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Effects of critical correlations on quantum percolation in two dimensions
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We analyze the out-of-equilibrium dynamics of a quantum particle coupled to local magnetic degrees of
freedom that undergo a classical phase transition. Specifically, we consider a two-dimensional tight-binding
model that interacts with a background of classical spins in thermal equilibrium, which are subject to Ising
interactions and act as emergent, correlated disorder for the quantum particle. Particular attention is devoted to
temperatures close to the ferromagnet-to-paramagnet transition. To capture the salient features of the classical
transition, namely the effects of long-range correlations, we focus on the strong coupling limit, in which the
model can be mapped onto a quantum percolation problem on spin clusters generated by the Ising model. By
inspecting several dynamical probes such as energy level statistics, inverse participation ratios, and wave-packet
dynamics, we provide evidence that the classical phase transition might induce a delocalization-localization
transition in the quantum system at certain energies. We also identify further important features due to the
presence of Ising correlations, such as the suppression of compact localized eigenstates.
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I. INTRODUCTION

After more than fifty years since its discovery, Ander-
son localization [1] remains a fascinating and active front of
research. Anderson localization is a wave interference phe-
nomenon in which transport in a noninteracting system can
be suppressed by the presence of quenched disorder [1–3].
In one-dimensional systems [4], any amount of uncorrelated
disorder is enough to exponentially localize all single-particle
eigenstates, thereby generating a perfect insulator [5,6]. Two-
dimensional systems are special: localization is weak and
occurs over lengths that are exponentially large in the mean
free path [7–9]. In higher dimensions, d > 2, it is well estab-
lished that a metal–insulator transition exists, separating an
extended (ergodic) phase at weak disorder from a localized
one at strong disorder [10–13].

Other systems in which Anderson localization plays a
central role are ones where disorder is due to the geometry
of the system, e.g., random graphs [14–16]. In general, in
these systems, particles hop unimpeded but scatter from the
system’s rough edges, thus producing wave interference and
potentially suppressing transport. Structural disorder can be
found in many contexts, ranging from biological to quan-
tum spin systems [17–23]. Recently, for example, the physics
of systems with geometrical disorder was applied to study
the dynamical properties and localization of quasiparticles in
dimer, vertex, and ice models, where local constraints force
the quasiparticles to move on random structures [24–26].

An outstanding puzzle involving structural disorder is
quantum percolation [16,27]. In a percolation problem, one
asks if a particle can propagate unboundedly on a lattice (say,
a regular lattice in d dimensions Zd ) where sites have been

removed at random with probability 1 − p (0 < p < 1). In
the classical case, one finds a well-defined transition at the
so-called percolation threshold pc: For p > pc, an infinite
connected cluster exists (spanning cluster), while for p < pc

the system fragments into small finite clusters [28–33]. In
the quantum realm, the presence of a spanning cluster is not
sufficient to guarantee the existence of extended states, since
the geometrical disorder produced by the irregular shape of
the cluster might induce Anderson localization. The possi-
bility of a quantum percolation transition at some threshold
pQ � pc has been extensively investigated. In two dimensions
(d = 2), its existence is still under debate [34–44]. Several
numerical works have claimed to show that all the eigenstates
are exponentially localized for any p < 1, in agreement with
the one-parameter scaling theory [34,43,45]. However, more
recent numerical results brought this conclusion into question
by presenting evidence in favour of a quantum percolation
transition at some pc � pQ < 1 [35,36,38–42,44].

An interesting mechanism that can alter the nature of the
eigenstates is the introduction of correlations in the disorder
[46–56]. Even in one dimension, where the system is local-
ized for any amount of uncorrelated disorder, the presence of
correlations can either partially or completely destroy local-
ization. For instance, dimerization of the on-site potential in
a d = 1 tight-binding model (when the potential appears in
identical pairs on adjacent sites) has been shown to generate
extended states [48,49]. This demonstrates how short-range
correlations are already sufficient to modify the localized na-
ture of the system [54]. The presence of correlations in the
disorder is not just a natural and interesting question per se,
but has found important applications in disordered conduct-
ing polymers [57–59], graphene [60], quantum Hall wires
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[61], topological phases [62–64], and trapped-ion experiments
[65,66].

