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Schwinger boson theory of ordered magnets
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The Schwinger boson theory provides a natural path for treating quantum spin systems with large quantum
fluctuations. In contrast to semiclassical treatments, this theory allows us to describe a continuous transition
between magnetically ordered and spin liquid states, as well as the continuous evolution of the corresponding
excitation spectrum. The square lattice Heisenberg antiferromagnet is one of the first models that was approached
with the Schwinger boson theory. Here we revisit this problem to reveal several subtle points that were omitted
in previous treatments and that are crucial to further develop this formalism. These points include the freedom
for the choice of the saddle point (Hubbard-Stratonovich decoupling and choice of the condensate) and the 1/N
expansion in the presence of a condensate. A key observation is that the spinon condensate leads to Feynman
diagrams that include contributions of different order in 1/N , which must be accounted for to get a qualitatively
correct excitation spectrum. We demonstrate that a proper treatment of these contributions leads to an exact
cancellation of the single-spinon poles of the dynamical spin structure factor, as expected for a magnetically
ordered state. The only surviving poles are the ones arising from the magnons (two-spinon bound states), which
are the true collective modes of an ordered magnet.
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I. INTRODUCTION

Spin wave theory (SWT) is the traditional approach to
describe the low-temperature properties of magnetically or-
dered states. This semiclassical approach, which is based on a
1/S expansion and becomes exact in the S → ∞ limit, is in-
deed adequate to describe the low-energy excitation spectrum
of Heisenberg models, whose magnetically ordered ground
states have small quantum fluctuations. As is well known,
quantum fluctuations can be enhanced by different factors,
such as low-spin, low-dimensionality, and frustration, which
guide the search for quantum spin liquids in real materi-
als. This ongoing search is revealing multiple examples of
magnets whose excitation spectrum is not captured by a 1/S
expansion despite the fact that their ground state is mag-
netically ordered. It is then necessary to develop alternative
approaches that can capture the strong quantum effects re-
vealed by the excitation spectrum of these materials.

The Schwinger boson theory (SBT) introduced by Arovas
and Auerbach [1,2] provides an alternative path for modeling
magnets with strong quantum fluctuations. The Schwinger
boson (SB) representation of spin operators allows one to
reformulate the Heisenberg model as a quartic Hamiltonian of
spin-1/2 bosons subject to the local constraint of 2S SBs per
site. The quartic Hamiltonian is expressed in terms of products
of SU(2) invariant bond operators that explicitly preserve the
rotational invariance of the Heisenberg interaction. Magnetic
ordering manifests in this formalism via condensation of the
SBs [2–5]. Historically, the SBT was motivated by multiple

reasons: (i) the mean-field decoupling or saddle-point (SP)
expansion preserves the SU(2) symmetry, implying that this
approach does not violate Mermin-Wagner’s theorem [6]; (ii)
unfrustrated and highly frustrated Heisenberg models can be
studied with the same formalism, which is suitable for de-
scribing both spin liquid and magnetically ordered states; (iii)
fractional excitations of spin liquid states, known as spinons,
become single-particle excitations coupled to an emergent
gauge field; and (iv) it can be formulated as a large-N (number
of flavors of the SBs) theory, implying that observables can
be expanded in powers of 1/N . The widespread use of the
SBT [1,7–39] over the past 30 years is a natural consequence
of its versatility. However, during the past two decades, the in-
terest has mainly focused on quantum spin liquids [24,39–66]
and their classification by means of the projective symmetry
group theory [25,32,34,36,39–41,60,67].

In general, most attempts at using the SBT for describing
magnetically ordered and spin liquid states have not gone be-
yond the saddle-point (SP) level. As we will see in this work,
this situation could be a natural consequence of several sub-
tleties that have been omitted in previous formulations of the
theory and that become particularly important for studying the
excitation spectrum of magnetically ordered (or condensed)
states. The increasing need to make progress on this front is
manifested by a number of magnetically ordered triangular
antiferromagnets, such as Ba3CoSb2O9 [68–73], whose in-
elastic neutron scattering cross section cannot be explained
with a large-S expansion due to their proximity to a “quantum
melting point” [70,73].
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Motivated by these experimental results, we initiated a
zero-temperature study of the 1/N corrections of the dy-
namical spin structure factor of the triangular Heisenberg
model. A proper treatment of the condensed phase—120◦
Néel state—revealed several technical subtleties that have led
to misleading interpretations of the SP results and to ap-
parent failures of the SBT [37,38,74]. The most outstanding
misinterpretation is the identification of the collective modes
with the poles of the dynamical spin structure factor that is
obtained at the SP level. We note that these poles coincide
with the single-spinon dispersion of the SBT, which in general
does not coincide with the single-magnon dispersion. As we
have explained in previous works [37,38], the inclusion of an
additional diagram that would be of order 1/N in the absence
of the condensate leads to an exact cancellation of the SP poles
and to the emergence of new poles (zeros of the fluctuation
matrix) that represent the true collective modes (magnons) of
the system. The correct identification of the true collective
modes allowed us to recover the linear SWT result by taking
the large-S limit of the SBT [38]. This identification also
explains the failed attempts at recovering the correct large-S
limit at the SP level of the SBT [75,76]. Unfortunately, this
negative result was misinterpreted as an important shortcom-
ing of the SBT that discouraged the use of this formalism for
modeling the excitation spectrum of ordered magnets.

The above-mentioned results have stimulated us to revisit
the simpler case of the square Heisenberg model, where the
absence of frustration leads to collinear antiferromagnetic
ordering at T = 0 [2,7]. What are our motivations to revisit
this old problem? Our first motivation is to understand the
differences between different SP approximations that can be
used to describe the same magnetically ordered state. This
freedom is not only related to different ways of decoupling
the Heisenberg Hamiltonian into products of two bond oper-
ators, but also to the choice of the condensate for a particular
decoupling scheme. As we will see in this work, the dif-
ferences between different decoupling schemes parametrized
by the continuous parameter α become less important upon
including higher-order corrections in 1/N . In particular, we
will see that the dynamical spin structure factor coincides
with the linear spin wave result in the S → ∞ limit for any
value of α. As for the choice of the condensate, we will see
that different condensates that describe the same long-range
magnetic ordering lead to different low-order 1/N corrections
of the dynamical spin susceptibility. Correspondingly, at the
SP level, there is an optimal choice of the condensate that
can be continuously connected with the simple Bose-Einstein
condensate (BEC) solution (all bosons are condensed in the
same mode) [77] obtained for noncollinear orderings (the
square lattice can be continuously deformed into a triangular
lattice).

The second important motivation is to revisit the diagram-
matic 1/N expansion [2,7] in the presence of a condensate. In
particular, we will demonstrate that each Feynman diagram of
the dynamical spin susceptibility χ (k, ω) has contributions of
different order in 1/N in the presence of a condensate. More
importantly, this mixed character of each Feynman diagram
leads to an exact cancellation of the single-spinon poles to any
order in 1/N . In other words, for each diagram that includes
single-spinon poles, there is a counterdiagram that removes

these spurious poles from the excitation spectrum of a mag-
netically ordered state. Since the noncondensed parts of the
diagram and the counterdiagram are of different order in 1/N ,
this result forced us to reconsider the diagrammatic hierarchy
in the presence of a condensate: for each diagram that is
included in the calculation, one must also include the corre-
sponding counterdiagram to obtain physically correct results.
In particular, this explains why the SP result is in general not
enough to obtain a qualitatively correct dynamical spin struc-
ture factor. From a technical point of view, we uncover the
unusual structure of the 1/N diagrammatic expansion of the
dynamical spin susceptibility in the condensed phase. Namely,
diagrams of χFL(k, ω) that are nominally of order 1/N and
account for the fluctuations around the SP solution include a
singular contribution of order O(1/N0) whenever the conden-
sate fraction is finite. This contribution corresponds to isolated
poles with residues of order O(1/N0) that exactly cancel the
single-spinon poles of the saddle-point solution χSP(k, ω).
In general, for each diagram we identify the counterdiagram
that must be included to cancel the unphysical single-spinon
poles.

The article is organized as follows. In Sec. II we introduce
the SB representation of the Heisenberg model along with its
generalization to an arbitrary number N of bosonic flavors.
We also introduce the most general decoupling scheme of
the spin Hamiltonian in terms of products of bond opera-
tors. Section III is devoted to the path integral formulation
based on the Hubbard-Stratonovich transformation associated
with the bond operator decoupling described in Sec. II. The
SP approximation and the corresponding SP solution (spinon
condensation associated with long-range magnetic ordering)
are discussed in Sec. IV. This section also includes a discus-
sion of the different ways in which the SBs can be condensed
in the thermodynamic limit. In Sec. V we introduce the for-
malism required to go beyond the SP level, and in Sec. VI we
demonstrate the nontrivial cancellation of the single-spinon
poles of the dynamical spin structure factor. In particular,
Sec. VI includes a careful derivation of the diagrammatic
expansion in the presence of a condensate. The emergence of
the true collective modes (magnons) of the theory is presented
in Sec. VII. This section also includes a comparison between
the results that are obtained for different values of α. The main
results of the manuscript are summarized in Sec. VIII.

II. SCHWINGER BOSON REPRESENTATION

We will consider the antiferromagnetic (AFM) Heisenberg
model

ĤAFM =
∑
〈i, j〉

Ji j Ŝi · Ŝ j, (1)

where Ŝi is the spin operator at the lattice site i, and Ji j >

0 is the antiferromagnetic exchange constant. For a bipar-
tite lattice [7–9], this Hamiltonian can be generalized by
replacing the spin operators, which are generators of the
SU(2) group, with the generators of the SU(N) group. For the
generalization of the AFM Heisenberg model, we must use
conjugate representations of SU(N) for each of the two A and
B sublattices [78]. In terms of an N-component Schwinger
boson, b̂i = (b̂i,1, . . . , b̂i,N )T , the generators of the SU(N)
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group can be expressed as Ŝmn
i = b̂†

i,mb̂i,n on the A sublattice

and Ŝmn
i = b̂†

i,nb̂i,m on the B sublattice [2,7,8]. The constraint
equation ∑

m

b̂†
i,mb̂i,m = NS, (2)

where NS is an integer number, determines a particular repre-
sentation of SU(N). In other words, S represents the spin size
for N = 2.

Because of the requirement of conjugate representations
for the two different sublattices, this SU(N) extension does
not apply to Heisenberg antiferromagnets on nonbipartite lat-
tices. A more “flexible” generalization of the spin operator
is provided by the generators of the Sp(N/2) group, for even
values of N , because all spin operators belong to the same
representation [11]. The corresponding generalization of the
AFM Heisenberg Hamiltonian is

ĤSp(N/2) =
∑
〈i, j〉

4Ji j

N

(
NS2

4
− Â†

i j Âi j

)
. (3)

The operator

Â†
i j = 1

2

N/2∑
σ=−N/2

sgn(σ )b̂†
iσ̄ b̂†

jσ , (4)

with σ̄ = −σ , creates a singlet state that is invariant under the
group of Sp(N/2) transformations.

There is still another generalization of the AFM Heisen-
berg model based on the so-called “symplectic spin” [28],
which preserves the odd nature of the spin operator under
time-reversal transformation. The generalized spin operators
generate a subgroup of SU(N), dubbed as Sy(N/2) in this
work. The corresponding Hamiltonian is

ĤSy(N/2) =
∑
〈i, j〉

2Ji j

N
(: B̂†

i j B̂i j : −Â†
i j Âi j ), (5)

where the bond operator Â†
i j has been defined in Eq. (4) and

B̂†
i j = 1

2

N/2∑
σ=−N/2

b̂†
iσ b̂ jσ . (6)

Although these generalizations of the AFM Heisenberg
model are different for N > 2, they coincide for the physical
case of interest (N = 2) because Sp(1) and Sy(1) are isomor-
phic to SU(2). The following identity holds for this particular
(N = 2) case:

: B̂†
i j B̂i j : +Â†

i j Âi j = S2. (7)

This identity allows us to express the N = 2 AFM Heisenberg
Hamiltonian in multiple ways that are parametrized by the
continuous parameter α:

ĤSB(α, N ) =
∑
〈i j〉

4Ji j

N
[Cα+ α : B̂†

i j B̂i j : −(1− α)Â†
i j Âi j], (8)

where Cα = NS2(1/4 − α/2). In other words, ĤSB(α, N = 2)
is independent of α up to an irrelevant additive constant. As
we will see in this work, while the different mean-field decou-
plings of ĤSB associated with each value of the continuous

parameter α lead to very different SP solutions, the inclusion
of a 1/N correction makes the dynamical spin structure factor
(DSSF) much less dependent on α. In particular, we will
demonstrate that the DSSF coincides with the linear spin wave
result in the large-S limit for any value of α.

