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Dynamic origin of conical helix magnetization textures stabilized
by Dzyaloshinskii-Moriya interaction
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Since the beginning of the century, the possibility of having chiral spin textures in magnetic materials
has been the subject of intense scientific interest. Chiral spin textures have been observed experimentally
and described theoretically, bearing potential applications associated with their topological nature. This work
theoretically explores the formation of chiral magnetic order in ultrathin magnetic films, where the antisymmetric
Dzyaloshinskii-Moriya interaction induces a conical helix magnetization. By minimizing the internal energy of
the helix, a simple model predicts the nucleation field, the pitch vector, and the cone angle that characterize
the ground-state magnetization texture. It is further demonstrated that the formation of the helical order is
connected with the spin waves excited close to the instability of the field-polarized state. Namely, when an
in-plane magnetic field is reduced from saturation, a second-order phase transition arises when the spin-wave
frequency approaches zero at a critical point where the conical helix nucleates. Interestingly, the wave vector at
which the frequency becomes zero matches the pitch vector of the conical helix texture. Thus the instability point
of the magnonic excitations is associated with the spin texture, as if the softened spin-wave modes crystallize in
the chiral magnetic film. A critical competition among the magnetostatic and the anisotropy field is also found
which influences the orbit described by a dynamic magnetization, changing it from circular to elliptical.
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I. INTRODUCTION

Left or right-handedness, known as chirality, plays an es-
sential role in the symmetry properties of nature at all length
scales and manifests itself in many scientific areas [1–5]. In
magnetic materials, chiral effects are induced by a breaking of
the inversion symmetry, which has been observed in noncen-
trosymmetric crystals and ferromagnet/heavy-metal bilayers
[6–9], where the short-range antisymmetric Dzyaloshinskii-
Moriya interaction (DMI) is the primary source of such
chiral features [10–14]. Nonetheless, in curvilinear mag-
netic shells [15–18], ferromagnetic bilayers [19–22], and
magnetization-graded ferromagnetic films [23] the chiral ef-
fects can be induced by magnetostatic interactions. The
magnetic excitations, or spin waves (SWs), are also influenced
by the chiral interactions, where a notable nonreciprocity
in frequency has been first observed in thin films with
DMI [24–31]. Specifically, two counterpropagating waves ex-
hibit different phases, amplitudes, and frequencies at the same
wave vector strength. The study of spin waves in magnetic
textures is an emerging and exciting discipline, since there
are varied types of magnetic configurations, including those
showing periodic patterns, such as the conical helix (CH)
usually observed in systems with DMI [32–37]. The magnonic
excitations in any periodic magnetic texture will be like those
obtained in magnonic crystals, which are currently prepared
alternating two magnetic materials or fabricating films with
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arrays of regular structures. Thus the static and dynamic ef-
fects of chiral periodic magnetic configurations are of high
scientific interest since they permit the implementation of
reconfigurable magnonic crystals [38–41].

It has been well established by several experimental tech-
niques that a variety of spin textures similar to conical and he-
lical appear in chiral thin films with DMI [42–57]. Also, under
specific temperature and magnetic field conditions, skyrmions
and skyrmion arrays may be induced [58–64]. Early in the
1960s, Dzyaloshinskii theoretically studied a helicoidal mag-
netic structure in nonmetallic and metallic antiferromagnetic
materials with antisymmetric exchange [42,43]. Then, in the
1970s, Ishikawa et al. [44] and Motoya et al. [45] carried
out a high-resolution neutron diffraction investigation and a
detailed NMR study in MnSi compounds, demonstrating the
existence of helical spin order, whose rotation axis coincides
with the field direction and whose period is independent of
the applied field. They confirmed that such a helical spin
structure may exist at zero field and that the magnetization
reversal process is interpreted due to the transitions from
helical to conical and from conical to the field-polarized
state [44,45]. In the 1980s, Bak and Jensen explained the
helical magnetic configurations observed for the cubic phases
of MnSi and FeGe with the Dzyaloshinskii-Moriya (DM)
coupling [32]. Moriya and Miyadai realized further theoret-
ical studies [47], explaining that the antisymmetric exchange
interaction could stabilize a helical spin texture with an ex-
tended wavelength λ. Already in the 1980s, short-period
helical textures (≈30 nm) had been observed below the Curie
temperature by polarized-neutron diffraction, emerging from
the noncentrosymmetric B20 structure of FeCoSi [48]. Helical

2469-9950/2022/105(22)/224403(11) 224403-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1472-6246
https://orcid.org/0000-0001-8535-3187
https://orcid.org/0000-0002-0927-1419
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.224403&domain=pdf&date_stamp=2022-06-13
https://doi.org/10.1103/PhysRevB.105.224403


C. RÍOS-VENEGAS et al. PHYSICAL REVIEW B 105, 224403 (2022)

spin order in Fe0.5Co0.5Si chiral magnets were later imaged in
real space by Lorentz electron microscopy [50,51], finding a
helix with λ = 90 nm at 38 K, supporting early theoretical
works [32,33]. Then, advances in technologies allowed new
mechanisms of observation of conical and helical magnetic
states, like small-angle neutron scattering [34,35]. Lorentz
electron microscopy [48,50,51,56,61,65,66], spin-polarized
scanning tunneling microscopy [52,54], resonant x-ray scat-
tering [55], polarized neutron reflectometry [67], small-angle
electron scattering [57], and electrical spectroscopy [37].
Moreover, the helical-to-conical transition [44,45] is a well-
established fact that has been observed in noncentrosymmetric
crystals [37,56] and thin films [54,57,59].

