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Magnon valley thermal Hall effect in triangular-lattice antiferromagnets
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We study the magnetic excitations of the antiferromagnetic XXZ model on two-dimensional triangular lattice.
We find there is a magnon valley thermal Hall effect. As far as we know, this effect has been studied on
only the ferromagnetic honeycomb lattice. We reveal that the valley thermal Hall conductivity also conforms
to the universal behavior of thermal Hall conductivity proposed by Yang et al. [Phys. Rev. Lett. 124, 186602
(2020)]. We derive a low-energy effective theory near the valleys and find that although the low-energy effective
dynamic matrix is non-Hermitian, the Berry curvatures are mainly determined by its Hermitian part. We show
that our results are general to some extent in the Y phase of the triangular lattice. By an explicit calculation
with experimental parameters, we demonstrate that Rb4Mn(MoO4)3 is a suitable material to realize the magnon
valley thermal Hall effect.

DOI: 10.1103/PhysRevB.105.224401

I. INTRODUCTION

In electronic systems, valleytronics has received
widespread attention because, in addition to charge and
spin, it provides us with a new means of manipulating
electrons [1,2]. The energy bands of two-dimensional
materials with a honeycomb structure usually have two
inequivalent valleys at the corners of the Brillouin zone.
Therefore, current research on valleytronics mainly focuses
on graphene or graphenelike materials, such as silicon
and transition-metal dichalcogenides, 2H-MX 2 [3–7]. The
nonzero but opposite-sign Berry curvatures in the two
valleys result in a valley-contrasting Hall transport, with
carriers in different valleys turning into opposite directions
perpendicular to an in-plane electric field. This phenomenon
is called the valley Hall effect. It is similar to the Hall effect, in
which the applied magnetic field exerts an opposite transverse
Lorentz force on the moving positive and negative carriers
and tends to push them to opposite sides of the conductor.

Investigations of topological matter in the electronic sys-
tem have also been extended to theoretical predictions of
topological magnon insulators [8–24]. Magnons are the ele-
mentary excitations of a magnetically ordered system which
are ubiquitous in magnetic materials. With the breaking of
inversion or time reversal symmetry, it is natural to expect
the band structure of the magnon to show nontrivial topo-
logical properties. Based on the semiclassical equation of
motion of magnons, it was shown that magnons exhibit a
thermal Hall effect in which a temperature gradient leads
to a transverse heat current [25]. The thermal Hall effect is
characterized by transverse thermal Hall conductivity (TTHC)
κxy, which is given as an integral of Berry curvature with
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a weight factor. However, in contrast to electronic systems,
there are no quantized Hall plateaus because magnons are
boson-obeying Bose-Einstein statistics. Therefore, the TTHC
includes contributions from all the magnon bands. In ex-
periments, the thermal Hall effect was first observed in the
three-dimensional (3D) pyrochlore ferromagnetic insulators
Lu2V2O7, Ho2V2O7, and In2Mn2O7 [26,27]. Later, this effect
was also reported in the two-dimensional kagome magnet
Cu(1,3-bdc) [28,29].

The magnon valley thermal Hall effect (MVTHE) was
also investigated recently [30–33]. Although the TTHCs are
always zero in these systems, i.e., κxy = 0, the valley thermal
Hall conductivity (VTHC) κv

xy is not zero. This means that a
net pure valley Hall current can be created under a temperature
gradient. Because of the opposite signs of the Berry curvatures
between two inequivalent valleys, Zhai and Blanter pointed
out that this effect can be detected by the inverse magnon
valley Hall effect and valley Seebeck effect [31].

To the best of our knowledge, all the studies on the
MVTHE have mainly focused on a lattice with honeycomb
structure. In this work, we show that the MVTHE can also
be realized in triangular lattice antiferromagnets. Our find-
ings enlarge the class of magnetic crystals that exhibit the
MVTHE. A large number of magnetic materials have been
synthesized that realize triangular antiferromagnets, such as
Ba3MnNb2O9 [34], Rb4Mn(MoO4)3 [35], A3NiNb2O9 (with
A=Ba, Sr and Ca) [36], RbFe(MoO4)2 [37], Cs2CuBr4

[38,39], Cs2CuCl4 [39–41], Ba3CoSb2O9 [42–46], and
κ-(BEDT-TTF)2Cu2(CN)3 [BEDT-TTF is bis(ethylenedi-
thio)tetrathiafulvalene] [47]. It is very promising that the
predictions given in this paper are detected in experiment.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the XXZ spin model on a triangular
lattice and discuss its classical phase diagram. In Sec. III, we
first review the linear spin wave theory and then apply it to the
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FIG. 1. (a) Triangular lattice with three sublattices denoted by
A, B, and C. (b) The mean-field ground-state phase diagram of the
XXZ spin model in Eq. (1) obtained in the classical limit (S → ∞).
There are four different regions whose spin configurations are given
in (c). The arrows denote the spin orientations on the A, B, and C
sublattices. When ε �= 0 and ε � 1, Y and V phases will change
to distorted Y and V, respectively. Because the change in the phase
boundary is very small, we do not draw it here.

(distorted) Y phase shown in Fig. 1(c). Then the topological
properties of the magnon band structures are investigated. We
demonstrate that the MVTHE can be detected in this system.
In Sec. IV, we establish a low-energy effective theory to
further understand the topological properties of the system.
In Sec. V, we show the material realization of the MVTHE
in Rb4Mn(MoO4)3. Finally, a discussion and conclusions are
provided in Sec. VI.