For concreteness, we will focus on the square lattice. As
we will see later, the collinear nature of the AFM ordering
in this lattice introduces more freedom in the choice of the
spinon condensate. The rest of the analysis, which is included
in the next sections, can be extended to other lattices/models,
including nonbipartite lattices with noncollinear magnetic
orderings.

III. PATH-INTEGRAL FORMULATION

Equation (8) provides a natural decoupling scheme to
perform the Hubbard-Stratonovich transformation that is the
basis of the SBT. As we already mentioned, due to the singlet
character of the bond operators Âi j and B̂i j , the SP equa-
tions, or equivalently the mean-field Hamiltonian, produced
by this decoupling scheme do not explicitly break the SU(2)
symmetry of the Heisenberg Hamiltonian. The basic steps for
implementing the path integral over coherent states can be
found in Refs. [2,79].

After performing the Hubbard-Stratonovich transforma-
tion, the partition function of the model Hamiltonian Eq. (8)
can be expressed as the path integral [37]

Z =
∫

D[W̄W λ]
∫

D[b̄b] exp ( − NS(W̄ ,W, λ, b̄, b)).

(9)
W̄ ,W are the Hubbard-Stratonovich (HS) complex fields, b is
the complex field of eigenvalues of the annihilation SB opera-
tors b̂ (the corresponding eigenkets are coherent states), and λ

is a real field introduced to enforce the constraint Eq. (2). The
action S(W̄ ,W, λ, b̄, b) can be decomposed into three terms:

S(W̄ ,W, λ, b̄, b) = S0(W̄ ,W, λ) + Sbλ(b̄, b, λ)

+ SbW (b̄, b,W̄ ,W, ), (10)

with

S0(W̄ ,W, λ) =
∫ β

0
dτ

∑
〈i j〉

1

4Ji j

[
αW̄ B

i j (τ )W B
i j (τ )

+ (1 − α)W̄ A
i j (τ )W A

i j (τ )
]

− iS
∫ β

0
dτ

∑
i

λi(τ ), (11)

Sbλ(b̄, b, λ) = 1

2N

∫ β

0
dτ

∑
i

ψ
†
i (∂τ γ

0 + iλi(τ ))ψi, (12)

SbW (b̄, b,W̄ ,W )

= α

N

∫ β

0
dτ

∑
〈i j〉

[
ψ

†
i

(
�BW̄ B

ji − �
†
BW B

i j

)
ψ j

]

− 1 − α

N

∫ β

0
dτ

∑
〈i j〉

[
ψ

†
i

(
�AW̄ A

ji + �
†
AW A

i j

)
ψ j

]
, (13)

where β is the inverse temperature, ψ
†
i =

(b̄i,N/2, . . . , b̄i,−N/2, bi,N/2, . . . , bi,−N/2) is the 2N-component
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Nambu-spinor, the superindex μ of W̄ μ
i j and W μ

i j denotes the
auxiliary field that decouples the Āi jAi j and B̄i jBi j terms of
the Hamiltonian Eq. (8), and λi is a Lagrange multiplier that
enforces the local constraint Eq. (2) on each site. The constant
matrix γ 0 is defined by γ 0 ≡ σz ⊗ I0, where I0 is the N × N
identity matrix. The bond fields can be expressed in terms of
the Nambu-spinor as

Ai j = ψ
†
j �Aψi, Bi j = ψ

†
j �Bψi, (14)

where �A and �B are the matrices of the bilinear forms given
in Eqs. (4) and (6), respectively.

The Nambu representation has an artificial “particle-hole”
symmetry because ψi = P(ψ†

i )T , where P = σx ⊗ I0. We can
then rewrite the bond fields in the more symmetric form

Bi j = 1
2ψ

†
j �Bψi + 1

2ψ
†
i ϒBψ j, (15)

Ai j = 1
2ψ

†
j �Aψi + 1

2ψ
†
i ϒAψ j, (16)

where ϒB = P�T
B P and ϒA = P�T

A P. The effective ac-
tion (10) is invariant under the U(1) gauge transformation
biσ (τ ) → biσ (τ )eiθi (τ ) if the auxiliary fields transform as

W μ
i j (τ ) → W μ

i j (τ )ei(θi (τ )±θ j (τ )),

W
μ

i j (τ ) → W
μ

i j (τ )e−i(θi (τ )±θ j (τ )), (17)

λi(τ ) → λi(τ ) − ∂τ θi(τ ),

where the + and − signs hold for μ = A and B, respectively.

The momentum space representation of the action is ob-
tained by Fourier transforming the fields

ψ
†
i (τ ) = 1√

Nsβ

∑
k,iωn

ψ†(k, iωn)C1(iωn)e−i(k·ri−ωnτ ), (18)

ψi(τ ) = 1√
Nsβ

∑
k,iωn

C2(iωn)ψ (k, iωn)ei(k·ri−ωnτ ), (19)

W μ

i,i+δ
(τ ) = 1√

Nsβ

∑
k,iωn

ei(k·ri−ωnτ )W μ

δ
(k, iωn), (20)

W̄ μ

i,i+δ
(τ ) = 1√

Nsβ

∑
k,iωn

e−i(k·ri−ωnτ )W̄ μ

δ
(k, iωn), (21)

λi(τ ) = 1√
Nsβ

∑
k,iωn

ei(k·ri−ωnτ )λ(k, iωn), (22)

where Ns is the number of lattice sites. The lattice sites have
been labeled by the position vector ri, and δ is the relative
vector connecting neighboring sites. The matrices

C1(iωn) =
(

I0eiωnη
+

0
0 I0

)
, C2(iωn) =

(
I0 0
0 I0e−iωnη

+

)

include the convergence factors required to ensure the normal
ordering of the spinor fields b̄, b in the action. The resulting
expression of the action is

S(W̄ ,W, λ, b̄, b) = −iS
√

Nsβλ(0, i0) +
∑
δ>0

1

4Jδ

∑
k

[αW̄ B
δ (k)W B

δ (k) + (1 − α)W̄ A
δ (k)W A

δ (k)] + 1

2N

∑
k,p

ψ†(k)M (k; p)ψ (p),

(23)

where k ≡ (k, iωn), p ≡ (p, iνm), the sum δ > 0 runs over all translation-nonequivalent bonds, and the dynamical matrix

M (k; p) = −iωnC1(iωn)γ 0C2(iωn)δk,p + 1√
Nsβ

vλ(k; p)λ(k − p)

+ 1√
Nsβ

∑
δ>0

[
vW B

δ
(k; p)W B

δ (k − p) + vW A
δ

(k; p)W A
δ (k − p)

]

+ 1√
Nsβ

∑
δ>0

[
vW̄ B

δ
(k; p)W̄ B

δ (p − k) + vW̄ A
δ

(k; p)W̄ A
δ (p − k)

]
(24)

has been expressed in terms of the internal vertices

vW A
δ

(k; p) =
(

1√
Nsβ

)−1
δM (k; p)

δW A
δ

(k − p)
= −(1 − α)C1(iωn)

(
�

†
Aeip·δ + ϒ

†
Ae−ik·δ)C2(iνm),

vW̄ A
δ

(k; p) =
(

1√
Nsβ

)−1
δM (k; p)

δW̄ A
δ

(p − k)
= −(1 − α)C1(iωn)

(
�Ae−ik·δ + ϒAeip·δ)C2(iνm),

vW B
δ

(k; p) =
(

1√
Nsβ

)−1
δM (k; p)

δW B
δ

(k − p)
= −αC1(iωn)

(
�

†
Beip·δ + ϒ

†
Be−ik·δ)C2(iνm),

vW̄ B
δ

(k; p) =
(

1√
Nsβ

)−1
δM (k; p)

δW̄ B
δ

(p − k)
= αC1(iωn)

(
�Be−ik·δ + ϒBeip·δ)C2(iνm),

vλ(k; p) =
(

1√
Nsβ

)−1
δM (k; p)

δλ(k − p)
= iC1(iωn)C2(iνm). (25)
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The bosonic field can be integrated out to obtain an effective action in terms of the auxiliary fields W̄ , W , and λ:

Z =
∫

D[W̄W λ] exp ( − NSeff (W̄ ,W, λ)), (26)

where

Seff (W̄ ,W, λ) = S0[W̄ ,W, λ] + 1

2N
Tr ln(M ). (27)

Note that the dynamical matrix M acts on the space (ξ, q, ω), where ξ refers to the index of the Nambu spinor.
Since it is not possible to obtain the exact partition function associated with the action (27), we need to introduce an

approximation scheme. As usual in these cases, we expand the action in powers of 1/N [38]. The lowest order O(1/N0) term
corresponds to the SP solution, which becomes exact in the N → ∞ limit. The SP solution for the effective action, SSP

eff , is
determined from the saddle-point conditions δSSP

eff/δW μ

δ
(q) = 0 and δSSP

eff/δλ(q) = 0, which lead to

αW̄ B
δ (q)|SP + 2Jδ√

Nsβ

∑
p

1

N
Tr[GSP(p; p + q)vW B

δ
(p + q; p)] = 0, (28)

(1 − α)W̄ A
δ (q)|SP + 2Jδ√

Nsβ

∑
p

1

N
Tr[GSP(p; p + q)vW A

δ
(p + q; p)] = 0, (29)

iSδq,0 − 1

2Nsβ

∑
p

1

N
Tr[GSP(p; p + q)vλ(p + q; p)] = 0, (30)

where q ≡ (q, iωn), p ≡ (p, iνm), and

GSP(p; p + q) = 1

ZSP

∫
D[b̄b]e−NSeff (W̄SP,WSP,λSP,b̄,b)ψ (p)ψ†(p + q) (31)

is the Schwinger boson’s Green’s function, and ZSP =∫
D[b̄b]e−NSeff (W̄SP,WSP,λSP,b̄,b).

IV. SADDLE-POINT APPROXIMATION AND SPINON
CONDENSATION

The next step is to solve the self-consistent SP equa-
tions [Eqs. (28)–(30)]. As we will see in this section, the
magnetic ordering of the ground state manifests via the
condensation of the SBs in a single-particle ground state
(zero-energy single-spinon mode). The existence of multiple
zero-energy single-spinon modes introduces some freedom in
the selection of the single-spinon BEC. Part of this freedom
is associated with the possible orientations of the staggered
magnetization (order parameter), and it is removed by the
inclusion of an infinitesimal staggered magnetic field h that
is sent to zero at the end of the calculation. However, for
collinear magnetic orderings there is still some remaining
freedom associated with the existence of two zero modes with
a given spin polarization. As we will see later, all of these
condensates describe the same type of collinear magnetic
ordering, and the choice of a “simple BEC” (condensation
in a unique single-spinon mode) becomes advantageous upon
adding corrections beyond the SP approximation.

For concreteness, we will consider the square lattice an-
tiferromagnet (N = 2) with C4 symmetry (Jδ ≡ J) and the
general decomposition of the spin Hamiltonian given in
Eq. (8). Since the ground state of the square lattice AFM
Heisenberg model exhibits Néel antiferromagnetic order, it
is convenient to work in a twisted reference frame, Ŝ

′
i∈A =

Ŝi∈A and Ŝ
′
i∈B = (−Ŝx

i , Ŝy
i ,−Ŝz

i ), where the magnetic order be-
comes ferromagnetic. Going back to the canonical formalism,

the Schwinger boson spinors in the original and new reference
frames are

b̂ j =
(

b̂ j,↑
b̂ j,↓

)
, b̂

′
j =

(
b̂′

j,↑
b̂′

j,↓

)
, (32)

respectively. These two spinors are related by the transforma-
tion

b̂
′
j = b̂ j for j ∈ A, b̂

′
j = ei π

2 σy b̂ j for j ∈ B, (33)

which leads to the following transformation of the bond oper-
ators:

Âi j = eiπ·ri Â′
i j, B̂i j = eiπ·ri B̂′

i j, (34)

where π = (π, π ) and

Â′†
i j = −(1/2)b̂

′†
i (b̂

′†
j )T , B̂′

i j = (1/2)b̂
′†
j (iσ y)b̂

′
i. (35)

The generalization of the transformation in Eq. (33) to arbi-
trary values of N is

b̂′
jσ = b̂ jσ for j ∈ A, b̂′

jσ = sgn(σ )b̂ jσ̄ for j ∈ B. (36)

From now on we will work in the twisted frame, and the prime
will be dropped to simplify the notation.