In the past decade, the presence of spin-spiral structures
has been experimentally confirmed in chiral magnets with
bulk [39,52,68] and interfacial DMI [69–71]. As a result,
cycloidal, helicoidal, conical, toroidal, among other magnetic
textures, may be energetically favorable [41]. These textures
appear due to the competition of different magnetic inter-
actions. While symmetric Heisenberg exchange interaction
aligns neighbor magnetic moments, the DMI favors a canted
orientation. Therefore to study the chiral spin textures, a
detailed analysis of the competition between Dzyaloshinskii-
Moriya and other interactions, such as anisotropies, Zeeman,
exchange, and the classical dipole-dipole interaction, is
required. It is well known that the proper treatment of mag-
netostatics is a demanding task, and for such reasons, in most
of the literature dipolar coupling is not usually considered in
its nonlocal form, or it is neglected [32–35,42–57,72–74]. In
Ref. [75], for instance, the dipolar interaction was approxi-
mated as an effective anisotropy field, well justified by the fact
that the stray field can be expressed as a local energy contri-
bution, which works well for an ultrathin film. In the ultrathin
limit it has been argued that the dipolar interaction slightly
modifies theoretical results [37,53,76,77]. Such interaction,
which is treated correctly through the use of micromagnetic
simulations [54,63,78–80], must be counted accurately due
to significant effects on nanomagnets, which increase with
thickness [15,17,20,81]. For instance, dipolar effects could
destroy the DM spiral rotation in favor of a vortex forma-
tion [53] and could generate twisted skyrmions [82]. Thus a
complete theoretical description of chiral magnetic textures
must consider the nonlocal nature of the dipolar interaction.

The spin-wave spectrum in ferromagnetic materials is usu-
ally calculated at large bias fields, in a polarized (P) or
saturated state. The SW frequency decreases until zero when
reducing the field, where the uniform state becomes unstable.
In this context it is known that there is a connection between
the nucleation of the magnetic textures and the low-frequency
SW modes [83–96], which have been used to indicate and
characterize the formation of different magnetic phases. For
instance, Leaf et al. correlated the dynamic behavior of the
spin waves with the formation of stripe-domain patterns in
thin films with uniaxial anisotropy [84]. By analyzing the
wavelengths of the SWs close to the point where the fre-
quency is zero, they demonstrate that such wavelengths are
of the same order as the period of the stripe domains [84].
Montoncello et al. reported that an abrupt magnetization
switching is accompanied by a soft magnetic mode with a
symmetry that determines the onset of the reversal path [85].

More recently, micromagnetic simulations showed this tran-
sition in long stripes and elliptical dots with in-plane
magnetization, where the DMI enables the detection of SW
modes that would remain invisible without it [96]. Therefore
the softening of the spin-wave modes (modes at frequencies
near zero) can be used as an alternative route to characterize
magnetic textures.

In this paper, the formation of magnetic textures in ultra-
thin films with a thickness comparable to the exchange length
(≈5 nm) is theoretically studied by considering symmetric
and antisymmetric forms of exchange interaction, Zeeman
interaction, perpendicular surface anisotropy, and nonlocal
dipolar coupling. A conical helix magnetization model allows
the calculation of such energies, from which it is demonstrated
that the saturated film undergoes a magnetic phase transition
from the in-plane saturated state to a conical helix texture. The
cone angle, pitch vector, and nucleation field are calculated
and discussed. Static results are compared with the spin-wave
dynamics at the onset of the transition between the polarized
and the conical helix states, demonstrating a direct connection
between static and dynamic magnetic properties. It is further
shown that the delicate competition of surface anisotropy with
magnetostatics may also lead to elliptical-helical order, where
the out-of-plane magnetization can be favored over in-plane
magnetization or vice versa.

II. CONICAL HELIX MAGNETIZATION TEXTURE

This section explains the theoretical methods and simula-
tions, starting with Sec. II A that describes the conical helix
magnetization model and its energy contributions. In Sec. II B
the minimization process is presented, and Sec. II C intro-
duces the micromagnetic simulations. The nucleation field as
a function of the Dzyaloshinskii-Moriya constant D is also
obtained and discussed in Sec. II D.