II. HAMILTONIAN AND CLASSICAL PHASE DIAGRAM

For a theoretical work, we study the XXZ spin model on a
triangular lattice with a magnetic field along the z axis,

H =
∑

〈iα, jβ〉

[
JSiα · S jβ + �Sz

iαSz
jβ

] −
∑

iα

ShαSz
iα, (1)

where Si,α is the spin of magnitude S localized at the αth sub-
lattice of the ith unit cell in a triangular lattice [see Fig. 1(a)].
α, β = A, B,C denote the three sublattices. 〈·, ·〉 stands for
the summation over nearest-neighbor lattice sites. The first
term represents the magnetic exchange interaction with J > 0
for antiferromagnets. In the following discussion, we will
choose the units of energy to be J , i.e., let J = 1. The second
term with � > 0 indicates the anisotropic exchange coupling.
The last term is the applied magnetic field. We assume that
hα depends on the sublattice, which could be realized by a
magnetic substrate.

First, we discuss the mean-field ground state of the model
in Eq. (1), where the spins are viewed as classical vectors
[48,49]. The spins on sublattice α are parameterized as

Sα = S(sin θα cos φα, sin θα sin φα, cos θα ). (2)

Without loss of generality, we set φα = 0 because of the
invariance of the ground states under a uniform rotation of

the azimuths. The energy of the mean-field Hamiltonian is de-
scribed by three polar angles: (θA, θB, θC ). Substituting Eq. (2)
into Eq. (1), we obtain the mean-field energy per unit cell as

EMF = 3S2
∑
(α,β )

[(1 + �) cos θα cos θβ + sin θα sin θβ]

−
∑

α

hα cos θα, (3)

where the notation (α, β ) means summation over the pairs of
(A, B), (B,C), and (C, A). θα are determined by minimizing
the energy EMF . According to different solutions of θα , we
identify different phases.

In this paper, we mainly focus on the phase diagram in
the antiferromagnetic region (� > 0), where four different
phases are identified in a uniform applied magnetic field, i.e.,
hα = h. The phase diagram is shown in Fig. 1(b). This result is
consistent with that obtained by Yamamoto et al. [50]. We use
Griset’s idiom to call these phases Y, V, up-up-down (UUD),
and fully polarized (FP) phases [51]. The spin configurations
of these states are plotted in Fig. 1(c). When 0 < h < 3, the
system is in the Y phase, with which we are mainly concerned.
When 3 < h < hc1, the system will enter the UUD phase.
The phase boundary between UUD and V can be worked out
as hc1 = 3

2 [1 + 2� + √
1 + 12� + 4�2]. When h is greater

than hc1 but less than hc2 = 9 + 2�, the system will enter the
V phase. Finally, when h > hc2, the system will be polarized
fully. If we turn on a small deviation ε of the magnetic field
on the B sublattice, i.e., hB = h + ε and ε � 1, the Y and V
phases are replaced by distorted ones, as shown in Fig. 1(c).

III. TOPOLOGICAL MAGNON BAND

In this section, we first apply the linear spin wave theory
to the model to introduce the concept of topological magnons.
Then, through the band structure of the magnons, we define
the TTHC and VTHC, which are related to the Berry curva-
ture.

A. Linear spin wave theory

In linear spin wave theory, we need to perform a local
rotation for the coordinate system at each lattice point, so that
the mean-field directions of the spins point along the local z
axis. Labeling the local frame spins as S̃iα , the transformation
between local and global spins is written as

Siα =
⎡
⎣ cos θα 0 sin θα

0 1 0
− sin θα 0 cos θα

⎤
⎦S̃iα. (4)

Finally, restricting ourselves to the harmonic excitation
spectrum, we perform a truncated Holstein-Primakoff (HP)
transformation:

S̃x
iα =

√
S

2
(a†

iα + aiα ),

S̃y
iα = i

√
S

2
(a†

iα − aiα ), (5)

S̃z
iα = S − a†

iαaiα,
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with a†
i,α (ai,α ) being a bosonic creation (annihilation) opera-

tor. Neglecting the terms of magnon-magnon interactions and
performing the Fourier transformation, the Hamiltonian can
be written in momentum space as

H = E0 + S

2

∑
k

(ψ†(k), ψ̃ (−k))H (k)

(
ψ (k)

ψ̃†(−k)

)
, (6)

where E0 is the total energy of the mean-field ground state,
ψ†(k) = (a†

kA, a†
kB, a†

kC ), and the tilde over ψ means the trans-
pose operation. The bosonic Bogoliubov Hamiltonian H (k)
has the following form:

H (k) =
[
A(k) B(k)
B
(−k) A
(−k)

]
. (7)

If we define the quantities

Y ±
αβ = cos(θα − θβ ) + � sin θα sin θβ ± 1,

Xαβ = 3 cos(θα − θβ ) + 3� cos θα cos θβ, (8)

the diagonal and off-diagonal elements of the matrices A(k)
and B(k) are given by

[A(k)]αα = hα cos θα −
∑
β �=α

Xαβ,

[A(k)]αβ = Y +
αβ�αβ (k),

[B(k)]αα = 0,

[B]αβ = Y −
αβ�αβ (k), (9)

where �αβ (k) is defined by the following sum:

�αβ (k) = 1

2

∑
δ

exp(ik · δ), (10)

where it is worth noting that the sum is over nearest-neighbor
vectors δ connecting an α sublattice site to a β sublattice site.
Due to the conservation of the effective time reversal sym-
metry (ETRS) [18], it is easy to show that A(k) = A
(−k)
and B(k) = B
(−k). For a coplanar spin texture, if ê is a
unit vector perpendicular to this plane, the ETRS indicates the
invariance of the spin texture under a combination of actual
time reversal and a spin rotation by π about ê.