Knowing that the ground-state ordering corresponds to a
uniform ferromagnetic solution in the twisted reference frame,
the SP solution of interest must be uniform and static. From
the projective symmetry group analysis [34], uniform ferro-
magnetic order (twisted reference frame) can be obtained via
spinon condensation in the 0-flux phase defined by the SP
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solution

W B
δ |SP = −(

W̄ B
δ

∣∣
SP

)∗ = −2JBδ, (37)

W A
δ |SP = (

W̄ A
δ

∣∣
SP

)∗ = 2JAδ, (38)

λr(τ )|SP = −iλ, (39)

with

A(1,0) = A(0,1) = Ax, (40)

B(1,0) = −B(0,1) = iBx, (41)

where Ax, Bx, and λ are real numbers. The uniform and
static character of the SP solution makes the dynamical ma-
trix diagonal in momentum and frequency space, M (k; q) =
M (q)δk,q, where

M (q) = 1
2C1(iωn)[−iωnγ

0 + Hsp(q)]C2(iωn), (42)

and

Hsp(q) =

⎛
⎜⎝

λ −iξq �q 0
iξq λ 0 �q

�q 0 λ iξq

0 �q −iξq λ,

⎞
⎟⎠ (43)

is the SP Hamiltonian matrix. The operator

ĤSP =
∑

q

ψ̂†(q)Hsp(q)ψ̂ (q) (44)

is the corresponding Hamiltonian in momentum space, where

ψ̂ (q) = 1√
Ns

∑
j

ψ̂ je
iq·r j (45)

is the Fourier transform of the Nambu-spinor operator

ψ̂ j =

⎛
⎜⎜⎜⎜⎝

b̂ j↑
b̂ j↓
b̂†

j↑
b̂†

j↓

⎞
⎟⎟⎟⎟⎠. (46)

The matrix elements of Hsp(q) are

�q = 2(1 − α)JAxγ
+
q , ξq = 8αJBxγ

−
q , (47)

and γ ±
q = 1

2 (cos qx ± cos qy).

A. Symmetry analysis

The bond operators Âi j and B̂i j are both invariant under
global SU(2) spin rotations Un(ϕ) in the original reference
frame. In the twisted reference frame, this SU(2) symmetry
group is generated by staggered U(1) spin rotations, U ′

x and
U ′

z , about the x and z axes, and by a uniform U(1) spin
rotation U ′

y about the y axis. The transformation rules of the
Schwinger bosons under these symmetry operations read

U ′
x (ϕ)b̂ jU

′†
x (ϕ) = e−iη j

ϕ

2 σx b̂ j, (48)

U ′
y (ϕ)b̂ jU

′†
y (ϕ) = e−i ϕ

2 σy b̂ j, (49)

U ′
z (ϕ)b̂ jU

′†
z (ϕ) = e−iη j

ϕ

2 σz b̂ j, (50)

where η j = +1 (−1) on the A (B) sublattice. In momentum
space, these transformations become

U ′
x (ϕ)b̂qU

′†
x (ϕ) = cos

ϕ

2
b̂q − i sin

ϕ

2
σxb̂q+π, (51)

U ′
y (ϕ)b̂qU

′†
y (ϕ) = e−i ϕ

2 σy b̂q, (52)

U ′
z (ϕ)b̂qU

′†
z (ϕ) = cos

ϕ

2
b̂q − i sin

ϕ

2
σzb̂q+π. (53)

The SP Hamiltonian remains invariant under these transfor-
mations because the bond operators Âi j and B̂i j are SU(2)
invariants. By taking ϕ = π , we obtain

w†
μHsp(q)wμ = Hsp(q + π) for μ = x, z, (54)

w†
y Hsp(q)wy = Hsp(q), (55)

where wμ = −iσz ⊗ σμ and wy = −iσ0 ⊗ σy are the matrices
associated with the π -rotations of the Nambu spinor Eq. (46)
along the μ and y axis. After the para-unitary diagonaliza-
tion [80], the spectrum of the SP Hamiltonian is determined
by the eigenvalue equations

γ 0Hsp(q)Xqσ = εqσ Xqσ , γ 0Hsp(q)X̄qσ = −ε−qσ X̄qσ . (56)

Equation (54) implies that εqσ = εq+πσ and Xqσ = wx/zXq+πσ .
In addition, Eq. (55) implies that the eigenstates of Hsp(q)
are also eigenstates of wy: wyXqσ = ±iXqσ because w2

y = −I .
The same symmetry argument holds for the eigenstates with
negative eigenvalues.

While a nonzero expectation value of the bond operator B̂i j

is allowed by the symmetries of the SP Hamiltonian, this ex-
pectation value turns out to be zero because of a cancellation
between matrix elements. For instance, in the SP approxima-
tion,

Bx = (1/2)
∑
σq

[X̄ †
qσ iwyX̄qσ (1 + nB(εqσ ))

+ X †
qσ iwyXqσ nB(εqσ )], (57)

where nB(ε) is the Bose distribution function. Since
{wy,wz} = 0, X̄qσ and X̄q+πσ , or Xqσ and Xq+πσ , must be the
eigenvectors of wy with opposite eigenvalues. The relation
Xqσ = wx/zXq+πσ leads to X̄ †

qσ iwyX̄qσ = −X̄ †
q+πσ iwyX̄q+πσ

and X †
qσ iwyXqσ = −X †

q+πσ iwyXq+πσ . Since the occupation
numbers nB(εqσ ) at q and q + π are the same because εqσ =
εq+πσ , we obtain Bx = 0 at any finite temperature T . As we
will show later, at T = 0 spinons can condense in multiple
ways with different macroscopic occupation numbers of the
single-spinon states at q = 0 ≡ (0, 0) and π ≡ (π, π ). Never-
theless, we have verified that Bx remains equal to zero for any
of these alternative SP solutions. Consequently, the general
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SP solutions that we will consider here are described by the
bond field Aδ, which is invariant under a staggered gauge
transformation

C(ϕ)b̂ jC
†(ϕ) = e−iη j

ϕ

2 b̂ j, (58)

or, in momentum space,

C(ϕ)b̂qC
†(ϕ) = cos

ϕ

2
b̂q − i sin

ϕ

2
b̂q+π. (59)

The invariance of the Hamiltonian under gauge transfor-
mations restricts the form of the momentum space version of
the SP Hamiltonian [see Eq. (44)]. Under the gauge trans-
formation C(ϕ = π ), the four-dimensional spinor ψ (q) is
transformed into w0ψ (q + π) with w0 = −iσz ⊗ σ0. Since
w

†
0Hsp(q)w0 = Hsp(q + π), we conclude that εqσ = εq+πσ

and Xqσ = w0Xq+πσ .
There is also a “particle-hole” symmetry PH∗

sp(q)P =
Hsp(−q) inherited from the Nambu representation. Given that
{P, γ 0} = 0, Eq. (56) implies that PX̄ ∗

qσ and PX ∗
qσ must be the

eigenvectors of Hsp(−q) with eigenenergies ε−qσ and −εqσ ,
respectively. In the presence of the inversion symmetry, we
also have ε−qσ = εqσ .

B. Single-spinon spectrum

Since Bδ = 0 at the SP level, the SP SU(2) Hamiltonian
has two degenerate single-spinon energy branches

εqσ ≡ εq =
√

λ2 − �2
q. (60)

σ = ±1 represents the spin quantum number, ↑,↓, of these
spinon modes, whose eigenvectors are

Xq,+1 =

⎛
⎜⎝

uq

0
vq

0

⎞
⎟⎠, Xq,−1 =

⎛
⎜⎝

0
uq

0
vq

⎞
⎟⎠, (61)

with

uq =
√

1

2

(
λ

εq
+ 1

)
, vq = − �q

|�q|

√
1

2

(
λ

εq
− 1

)
. (62)

The corresponding eigenvectors for negative energy eigenval-
ues, −εq, are

X̄q,+1 =

⎛
⎜⎝

vq

0
uq

0

⎞
⎟⎠, X̄q,−1 =

⎛
⎜⎝

0
vq

0
uq

⎞
⎟⎠. (63)

In accordance with Goldstone’s theorem, the spinon con-
densation leads to a gapless spinon dispersion εqσ ≡ εq in the
thermodynamic limit. The gapless modes have momenta q =
0 and π, implying that λ = 2(1 − α)JAx. The gauge freedom
of the theory, biσ (τ ) → biσ (τ )eiθi (τ ), allows us to assume that
Ax > 0. An explicit solution of the SP equations [Eqs. (28)–
(30)] gives at T = 0

Ax = 2S + c1, Bx = 0, nc = 2S − c2, (64)

FIG. 1. Single-spinon spectrum of a square lattice antiferromag-
net in the absence of a symmetry-breaking field (a), in the presence
of a symmetry-breaking field h linearly coupled with the staggered
magnetization (b), and with an additional symmetry-breaking field t
that couples to a single-spinon nearest-neighbor hopping (c), where
h, t ∼ 1/Ns.

where

c1 =
∫

d2k
(2π )2

(1 −
√

1 − (γ +
k )2) ≈ 0.158, (65)

c2 =
∫

d2k
(2π )2

⎛
⎝ 1√

1 − (γ +
k )2

− 1

⎞
⎠ ≈ 0.393, (66)

and nc is the spinon condensate fraction. Since nc must be
positive, the above solution is valid only for 2S > 0.393,
which includes all the physical values of S.

C. Spinon condensation

1. Fragmented versus simple BEC

The above SP Hamiltonian has four zero-energy single-
spinon states with q = 0 or π and σ = ±1 in the thermo-
dynamic limit, implying that the spinons can condense in
multiple ways at zero temperature. We note, however, that
this degeneracy is not present on finite-size lattices because
the single-spinon spectrum has a finite-size gap that forces the
SP solution to be unique and SU(2)-invariant. Consequently,
in the absence of any external symmetry-breaking field, the
ground state of the SP Hamiltonian remains SU(2) invariant
upon taking the thermodynamic limit, implying that spinons
condense on the four zero-energy modes with equal conden-
sate fractions:

|G1〉 = 1

u4
0↑

e
− v∗

0↑
2u∗

0↑
∑

σ (b̂†
0σ

b̂†
0σ

−b̂†
πσ b̂†

πσ ) ∏
k �=0,π,σ

1

ukσ

e
− v∗

kσ
2u∗

kσ
b̂†

kσ
b̂†

−kσ |∅〉,

(67)
where |∅〉 is the vacuum of the Schwinger bosons biσ

[see Fig. 1(a)] [81]. The average occupation number nk of
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Schwinger bosons with momentum k is determined by the
ratio |vkσ /ukσ | = √

(λ − εkσ )/(λ + εkσ ). This ratio satisfies
that limNs→∞ |vkσ /ukσ | → 1 for k = 0,π, i.e., at the wave
vectors where the spinon spectrum is gapless. The finite-size
scaling satisfies 1 − |v0↑/u0↑| ∝ 1/Ns because the finite-size
gap scales as ε0↑ ∝ 1/Ns, implying a macroscopic occupa-
tion, ∝ Ns, of the four zero-energy single-spinon states. As
we will discuss below, this SU(2) invariant spinon condensate
corresponds to a “fragmented” BEC [77,82].

As usual, to account for the Néel antiferromagnetic or-
der (in the original reference frame), we must introduce an
external symmetry-breaking field h linearly coupled to the
staggered magnetization. In the twisted reference frame, this
coupling takes the form −h

∑
i,σ σ b̂†

iσ b̂iσ and the field h is
sent to zero after taking the thermodynamic limit. Since the
symmetry-breaking field h gaps out the single-spinon branch
with spin index ↓ (the field h is applied along the positive
z-direction in the twisted reference frame), the spinons must
condense in the remaining two zero-energy states with spin
index ↑, implying that the ground-state degeneracy is not
completely removed [see Fig. 1(b)]. By analogy with the
SU(2) invariant solution (67), the bosons still condense in a
fragmented BEC,

|G2〉 = 1

u2
0↑

e
− v∗

0↑
2u∗

0↑
(b̂†

0↑b̂†
0↑−b̂†

π↑b̂†
π↑ )

×
∏

(k,σ )�=(0,↑),(π,↑)

1

ukσ

e
− v∗

kσ
2u∗

kσ
b̂†

kσ
b̂†

−kσ |∅〉, (68)

where 1 − |v0↑/u0↑| ∝ 1/Ns and 1 − |v0↓/u0↓| ∝ 1/N ν
s ,

where ν < 1 is controlled by the finite-size scaling of the
symmetry-breaking field. For instance, the finite-size gaps
for spin-up and spin-down spinons are ε0↑ = επ↑ ∝ 1/Ns

and ε0↓ = επ↓ ∝ 1/N 1/2
s for a symmetry-breaking field h ∝

1/Ns. In other words, the BEC state Eq. (68) describes a
macroscopic occupation of both zero-energy states with spin
index up.