A. Magnetization model and total energy

It is well known that spatially modulated magnetic textures
are stable in ferromagnetic films with DMI. If the external
field strength H is lower than a critical (or nucleation) field
Hc, the saturated state becomes unstable and a conical helix
structure may be a possible magnetic configuration that mini-
mizes the total energy. A CH-magnetization model permits the
calculation of the equilibrium state when both the interfacial
and bulk DM interactions are considered. By assuming that
the magnetic field H is applied along the in-plane y axis (see
Fig. 1), the unitary magnetization vector is written as

m̂(r) =

⎛
⎜⎝

sin (q · r) sin θ

cos θ

cos (q · r) sin θ

⎞
⎟⎠. (1)

Here, q = (q sin ϕq, q cos ϕq, 0) is the conical helix vector (or
pitch vector), and ϕq is the in-plane angle measured between
H and q. The orientation of the helix will depend on the kind
of DMI (bulk or interfacial) of the film. Also, θ is the cone
angle measured from the rotation axis y [see Fig. 1(d)].

Under the absence of dipolar interaction (the bulk limit
case, for instance), the bulk DM interaction stabilizes a
conical-helical texture with a pitch-vector magnitude q0 =
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(a)

(c)

(b)

(d)

FIG. 1. Panel (a) represents the polarized state reached at sufficiently high magnetic fields H > Hc. The zero-field helical spin textures
(with θ = π/2) are stabilized by the (b) bulk and (c) interfacial Dzyaloshinskii-Moriya interaction. Here each film has a different direction of
the pitch vector q, while the external field along the y axis is reduced to zero. In (b) the propagation vector of the magnetization is parallel to ŷ
(bulk DMI) and in (c) points along x̂ (interfacial DMI). Figure (d) illustrates the helical and conical states, where the angle θ is defined.

D/2A, where D is the DM strength and A is the exchange
constant [39]. Nevertheless, dipole-dipole coupling plays an
essential role in the magnetic properties in the ultrathin limit.
Once the magnetic texture is formed, such a dipolar interac-
tion favors the in-plane magnetization component to avoid the
formation of magnetic charges at the top and bottom film sur-
faces. Hence, an elliptical-helical magnetization model must
accurately describe the static properties. However, such a
modification in the model depicted in Eq. (1) considerably
complicates the calculations. Therefore a surface anisotropy
is also considered in the calculations, which favors the out-
of-plane component of the magnetization. Thus the current
study considers the cases where the dipolar contribution and
the surface anisotropy are more or less similar in magnitude,
so the helix’s ellipticity is not relevant. Besides, the proposed
model assumes that the magnetization is uniform along the
normal coordinate, as long as the film thickness d is compa-
rable with the exchange length of the material, as is precisely
the ultrathin case. Using Eq. (1), it is possible to calculate the
total energy of the system,

E = Eex + Es + EZ + Edip + Ei,b−DM, (2)

where Eex is the exchange energy, Es stand for the perpendicu-
lar surface anisotropy, EZ is the Zeeman term, Edip represents
the dipolar energy, and the last term represents either the
bulk (Eb−DM) or the interfacial (Ei−DM) DM energy. Explicit
expressions of the calculated energies can be found in Ap-
pendix A.

The orientation of the pitch vector is determined by the
kind of DMI (bulk or interfacial). Therefore angles that max-
imize the nonreciprocal effects are used (see Ref. [25]): ϕq =
0 for bulk DMI and ϕq = π/2 for interfacial DMI, which
are oriented parallel and perpendicular to the applied field,

respectively. Such behavior is supported by the fact that the
variation of the DM energy with ϕq is enormous as compared
to that of the dipolar coupling or the surface anisotropy, whose
variations are almost imperceptible. One must bear in mind
that the current CH-magnetization model may not be adequate
at the edges of a bounded film. Then, for the finite film case,
it would be necessary to modify Eq. (1) to account for the
canted spins at the boundaries and to include a phase angle to
consider the spin rearrangement produced by the dipolar field
inhomogeneity. Thus, results for ferromagnetic films with in-
finite lateral extension are presented in what follows, where
the static CH model does not consider the edge contributions.

B. Energy minimization

By minimizing the total dimensionless energy ε =
E/(μ0M2

s V ), concerning θ , the extreme condition ∂ε/∂θ = 0
gives for bulk DMI,

sin θ

[
H

Ms
+cos θ

(
2Aq2

μ0M2
s

− 2Dq

μ0M2
s

− K⊥
μ0M2

s

+ 1 − e−qd

2qd

)]
= 0, (3)

where V is the volume and Ms is the saturation magnetization.
For interfacial DMI,

sin θ

[
H

Ms
+ cos θ

(
2Aq2

μ0M2
s

− 2Dq

μ0M2
s

− K⊥
μ0M2

s

+ 1

2

)]
= 0,

(4)

where three solutions are found: θ = 0, π , and an intermediate
angle θ (q). Here, K⊥ = Ks/d is the volume-averaged surface
anisotropy constant, with Ks being the surface anisotropy con-
stant and d the thickness of the magnetic film. The behavior of
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the cone angle θ , as a function of the external field and mate-
rial parameters, can be obtained from the following expression
for bulk DMI:

θ (q) = arccos

(
− H/Ms

2Aq2

μ0M2
s

− 2Dq
μ0M2

s
− K⊥

μ0M2
s

+ 1−e−qd

2qd

)
, (5)

and for interfacial DMI,

θ (q) = arccos

(
− H/Ms

2Aq2

μ0M2
s
− 2Dq

μ0M2
s
− K⊥

μ0M2
s
+ 1

2

)
. (6)

For both types of DMI, the conical angle depends on q, H , D,
and the other material parameters, and approach to π/2 when
the field is zero. By increasing the external field, the conical
angle decreases until it reaches zero at the nucleation field,
which is discussed in Sec. II D.

The energy minimization analysis concerning q reveals
that the energy minimum does not significantly change as
the surface anisotropy constant K⊥ is modified (not shown).
Similar behavior occurs for the pitch-vector dependence with
the applied magnetic field. Nevertheless, the energy mini-
mization shows a linear behavior of the pitch vector with
the DM strength, in agreement with recent work [39]. This
dependence is an expected result, since the DMI induces the
magnetic texture and hence the conical helix profile is strongly
dependent on it.

C. Micromagnetic simulations

To further explore the formation of the conical helix
texture, micromagnetic simulations were performed using
MUMAX3 [97]. The system consists of a 1-nm ultrathin
film with DMI and lateral dimensions 1 μm × 1 μm
discretized into 1-nm side cells. Standard parameters for
Permalloy (Py:Ni80Fe20) have been chosen: Ms = 658 kA/m,
A = 11.1 pJ/m (the same used in the analytical model),
and an anisotropy constant K⊥ = 0.272 MJ/m3. Also, a 2-T
field was applied to saturate the magnetization along the y
axis. Then the external field was gradually reduced to per-
mit the formation of the chiral texture. The process for bulk
and interfacial-type DMI (with D = 2.5 mJ/m2) is shown
in Fig. 2, where the instantaneous magnetization distribution
for a central section of the film is presented for H � Hc

[Figs. 2(a) and 2(c)], and H < Hc [Figs. 2(b) and 2(d)], where
H � Hc corresponds to the polarized state (not shown). As
expected for bulk DMI, the pitch vector in Figs. 2(a) and 2(b)
is parallel to the field. In Figs. 2(c) and 2(d), the same values
for the magnetic field are shown but for interfacial DMI,
where q ⊥ H. An energy minimization algorithm was applied
to obtain the most stable configuration between each field
step. This process was performed for different values of the
DM constant and perpendicular anisotropy. Results for the
micromagnetic simulation are discussed and compared with
the CH-magnetization model in Figs. 3 and 5.

D. Nucleation fields

The formation of the chiral texture is also understood
by calculating the nucleation field, the field at which the
equilibrium configuration starts to change. The magnetization
saturates if H is larger than the nucleation (or critical) field

(a) (b)

(c) (d)

FIG. 2. Snapshots for the micromagnetic simulation showcasing
the evolution of the conical helix texture stabilized by the bulk (a,b)
and interfacial (c,d) Dzyaloshinskii-Moriya interactions. The conical
helix texture is formed by reducing the applied magnetic field, with
a particular orientation depending on the type of DMI. A piece of
the infinite magnetic film is observed from the perpendicular z axis
represented in Fig. 1, and the color code indicates the perpendicular
component of the magnetization.

Hc, which means that θ = 0 and m̂ = ŷ. By reducing the field
from saturation, the magnetization is practically uniform until
the nucleation field Hc is reached. At slightly lower fields,
H � Hc, the nonuniform solution θ (q) arises, which repre-
sents a conical helix magnetic texture dependent on H and the
material parameters. The other uniform solution occurs for a
large opposite field, where θ = π and m̂ = −ŷ. The critical
fields related to the magnetic phase transitions between the
uniform state and the conical helix were analyzed, solving
∂ε2/∂θ2 = 0 for both types of DMI, at the polarized state so-
lution, i.e., θ = 0. For bulk-type DMI (ϕq = 0), the nucleation
field for an infinite film is

μ0Hb−DM
c = 2D

Ms
q − 2A

Ms
q2 + K⊥

Ms
− μ0Ms

1 − e−qd

2qd
. (7)

Also, for interfacial DMI (ϕq = π/2) the critical field is

μ0H i−DM
c = 2D

Ms
q − 2A

Ms
q2 + K⊥

Ms
− μ0Ms

2
. (8)