The Hamiltonian (6) is diagonalized by a paraunitary Bo-
goliubov transformation [52], which amounts to finding a
matrix Tk such that

T †
kHkTk = Ek, T †

k �Tk = �, (11)

where � = diag(1, 1, 1,−1,−1,−1) and Ek =
diag(ε1,k, ε2,k, ε3,k, ε1,−k, ε2,−k, ε3,−k ) gives the three
magnon energy bands. The second formula in Eq. (11)
ensures the bosonic commutation rule of the magnons. The
magnon bands are shown in Fig. 2 for h < 3, where the
system locates in the Y (distorted Y) phase. In this paper,
we consider only the case where the magnetic field on the B
sublattice has a small deviation ε from the uniform magnetic
field h. From the left (or right) column of Fig. 2, we can see
that as � increases, the separation of the uppermost band
from the lowest two bands becomes larger and larger. Thus,
we can focus on only the lowest two bands near the K and K ′
points at low temperature and large �. In a uniform magnetic
field with ε = 0, the system is in the Y phase, and the two

FIG. 2. The magnon bands of the XXZ spin model on a trian-
gular lattice at h = 1.1. (a) � = 0.2, ε = 0. (b) � = 0.2, ε = 0.05.
(c) � = 0.35, ε = 0. (d) � = 0.35, ε = 0.05. (e) � = 0.5, ε = 0.
(f) � = 0.5, ε = 0.05. The inset in (a) sketches the first Brillouin
zone of the triangular lattice.

lowest magnon bands touch at K and K ′, forming massless
Dirac-cone-like dispersions. We can work out the mean-field
ground state with θA,0 = π, θB,0 = −θC,0 = θ , where

θ = arccos

(
3� + h + 3

3� + 6

)
(12)

is obtained by minimizing the mean-field energy in Eq. (3).
When ε is turned on, the system will enter the distorted

Y phase, and the Dirac-cone-like dispersions are gapped due
to the breaking of the mirror symmetry. The mirror symme-
try is defined as the system remains unchanged when the
spins on the B and C sublattices are exchanged. Because the
ε considered here is small, we can expand the mean-field
ground-state solutions of θα to the first order of ε, which are
written as θα ≈ θα,0 + �αε. The expansion coefficients �α as
a function of h and � are shown in Fig. 3. The method to
calculate those coefficients is given in Appendix A. In order to
demonstrate the effectiveness of this expansion, we also show
a comparison of θα obtained with the exact numerical method
and the expansion method in the insets in Fig. 3. We find that
the larger � is, the more accurate the expansion is. The gap
between the lowest two bands at the K and K ′ points can be
written, up to first order of ε, as

�gap = ε{cos θ + [6�A − (3 + 3� + h)(�B + �C )] sin θ},
(13)

where θ is determined by Eq. (12).
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FIG. 3. The expansion coefficients �α with α = A, B,C at h =
1.1. The insets give the mean-field ground-state solutions of θα ob-
tained with the exact numerical method (dashed black lines) and the
expansion method up to first order of ε (solid red lines).

B. Magnon valley thermal Hall conductivity

The Berry curvature of the nth magnon band is defined as
[11]

�n(k) = iεμν

[
�∂kμ

T †
k �∂kν

Tk
]

nn, (14)

where εμν is the second-order antisymmetric tensor, where
μ, ν = x, y and the Einstein summation convention has been
used for this index, and [M]nn is the nth diagonal element
of the matrix M. Since the phase of the wave function was
uncertain in the numerical diagonalization, Eq. (14) is not
suitable for the numerical calculation. Thus, we adopt the
gauge-invariant form of the Berry curvature,

�n(k) = −2Im
2N∑

m �=n

[
�T †

k

(
∂kxHk

)
Tk

]
nm

[
�T †

k

(
∂kyHk

)
Tk

]
mn

([�Ek]nn − [�Ek]mm)2
.

(15)

It can be confirmed that Eq. (14) is equivalent to Eq. (15).
Figure 4 shows the Berry curvatures of magnon bands in
Fig. 2(f). As shown in Fig. 4(c), the Berry curvature for the top
band is almost zero in the whole Brillouin zone. Therefore, the
contribution of the top band to the valley thermal Hall effect
can be ignored. From Figs. 4(a) and 4(b), we can see that the
nonzero Berry curvature is mainly concentrated at the K and
K ′ points for the middle and bottom bands.

Using linear response theory, Matsumoto et al. [11] derived
the TTHC as

κxy = −k2
BT

h̄V

∑
k

N∑
n=1

{
c2[g(εn,k )] − π2

3

}
�nk, (16)

where kB is the Boltzmann constant, T is temperature, h̄
is the Plank constant, V is the volume of the system, N
is the number of sublattices, g(εn,k ) = [eεn,k/kBT − 1]−1 is
the bosonic distribution function, c2(x) = (1 + x)(ln 1+x

x )2 −
(ln x)2 − 2Li2(−x), Li2(x) is the dilogarithm, and the sum for
k is over the first Brillouin zone.

FIG. 4. Berry curvatures in the k plane for the (a) bottom and
(b) middle bands. (c) The Berry curvatures for three bands along the
�-K ′-M-K-� line as shown in Fig. 2(a). The parameters are the same
as in Fig. 2(f). Here, we assume that the lattice constant is unit.

Because of the ETRS, it can be shown that the Berry
curvature of the single-magnon band is an odd function with
respect to momentum k, i.e., �n(k) = −�n(−k) [18]. This
is confirmed by our numerical results in Figs. 4(a) and 4(b).
Consequently, if we put an odd �n(k) into Eq. (16), we find
that κxy = 0 because the contributions from k and −k cancel
each other. However, a pure valley current of magnons is
generated.