We note, however, that previous SB approaches to the
square lattice AFM Heisenberg have always adopted the SP
solution |G2〉 without an explicit justification [2]. In fact, at
the SP level, the magnetically ordered state can be equally
described by an infinite number of fragmented spin conden-
sates with different condensate fractions (n0, nπ ) = (n1, nc −
n1) at the two orthogonal zero-energy modes with 0 < n1 <

nc. These condensates are called “fragmented” because the
single-particle density matrix has two macroscopic eigenval-
ues Nsn1 and Ns(nc − n1). We note that the choice of the
two zero-energy modes with different condensate fractions
is made by fixing the gauge transformation C(ϕ) introduced
in Eq. (59). In particular, the ground state |G2〉 corresponds
to the gauge choice ϕ = 0 and n0 = nπ = nc/2. Because the
two zero modes can be exchanged by applying the gauge
transformation C(π ) [see Eq. (59)], the condensate fractions
(n1, n2) and (n2, n1) describe the same physical state.

The ground state of the mean-field Hamiltonian with n1 =
nc, or the gauge equivalent one with n2 = nc, is called “sim-
ple” BEC because the single-particle density matrix has only
one macroscopic eigenvalue [77]. We note that there is only
one physical simple BEC ground state. In other words, all

bosons are condensed in the single mode b†
1 = cos ϕ

2 b†
0,↑ +

i sin ϕ

2 b†
π,↑, where the continuous variable ϕ parametrizes the

gauge orbit of physically equivalent simple BEC solutions.
This simple BEC solution, for a particular gauge choice, can
be selected by adding the infinitesimal “symmetry-breaking
field” term

t
∑
〈i j〉,σ

[C†
i j (ϕ) + Ci j (ϕ)]

to the mean-field Hamiltonian with

C†
i j (ϕ) = 1

2 b†
i (σ · n(ϕ))b j

in the global reference frame and n(ϕ) = (cos ϕ, sin ϕ, 0). We
note that this operator transforms like a triplet under SU(2)
rotations and breaks the U(1) symmetry of global rotations
about the z-axis. In the twisted reference frame, the triplet
bond operator C†

i j (ϕ) becomes

C†
i j (ϕ) = −1

2

∑
σ

e−iσηiϕσb†
iσ b jσ .

For the gauge choice ϕ = 0, the simple BEC state |G3〉 can
be expressed as

|G3〉 = 1

u0↑
e
− v∗

0↑
2u∗

0↑
b̂†

0↑b̂†
0↑∏

(k,σ )�=(0,↑)

1

ukσ

e
− v∗

kσ
2u∗

kσ
b̂†

kσ
b̂†

−kσ |∅〉, (69)

where, assuming h, t ∼ 1/Ns, the ratio |vQσ /uQσ | satis-
fies 1 − |vQσ /uQσ | ∝ 1/Ns for Q = 0 and σ =↑, and 1 −
|vQσ /uQσ | ∝ 1/N 1/2

s for the other three zero-energy modes.
In other words, |G3〉 describes a BEC with macroscopic occu-
pation of the single mode k = 0 and σ =↑ [see Fig. 1(c)].

As we will see in the next subsection, while the ground
states |G2〉 and |G3〉 correspond to ferromagnetic SP solu-
tions in the twisted reference frame, they do not represent
the same physical state because 〈G3|Ô|G3〉 �= 〈G2|Ô|G2〉 for
some physical observables Ô. Although these different con-
densates are degenerate at the SP level, fragmented BECs are
known to be “fragile” against the inclusion of boson-boson in-
teractions, which typically favor the simple BEC state [77,82].
This simple observation suggests that fluctuations of the HS
fields should select the SP solution |G3〉 corresponding to the
simple BEC. Indeed, as we will see in Sec. VII, the expansion
around the SP solution represented by the ground state |G2〉
leads to a dynamical spin structure factor that is qualitatively
incorrect for α �= 0 [the linear spin-wave theory (LSWT) re-
sult is not recovered in the large-S limit]. In contrast, the
large-S limit of the dynamical spin structure factor that is
obtained by including fluctuations around the simple BEC
SP solution represented by the state |G3〉 coincides with the
LSWT result.

2. Physical character of candidate ground states

The invariance of |G1〉 under global SU(2) spin rotations in
the original reference frame implies that the local magnetiza-
tion is zero for this SP solution. In contrast, the ground state
|G2〉 is U(1)-invariant under global (staggered) spin rotations
about the z axis in the original (twisted) reference frame,
which is compatible with a finite local magnetization m =
mẑ with m = nc/2. The ground state |G3〉 is invariant under
a composition of the same U(1) spin rotation by an angle
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ϕ about the z axis and the staggered gauge transformation
C(−ϕ) introduced in Eq. (59). In other words, Uz(ϕ)|G3〉 ∼
C(ϕ)|G3〉 generates an orbit of gauge equivalent states. Al-
though the local magnetization is also m = mẑ with m = nc/2,
the states |G2〉 and |G3〉 are not connected by a gauge transfor-
mation. For instance, the two states have different expectation
values of on-site spin correlation functions:

〈G2| �̂S⊥
i · �̂S⊥

i |G2〉 = S(S + 1) − m2,

〈G3| �̂S⊥
i · �̂S⊥

i |G3〉 = S(S + 1) − m2,
(70)

〈G2|Ŝz
i Ŝz

i |G2〉 = 1
2 S(S + 1) + 1

2 m2,

〈G3|Ŝz
i Ŝz

i |G3〉 = 1
2 S(S + 1) + 3

2 m2,

where �̂S⊥
i = (Ŝx

i , Ŝy
i ) are the transverse components of the

spin operator relative to the magnetization axis. We note that
these expectation values are independent of α. The resulting
expectation value of Ŝi · Ŝi that determines the sum rule of the
dynamical spin structure factor at the SP level is

〈G2|Ŝi · Ŝi|G2〉 = 3S(S + 1)/2 − m2/2,

〈G3|Ŝi · Ŝi|G3〉 = 3S(S + 1)/2 + m2/2. (71)

Both results are different from the one obtained for the SU(2)-
invariant condensate: 〈G1|Ŝi · Ŝi|G1〉 = 3S(S + 1)/2. Clearly,
the three condensates violate the identity Ŝi · Ŝi = S(S + 1)
[Casimir operator of SU(2)] because the local constraint
Eq. (2) is only imposed at the mean-field level. This shortcom-
ing of the SP approximation leads to a well-known violation of
the sum rule of the dynamical spin structure factor because its
integral over momentum and frequency is equal to 〈Ŝi · Ŝi〉 [2].
In other words, according to Eqs. (71), the frequency and
momentum integral of the spectral weight is overestimated by
approximately 50% [exactly 50% for the SU(2)-invariant con-
densate]. As we will see in Sec. VII, the sum rule is recovered
to a much better approximation upon including fluctuations
around the SP solution |G3〉, and this result remains basically
independent of α.

Hereafter, we will consider a simple BEC SP solution |G3〉
for reasons that will become clear upon including 1/N cor-
rections. For concreteness, we will adopt the gauge in which
the bosons condense at the single-spinon Q = 0 state, which
is invariant under spatial inversion.

For later use, we introduce the “bare” or SP single-spinon
Green’s function that is obtained with the simple condensate
SP solution |G3〉:

GSP(q, iωn) = Gn(q, iωn) + Gc(q, iωn). (72)

The first term describes the noncondensed spinon at (q, σ ) �=
(0, 1), which is equal to the inverse of the dynamical matrix

Gn(q) = [2M (q)]−1 =
∑

σ=±1

g−
qσ

εqσ − iωn
+ g+

qσ

ε−qσ + iωn
, (73)

where g−
qσ = Xqσ X †

qσ and g+
qσ = X̄qσ X̄ †

qσ . The second term
arises from the condensed boson

Gc(q, iωn) = Nsg
Q
c δq,Q

(
1

εc − iωn
+ 1

εc + iωn

)
Ns→∞= (2π )3gQ

c δ(q − Q)δ(ωn), (74)

where Q = 0, gQ
c = |cQ〉〈cQ| with |cQ〉 ≡

limNs→∞ XQ,+1/
√

Ns = √
nc(1, 0,−1, 0)T . The second

line of Eq. (74) corresponds to the thermodynamic limit in
which the finite-size gap of the single-spinon eigenstate with
Q = 0 and σ = +1 goes to zero: εc → 0+.

D. Dynamical spin structure factor

1. General formulation

Our next goal is to compute the DSSF in the SP ap-
proximation. We will present the result for arbitrary values
of N because in a later section we will consider higher-
order corrections in powers of 1/N . The first step is to
introduce a Zeeman coupling to an external time- and space-
dependent magnetic field, i.e., to add source terms to the
action

NSs = −1

2

∫ β

0
dτ

∑
jμ

hμ
j (τ )ψ†

j (τ )uμψ j (τ ), (75)

where 1
2ψ

†
j uμψ j ≡ Sμ

j represents the μ component of the
spin at lattice site j [note that we are using a single index
μ to denote the generators of Sp(N/2)]. This source term
modifies the dynamical matrix to Mh(k; p) = M (k; p) −
1/(

√
Nsβ )hμ

k−puμ, whose first derivative with respect to the
field hμ

k−p gives rise to the external vertices

uμ(k, p) = −
(

1√
Nsβ

)−1
δMh(k; p)

δhμ

k−p

. (76)

The dynamical magnetic susceptibility is then given by

χμν (q) = δ2ln Zh

δhμ
−qδhν

q

, (77)

where hμ
q is the Fourier component of the external fields hμ

i (τ )
and,

Zh =
∫

D[W̄W λ]D[b̄b] exp(−N (S + Ss)).

According to the fluctuation-dissipation theorem [83], the
DSSF is related to the imaginary part of the magnetic sus-
ceptibility. At zero temperature, we have

Sμν (q, ω) = 1

π
�(ω)Im[χμν (q, ω)], (78)

with �(ω) being the Heaviside step function.
At the SP level, the dynamical magnetic susceptibility

is obtained by taking the second functional derivative of
ln(Zh;SP ) with respect to h:

χ
μν
SP (q) = 1

Nsβ

∑
k

1

2
Tr[Gn(k)uμGn(k + q)uν]

+ 1

Nsβ

∑
k

1

2
Tr[Gc(k)uμGn(k + q)uν]

+ 1

Nsβ

∑
k

1

2
Tr[Gn(k)uμGc(k + q)uν]

+ 1

Nsβ

∑
k

1

2
Tr[Gc(k)uμGc(k + q)uν], (79)
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(a) (b)

(c) (d)

FIG. 2. Diagrammatic representation of the four contributions to
the dynamical spin susceptibility χ

μν

SP (q) at the SP level correspond-
ing to the four terms of Eq. (79). The full (dashed) line represents
the propagator of the noncondensed (condensed) spinons. The open
circles represent the external vertices of the theory introduced in
Eq. (76).

which can be decomposed into four contributions repre-
sented by the four diagrams (a)–(d) in Fig. 2. The full lines
represent the normal contribution to the Green’s functions
from noncondensed spinon, while the dashed lines represent
the contribution from the spinon condensate. Consequently,
the one-loop diagram (a) generates spectral weight from the
two-spinon continuum, while the tree-level diagrams (b) and
(c) generate δ-peaks in the DSSF (poles of the magnetic sus-
ceptibility) at the single-spinon energy ω = εqn.

The Green’s function Gc is a rank-1 matrix for the sim-
ple BEC ground state given by Eq. (74) with |cQ〉 being a
2N-vector now. The noncondensed Green’s function is given
by Eq. (73), where g+

qn = |n, Q + q〉〈n, Q + q|, and g−
qn =

P(g+
−qn)∗P. The tree-level contribution to χ

μν
SP , i.e., the second

and third terms of Eq. (79), can be written in a simple form by
using the following identity:

Tr[F ] =
2N∑

n=1

γ 0
nn〈n|γ 0F |n〉, (80)

where the state vectors are normalized according to γ 0
nm ≡

〈n|γ 0|m〉, and F is an arbitrary 2N × 2N complex matrix.
Using this relation, we obtain

χ
μν

SP;b(q, iωn) = 1
2 〈cQ|uμGn(Q + q, iωn)uν |cQ〉, (81)

χ
μν
SP;c(q, iωn) = 1

2 〈cQ|uνGn(Q − q,−iωn)uμ|cQ〉, (82)

where χ
μν

SP;b(q, iωn) is the contribution from diagram (b) of
Fig. 2 that has poles at iωn = εQ+qn, while χ

μν

SP;c(q, iωn) is the
contribution from diagram (c) of Fig. 2 that has poles at iωn =
εQ−qn, n = 1, . . . , N .