These nucleation fields depend explicitly on the pitch-vector
magnitude, having a maximum at a critical value q = qc.
When the external field decreases until reaching the maximum
of the nucleation field H = Hc(qc), the fully polarized state
becomes unstable and the system starts to form a helical mag-
netization profile with a wavelength λc = 2π/qc. Therefore
it is verified that the critical value qc that maximizes the
nucleation field is effectively the pitch vector that minimizes
the system’s energy. The magnitude of the dipolar term [last
term in Eq. (7)] for qd = 0 is −μ0Ms/2. For nonzero q and d ,
the dipolar term decreases its absolute value in such a way
that even for d = 1 nm there is an appreciable change of
the dipolar term with q. Therefore, only on the limit qd = 0
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FIG. 3. Phase diagrams of the magnetic states for a thin film with
bulk DMI, where P corresponds to the field-polarized state, and CH
is the conical helix state. Here OOP (IP) represents the transition
from the P state to an out-of-plane (in-plane) state, depicted by the
red (maroon) line. (a) The nucleation fields from the calculations
(simulations) are plotted by solid lines (filled stars) as a function
of the DM strength for different anisotropy constants, where the
green color denotes the case when the dipolar interaction is higher
than the surface anisotropy. At the same time, blue symbolizes when
both energies are similar in magnitude at q = 0, and the purple color
symbolizes the situation when the surface anisotropy overcomes the
dipolar interaction. The open squares indicate the analytical solution
in the bulk limit [39]. Also, the critical DM strength Dc designates the
critical value under which the nucleation field for coherent reversion
(either IP or OOP) is larger than the critical field for the CH nucle-
ation. In (b), Dc is calculated vs the ratio among the perpendicular
anisotropy field with the demagnetizing field strength. The vertical
dashed line represents the critical value Dc = 0 at which anisotropy
and dipolar fields are equal at q = 0, that is, K⊥ = μ0M2

s /2.

the dipolar contribution is constant and able to be absorbed
into the anisotropy. A slight change in the thickness may also
alter the pitch vector q, because the subtle competition among
anisotropy and magnetostatics depends on d . Then the bal-
ance between the dipolar and surface anisotropy is destroyed
under the thickness increment, and the conical helix model
will not describe the actual magnetic ground state. Instead, an
elliptical-shaped helicoid should be appropriate for modeling
the magnetization texture.

Figure 3(a) shows the calculated (solid lines) and simulated
(filled stars) nucleation fields under which the conical helix
texture begins to form as a function of the bulk DM strength.
Three values of the anisotropy K⊥ were chosen, corresponding
to a perpendicular anisotropy field (μ0H⊥ = 2K⊥/Ms) that
is slightly lower (green), equal (blue), and scarcely higher
(purple) than the dipolar field evaluated at q = 0 (equivalent to
μ0Ms). Note that the minor discrepancies between the model
and MUMAX can be attributed to the edge effects in the simula-
tions, where the spin deviations at the borders may influence
the nucleation fields. Such deviations are not considered in
the model established by Eq. (1). The case when dipolar
interaction dominates and hence the magnetization prefers to
remain in the film’s plane is depicted by the green color in
Fig. 3(a) (K⊥ = 0.25 MJ/m3). Here, μ0Ms > 2K⊥/Ms, and
the nucleation field for the in-plane (IP) coherent rotation is
higher than the CH nucleation field Hb−DM

c at D < Dc (see
IP zone). Such behavior means that there is a critical DM
strength Dc (maroon diamond) above which the CH nucle-
ates, while at D < Dc the magnetization of the film reverses
uniformly in the plane.

The blue data in Fig. 3(a) describes the case when dipolar
and surface anisotropy are similar in magnitude so that they
are canceled at q = 0. Hence the result for the critical field is
similar to the analytical solution (see open squares) reported
in Ref. [39], where H0

c = D2/(2Aμ0Ms). Such a result is valid
in the bulk limit, where there are no surface magnetic charges,
negligible dipolar energy, and the thickness dependence is
irrelevant. The same result can be obtained from Eq. (7) in the
bulk limit and by replacing the pitch vector by q0 = D/2A.
Nevertheless, as the constant D increases, both models (repre-
sented by the blue solid line and open squares) do not match
exactly. The reason is associated with the fact that in the ultra-
thin limit, the dipolar energy depends slightly on qd and, even
when the dipolar and surface anisotropy fields are canceled
at q = 0, as q increases, the dipolar energy decreases so that
Hb−DM

c > H0
c . On the other hand, if the surface anisotropy

interaction is more significant than the dipolar one [see purple
data in Fig. 3(a)], the nucleation field for coherent out-of-
plane (OOP) rotation HOOP

c is higher than the CH critical field
at D < Dc (red triangle). Therefore, again there is a critical
DM strength Dc above which the conical helix nucleates, but
in this case, at D < Dc the magnetization rotates uniformly
and out of the plane due to the strong perpendicular surface
anisotropy. Figure 3(b) shows the behavior of the critical DM
strength, Dc, as a function of the ratio between the perpen-
dicular anisotropy constant and the strength of the dipolar
term at q = 0. The vertical dashed line represents the isotropic
case 2K⊥/Ms = μ0Ms, where Dc = 0. Above the solid black
line, the CH texture is formed, while below it the coherent
(either IP or OOP) magnetization rotation is preferred. Similar
behavior is obtained for interfacial DMI (not shown).