The semiclassical equations of motion of magnons [25,53]
are given as

ṙn = 1

h̄

∂εn,k

∂k
− k̇ × ẑ�n(k), h̄k̇ = −∇U (r), (17)

where rn denotes the location of the magnon wave packet con-
structed by the nth band, ẑ is the out-of-plane unit vector, and
U (r) is a slowly varying potential for the magnons, which may
result from the nonuniform distribution of the temperature.
According to the second term in the first equation in Eq. (17),
the nonzero but opposite-sign Berry curvatures in the two
valleys can result in a valley-contrasting magnon transport.
The magnons in different valleys turn in opposite directions
perpendicular to the in-plane temperature gradient ∇T . This
is the origin of the MVTHE. The VTHC is defined as [31]

κv
xy = −k2

BT

h̄V

∑
q

N∑
n=1

Cn(q)
(
�K

nq − �K ′
nq

)
, (18)

where Cn(q) ≡ {c2[g(εn,q)] − π2

3 } and q ≡ k − K (K ′) is de-
fined around the K (K ′) valley. It is worth noting that the
summation over q around K (K ′) runs over only half of the
first Brillouin zone.

We show the results of the calculation of the VTHC κv
xy in

Fig. 5. The trends of the VTHC as a function of temperature
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FIG. 5. The valley thermal Hall conductivity κv
xy for different ε

values in (a), where � = 0.5, h = 1.1. (b) The universal behavior of
κv

xy/T vs T ; the solid red line is the exact numerical result, and the
dashed lines in different regions denote the theoretical fits with the
different fitting functions shown. The parameters are � = 0.5, h =
1, and ε = 0.05. (c) Contour plot of κv

xy in T and the � plane with
h = 1, ε = 0.05. Here, we set the lattice constant to be the unit length
and kB = h̄ = 1.

T are shown in Fig. 5(a) for several values of ε with fixed
� = 0.5, h = 1.1. It is demonstrated that the VTHC increases
with ε at the same temperature. In Fig. 5(b), it is shown that
κv

xy/T also conforms to the universal behavior given by Yang
et al. for bosons [54]. At T = 0, κv

xy/T vanishes, and at low
temperature it grows as ∼e−D/T , where D is a fitting con-
stant. At the intermediate temperature, κv

xy/T decreases with
an exponential form ∼eT/T0 . Finally, the VTHC approaches
a constant value for very large temperature, or, equivalently,
κv

xy/T ∼ T γ in the high-T limit with γ = 1 for magnons. The
contour plot of κv

xy in Fig. 5(c) shows that VTHC changes only
slightly with the variation of � in the range of 0.2 < � < 0.5.

IV. THE LOW-ENERGY EFFECTIVE THEORY

According to Figs. 4(a) and 4(b), we see that the nonzero
Berry curvatures mainly concentrate around the K and K ′
valleys. In order to gain a deeper understanding of the topo-
logical properties of the system, in this section we derive the
low-energy effective theory near the valleys.

It can be proved that the contribution of the uppermost
energy band near the valleys in Fig. 2 mainly comes from the
A sublattice. Therefore, we ignore the A sublattice under the
low-energy approximation. It is worth noting that the remain-
ing lattice points constitute a honeycomb lattice. This explains
why there is valley physics in a triangular lattice. In addition,
we regard both q and ε as small quantities, i.e., q, ε � 1. By
expanding the Hamiltonian to linear order in q, ε near the K
point, the effective Hamiltonian can be written as

H eff
K = Gτ0 ⊗ σ0 + τeff ⊗ σ · q + mτ0 ⊗ σz, (19)

and near K ′ point, it is

H eff
K ′ = Gτ0 ⊗ σ0 + τ ′

eff ⊗ σ ′ · q + mτ0 ⊗ σz, (20)

where τeff = F τ0 +Dτx, τ ′
eff = −τeff, σ = {σx, σy}, and σ ′ =

σxσσx. Here, τ0 and {τx, τy, τz} are a 2 × 2 identity matrix and
the Pauli matrices, respectively, which come from the non-
conservation of the particle number of the antiferromagnetic
HP transformation. And σ0 and {σx, σy, σz} are also a 2 × 2
identity matrix and the Pauli matrices, which denote the B
and C sublattices. G,D,F , m are constants determined by
the original model parameters in Eq. (1). These parameters
are derived in Appendix B up to the first-order approximation
of ε.

It is worth noting that the constant diagonal matrices (first
term) in Eqs. (19) and (20) cannot be eliminated by energy
translation. Because the diagonalizing method discussed in
Eq. (11) is equivalent to the diagonalizing of the dynamic
Hamiltonian, i.e., (τz ⊗ σ0)H eff, the constant term in H eff is
not a constant diagonal matrix in the dynamic Hamiltonian. In
general, the dynamic Hamiltonian is a non-Hermitian matrix
unlessD = 0.

Now, we consider G = 1 and D,F , and m as free pa-
rameters to study the properties of the effective Hamiltonian
when q is small. Since H eff

K ′ can be obtained from H eff
K by

the transformation {qx, qy} → {−qx, qy}, we focus on only the
properties of H eff

K .

A. D = 0

As we have already pointed out, in this case, the dynamic
matrix of H eff

K becomes Hermitian and can be written as

H eff
K,D = τz ⊗ [σ0 + F σ · q + mσz] ≡ τz ⊗ H eff

σ . (21)

This is a block-diagonal matrix and is easy to diagonalize. If
we denote the eigenstates of τz and H eff

σ as {|+τ 〉, |−τ 〉} and
{|+σ 〉, |−σ 〉}, respectively, then the eigenstates of H eff

K,D can
be obtained as {| +τ +σ 〉, | +τ −σ 〉, | −τ +σ 〉, | −τ −σ 〉}. The
eigenvalues of H eff

K,D are {E+, E−,−E+,−E−}, where E± =
1 ±

√
F 2q2 + m2, with q =

√
q2

x + q2
y satisfying H eff

σ |+σ 〉 =
E+|+σ 〉, H eff

σ |−σ 〉 = E−|−σ 〉. Then we can show that the
Berry curvature given in Eq. (15) can be reduced to the one
defined in the particle-conserving system, which is written as

�n(q) = −2Im
∑
m �=n

〈nσ |(∂qx H
eff
σ

)|mσ 〉〈mσ |(∂qy H
eff
σ

)|nσ 〉
(En − Em)2

,

(22)

where m, n = +,−. In this case, we can analytically deter-
mine the Berry curvature as

�±(q) = ∓F
2m

2�3
q

, (23)

where �q ≡
√
F 2q2 + m2. So we see that when q → 0,

�± ∼ ∓F 2

m2 . According to Eq. (17), this equation tells us how
to increase the lateral velocity of the magnon near the valleys.