Particle-hole symmetry dictates that |cQ〉, the spinon
Green’s function, and the external/internal vertices must
satisfy

P(|cQ〉)∗ = |cQ〉, PGn(−q,−ω)T P = Gn(q, ω), (83)

P(uμ)T P = uμ, P[vα (k, q)]T P = vα (−q,−k). (84)

From these relations and the property Q ≡ −Q, we can
demonstrate that χ

μν

SP;b = χ
μν

SP;c. The residue associated with
the SP pole εQ+qn = εqn is

Zμν
sp (n, q) = lim

ω→εqn

(εqn − ω)χμν
SP (q, ω) = gQ

μ(n, q)gQ
ν (n, q),

(85)

where

gQ
μ(n, q) = 〈cQ|uμ|n, Q + q〉, (86)

gQ
μ(n, q) = 〈n, Q + q|uμ|cQ〉. (87)

Diagram (d) of Fig. 2 contributes only to the static and
uniform (in the twisted reference frame) component of the
dynamical spin structure factor. Its spectral weight is propor-
tional to the number of lattice sites, implying that it diverges in
the thermodynamic limit. On a finite lattice with a symmetry-
breaking field ∝ N −1

s , it is given by

χ
μν

SP;d (q, iωn) = 1

2
Nsδq,0〈cQ|uμ|cQ〉〈cQ|uν |cQ〉

×
(

1

2εc − iωn
+ 1

2εc + iωn

)
, (88)

where εc is of order 1/Ns.

2. Square lattice Heisenberg model

As an example, we apply the above results to the square
lattice SU(2)-invariant antiferromagnetic Heisenberg model.
The external vertices are independent of frequency and
momentum:

ux = 1

2

(
σx 0
0 σ T

x

)
, (89)

uy = 1

2

(
σy 0
0 σ T

y

)
, (90)

uz = 1

2

(
σz 0
0 σ T

z

)
. (91)

In particular, we consider the semiclassical limit of the
ground state |G3〉 by taking S → ∞, for which the dynamical
magnetic susceptibility is exactly described by the LSWT. For
S → ∞, the SP approximation of the Schwinger boson theory
gives nc = 2S, Ax = 2S, Bx = 0, and λ = 4JS(1 − α), which
makes Gn ∼ S−1 and Gc ∼ S0. Consequently, the DSSF has
zero spectral weight in the two-spinon continuum and finite
spectral weight at the single-spinon dispersion (poles of the
SP Green’s function). In other words, in the large-S limit, the
contribution from the diagram shown in Fig. 2(a) is negligible
in comparison to the contributions from the diagrams shown
Figs. 2(b)–2(d). After performing the analytic continuation
iωn → ω + i0+ to real frequency and converting the result
back to the original reference frame, we obtain

χ xx
SP(q, ω) = χ

yy
SP(q, ω)

= S

√
1 − γ +

q

1 + γ +
q

1

2

(
1

εq − ω − i0+ + 1

εq + ω + i0+

)
,

(92)
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χ zz
SP(q, ω) = χ xx

SP(q, ω)

+Nsn2
c

2
δq,π

(
1

2εc − ω − i0+ + 1

2εc + ω + i0+

)
,

(93)

where εq = (1 − α)ωq, and ωq is the single-magnon dis-
persion that is obtained with LSWT for the square lattice
AFM Heisenberg model. We note that the diagrams shown
in Figs. 2(b) and 2(c) produce an SU(2)-invariant contribu-
tion to the magnetic susceptibility that is the same for the
three different ground states, while the diagram shown in
Fig. 2(d) breaks the SU(2) invariance explicitly and leads to
the finite difference χ zz

SP(q, ω) − χ
xx/yy
SP (q, ω) for the ground

states |G2〉 and |G3〉. We also note that different choices of α,
i.e., different decoupling schemes of the original Hamiltonian,
lead to different SP approximations: χ xx

SP(q, ω) and χ
yy
SP(q, ω)

coincide with the LSWT result only for α = 0 [7].
There is also an important qualitative difference between

the SP approximation of the SB theory and LSWT. The
inelastic contribution to the SP susceptibility, arising from
the bubble diagrams shown in Figs. 2(b) and 2(c), is SU(2)-
invariant. This property leads to the result given in Eqs. (92)
and (93), implying that the dynamical spin structure fac-
tor satisfies Sxx(q, ω �= 0) = Syy(q, ω �= 0) = Szz(q, ω �= 0).
This qualitatively incorrect result must be contrasted with the
LSWT, where only the transverse spin susceptibility has poles
corresponding to magnons, while the longitudinal suscepti-
bility only includes a two-magnon continuum with relative
small spectral weight. This simple observation invalidates the
association of the poles of the SP susceptibility with magnon
modes. As we will show in Sec. VII, the correct LSWT result
can be recovered by including corrections due to fluctuations
around the SP solution [38].

V. BEYOND THE SADDLE-POINT APPROXIMATION

Fluctuations of the auxiliary fields (W,W̄ ) and the La-
grangian multiplier (λ) around the SP configuration are
described by the fluctuation fields

φα (q) = [
W μ

δ
(q) − W μ

δ
(q)|SP,W̄ μ

δ
(−q) − W̄ μ

δ
(−q)|SP,

λ(q) − λ(q)|SP
]
, (94)

where α represents the field indices (W μ

δ
, W̄ μ

δ
or λ).

The large-N expansion is then obtained by expanding the
effective action Eq. (27) around the SP in powers of the fields
φα (q):

Seff = SSP
eff + 1

2

∑
q,α1,α2

S(2)
α1,α2

(q) φα1 (−q)φα2 (q) + Sint, (95)

with

Sint =
∞∑

n�3

1

n!

∑
α1···αn

q1n

S[n]
α1···αn

(q1, . . . , qn) φα1 (q1) · · · φαn (qn),

where the first term is the SP contribution, the second
(quadratic) term corresponds to the usual random phase ap-
proximation (RPA), and the last term describes the interaction
between the fluctuation fields [2,38].

The coefficients of the quadratic form can be expressed as

S(2)(q) = �0 − �(q), (96)

where

(�0)α1α2 = 1 − α

4Jδ

(
δα1,W̄ A

δ
δα2,W A

δ
+ δα1,W A

δ
δα2,W̄ A

δ

)
+ α

4Jδ

(
δα1,W̄ B

δ
δα2,W B

δ
+ δα1,W B

δ
δα2,W̄ B

δ

)
, (97)

and the polarization operator is

�α1α2 (q) = 1

2Nsβ

∑
k

1

N
Tr[GSP(k)vα1 (k, k + q)GSP(k + q)

× vα2 (k + q, k)]. (98)

The RPA propagator of the fluctuation fields is given by

1

N
[Dα1α2 ](q) = 1

Z (2)

∫
D[φ]φα1 (q)φα2 (−q)

× e
− N

2

∑
q,α1 ,α2

S(2)
α1 ,α2

(q) φα1 (−q)φα2 (q)

= [(NS(2) )−1]α1α2 , (99)

where

Z (2) =
∫

D[φ]e
− N

2

∑
q,α1 ,α2

S(2)
α1 ,α2

(q) φα1 (−q)φα2 (q)
. (100)

The coefficients of the higher-order corrections (n � 3) are

S[n]
α1···αn

(q1, . . . , qn) = (−1)n+1

n(Nsβ )
n
2

1

N

∑
P

Tr[GSPvP1 · · ·GSPvPn ],

(101)
where

∑
P runs over all permutations of the particle index

(αi, qi ), 1 � i � n, which symmetrizes the vertex function
relative to the exchange of any pair of particles.

A. RPA propagator

Because of the spinon condensation, the polarization oper-
ator in Eq. (98) also includes four contributions,

�α1α2 (q, iωn) = 1

2Nsβ

∑
k

1

N
Tr[Gn(k)vα1 (k, k + q)Gn(k + q)vα2 (k + q, k)]

+ 1

2Nsβ

∑
k

1

N
Tr[Gc(k)vα1 (k, k + q)Gn(k + q)vα2 (k + q, k)]

+ 1

2Nsβ

∑
k

1

N
Tr[Gn(k)vα1 (k, k + q)Gc(k + q)vα2 (k + q, k)]

+ 1

2Nsβ

∑
k

1

N
Tr[Gc(k)vα1 (k, k + q)Gc(k + q)vα2 (k + q, k)]. (102)
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FIG. 3. Diagrammatic representation of the four contributions to
the polarization operator �(q, iωn) corresponding to the four terms
of Eq. (102). The full circles represent the internal vertices of the
theory introduced in Eq. (25).

The first term corresponds to the one-loop Feynman diagram
shown in Fig. 3(a). The rest of the terms include at least one
contribution from the condensed spinons, implying that they
only exist in the magnetically ordered phase. In particular,
the second and the third terms, represented by the tree-level
diagrams shown in Figs. 3(b) and 3(c), are equal because of
the same symmetry arguments that lead to the equivalence
between the diagrams shown in Figs. 2(b) and 2(c):

�(b)
α1α2

(q, iωn) = �(c)
α1α2

(q, iωn)

= 1

2N
〈cQ|vα1 (Q, Q + q)Gn(Q + q, iωn)

× vα2 (Q + q, Q)|cQ〉. (103)

The last term of Eq. (102), corresponding to the diagram
shown in Fig. 3(d), has only zero-frequency and momentum
(ω = 0, q = 0) components:

�(d )
α1α2

(q, iωn) = (2π )3δ(ωn)δ(q)

× 1

2N
〈cQ|vα1 (Q, Q)|cQ〉〈cQ|vα2 (Q, Q)|cQ〉.

(104)

VI. CANCELLATION OF SINGLE-SPINON POLES

The primary purpose of this section is to demonstrate that
the spectral weight of χ

μν

SP at the single-spinon poles, ω = εqn,
is exactly canceled out by a counterdiagram that is nominally
of order 1/N . By “nominally” here we mean the well-defined
order 1/NP−L (L is the number of internal loops and P is the
number of RPA propagators) that the diagram would have in
the absence of a condensate [2]. Naively, this cancellation is
unexpected because a 1/N contribution cannot cancel a con-
tribution of order 1/N0 for arbitrary values of N . The crucial
observation is that the classification of the Feynman diagrams
in powers of 1/N [2] does not take into consideration singular
contributions that are generated by the finite condensate frac-
tion. In other words, diagrams that are nominally of order 1/N
include a singular contribution of order O(1/N0) whenever the
condensate fraction nc is finite. This contribution corresponds

to isolated poles with residues of O(1/N0) that exactly cancel
out the poles of the SP solution.

In previous works on the triangular Heisenberg antiferro-
magnet, we reported this cancellation for one specific diagram
of order 1/N [38]. Here we will reveal the origin of the
cancellation and generalize the result to other diagrams. From
a physical point of view, this exact cancellation simply means
that spinons are not quasiparticles of the magnetically ordered
state. The true quasiparticles are magnons (two-spinon bound
states) arising from poles of the RPA propagator [37,38].

A. 1/N corrections

The 1/N correction we considered in previous
works [37,38] is given by

χ
μν
FL (q) =

∑
α1α2

�μα1 (q)
1

N
Dα1α2 (q)�να2 (−q), (105)

where

�μα1 (q) = 1

2Nsβ

∑
k

Tr[GSP(k)uμGSP(k + q)vα1 (k + q, k)].

(106)
This contribution is represented by the diagrams shown in
Fig. 4. We will first demonstrate that the poles of χ

μν

SP are
canceled by these diagrams, which represent different con-
tributions to a diagram of nominal order 1/N in the large-N
expansion of the magnetic susceptibility [37,38]. We have
split this diagram into a sum of different subdiagrams be-
cause the spinon and the RPA propagators include condensed
and noncondensed contributions represented with different
types of lines. Similarly to Fig. 2, the full (dashed) line
represents the propagator of the noncondensed (condensed)
spinons, while the black wavy line represents the RPA
propagator.