III. SPIN-WAVE DYNAMICS

This section calculates the spin-wave dispersion at the sat-
urated regime and discusses its connection with the magnetic
texture. The DMI gives rise to nonreciprocal propagation
of spin waves in chiral magnetic films [24,25]. For interfa-
cial DM coupling, Damon-Eshbach (DE) modes (M ⊥ k) are
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notoriously influenced by the DMI [26–29]. For the bulk-type
DMI, experimental evidence shows that the nonreciprocity
is mainly active in the backward-volume (BV) configuration
(M ‖ k) [98–101]. These differences in both cases (DE and
BV) are connected with the modulations observed in the con-
ical helix ground state calculated previously because, for the
interfacial DMI, the spin texture is ordered perpendicularly to
the field axis (y). In contrast, for bulk DMI, the modulation
of the helicoid is along the y axis. Therefore it is intriguing
to analyze the spin waves close to the transition between the
saturated and the conical helix states.

The SW dispersion for bulk [ f b−DM(k)] and interfacial
[ f i−DM(k)] DMI, with in-plane magnetization, can be written
as [25,29]

f b−DM(k) = γ D

πMs
k cos ϕk + γ

2π

√
Wxx(k)Wyy(k)

f i−DM(k) = γ D

πMs
k sin ϕk + γ

2π

√
Wxx(k)Wyy(k), (9)

where γ is the gyromagnetic ratio, k is the wave-vector
magnitude, ϕk is the angle between the wave vector and
the equilibrium magnetization, and the elements Wαα (k) are
associated with dipolar, exchange, Zeeman, and anisotropic
interactions (see Appendix B). The SW dispersion, assuming
a bulk DMI, is shown in Fig. 4, emphasizing the critical
wave vector kc at which the frequency approaches zero, and
the SWs become soft. Such a critical wave vector cannot
be obtained analytically, even in the limit kd � 1, where a
fourth-grade algebraic equation is obtained, but whose so-
lutions are too long and not of practical use. Figure 4(a)
shows the dispersion for different values of D, while Fig. 4(b)
depicts the case for different values of the external field at
D = 1.653 mJ/m2. In the latter case, one can note that the
wave vector evaluated at the minimum of the SW dispersion
does not depend on the external field. The kc point defines
the instability of the saturated state, appearing at only one
propagation direction (+k or −k, depending on the sign of
D), evidencing the chiral nature of the magnonic system. Such
features of the SW dynamics are directly connected with the
conical helix spin structure, which also has chiral properties.

IV. CONNECTION BETWEEN STATICS AND DYNAMICS

Previous works argued that a specific spin-wave mode of
the spectrum goes soft, triggering a local instability of the
magnetization [84–87]. Below a threshold magnetic field, spin
textures in ferromagnetic samples start to nucleate from the
initially saturated state. Such a magnetic phase transition is
usually accompanied by soft spin-wave modes at the critical
point [91,92]. As the nucleation of the helical texture proceeds
via the instability of the uniform magnetization state, it cor-
responds to a second-order phase transition, which contrasts
with a first-order transition, where the field-polarized state
becomes metastable and gradually depopulated [102].

The connection between the static and dynamic properties
of the chiral system is shown in Fig. 5, where the nucle-
ation field and the pitch vector are analyzed as a function
of the Dzyaloshinskii-Moriya constant D. As before, the stars
represent the pitch vector calculated from micromagnetic sim-

[G
H

z] 3 mJ/m2

2.5 mJ/m2

2 mJ/m2
(a)

(b)

[rad/ m]

T

T

T

[G
H

z]

FIG. 4. Spin-wave dispersion relations calculated for a perpen-
dicular anisotropy K⊥ = 0.272 MJ/m3. In (a), curves with different
values of D are computed for different critical fields, and in (b),
different external fields are considered for D = 1.653 mJ/m2. The
magnonic dispersions are analyzed close to zero frequency, where
the field-polarized state becomes unstable. The critical wave vector
at which the spin waves soften is illustrated with vertical lines.

ulations. Figures 5(a) and 5(b) depict the critical field at which
the CH spin texture nucleates (solid lines) and the field at
which the spin waves soften [ f b−DM(kc) → 0]. Both critical
fields match almost perfectly, which is expected because they
describe the destabilization of the saturated state. In Figs. 5(c)
and 5(d), the pitch vector qc of the conical helix, and the
critical wave vector kc at which the SWs become soft, are
compared. These critical wave vectors are analyzed against
the DM constant, where the exchange-dominated pitch vector
q0 = D/(2A) (dash line) of the bulk limit is also shown [39].
Overall, one can see that there is a wide range of D values
where kc matches with the qc that minimizes the system’s
total energy at the nucleation field. The previous result allows
connecting the dynamic and static features because when the
saturated state becomes unstable, the magnetization forms a
conical helix texture with a pitch vector (qc) equals to the criti-
cal wave vector (kc). Nevertheless, a slight difference between
qc and kc appears at D < Dc.