In our paper, we investigate the effects of correlations on
the out-of-equilibrium dynamical properties of a tight-binding
model in two dimensions with Ising-like disorder, i.e., taking
discrete values ±W . In Appendix A we also investigate and
contrast the case of q-state Potts disorder. The correlations are
due to interactions between the disorder degrees of freedom
in thermodynamic equilibrium at some finite temperature T .
Of particular interest will be the case where the interactions
cause the disorder to undergo a phase transition, at a critical
temperature Tc that separates a ferromagnetic phase from a
paramagnetic one.

At the critical temperature the correlation length of the
spin degrees of freedom diverges and we expect the largest
connected cluster to dominate the behavior of the system.
Thus, we focus only on the behavior of a tight-binding model
defined on the largest spin cluster. This is in the spirit of the
strong disorder limit (W → ∞), in which the quantum tun-
neling between regions with different on-site energies can be
neglected. In this limit, the system is trivially localized in the
paramagnetic phase (T > Tc), since the spin configurations
fragment into a distribution of clusters with finite size [67].
However, in the ferromagnetic phase (T < Tc) a percolating
cluster exists [68–70]. As previously mentioned, the exten-
sive size of the percolating cluster does not guarantee the
presence of extended states and ergodicity; its “rough” edges
can induce Anderson localization, resulting in the absence of
diffusion.

Our results uncover a rich and interesting phenomenology
that quantifies the role of correlations in the disorder. Figure 1
shows the typical behavior of the quantum percolation prob-
lem for the Ising case (left panels) and for the uncorrelated
case (right panels). In particular, panels (a) and (b) show the
spin configuration for the Ising case close to the Ising transi-
tion (T = Tc) and for the uncorrelated case close to the 2d site
percolation transition (p = pc), respectively. The amplitudes
of the eigenstates for the tight-binding model defined on the
largest percolating cluster are shown in Figs. 1(c)–1(f). For the
case of Ising correlated disorder, we can have both uniformly
spread wavefunctions, see Fig. 1(c), or localized wavefunc-
tions, see Fig. 1(e), depending on the energy. However, in the
uncorrelated case, only localized wavefunctions are present,
including those with strictly vanishing localization length,
dubbed compact localized states (CLS) [25,71]. By inspecting
several dynamical probes, we observe an important qualitative
change in behavior between T < Tc and T > Tc. The latter is
consistent with the particle being localized. The former, on
the other hand, exhibits dynamics akin to (quantum) diffu-
sion, with the diffusive behavior becoming progressively more
anomalous as the critical temperature is approached from
below (see, e.g., Fig. 6). Using finite size scaling analysis,
we provide evidence in support of the existence of a possible
quantum percolation transition that coincides with the classi-
cal critical temperature.

Our model is closely related to the Falikov–Kimball
model [72,73], which is one of the paradigmatic models
used to describe strongly correlated electrons [72–78]. In the
Falikov–Kimball model, electrons interact with classical Ising
background fields, which generate an effective disorder po-

FIG. 1. Spin configurations at criticality and corresponding wave
function profiles. Spin configurations for a 2d Ising model at the
critical temperature T = Tc (a), and for a classical site percola-
tion problem at the percolation transition p = pc (b). The inset in
(b) shows the largest connected cluster. [(c)–(f)] Amplitudes of the
eigenfunctions, log(|ψx(E )|2/ maxx |ψx(E )|2), of the tight-binding
model defined on the largest cluster of the spin configurations in
(a) and (b). The left panels are for the Ising (correlated) case and the
right ones for the percolation (uncorrelated) case. In (c) and (d) the
energy of the wavefunction is E ≈ 0.8, while in (e) and (f) E ≈ 0. In
panel (f) the magnified box shows that the wave function is entirely
localized on exactly two sites.

tential [73,77,79]. Despite its translationally invariant nature,
the system can exhibit Anderson localization. Recently, this
connection has received a growing interest in the context of
disorder-free localization [79–84] and our paper provides a
further example along this line of research.

The rest of the paper is organized as follows. In Sec. II
we introduce the model and discuss its strong disorder limit
and its connection to the quantum percolation problem. The
methods and probes used to investigate the out-of-equilibrium
dynamics are discussed in Sec. III. The main results are
presented in Sec. IV. Namely, in Sec. IV A we study the
eigenvalue and eigenstate properties of the system in the limit
of strong disorder as a function of the Ising temperature. We
discuss possible scenarios and, in particular, we show that our
results are consistent with the existence of a correlation-driven
quantum percolation transition. The finite-time quantum evo-
lution is described in Sec. IV B. By detecting the spread of
a particle initially localized on a single lattice site, we show
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that the system exhibits nontrivial dynamics for temperatures
belonging to the ferromagnetic phase of the Ising model.
Finally, in Sec. V, we present our conclusions and outlook.