Since the diagram includes two loops, and each loop
includes two spinon propagators, there are four tree-level
diagrams shown in Figs. 4(a2)–4(a5) that have poles of the
noncondensed spinon line and of the RPA propagator. They
are called “tree-level” diagrams simply because the condensed
spinon line carries fixed momentum Q and zero Matsubara
frequency iωn = 0, which is equivalent to a classical external
potential. The diagram shown in Fig. 4(a1) only includes
spectral weight from the two-spinon continuum, while the
diagram shown in Fig. 4(a6) corresponds to an elastic (ω = 0)
contribution. Our main focus is on the pole singularities that
arise from the noncondensed single-spinon propagators in
the diagrams shown in Figs. 4(a2)–4(a5). The particle-hole
symmetry that leads to Eqs. (83) and (84) implies that these
four diagrams give identical contributions χ

μν

FL;(a2−a5)(q, ω) to
the dynamical spin susceptibility with

�
μα1
(a2−a5)(q, ω)

= 1

2Nsβ

∑
k

Tr[Gc(k)uμGn(k + q)vα1 (k + q, k)]

+ 1

2Nsβ

∑
k

Tr[Gn(k)uμGc(k + q)vα1 (k + q, k)].
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Consequently,

χ
μν

FL;(a2−a5)(q, ω) = 1

4N
[〈cQ|uμGn(q + Q, ω)vα1 (q + Q, Q)|cQ〉 + 〈cQ|vα1 (Q,−q + Q)Gn(−q + Q,−ω)uμ|cQ〉]

× Dα1α2 (q, ω)[〈cQ|vα2 (Q, q + Q)Gn(q + Q, ω)uν |cQ〉 + 〈cQ|uνGn(−q + Q,−ω)vα2 (−q + Q, Q)|cQ〉].
(107)

It is clear that, like χ
μν
SP (q, ω) (see Fig. 2), χ

μν

FL;(a2−a5)(q, ω) has poles at the single-spinon energies εqn arising from loops with
one dashed and one full line. For the four diagrams, the residue of this pole reads

Zμν
FL (n, q) = lim

ω→εqn

(εqn − ω)χμν
FL (q, ω) = 1

−iηN
gQ

μ(n, q)gQ
ν (n, q)〈n, Q + q|�(Q + q, εqn)|n, Q + q〉, (108)

where η is an infinitesimal positive number that arises from the pole of the single-spinon Green’s function, limω→εqn 1/(εqn −
ω − iη), and the matrix element is given by

〈n, Q + q|�(Q + q, εqn)|n, Q + q〉 =
∑
α1α2

Dα1α2 (q, εqn) f̄ Q
α1

(n, q) f Q
α2

(n, q) = f̄
Q

(n, q)D(q, εqn) f Q(n, q), (109)

where we have introduced the row and column vectors:

f Q(n, q) = [〈cQ|v1(Q, Q + q)|n, Q + q〉, . . . , 〈cQ|vNφ
(Q, Q + q)|n, Q + q〉], f̄

Q
(n, q) =

⎡
⎢⎢⎢⎣

〈n, Q + q|v1(Q + q, Q)|cQ〉
.

.

.

〈n, Q + q|vNφ
(Q + q, Q)|cQ〉

⎤
⎥⎥⎥⎦,

(110)
and Nφ is the number of flavors of the fluctuation fields φα . We note that f Q(n, q) and f̄

Q
(n, q) are both proportional to the factor√

nc carried by the ket |cQ〉.
According to Eq. (85), the condition for the cancellation of the pole of χ

μν

SP (q, ω) at εqn is that the matrix element 〈n, Q +
q|�(Q + q, εqn)|n, Q + q〉 must be equal to iηN . In other words, as we will demonstrate below, εqn must be a zero of the
propagator D(q, ω).

1. Anomalous large-N scaling of the RPA propagator

The RPA propagator is given by the inverse of the fluctua-
tion matrix:

D(q, ω) = [�0 − �(q, ω)]−1. (111)

The tree-level diagrams of the polarization operator �(q, ω)
(see Fig. 3) have poles at ω = εqn, namely

�(b)
α1α2

(q, εqn) = �(c)
α1α2

(q, εqn) = 1

2N

1

(−iη)
f Q
α1

(n, q) f̄ Q
α2

(n, q).

(112)
It is important to note that only the spinon from the n-band
with momentum Q + q contributes to the polarization opera-
tor, implying that �(q, εqn) ∼ O(1/N ).

Since the tree-level diagrams diverge at ω = εqn, we can
neglect the regular contribution from the loop diagram shown
in Fig. 3(a), and the polarization operator is dominated by a

rank-1 matrix,

�α1α2 (q, εqn) = f Q
α1 (n, q) f̄ Q

α2 (n, q)

−iηN
. (113)

To compute the RPA propagator, it is convenient to introduce
a new pair of orthogonal bases {μα} and {ν†

α} such that the
first vector of each basis is a unit vector parallel to f Q(n, q)
and f̄

Q
(n, q), respectively:

μ1 = f Q(n, q)∥∥ f Q(n, q)
∥∥ , ν†

1 = f̄
Q

(n, q)∥∥ f̄
Q

(n, q)
∥∥ , (114)

where ‖ f‖ is the norm of the vector f . The basis {μα} spans
the left space of the fluctuation matrix �0 − �, while {ν†

α}
spans the right space. In the new basis, the fluctuation matrix

FIG. 4. 1/N diagrams of dynamical spin susceptibility. The wavy line refers to the RPA propagator 1
N D(q, ω).
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FIG. 5. Vicinity of the zero of D̃11(q, ω) (gray area) where
the RPA propagator displays anomalous large-N scaling, namely
dD̃11/dω|ω=εqn ∝ N , as indicated by the red line.

is given by

D̃−1(q, εqn) = U †D−1(q, εqn)V

= ‖ f Q(n, q)‖‖ f̄
Q

(n, q)‖
iηN

I (1,1) + O(η0),

(115)

where I (1,1) is the single-entry Nφ × Nφ matrix I (1,1)
α1,α2

=
δα1,1δα2,1, and the column j of the unitary matrix U (V ) is
equal to the vector u j (v j):

U = [μ1, . . . ,μNφ
], V = [ν1, . . . , νNφ

]. (116)

The (1,1) component [D̃−1(q, εqn)]11 scales as nc/N instead
of the usual scaling ∼N0 for a magnetically disordered state
(nc = 0). Since nc/(ηN ) � 1 for an ordered magnet with nc �=
0, the inverse of Eq. (115) leads to

D̃11(q, εqn) ≡ ν†
1D(q, εqn)μ1

= iηN

‖ f Q(n, q)‖‖ f̄
Q

(n, q)‖
+ O

(
η2N2

n2
c

)
,

(117)

implying that D̃11(q, εqn) ∝ N instead of the N0 scaling that
is obtained in the absence of spinon condensation. Since
iη = ω − εqn is an infinitesimal number, ω = εqn is a zero
of D̃11(q, ω), and the O(N ) scaling holds in the vicinity of
this zero, |ω − εqn| � nc/N , where the polarization operator
is dominated by the contribution from the nth band spinon
[see Eq. (113)]. As a result, dD̃11(q, ω)/dω|ω=εqn ∝ N as il-
lustrated in Fig. 5. For |ω − εqn| � nc/N , D(q, ω) recovers
the usual scaling D(q, ω) ∝ N0. A similar analysis shows
that D̃1,σ ′>1 and D̃σ>1,1 have the same anomalous large-N
scaling in the vicinity of ω = εqn, while the other components
D̃σ>1,σ ′>1 satisfy the usual scaling D̃ ∝ N0.

2. Cancellation of single-spinon poles

By using the result in Eq. (117), the bilinear form Eq. (109)
can be expressed as

‖ f̄
Q

(n, q)‖‖ f Q(n, q)‖D̃11(q, εqn) + O(η2) (118)

and

Zμν
FL (n, q) = 1

−iηN
gQ

μ(n, q)gQ
ν (n, q)

×‖ f̄
Q

(n, q)‖‖ f Q(n, q)‖D̃11(q, εqn). (119)

The key observation is that the residue Zμν
FL (n, q) is of order

1/N0, although it represents a (singular) contribution to a 1/N
correction of the dynamical spin susceptibility that is diagram-
matically represented in Fig. 4. We note that this anomaly
arises from the first term of Eq. (117): the propagator D(q, ω),
which is nominally of order 1/N0, has a contribution of order
N that is proportional to η. According to Eqs. (117) and (119),
we have

Zμν
FL (n, q) = −gQ

μ(n, q)gQ
ν (n, q). (120)

In other words, the anomalous scaling of Zμν
FL (n, q) leads to

an exact cancellation with the residue of χ
μν

SP (q, ω) at ω = εqn

that is given in Eq. (85):

Zμν
FL (n, q) = −Zμν

SP (n, q), (121)

or

lim
ω→εqn

(εqn − ω)χμν
FL (q, ω) = − lim

ω→εqn

(εqn − ω)χμν
SP (q, ω).

(122)

Equation (121) is one of the key results of this work, which
has a clear physical meaning: single-spinon excitations are
not true quasiparticles of the magnetically ordered state. The
true collective modes are magnons, which arise from the
poles of the RPA propagator D(q, ω). As we will discuss
below, this important result implies that adding all the dia-
grams up to a given nominal order in 1/N is not the correct
strategy to obtain qualitatively correct results in the pres-
ence of a condensate. For each diagram of a given order in
1/N , there is a “counterdiagram” of higher nominal order,
which must be added to cancel the unphysical single-spinon
poles.

Finally, the diagram shown in Fig. 4(a6) contributes to the
static and uniform magnetic susceptibility:

χ
μν
FL;(a6)(q, ω) = χ

μν

SP;d (q, ω)
∑
α1α2

Dα1α2 (0, ω) f Q
α1

(n, 0) f Q
α2

(n, 0)

× Ns

2N

(
1

2εc − ω − iη
+ 1

2εc + ω + iη

)
,

(123)

where εc ∝ N −1
s is the energy of the single-spinon state

where the spinons condense in the thermodynamic limit
Ns → ∞, and χ

μν

SP;d (q, ω) is given in Eq. (88). We note that
the polarization operator �(q, ω) contains a singularity at
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FIG. 6. Remaining diagrams of nominal order 1/N (a1), (b1),
(c1) and their corresponding counterdiagrams (a2), (b2), (c2). (d1)
Arbitrary diagram of the 1/N-expansion and its counterdiagram (d2).
The thick solid line represents the full single-spinon propagator in-
cluding contributions from condensed and noncondensed spinons.

q = 0 and ω = 2εc given by Eq. (104), namely

�α1α2 (0, ω) = f Q
α1

(n, 0) f Q
α2

(n, 0)
Ns

2N

×
(

1

2εc − ω − iη
+ 1

2εc + ω + iη

)

+ subleading terms. (124)

The inverse of the matrix �0 − �(0, 0), namely the propaga-
tor D(0, 0), satisfies∑

α1α2

Dα1α2 (0, 2εc) f Q
α1

f Q
α2

= 2Niη

Ns
(125)

implying that

χ
μν
FL;(a6)(q, ω) = −χ

μν

SP;d (q, ω). (126)

In other words, the (singular) SP contribution to the static and
uniform magnetic susceptibility, represented by the diagram
shown in Fig. 2(d), is also canceled by the diagram shown in
Fig. 4(a6).

B. Self-energy and vertex corrections

The three remaining diagrams of nominal order 1/N that
contribute to the dynamical spin susceptibility are shown in
Figs. 6(a1)–6(c1). The first diagram, (a1), renormalizes the
external vertex, while the other two, (b1) and (c1), renor-
malize the single-spinon propagator. Like the saddle-point

FIG. 7. (a) Magnetic susceptibility including renormalized
external/internal vertices (gray/black shaded areas), spinon propa-
gator (double solid line), and RPA propagator (double wavy line).
(b) Counterdiagram that cancels out the single-spinon poles of the
diagram shown in panel (a). (c) Renormalized propagator of the
fluctuation fields.

contribution to the magnetic susceptibility shown in Fig. 2,
and the 1/N contribution shown in Fig. 4, these diagrams
have poles at the bare single-spinon frequencies that must be
canceled by higher-order counterdiagrams. By following ex-
actly the same procedure that we used to demonstrate that the
1/N contribution shown in Fig. 4 is a counterdiagram for the
saddle-point contribution shown in Fig. 2, we can demonstrate
that the counterdiagrams shown in Figs. 6(a2)–6(c2) cancel
the single-spinon poles of the contributions (a1), (b1), and
(c1). In general, the counterdiagram of any diagram that has
poles at the bare single-spinon frequencies is constructed by
simply adding the “tail” shown in Fig. 6(d2). It is interesting to
note that exactly the same procedure must be followed (even
in the absence of the condensate) to construct the counterdia-
gram that cancels the SB density fluctuations [2]. In other
words, the same counterdiagram simultaneously eliminates
two unphysical effects: the residues of the single-spinon poles
and density fluctuations that violate the constraint Eq. (2). As
we discuss below, this qualitative improvement in the dynam-
ical spin susceptibility also leads to a significant quantitative
improvement, which manifests in different aspects of the the-
ory, such as the sum rule or the sensitivity of the results to the
choice of α, which are discussed in the next section.