To understand the discrepancies evidenced in Figs. 5(c)
and 5(d) (for D < Dc), the orbits of the spin waves are
analyzed at k = kc and f b−DM(kc) → 0. The insets in
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FIG. 5. Panels (a) and (b) show the critical fields for d = 1 nm obtained from both the conical helix magnetization model (lines) and the
spin-wave dispersion (open symbols). The blue stars represent results from micromagnetic simulations. In (a, c) K⊥ = 0.25 MJ/m3 with a
critical DM constant of Dc = 0.64 mJ/m2, and in (b, d) K⊥ = 0.3 MJ/m3 with Dc = 0.72 mJ/m2. In (c) and (d) the critical wave vector kc at
which the saturated state becomes unstable and the pitch qc of the helix are compared. The gray dashed line corresponds to the bulk solution,
q0 = D/2A, found in the literature (when dipolar effects are not relevant), while red diamonds and black lines depict the kc and qc vectors,
respectively. The insets in (c) and (d) show the orbits described by the dynamic magnetization components (in arbitrary units) evaluated at
k = kc and f b−DM(kc ) → 0. The cases with D = 0.5 mJ/m2, 1 mJ/m2, and 2.7 mJ/m2 have been used in the calculations of the orbits.

Figs. 5(c) and 5(d) show the orbits that describe the dynamic
magnetization components, where it is easy to see that if the
DM constant is lower than Dc, elliptical orbits are obtained.
Depending on the competition between the perpendicular
anisotropy and dipolar interactions, the elliptical shape has
an in-plane major axis [Fig. 5(c)] or out-of-plane major axis
[Fig. 5(d)]. Therefore, since the conical helix model describes
a circular spin texture, it is not able to correctly represent
the D < Dc case, and hence a helicoidal state with elliptical
magnetization texture is required to reproduce the behavior
obtained from the SW dynamics, which is beyond the scope
of this paper. Notice that in Fig. 5(c), for D < 0.5 mJ/m2, the
wave vector goes to zero, which means that the uniform mode
is excited, while in Fig. 5(d), the wave vector is nonzero and a
nonuniform mode is excited even for very low D. On the other
side, as the DM constant increases, the SW orbit becomes
more circular, and consequently, the conical helix pitch vector
qc and the wave vector kc match. Note that even when the
SW orbits are not entirely circular (see the orbits evaluated at
D = 1 mJ/m2), the dynamic and static vectors (qc and kc) co-
incide nicely. Thus the relation between statics and dynamics
allows for predicting some properties of the magnetic textures
by using only the SW characteristics, since both the nucleation
field and the pitch vector can be determined from the analysis
of the SW spectra at f b−DM(kc) → 0, where the soft spin
waves seem to crystallize into a conical helix texture.

V. CONCLUSIONS

Chiral magnetic textures formed in thin films with
Dzyaloshinskii-Moriya interactions have been studied theo-
retically and with micromagnetic simulations. A conical helix
model is proposed, giving the nucleation fields, cone an-
gle, and the pitch vectors that characterize the spin texture
when interfacial or bulk Dzyaloshinskii-Moriya couplings
are considered. The role of the perpendicular anisotropy and
the dipolar interaction is also discussed. By comparing the
nucleation fields for in-plane and out-of-plane coherent rota-
tion with those corresponding to the conical helix formation,
a critical Dzyaloshinskii-Moriya constant is derived, which
depends on the film thickness and the competition among
perpendicular anisotropy and the dipolar interaction. This crit-
ical DM strength separates the phase transitions based on
a coherent magnetization rotation and a conical helix tex-
ture formation, evidencing the relevant role of perpendicular
anisotropy and magnetostatics on ultrathin magnetic films,
which can even turn the circular helix into an elliptical helix.

By analyzing the dynamic and static magnetic properties,
it is demonstrated that the nucleation field and pitch vector
can be directly obtained from the spin-wave examination,
since its critical wave vector (evaluated at zero frequency)
matches with the pitch vector associated with the conical helix
texture. Therefore the formation of the spin textures induced
by the Dzyaloshinskii-Moriya interaction can be understood
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as a crystallization of soft spin waves, which can be used to
characterize the imminent appearance of chiral magnetic order
in thin films.
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APPENDIX A: TOTAL-ENERGY CALCULATION

In the following sections the different energy contributions
are derived as a function of the helix parameters θ and q. A
normalized total energy ε = E/(μ0M2

s V ) has been used in the
calculations.