B. D �= 0

In this case, the dynamic matrix of H eff
K is a non-Hermitian

matrix,

H eff
K,D = Gτz ⊗ σ0 + τ̃eff ⊗ σ · q + mτz ⊗ σz, (24)
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FIG. 6. (a) The energy bands and (b) the Berry curvature of
different values of D for the low-energy effective Hamiltonian H eff

K .
The scattering lines in (b) are the results of numerical calculation,
and the solid orange line is given by Eq. (23). The parameters are
F = 0.3 and m = 0.01.

with τ̃eff = F τz + iDτy. As long as the values of D and q
are not too large, the eigenvalues of H eff

K,D are still real. In the
following, we will always assume that this condition holds, as
the low-energy effective theory is derived from self-consistent
spin wave theory.

The energy bands and Berry curvatures of the effective
Hamiltonian H eff

K are shown in Fig. 6. By numerical calcula-
tions, we find that the Berry curvatures are hardly affected by
D. As shown in Fig. 6(b), their values are almost identical to
those given by Eq. (23). This means that the VTHC κv

xy of the
system mainly depends on the Hermitian part of the dynamic
matrix H eff

K,D. It can be understood by using perturbation the-
ory. If we treat q andD as small quantities, up toD2q2 order,
we work �±(q) out as

�±(q) = ∓ m

2�3
q

[
F 2 −D2m2 + q2D2F 2

(
1 + m2

2�2
q

)]
.

(25)

When q → 0, because m ∼ ε � 1, by comparing with
Eq. (23), it is clear that the contributions of the correction
terms in Eq. (25) are very small. We find that the perturbation
is valid even whenD reaches the order of 1.

V. MATERIAL REALIZATION

There are some materials described by the XXZ model
on the triangular lattice but with −1 < � < 0, such as
Ba3CoSb2O9 [42–46] and A3NiNb2O9, with A=Ba, Sr, and
Ca [36]. To the best of our knowledge, although there are still
no experimental reports on the discovery of materials with
� > 0, many materials with the Y phase have been found
and provide the possibility to observe the effect discussed
in this paper. These materials include Ba3MnNb2O9 [34],
Rb4Mn(MoO4)3 [35], and Ba3CoSb2O9 [55].

In fact, we find that our results are general to some ex-
tent for the Y phase on the triangular lattice. Therefore, the
expected order of magnitude for the VTHC can be obtained

FIG. 7. (a) The magnon bands, (b) the Berry curvatures, and
(c) the VTHC κv

xy for Rb4Mn(MoO4)3. According to the experi-
ment [35], the parameters are given as J̃ = 0.11 meV, D = 0.22J̃ ,
a = 6.099 Å, BA = BC = 1.045 T, and BB = 1.093 T.

in real materials, such as Rb4Mn(MoO4)3, which is a quasi-
two-dimensional easy-axis triangular antiferromagnet with
S = 5

2 . The intralayer and interlayer distances between Mn2+

ions are given by a = 6.099 Å and c/2 = 11.856 Å, respec-
tively. The Hamiltonian describing Rb4Mn(MoO4)3 is given
by H = J̃

∑
i j Si · S j − D

∑
i(S

z
i )2 − gμB

∑
i BSz

i , with D >

0 [35]. We assume that the magnetic field is applied along
the c axis. The strength of the intralayer exchange interaction
and the single-ion anisotropy are obtained by experiment as
J̃ = 1.2 K ≈ 0.11 meV and D = 0.22J̃ , respectively [35].

The system locates in the Y phase when the magnetic
field is small. The magnon bands, the corresponding Berry
curvatures, and the VTHC are shown in Figs. 7(a)–7(c), re-
spectively. We have assumed that the applied magnetic fields
in the three sublattice are BA = BC = 1.045 T and BB =
1.093 T.

By comparing Fig. 7 with Figs. 2, 4, and 5, it is found
the MVTHE discussed for the XXZ model can also be real-
ized in the Y phase of Rb4Mn(MoO4)3. Furthermore, around
T = 8 K, κv

xy reaches 0.2 × 10−3 W/Km, which is the order
of magnitude that can be detected experimentally [26].

VI. DISCUSSION AND CONCLUSIONS

In experiments, as Zhai and Blanter discussed, the MVTHE
can be detected using the inverse magnon valley Hall effect
and valley Seebeck effect [31]. There are still no experimental
reports on the discovery of materials described by the XXZ
model with � > 0. On the other hand, cold atoms in an optical
lattice have received more and more attention due to their high
degree of controllability [56,57]. Many ways to implement
the spin model have also been proposed [58,59] for optical
lattices. We note that there are also some schemes to imple-
ment the XXZ model in the triangular optical lattice [60].
Therefore, we hope that this study will attract the attention
of both the materials and cold-atom physics fields.
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In summary, we have studied the magnetic excitation of
the antiferromagnetic XXZ model on a two-dimensional tri-
angular lattice. We found that, in the Y phase, there are
Dirac-cone-like band structures for the magnon excitations
located in two inequivalent valleys of the hexagonal Brillouin
zone. This is a system capable of providing this kind of band
structure, unlike previous studies on graphene or graphenelike
materials. We point out that the energy degeneracy at the Dirac
points can be removed by a sublattice-dependent magnetic
field. Due to the nonzero and opposite signs of the Berry cur-
vatures in the two valleys, a valley thermal Hall effect can be
created in this system. By calculating the VTHC κv