For more general diagrams contributing to the magnetic
susceptibility that include renormalized external/internal ver-
tex functions and propagators of the spinon and the fluctuation
fields, we can also construct counterdiagrams that cancel the
renormalized single-spinon poles. The renormalized magnetic
susceptibility is generally represented by the diagram shown
in Fig. 7(a). Once again, we can extend the previous derivation
to demonstrate that the counterdiagram of the renormalized
bubble is obtained by adding the renormalized tail shown
in Fig. 7(b). The demonstration is formally the same as
the one given above in the absence of vertex or self-energy
renormalizations. The basic difference is the inclusion of the
renormalization to the single-spinon Green’s function for both
noncondensed and condensed spinons, which leads to differ-
ent quasiparticle energy and residues in comparison with the
noninteracting case [see Eqs. (73) and (74)]. By extending the
previous discussion of the SP bubble diagram, we obtain a
pole in the renormalized bubble diagram [Fig. 7(a)], whose
residue is formally given by Eq. (85) after incorporating the
single-spinon renormalizations. Note that the demonstration
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of the cancellation is independent of the specific form of the
external and the internal vertex functions. The crucial point
is that the propagator of the fluctuation field must also be
renormalized, as shown in Fig. 7(c).

VII. MAGNON POLES

Along with the cancellation of the single-spinon poles,
new poles emerge from the 1/N correction to the dynam-
ical magnetic susceptibility. The new poles arise from the
RPA propagator D(q, ω) in the diagrams shown in Fig. 4
and they represent the magnons (true collective modes of
the magnetically ordered ground state) as two-spinon bound
states. Unlike the single-spinon dispersion, which is strongly
dependent on the mean-field decoupling of the original spin
Hamiltonian (i.e., on the value of α), we will demonstrate in
this section that the single-magnon dispersion is much less
sensitive to the mean-field decoupling. The second purpose of
this section is to demonstrate that the addition of the counter-
diagram shown in Fig. 4 allows us to recover the linear SWT
result in the S → ∞ limit.

The RPA propagator of the square lattice Heisenberg
antiferromagnet takes a block diagonal form DAλ(q, ω) ⊕
DB(q, ω) that can be explained by applying a symmetry ar-
gument to the expression of the polarization operator in terms
of a retarded correlation function:

4i�α1α2 (q, ω) = 1√
Ns

∑
r

e−iq·r

×
∫ 0

−∞
dteiωt 〈Gi|

[
�̂

α1
r,0, �̂

α2
0,t

]|Gi〉, (127)

where i = 1, 2, 3, and α refers to the components of the vector
field,

�̂r,t ≡ ((α − 1)Âr,δ(t ), (α − 1)Â†
r,δ(t ), αB̂r,δ(t ),

− αB̂†
r,δ(t ), in̂r(t )), (128)

and n̂r ≡ b̂
†
r b̂r is the spinon density operator, Âr,δ ≡ Âr,r+δ and

B̂r,δ ≡ B̂r,r+δ. The simple BEC ground state of the mean-field
Hamiltonian, |G3〉, is invariant under the product of a global
spin rotation by an angle ϕ about the z-axis, Uz(ϕ), and a
staggered gauge transformation C(−ϕ), namely, Ũz(ϕ)|G3〉 =
|G3〉 with Ũz(ϕ) = Uz(ϕ)C(−ϕ). The gauge transformation
is necessary to keep the simple BEC state invariant because
Uz(ϕ) maps the macroscopically occupied single-particle
state with q = 0 into a condensate in a single-particle mode
that is a linear combination of the q = 0 and π modes [see
Eq. (59)]. The operators Âr,δ, Â†

r,δ, and n̂r remain invariant
under the gauge transformation C(ϕ), while the operators B̂r,δ

and B̂†
r,δ acquire a complex phase factor,

B̂†
r,δ

C(ϕ)−→ eiηrϕ B̂†
r,δ, (129)

implying that, for instance,

〈Gi|Â†
0,δ

B̂†
r,δ|Gi〉 = 〈Gi|Ũ †

z (ϕ)Â†
0,δ

B̂†
r,δŨz(ϕ)|Gi〉

= eiηrϕ〈Gi |Â†
0,δ

B̂†
r,δ|Gi〉.

Then the cross-correlation function between the Â or n̂ and
B̂ operators must be zero, and the propagator matrix has the
form D(q, ω) = DAλ(q, ω) ⊕ DB(q, ω).

The propagator DAλ includes a zero-energy mode for each
ω and q value because of the redundant gauge degree of free-
dom [the zero mode corresponds to a gauge transformation
biσ (τ ) → biσ (τ )eiθi (τ )]. This unphysical mode does not con-
tribute to any physical observable. DAλ does not have isolated
poles. By contrast, the propagator of the B-fields, DB, includes
a pole singularity that becomes gapless at q = 0 and π. As we
will see below, these poles represent the two Goldstone modes
(transverse magnons) at q = 0 and π expected for collinear
magnetic ordering (it breaks two continuous spin rotation
symmetries). Let us consider now the dynamical magnetic
susceptibility with the correction depicted in Fig. 4. As we
explained in the previous section, we only include the dia-
grams shown in Figs. 4(a1)–4(a6), a subset of the nominal
1/N diagrams, because they are the counterdiagram of the SP
contribution shown in Fig. 2. Explicitly, the 1/N correction
shown in Fig. 4 is given by

χ
μν
FL (q, ω) =

∑
α1α2

�μα1 (q, ω)
1

N
Dα1α2 (q, ω)�να2 (−q,−ω),

(130)
where

2i�μα (q, ω) = 1√
Ns

∑
r

e−iq·r
∫ 0

−∞
dt eiωt 〈Gi|

[
Ŝμ

r,0, �̂
α
0,t

]|Gi〉

(131)

is the cross susceptibility between the spin operator Ŝμ
r and

the fluctuation field component �̂α
r,t at the SP level.

Since |G1〉 and the bond operators are invariant under
global spin SU(2) spin rotations, while the spin operators
transform like vectors, the cross susceptibility �μα (q, ω) is
equal to zero, implying that χ

μν
FL (q, ω) = 0 for the isotropic

SP solution |G1〉.
The SP solution |G2〉 is only invariant under the residual

U(1) symmetry subgroup of global rotations Uz(ϕ) along the
z-axis (direction of the ordered moments). The transverse
spin components Ŝ±

r = Ŝx
r ± iŜy

r acquire a complex phase
exp(±iϕ) under these rotations. Consequently, we still obtain
that 〈G2|Ŝ±

r �̂α
0 |G2〉 = 0, implying that �μα (q, ω) = 0 and

χ
μν
FL (q, ω) = 0 for the transverse components μ, ν = x, y. In

addition, the invariance of |G2〉 under the gauge transforma-
tion C(ϕ) implies that 〈G2|Ŝz

r B̂†
0,δ

|G2〉 = 0. On the one hand,
since the poles of the RPA propagator arise from the B-sector
(DB), the longitudinal susceptibility does not acquire new
poles after adding the correction due to fluctuations. On the
other hand, the finite correction due to the nonzero cross-
correlation function between Ŝz

r and the A-λ fields leads to the
cancellation of the single-spinon poles of the SP contribution
χ

μν

SP (q, ω). This is the qualitatively correct result for the longi-
tudinal component of the spin susceptibility for the collinear
antiferromagnet under consideration (magnons are transverse
modes).

The situation is qualitatively different for the simple
condensate |G3〉, as is revealed by the following symme-
try argument. |G3〉 is invariant under the residual U(1)
symmetry group of global spin rotations about the z-axis
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up to a gauge transformation: Ũz(ϕ) = Uz(ϕ)C(−ϕ) and
Ũz(ϕ)|G3〉 = |G3〉, implying that 〈G3|Ŝz

r B̂†
0,δ

|G3〉 = 0 because

Ŝz
r is invariant under that transformation, while B̂†

0,δ
acquires a

phase factor [see Eq. (129)]. In addition, 〈G3|Ŝ±
r �̂α

0 |G3〉 = 0
for �̂α = Â, Â†, n̂ because these operators are invariant un-
der Ũz, while the transverse spin components Ŝ±

r acquire
a phase. Importantly, for the transverse channel, the phase
factor acquired by Ŝ±

r due to the global spin rotation Uz(ϕ)
is compensated by the phase factor acquired by B̂†

r,δ due to the
gauge transformation C(−ϕ), allowing for a nonzero value
of �μα . Consequently, the simple BEC SP solution |G3〉 is
the only one that has a finite correction due to fluctuations
(diagram of Fig. 4) to the transverse components of the sus-
ceptibility: χ

μν
FL (q, ω) �= 0 for μ, ν = x, y. In summary, �μα

remains finite both for the longitudinal and for the transverse
components. In particular, the longitudinal z component of
the spin has a finite cross-correlation function with the A-λ
fields, while the transverse spin components have a finite
cross-correlation function with the B fields. The pole of the
RPA propagator DB gives rise to a δ-peak in the transverse
spin channel of the DSSF, while the correction due to fluc-
tuations in the longitudinal channel cancels out the poles of
χ zz

SP(q, ω) �= 0 and leaves a two-spinon continuum associated
with the branch-cut singularity of DAλ, which is the qualita-
tively correct result.

This qualitative distinction between |G2〉 and |G3〉 holds
true for any collinear antiferromagnet revealing that the sim-
ple condensate |G3〉 provides a more adequate description of
the magnetically ordered state because a finite contribution
from the fluctuations in the transverse channel is essential to
cancel out the single-spinon poles of the SP contribution for
α �= 0.

The spectral weight of the two-spinon continuum vanishes
in the S → ∞ limit, and the spectral weight of the DSSF is
restricted to the δ-peak associated with the single pole in the
transverse spin channel (magnon modes). As for the triangular
lattice case [38], the dispersion and the spectral weight of
these magnons become identical to the linear SWT result in
that limit (see Fig. 8). Moreover, the recovery of the linear
SWT result in the large-S limit is independent of the mean-
field decoupling of the original spin Hamiltonian, i.e., of the
choice of α in Eq. (8).

Figure 9 shows the transverse DSSF along high-symmetry
directions for different values of α, i.e., different decoupling
schemes that lead to different simple BEC SP solutions. The
upper panels correspond to the SP result, while the lower pan-
els include the contribution from the counterdiagram depicted
in Fig. 4. As we explained above, the contribution from the
counterdiagram vanishes for α = 0 because of the lack of
B-fields in that particular decoupling scheme. In this particular
and fortuitous case, the single-spinon dispersion coincides
with the single-magnon dispersion: εq = ωq. The situation
is very different for finite values of α, where the presence
of B-fields leads to the above-mentioned cancellation of the
single-spinon poles of the SP solution and to the emergence of
new magnon poles arising from the fluctuation of the B-fields.
It is interesting to note that the bandwidth of the single-spinon
dispersion (poles of the SP solution) decreases by a factor
of 2 when α evolves from zero to 0.5 [see Figs. 9(a)–9(c)].

FIG. 8. Recovery of semiclassical limit (S → ∞) with the
Schwinger boson theory by including fluctuations around the SP
solution |G3〉 for a decoupling parameter α = 0.5. Transverse (a) and
longitudinal (b) DSSF for an arbitrarily chosen momentum q =
(1.25, 2.09) in r.l.u.

In contrast, the bandwidth of the single-magnon dispersion is
much less dependent on α [see Figs. 9(d)–9(f)]. For instance,
the energy of the magnon at q = (0, π ) varies over the range
[1.8, 2.316] for 0 � α � 0.5. This energy range is consistent
with numerical results [84,85]. In other words, the inclusion of
corrections beyond the SP makes the final result less sensitive
to the choice of the SP. Nevertheless, there is still a significant
α-dependence of the magnon spectral weight and the distribu-
tion of the two-spinon continuum, implying that for low-order
expansions in 1/N it is necessary to introduce a criterion
for choosing an optimal decoupling scheme (value of α). In
particular, note that some magnons are overdamped above a
critical value of α because they overlap with the two-spinon
continuum [e.g., the magnons modes with energy ∼2J along
the path (π/2, π/2)-(π, 0) shown in Figs. 9(e)–9(g)].