1. Exchange energy

The exchange energy in the micromagnetic continuum ap-
proximation is [103]

Eex =
∫

V

A

M2
s

[(∇Mx )2 + (∇My)2 + (∇Mz )2] dV. (A1)

Using the CH-magnetization model presented in Eq. (1), the
exchange energy density becomes

εex = Aq2

μ0M2
s

sin2 θ. (A2)

2. Perpendicular magnetic anisotropy

The energy associated with the surface perpendicular mag-
netic anisotropy is given by

Es = −
∫

S

Ks

M2
s

(n · M)2 dS, (A3)

where n is the easy-axis (perpendicular to the film) di-
rection, and Ks > 0 is the surface anisotropy constant.
By using the relation K⊥ = Ks/d , the volume-averaged
energy is

Es = −
∫

V

K⊥
M2

s

(n · M)2 dV, (A4)

which is valid for ultrathin films. Then the resultant energy
density for an infinite film is written as

εs = − K⊥
2μ0M2

s

sin2 θ. (A5)

3. Zeeman energy

The Zeeman energy is given by

EZ = −μ0

∫
V

M · H dV, (A6)

where H is the applied field. Then the energy density becomes

εZ = − H

Ms
cos θ. (A7)

4. Dipolar interaction

The dipolar field can be derived from Maxwell’s equations,
where Hdip(r) = −∇
dip(r), with 
dip(r) the magnetostatic
scalar potential given by

∇2
dip(r) = ∇ · M(r). (A8)

As the film thickness lies in the region −d/2 < z < d/2,
a general expression can be calculated by assuming a ho-
mogeneous profile for the magnetization along with the
thickness. Using the CH model [see Eq. (1)], it is obtained that
∇ · M(x, y) = f (x, y), where

f (x, y) = Msq cos (qy cos ϕq + qx sin ϕq) sin θ sin ϕq.

Then a particular solution of the magnetic potential is obtained
which has the form [81]


dip(r) =

⎧⎪⎨
⎪⎩

aq sin θ cos (q · r)e−qz, if z > d/2

Aq sin θ cos (q · r)e−qz + Bq sin θ cos (q · r)eqz − f (x,y)
q2 , if − d/2 � z � d/2

bq sin θ cos (q · r)eqz, if z < −d/2.

(A9)

The coefficients in Eq. (A9) can be determined from the boundary conditions at z = ±d/2, from which it is found that

aq = Aqq + Bqeqd q − e
qd
2 Ms sin ϕq

q
, bq = Bqq + Aqeqd q − e

qd
2 Ms sin ϕq

q
, (A10)

Aq = Ms
(sin ϕq − 1)

2q
e

−qd
2 , Bq = Ms

(sin ϕq + 1)

2q
e

−qd
2 . (A11)

After some algebraic manipulations, the magnetic potential inside the film becomes


dip(r) = Ms

2q
e− q(d+2z)

2 cos (q[x sin ϕq + y cos ϕq])
(−1 + e2qz + [1 + e2qz − 2e

q(d+2z)
2 ] sin ϕq

)
sin θ. (A12)
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Now, the dipolar field Hdip = −∇
dip(r) can be eas-
ily obtained, and the energy calculated from Edip =
−μ0

2

∫
V M · Hdip dV , which in the infinite film limit

results in

εdip(ϕq) = sin2 θ
1 − e−qd + sin2 ϕq(e−qd + qd − 1)

4qd
,

(A13)

while for q = 0,

εdip(q = 0) = 1
4 sin2 θ. (A14)

5. Bulk and interfacial Dzyaloshinskii-Moriya interactions

There are two basic types of inversion-symmetry-breaking
mechanisms associated with the DMI [104], the noncen-
trosymmetric lattice (bulk DMI) and the one related to an
interface (interfacial DMI). In the continuum limit, the energy
for bulk DMI can be written as

Eb−DM = − D

M2
s

∫
V

M · (∇ × M)dV,

where the energy density in the infinite film limit results in

εb−DM = − qD

μ0M2
s

cos ϕq sin2 θ. (A15)

On the other side, the interfacial DM energy term (with ẑ
being the normal axis) can be written

Ei−DM = − D

M2
s

∫
V

[(M · ∇ )Mz − Mz(∇ · M)]dV,

and hence the energy density reads

εi−DM = − qD

μ0M2
s

sin ϕq sin2 θ. (A16)

APPENDIX B: SPIN-WAVE DISPERSION RELATION

The spin-wave dispersion relation for bulk and interfacial
DMI can be obtained from Ref. [25]. For a ferromagnetic
thin film with an in-plane magnetization, the Wαα (k) elements
used in Eq. (9) are

Wxx(k) = Wxx(0) + μ0MsF (kd ) sin2 ϕk + 2A

Ms
k2 (B1)

and

Wyy(k) = Wyy(0) − μ0MsF (kd ) + 2A

Ms
k2, (B2)

where Wxx(0) = μ0H , and Wyy(0) = μ0H + μ0Ms − 2K⊥
Ms

.
Here F (x) = 1 − (1 − e−x )/x, and ϕk is the angle between
the magnetization and the wave vector k.
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