xy, we found
that κv

xy/T conforms the universal behaviors proposed by
Yang et al. In order to deeply understand the topological prop-
erties of the system, we also derived a low-energy effective
theory near the valley. We found that although the low-energy
effective dynamic matrix is non-Hermitian, the VTHC κv

xy is
mainly determined by its Hermitian part. We also showed that
our results are general to some extent in the Y phase. By
an explicit calculation using the experimental parameters of
Rb4Mn(MoO4)3, we demonstrated that it is a suitable ma-
terial for realizing the MVTHE, and we gave an estimation
of the expected order of magnitude for the VTHC. Our re-
sults suggest a number of future theoretical and experimental
directions that will be useful for understanding the magnon
excitation properties of triangular-lattice antiferromagnets.
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APPENDIX A: THE CALCULATION OF THE EXPANSION
COEFFICIENTS �α

In this Appendix, we discuss how to calculate the ex-
pansion coefficients �α of mean-field solutions for θα ,
with α = A, B,C. As we discussed in the main text, when
ε = 0, the solutions of θα can be worked out as θA,0 =
π, θB,0 = −θC = θ , with θ = arccos(3(� + h + 3)/(3� +
6). When ε �= 0 and is small, we denote the mean-field
energy EMF(θA, θB, θC ) as EMF(π + εA, θ + εB,−θ + εC ) ≡
ẼMF(εA, εB, εC, ε). Here, εA, εB, and εC are the small changes
in θA, θB, and θC induced by ε, respectively, which not only
depend on the value of ε but are also related to the model
parameters parameters J, h, and �. Up to first order of ε, we
can obtain εα ≈ �αε. According to the minimum condition of
the mean-field ground-state energy, εA, εB, εC are

∂ẼMF

∂εA
≡ gA(ε, εA, εB, εC ) = 0,

∂ẼMF

∂εB
≡ gB(ε, εA, εB, εC ) = 0,

∂ẼMF

∂εC
≡ gC (ε, εA, εB, εC ) = 0. (A1)

Equation (A1) is a set of nonlinear equations which are dif-
ficult to solve. However, we know the exact solution is εA =
εB = εC = 0 when ε = 0, i.e., gα (0) = 0. Since ε is a small,
we treat εα as a function of ε and expand Eq. (A1) into a
Taylor series of ε and obtain

gA(0) + dgA(0)

dε
ε + o(ε) = 0,

gB(0) + dgB(0)

dε
ε + o(ε) = 0, (A2)

gC (0) + dgC (0)

dε
ε + o(ε) = 0.

Up to first order of ε, we require dgα (0)
dε

= 0 because gα (0) =
0. If we denote ∂gα

∂εβ
(0) ≡ gαβ and ∂gα

∂ε
(0) ≡ gαε , then we have

gAA�A + gAB�B + gAC�C = −gAε,

gBA�A + gBB�B + gBC�C = −gBε, (A3)

gCA�A + gCB�B + gCC�C = −gCε,

where gAA = −h + 6(1 + �) cos(θ ), gBB = gCC = (3 + h +
3�) cos(θ ) − 3(1 + �) cos2(θ ) + 3, gAB = gBA = gAC =
gCA − 3 cos(θ ), gBC = gCB = 3(2 + �) cos2(θ ) − 3(1 + �),
and gAε = gCε = 0, gBε = − sin(θ ). By solving Eq. ( (A3)),
we obtain

�A = −gABgBε

2g2
AB − gAAgBB − gAAgBC

,

�B =
(
gAAgBB − g2

AB

)
gBε

(gBB − gBC )
(
2g2

AB − gAAgBB − gAAgBC
) , (A4)

�C =
(
g2

AB − gAAgBC
)
gBε

(gBB − gBC )
(
2g2

AB − gAAgBB − gAAgBC
) .

APPENDIX B: THE RELATIONS BETWEEN G,D,F , AND
m AND THE ORIGINAL MODEL PARAMETERS

In order to obtain the low-energy effective Hamiltonian,
we first expand the Hamiltonian (7) as a power series of ε and
keep only first-order terms, i.e.,H (k) = H0 + εH1. Then we
ignore the matrix elements related to the A sublattice under the
low-energy approximation. These steps require us to expand
Y ±

αβ and [A(k)]αα ≡ Aαα into a series of ε and keep the first-
order terms. The definitions of Y ±

αβ and [A(k)]αα are given by
Eqs. (8) and (10) in the main text. We denote the expansions
as

Y ±
αβ = Y ±

0,αβ + Y ±
ε,αβε,

Aαα = A0,αα +Aε,ααε, (B1)

where, for sublattices B and C, we denote Y +
0,BC = (2 +

�) cos2(θ ) − �,Y −
0,BC = (2 + �)(cos2(θ ) − 1),A0,BB =

A0,CC = [−3(� + 2) cos2(θ )] + [3(1 + �) + h] cos(θ ),
Y ±

ε,BC = (�/2 + 1)(�C − �B) sin(2θ ),Aε,CC = [−3�A +
(3 + h + 3�)�C] sin(θ ) + 3

3 (2 + �)(�B − �C ) sin(2θ ),
Aε,BB = Aε,CC + �gap/ε. Then A,D,F and m in the
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effective model are given by

G = A0,BB + Aε,BB +Aε,CC

2
ε, D = Y −

0,BC + Y −
ε,BCε, F = Y +

0,BC + Y +
ε,BCε, m = �gap

2
. (B2)

It is worth pointing out that because ε is a small quantity, we can ignore the second term in the definition of G,D, and F without
affecting the qualitative results.

[1] A. Rycerz, J. Tworzydło, and C. Beenakker, Nat. Phys. 3, 172
(2007).

