + ω2

3

)(
A2 + ω2

4

)
+ δ(ω1 + ω2)

{
4A2 ps

[A2 − (H − iω1)2]
(
A2 + ω2

3

) − G⊥
0,T (iω1)G‖

0,T (iω3)

}
, (A11b)

Gzzzz
0,T T T T (iω1, . . . , iω4)

= 4A2(p0 − ps)
[
6A4 − 2ω1ω2ω3ω4 + A2

(
ω2

1 + ω2
2 + ω2

3 + ω2
4

)](
A2 + ω2

1

)(
A2 + ω2

2

)(
A2 + ω2

3

)(
A2 + ω2

4

)
+

{
δ(ω1 + ω2)

[
4A2(p0 + ps)(

A2 + ω2
1

)(
A2 + ω2

3

) − G‖
0,T (iω1)G‖

0,T (iω3)

]
+ (iω2 ↔ iω3) + (iω2 ↔ iω4)

}
. (A11c)

APPENDIX B: DETAILS OF THE SPIN FRG FORMALISM

To set up the spin FRG for our dimerized spin system (1), it
is convenient to introduce the following compact notation: We
collect all field labels into a collective label x ≡ (αaiτ ), where
α = x, y, z labels the Cartesian component, a = S, T the field
flavor, i = 1, . . . , N the dimer, and τ is the imaginary time.
We then define the collection Ix of total and staggered spin
operators such that⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ix
S,i(τ )

Iy
S,i(τ )

Iz
S,i(τ )

Ix
T,i(τ )

Iy
T,i(τ )

Iz
T,i(τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Sx
i (τ )

Sy
i (τ )

Sz
i (τ )

T x
i (τ )

T y
i (τ )

T z
i (τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

In the space of this collective label, the (deformed) interdimer
exchange matrix is given by

(J�)xx′ = δαα′
δaa′δ(τ − τ ′)

× [
(1 − δαz )J⊥

�,a,ii′ + δαzJ‖
�,a,ii′

]
. (B2)

With this compact notation, the generating functional of con-
nected spin correlation functions can be written as

G�[h] = ln Tr
[
e−βH0T e

∫
x hxIx− 1

2

∫
xx′ Ix (J� )xx′ Ix′

]
, (B3)

where hx is the source field conjugate to the operator Ix, the
integration symbol is

∫
x = ∑

α

∑
a

∑
i

∫ β

0 dτ , and T denotes
imaginary-time ordering of everything to its right. All spin
operators Ix are taken to be in the imaginary-time Heisenberg
picture with respect to the Hamiltonian H0 of decoupled
dimers given in Eq. (4). Ideally, we would like to work
exclusively with one-line irreducible vertices [23,41]. Their
generating functional is the Legendre transformation of the
generating functional (B3) of connected correlation functions.
However, because the dimer Hamiltonian (4) possesses U (1)
spin-rotational symmetry around the z axis, such a Legen-
dre transformation is not well-defined when we turn off the
interdimer exchange J� at the initial scale of the RG flow
[25]. Ultimately, the reason for this is that Sz

i is conserved
for each dimer and hence has no dynamics [see Eq. (A8d)],
which makes it impossible to express the conjugate source
via the respective average field. To circumvent this issue, it

is convenient [25] to work with a hybrid functional

F�[h] = G�[(1 − P)h − PJ�h] − 1

2

∫
xx′

hx(PJ�)xx′hx′ ,

(B4)
where the matrix P = P2 with components

(P)xx′ = δαα′
δaa′δii′δ(τ − τ ′)δαzδaS (B5)

projects onto the longitudinal magnetization subspace. The
functional (B4) generates connected correlation functions of
the staggered and the transverse dimer spin and amputated
connected longitudinal dimer spin correlation functions. The
associated generating functional of one-line irreducible ver-
tices is then well-defined at the initial scale; it is explicitly
given by

��[ϕ] =
∫

x
hx(φ�,x + ϕx ) − F�[h]

− 1

2

∫
xx′

ϕx(R�)xx′ϕx′ , (B6)

where

R� = (1 − P)(J� − J)(1 − P) + P
(−J−1

� + J−1
)
P (B7)

is the regulator matrix, and the source fields hx[ϕ] are deter-
mined by inversion of

δF�[h]

δhx
= φ�,x + ϕx, (B8)

with the vacuum expectation values

δF�[h]

δhx

∣∣∣∣
h=0

= φ�,x. (B9)

Note that compared to Refs. [23,25,26], we use a slightly
different regulator subtraction with the fluctuating fields ϕx

instead of the full field φ�,x + ϕx in the second line of the
generating functional (B6). This turns out to be more conve-
nient in the presence of finite vacuum expectation values φ�,x,
because φ�,x can then be chosen as the flowing field config-
uration that minimizes ��[ϕ] for vanishing source fields hx;
i.e.,

δ��[ϕ]

δϕx

∣∣∣∣
ϕ=0

= 0. (B10)

By taking derivatives with respect to the deformation pa-
rameter �, it can be shown that the generating functionals
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G�[h], F�[h], and ��[ϕ] given in Eqs. (B3), (B4), and (B6),
respectively, satisfy exact flow equations which determine
the evolution of the associated correlation functions when
the exchange interaction is gradually deformed. Because the
spin operators at different lattice sites commute, these equa-
tions are formally identical to the FRG flow equations for
bosons. For an explicit derivation of these flow equations, we
refer to Refs. [23,25]. Here, we only require the flow equa-
tion of the generating functional (B6) of irreducible vertex
functions. It has the form of a bosonic Wetterich equation [38],

∂���[ϕ] −
∫

x

δ��[ϕ]

δϕx
∂�φ�,x

= 1

2
Tr{(∂�R�)[(�′′

�[ϕ] + R�)−1 + PJ�P]}

+ 1

2

∫
xx′

φ�,x(∂�R�)xx′φ�,x′

+
∫

xx′
ϕx∂�[(R�)xx′φ�,x′], (B11)

where

(�′′
�[ϕ])xx′ = δ2��[ϕ]

δϕxδϕx′
(B12)

denotes the matrix of second functional derivatives of the
generating functional, and the trace runs over the collective
label x.

In the last step, we have to specify the initial condition
for the generating functional ��[ϕ]. In a vertex expansion
scheme, this initial condition can be obtained from the cor-
relation functions of isolated dimers given in Appendix A via
the tree expansion [23,26,41]. This amounts to expanding both
sides of

δ2F�[h]

δhxδhx′
= (�′′

�[ϕ] + R�)−1
xx′ (B13)

in powers of the source fields hx and comparing coefficients at
� = 0.
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