For the longitudinal component of the DSSF, shown in
Fig. 10, the main difference between the SP result (upper row)
and the one that includes the contribution from the counter-
diagram shown in Fig. 4 is that the latter (lower row) has
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FIG. 9. Transverse dynamical spin structure factor (S = 1/2). Parts (a)–(d) show the SP result for the simple BEC solution represented
by the state |G3〉 and α = 0, 0.25, 0.4, 0.5, while (e)–(h) include the 1/N correction described in Fig. 4. Note that Sxx (q, ω) = Syy(q, ω). The
green dots indicate the magnon dispersion. Inset: high-symmetry path of the horizontal axis.

no poles. As we already explained, the lack of poles in the
longitudinal channel is the qualitatively correct result. It is
also important to note that the distribution of spectral weight
in the two-spinon continuum is still strongly dependent on
α. This is a direct consequence of the α-dependence of the
single-spinon dispersion at the SP level: εq = (1 − α)ωq. To
make this result less sensitive to α, it is necessary to renor-
malize the single-spinon propagator by including diagrams
such as the ones shown in Figs. 6(b1) and 6(c1). This renor-
malization is also expected to account for many-body effects
that are not captured at the current level of approximation.
For instance, it is well known that the hybridization be-
tween single- and three-magnon states leads to a rotonlike
anomaly in the single-magnon dispersion at q = (0, π ) or q =
(π, 0) [84–88]. Since magnons are obtained as two-spinon

bound states in the SBT, few-body effects caused by three-
magnon states will manifest via hybridization between the
two-spinon and six-spinon sectors (note that the renormaliza-
tion of the single-spinon propagator will in turn renormalize
the RPA propagator and its poles).

Figure 11 shows the trace of the DSSF (transverse plus
longitudinal components) for different values of α. As we
anticipated in Sec. IV, the exact sum rule

∫
dω d3qS(q, ω) =

NsS(S + 1) provides a good test for any approximation
scheme. According to Eq. (71), the SP result overestimates
the sum rule by ≈50%. In contrast, the integration of the
total dynamical spin structure factor, shown in Fig. 12, gives∫

dω d3qS(q, ω) = Nsζ (α)S(S + 1), with ζ (0) ≈ 1.133 and
ζ (0.5) ≈ 1.125. To obtain these results, we computed the
integral of S(q, ω) for different values of η (Lorentzian broad-

FIG. 10. Longitudinal dynamical spin structure factor (S = 1/2). Parts (a)–(d) show the SP result for the simple BEC solution represented
by the state |G3〉 and α = 0, 0.25, 0.4, 0.5, while (e)–(h) include the 1/N correction described in Fig. 4. Inset: high-symmetry path of the
horizontal axis.
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FIG. 11. Total dynamical spin structure factor S(q, ω) = ∑
μ Sμμ(q, ω) (S = 1/2). Parts (a)–(d) show the result for the SP solution |G3〉

and α = 0, 0.25, 0.4, 0.5, and (e)–(h) include the 1/N correction described in Fig. 4. The green dots indicate the magnon dispersion. Inset:
high-symmetry path of the horizontal axis.

ening) and for system sizes Ns = 144, 576, and 1024. We
then performed a linear extrapolation in the width η → 0 [see
Figs. 12(a)–12(c)] for each system size, and the result was
in turn extrapolated to the thermodynamic limit 1/Ns → 0.
As is clear from Fig. 12, the sum rule exhibits a very weak
dependence on 1/Ns and η for small enough values of these
parameters. As is shown in Fig. 12(e), the value of ζ (α) for in-
termediate values of α, 0 < α < 0.5, is well approximated by
a linear interpolation between the above-mentioned extreme
values. Clearly, the sum rule remains basically independent of
the decoupling scheme, and the inclusion of the new contribu-
tion produces a much better approximation to the exact sum

rule. Since violations of the sum rule arise from violations of
the physical constraint Eq. (2), we confirm that the addition
of the counterdiagram shown in Fig. 4 also leads to a much
better approximation of the local constraint.

Finally, we should say a few words about the criterion
that must be adopted to determine the “optimal” decoupling
scheme, i.e., the value of α. In the past, different groups
have used comparisons of the ground-state energy against
exact diagonalization results on finite-size clusters to discrim-
inate between different decoupling schemes [7,14,20,22,89–
91]. An alternative criterion could be to directly compare the
DSSF against results obtained on finite-size clusters or from
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FIG. 12. Linear extrapolation of the integral over frequency and momentum of the dynamical spin structure factor after correcting the
simple BEC SP result [see Eq. (71)] with the contribution described in Fig. 4. The panels (a)–(c) correspond to extrapolations as a function
of the width η for α = 0.25 and finite lattices of Ns = 144, 576, and 1026, respectively. Panel (d) shows the finite-size scaling and the
extrapolation to the thermodynamic limit of the extrapolated (η → 0) results obtained in the previous panels. Panel (e) shows the final result
after performing the η → 0 and Ns → ∞ extrapolations for different values of α.
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experiments. This criterion has been applied to the triangular
lattice antiferromagnet obtaining an optimal value of α close
to 0.5 [37,38].

VIII. SUMMARY

As we already mentioned in the Introduction, most at-
tempts at using the SBT to describe magnetically ordered
systems have not gone beyond the saddle-point level. In this
work, we have presented a comprehensive approach to the
selection of the magnetically ordered SP solution and inclu-
sion of higher-order corrections of the 1/N expansion. As we
argued in the previous sections, the presence of a condensate
associated with the magnetic ordering generates multiple sub-
tleties that have been omitted in previous discussions of the
SBT. The main motivation of this work has not been to solve
again the particular case of the square lattice antiferromagnet,
but to employ this textbook model to illustrate how a proper
choice of the SP solution and a careful analysis of the cancel-
lations that occur in the presence of a condensate can improve
the results both qualitatively and quantitatively.

On the one hand, we have carefully examined the con-
sequences of the freedom associated with the choice of the
decoupling scheme (value of α) and the fragmented versus
simple nature of the BEC ground state of the SP Hamiltonian
for a fixed value of α. On the other hand, we have seen that
Feynman diagrams, which in the absence of the condensate
would contribute to a given order in 1/N , acquire singular
lower-order contributions in the presence of a condensate.
Upon expanding the dynamical spin susceptibility in powers
of 1/N , these singular contributions lead to the existence of
counterdiagrams that exactly cancel out the residues of the
single-spinon poles of a given diagram, as expected for the
excitation spectrum of magnetically ordered states. The true
quasiparticles of the ordered system are then magnons or
transverse modes that to the lowest nontrivial order in 1/N
arise from poles of the RPA propagator. Correspondingly, a
main conclusion of this work is that in a correct expansion
of the magnetic susceptibility of an ordered magnet, each
diagram must be accompanied by its counterdiagram.

Among other consequences, this important conclusion im-
plies that it is strictly necessary to go beyond the SP level
to obtain physically correct results for magnetically ordered
systems. In other words, the loop diagram depicted in Fig. 2,
which is the SP contribution to the dynamical spin suscepti-
bility, must be accompanied by its counterdiagram depicted in
Fig. 6, which is nominally of order 1/N . This requirement was
first noticed (without a clear justification) in a previous work
on the triangular Heisenberg antiferromagnet [37]. The reason
why this subtle point remained hidden for approximately 30
years is that the SBT was first applied to the square lattice
Heisenberg antiferromagnet [1,7]. As we discussed in the
previous section, the AA or α = 0 decoupling scheme that was
originally applied to the square lattice Heisenberg antiferro-
magnet [1,7] has an important peculiarity: the single-spinon
dispersion coincides with the single-magnon dispersion, and
the contribution from the counterdiagram vanishes for the
transverse dynamical spin susceptibility. This “pathology”
of the particular case α = 0 led the community to believe
that the SP level of the SBT is enough to obtain the true

collective modes of magnetically ordered states. While this
generalized belief was questioned after noticing the impossi-
bility of recovering the correct large-S limit with the SP result
for the general case (noncollinear orderings) [75,76], the
origin of this failure was not properly understood. As we have
demonstrated here, the identity between the single-spinon and
single-magnon dispersions is not true for general decoupling
schemes (α �= 0). Moreover, the pathology is completely ab-
sent in systems with noncollinear magnetic ordering, such as
the triangular lattice AFM. As was demonstrated in a previous
work [38], the addition of the counterdiagram allows us to
recover the correct result in the large-S limit. Furthermore,
as was shown in this work, this result is independent of the
decoupling scheme parametrized by α.

Another subtlety of the SBT applied to the square lattice
Heisenberg antiferromagnet is related to the freedom associ-
ated with the choice of the spinon condensate in the presence
of a symmetry-breaking field. This freedom arises from
the collinear nature of the antiferromagnetic ordering that
leads to a U(1) residual symmetry group for SU(2)-invariant
Heisenberg interactions. While the symmetry-breaking field
polarizes the condensed spinons along the field direction in
the twisted reference frame, the spinons can still condense in
more than one gapless mode (q = 0 or q = π for a particular
gauge choice of the square lattice antiferromagnet SBT con-
sidered here). This remaining ground-state degeneracy of the
SP Hamiltonian introduces more freedom in the choice of the
condensate. As we have seen in Sec. IV, the importance of
choosing a “simple” spinon BEC instead of the fragmented
BEC adopted in previous works [2] becomes evident after
including corrections beyond the SP level. Furthermore, if
we continuously deform the triangular lattice antiferromagnet
into the square lattice Heisenberg antiferromagnet, the unique
BEC solution of the noncollinear triangular antiferromagnet
evolves continuously into the simple BEC solution of the
square lattice antiferromagnet.

By considering all the above-mentioned subtleties, we have
finally shown that including corrections beyond the SP level
is crucial not only to reveal the true quasiparticles of the
magnetically ordered state, but also to reduce the dependence
of the dynamical spin susceptibility on the decoupling scheme
(value of α). We note, however, that the two-spinon continuum
is still strongly dependent on α because we have not included
the diagrams shown in Figs. 6(b1) and 6(c1) that renormalize
the single-spinon propagator. A natural consequence of this
limitation of the current level of approximation is that some
magnon modes become overdamped above a critical value
of α because they overlap with the two-spinon continuum.
We expect that this undesirable result will be corrected af-
ter including a proper renormalization of the single-spinon
propagator. A detailed study of the different effects of the
single-spinon renormalization will be the subject of future
work. Based on the preliminary results presented in this work,
we conclude that the optimal decoupling scheme (value of
α) should be determined by comparing the spectrum of low-
energy excitations against some reference that can either be a
numerical result on finite lattices or an experimental result.

Finally, the SBT presented here is particularly relevant for
modeling magnetically ordered materials in the vicinity of
a quantum critical point that signals a continuous transition
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into a spin liquid state. The simple reason is that magnons
become composite particles (two-spinon bound states) in
the vicinity of the “quantum melting point.” The triangular
lattice Heisenberg antiferromagnet [37,92] provides a natu-
ral example of this scenario because the quantum melting
point is reached by adding a second-neighbor antiferromag-
netic interaction that is only 6% of the nearest-neighbor
exchange [55–57,62,93–95].
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APPENDIX: RELATION FROM PARTICLE-HOLE
SYMMETRY

The Nambu representation has an artificial “particle-hole”
symmetry because ψi = P(ψ†

i )T or ψq = P(ψ†
−q)T (momen-

tum space), where P = σx ⊗ I0. The invariance of the effective
action under this transformation implies that the dynami-
cal matrix satisfies PM T (−p,−k)PT = M (k, p), where k ≡
(k, iω) and p ≡ (p, iν). The external/internal vertices are the

first derivatives of M (k, p) with respect to the external source
term hμ

q or the fluctuation fields φα (q). It then follows that

P(uμ)T P = uμ, P[vα (k, q)]T P = vα (−q,−k). (A1)

In the SP approximation, the inverse of M (k, p) ≡ [−iωγ 0 +
Hsp(k)]δk,p gives rise to the single spinon’s Green’s function.
We have

PH∗
sp(−k)P = Hsp(k), PGn(−k,−ω)T P = Gn(k, ω).

(A2)

The eigenstates of the SP Hamiltonian must then satisfy the
relations

Xk,α = PX̄ ∗
−k,α, X̄k,α = PX ∗

−k,α. (A3)

In particular, the eigenstate |cQ〉 ≡ XQ,+1 or X̄Q,+1 (identical
in the thermodynamic limit) satisfies

|cQ〉 = P(|cQ〉)∗, (A4)

where we have assumed that Q = −Q is an inversion-invariant
momentum vector.

Using Eqs. (A1)–(A4), we can show that the two diagrams
in Figs. 2(b) and 2(c) are equal to each other. For instance,
their contributions to the DSSF, Eqs. (79) and (82), are identi-
cal. A similar conclusion holds in the calculation of the other
diagrams in this work.
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