[2] J. R. Schaibley, H. Y. Yu, G. Clark, P. Rivera, J. S. Ross, K. L.
Seyler, W. Yao, and X. D. Xu, Nat. Rev. Mater. 1, 16055 (2016).

[3] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809
(2007).

[4] V. T. Renard, B. A. Piot, X. Waintal, G. Fleury, D. Cooper,
Y. Niida, D. Tregurtha, A. Fujiwara, Y. Hirayama, and K.
Takashina, Nat. Commun. 6, 7230 (2015).

[5] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[6] Z. Yu, H. Pan, and Y. Yao, Phys. Rev. B 92, 155419 (2015).
[7] T. Habe and M. Koshino, Phys. Rev. B 96, 085411 (2017).
[8] H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev. Lett. 104,

066403 (2010).
[9] L. Zhang, J. Ren, J.-S. Wang, and B. Li, Phys. Rev. B 87,

144101 (2013).
[10] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 89, 134409

(2014).
[11] R. Matsumoto, R. Shindou, and S. Murakami, Phys. Rev. B 89,

054420 (2014).
[12] S. A. Owerre, Phys. Rev. B 94, 094405 (2016).
[13] S. A. Owerre, J. Phys.: Condens. Matter 28, 386001 (2016).
[14] S. A. Owerre, Phys. Rev. B 95, 014422 (2017).
[15] P. Laurell and G. A. Fiete, Phys. Rev. B 98, 094419 (2018).
[16] K.-S. Kim, K. H. Lee, S. B. Chung, and J.-G. Park, Phys. Rev.

B 100, 064412 (2019).
[17] L. Chen, Chin. Phys. B 28, 078503 (2019).
[18] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 99, 014427

(2019).
[19] Z.-X. Li, Y. Cao, and P. Yan, Phys. Rep. 915, 1 (2021).
[20] Z. Cai, S. Bao, Z. L. Gu, Y. P. Gao, Z. Ma, Y. Shangguan, W. Si,

Z. Y. Dong, W. Wang, Y. Wu, D. Lin, J. Wang, K. Ran, S. Li, D.
Adroja, X. Xi, S. L. Yu, X. Wu, J. X. Li, and J. Wen, Phys. Rev.
B 104, L020402 (2021).

[21] F. Zhu, L. Zhang, X. Wang, F. J. dos Santos, J. Song, T. Mueller,
K. Schmalzl, W. F. Schmidt, A. Ivanov, J. T. Park et al., Sci.
Adv. 7, eabi7532 (2021).

[22] A. Mook, K. Plekhanov, J. Klinovaja, and D. Loss, Phys. Rev.
X 11, 021061 (2021).

[23] Z. Zhang, W. Feng, Y. Yao, and B. Tang, Phys. Lett. A 414,
127630 (2021).

[24] P. A. McClarty, Annu. Rev. Condens. Matter Phys. 13, 171
(2022).

[25] R. Matsumoto and S. Murakami, Phys. Rev. Lett. 106, 197202
(2011).

[26] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, and Y.
Tokura, Science 329, 297 (2010).

[27] T. Ideue, Y. Onose, H. Katsura, Y. Shiomi, S. Ishiwata, N.
Nagaosa, and Y. Tokura, Phys. Rev. B 85, 134411 (2012).

[28] R. Chisnell, J. S. Helton, D. E. Freedman, D. K. Singh, R. I.
Bewley, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 115,
147201 (2015).

[29] M. Hirschberger, R. Chisnell, Y. S. Lee, and N. P. Ong, Phys.
Rev. Lett. 115, 106603 (2015).

[30] R. Hidalgo-Sacoto, R. I. Gonzalez, E. E. Vogel, S. Allende, J. D.
Mella, C. Cardenas, R. E. Troncoso, and F. Munoz, Phys. Rev.
B 101, 205425 (2020).

[31] X. Zhai and Y. M. Blanter, Phys. Rev. B 102, 075407 (2020).
[32] D. Ghader, Sci. Rep. 10, 16733 (2020).
[33] D. Ghader, New J. Phys. 23, 053022 (2021).
[34] M. Lee, E. S. Choi, X. Huang, J. Ma, C. R. Dela Cruz, M.

Matsuda, W. Tian, Z. L. Dun, S. Dong, and H. D. Zhou, Phys.
Rev. B 90, 224402 (2014).

[35] R. Ishii et al., Europhys. Lett. 94, 17001 (2011).
[36] Z. Lu, L. Ge, G. Wang, M. Russina, G. Gunther, C. R. dela Cruz,

R. Sinclair, H. D. Zhou, and J. Ma, Phys. Rev. B 98, 094412
(2018).

[37] L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko,
A. Micheler, N. Buttgen, A. Y. Shapiro, and L. N. Demianets,
Phys. Rev. B 74, 024412 (2006).

[38] T. Ono, H. Tanaka, H. Aruga Katori, F. Ishikawa, H. Mitamura,
and T. Goto, Phys. Rev. B 67, 104431 (2003).

[39] R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski,
Phys. Rev. Lett. 86, 1335 (2001).

[40] R. Coldea, D. A. Tennant, K. Habicht, P. Smeibidl, C.
Wolters, and Z. Tylczynski, Phys. Rev. Lett. 88, 137203
(2002).

[41] R. Coldea, D. A. Tennant, and Z. Tylczynski, Phys. Rev. B 68,
134424 (2003).

[42] N. A. Fortune, S. T. Hannahs, Y. Yoshida, T. E. Sherline, T.
Ono, H. Tanaka, and Y. Takano, Phys. Rev. Lett. 102, 257201
(2009).

[43] H. D. Zhou, C. Xu, A. M. Hallas, H. J. Silverstein, C. R. Wiebe,
I. Umegaki, J. Q. Yan, T. P. Murphy, J.-H. Park, Y. Qiu, J. R. D.
Copley, J. S. Gardner, and Y. Takano, Phys. Rev. Lett. 109,
267206 (2012).

[44] T. Susuki, N. Kurita, T. Tanaka, H. Nojiri, A. Matsuo, K. Kindo,
and H. Tanaka, Phys. Rev. Lett. 110, 267201 (2013).

[45] G. Koutroulakis, T. Zhou, Y. Kamiya, J. D. Thompson, H. D.
Zhou, C. D. Batista, and S. E. Brown, Phys. Rev. B 91, 024410
(2015).

[46] Y. Shirata, H. Tanaka, A. Matsuo, and K. Kindo, Phys. Rev.
Lett. 108, 057205 (2012).

[47] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G.
Saito, Phys. Rev. Lett. 91, 107001 (2003).

224401-8

https://doi.org/10.1038/nphys547
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1038/ncomms8230
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevB.92.155419
https://doi.org/10.1103/PhysRevB.96.085411
https://doi.org/10.1103/PhysRevLett.104.066403
https://doi.org/10.1103/PhysRevB.87.144101
https://doi.org/10.1103/PhysRevB.89.134409
https://doi.org/10.1103/PhysRevB.89.054420
https://doi.org/10.1103/PhysRevB.94.094405
https://doi.org/10.1088/0953-8984/28/38/386001
https://doi.org/10.1103/PhysRevB.95.014422
https://doi.org/10.1103/PhysRevB.98.094419
https://doi.org/10.1103/PhysRevB.100.064412
https://doi.org/10.1088/1674-1056/28/7/078503
https://doi.org/10.1103/PhysRevB.99.014427
https://doi.org/10.1016/j.physrep.2021.02.003
https://doi.org/10.1103/PhysRevB.104.L020402
https://doi.org/10.1126/sciadv.abi7532
https://doi.org/10.1103/PhysRevX.11.021061
https://doi.org/10.1016/j.physleta.2021.127630
https://doi.org/10.1146/annurev-conmatphys-031620-104715
https://doi.org/10.1103/PhysRevLett.106.197202
https://doi.org/10.1126/science.1188260
https://doi.org/10.1103/PhysRevB.85.134411
https://doi.org/10.1103/PhysRevLett.115.147201
https://doi.org/10.1103/PhysRevLett.115.106603
https://doi.org/10.1103/PhysRevB.101.205425
https://doi.org/10.1103/PhysRevB.102.075407
https://doi.org/10.1038/s41598-020-74047-3
https://doi.org/10.1088/1367-2630/abfa62
https://doi.org/10.1103/PhysRevB.90.224402
https://doi.org/10.1209/0295-5075/94/17001
https://doi.org/10.1103/PhysRevB.98.094412
https://doi.org/10.1103/PhysRevB.74.024412
https://doi.org/10.1103/PhysRevB.67.104431
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.88.137203
https://doi.org/10.1103/PhysRevB.68.134424
https://doi.org/10.1103/PhysRevLett.102.257201
https://doi.org/10.1103/PhysRevLett.109.267206
https://doi.org/10.1103/PhysRevLett.110.267201
https://doi.org/10.1103/PhysRevB.91.024410
https://doi.org/10.1103/PhysRevLett.108.057205
https://doi.org/10.1103/PhysRevLett.91.107001


MAGNON VALLEY THERMAL HALL EFFECT … PHYSICAL REVIEW B 105, 224401 (2022)

[48] G. Murthy, D. Arovas, and A. Auerbach, Phys. Rev. B 55, 3104
(1997).

[49] S. Miyashita, J. Phys. Soc. Jpn. 55, 3605 (1986).
[50] D. Yamamoto, G. Marmorini, and I. Danshita, Phys. Rev. Lett.

112, 127203 (2014).
[51] C. Griset, S. Head, J. Alicea, and O. A. Starykh, Phys. Rev. B

84, 245108 (2011).
[52] J. Colpa, Phys. A (Amsterdam, Neth.) 93, 327 (1978).
[53] R. Cheng, S. Okamoto, and D. Xiao, Phys. Rev. Lett. 117,

217202 (2016).
[54] Y.-F. Yang, G.-M. Zhang, and F.-C. Zhang, Phys. Rev. Lett. 124,

186602 (2020).

[55] A. Sera, Y. Kousaka, J. Akimitsu, M. Sera, T. Kawamata, and
Y. Koike, and K. Inoue, Phys. Rev. B 94, 214408 (2016).

[56] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.
Greiner, Nature (London) 472, 307 (2011).

[57] D.-W. Zhang, Y.-Q. Zhu, Y. X. Zhao, H. Yan, and S.-L. Zhu,
Adv. Phys. 67, 253 (2018).

[58] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

[59] J. J. García-Ripoll, M. A. Martin-Delgado, and J. I. Cirac, Phys.
Rev. Lett. 93, 250405 (2004).

[60] D. Yamamoto, T. Fukuhara, and I. Danshita, Commun. Phys. 3,
56 (2020).

224401-9

https://doi.org/10.1103/PhysRevB.55.3104
https://doi.org/10.1143/JPSJ.55.3605
https://doi.org/10.1103/PhysRevLett.112.127203
https://doi.org/10.1103/PhysRevB.84.245108
https://doi.org/10.1016/0378-4371(78)90160-7
https://doi.org/10.1103/PhysRevLett.117.217202
https://doi.org/10.1103/PhysRevLett.124.186602
https://doi.org/10.1103/PhysRevB.94.214408
https://doi.org/10.1038/nature09994
https://doi.org/10.1080/00018732.2019.1594094
https://doi.org/10.1103/PhysRevLett.91.090402
https://doi.org/10.1103/PhysRevLett.93.250405
https://doi.org/10.1038/s42005-020-0323-5