II. MODEL

We study a two-dimensional model representing a tight-
binding particle coupled to classical spins, described by the
Hamiltonian

ĤW = −t
∑
〈x,y〉

|x〉〈y| + W
∑

x

σx|x〉〈x|, (1)

represented in the site basis {|x〉} of a square lattice of linear
size L. The first sum runs over pairs of nearest-neighbor lattice
sites 〈x, y〉, and t and W are the hopping amplitude and on-site
coupling strength, respectively. Without loss of generality, we
shall set t = 1/2 throughout our paper. The on-site energies
are parametrized by classical spins {σx}, which assume the
values σx = ±1, and are drawn from the Boltzmann probabil-
ity distribution of a 2d classical Ising model at temperature T .
The probability to be in the configuration σ = {σx} is given
by P(σ ) = e−HI (σ )/T

Z , where HI(σ) = −∑
〈x,y〉 σxσy is the clas-

sical Ising Hamiltonian and Z = ∑
σ e−HI (σ)/T is its partition

function at temperature T . The classical spin configurations
are obtained using standard Monte Carlo simulations with the
Swendsen–Wang algorithm (which utilizes cluster updates)
[85]. In Appendix A we consider, in an equivalent way, the
case where the classical degrees of freedom take three values,
σx ∈ {−1, 0, 1}, and interact via a classical Potts Hamiltonian.

The Ising model is a cornerstone of statistical mechanics;
in 2d it exhibits a symmetry breaking phase transition at Tc =

2
log (1+√

2)
≈ 2.269, separating the ferromagnetic (T < Tc) and

the paramagnetic (T > Tc) phases [86–88]. These two classi-
cal phases can be detected using a local order parameter

M(T ) = 1

L2

∑
x

σx, (2)

namely the magnetization per site, which is different from
zero in the ferromagnetic phase and vanishes in the param-
agnetic one. In d = 2, the magnetization can be expressed in
closed form [70,89] as

M(T ) =
{(

1 − 1
sinh 2

T

)1/8
for T < Tc,

0 otherwise.
(3)

Close to the critical point, on the ferromagnetic side of the
transition, M ∼ (Tc − T )β , which defines the critical expo-
nent β = 1/8. The correlation length ξ is defined through the
asymptotic behavior of the two-point spin correlation func-
tion, and diverges as ξ ∼ |T − Tc|−ν at the critical point with
ν = 1 [55,87,88].

A few considerations are in order. The temperature T tunes
the distribution of the disorder and thence its correlations. At
T = 0, the magnetization M(T = 0) = ±1 and the system is
clean; the eigenstates of ĤW in Eq. (1) are then extended plane
waves. As the temperature is increased, thermal fluctuations
induce small clusters of classical spins with a sign that op-
poses the bulk magnetization. These thermal fluctuations play
the role of disorder in the system, which is correlated with
a typical length scale given by ξ . In particular, at the Ising

critical point, ξ diverges and the disorder becomes scale-free,
meaning that the correlation functions decay algebraically
with the distance. Importantly, in the ferromagnetic phase
(T < Tc) a spanning cluster exists composed of spins with the
same sign, while in the paramagnetic phase the largest cluster
is finite [55,68,69].

The study of dynamical properties of ĤW in Eq. (1) as a
function of the spin temperature T is the main aim of our
paper. In 2d this is known to be a challenging task, since the
localization length is believed to be exponentially large in the
mean free path [3,8]. To be able to study larger system sizes
and consequently perform a more accurate scaling analysis,
and to better capture the long-range correlations at the Ising
critical point, we mainly focus our attention on the strong
disorder limit (W → ∞). In this limit, quantum tunneling
between regions of the lattice with different on-site potential
is suppressed and we approximate the behavior of ĤW by
restricting it to the largest cluster composed of classical spins
possessing the same value. Close to the critical point, the
largest cluster is generally expected to dominate the behavior
of the system. Thus, we end up with a tight-binding model
defined on a highly irregular lattice:

Ĥ∞ = −1

2

∑
〈x,y〉∈C

|x〉〈y|, (4)

where the sum runs over the nearest-neighbor lattice sites
that belong to the largest connected cluster C of the clas-
sical 2d Ising model (see Fig. 1). As already mentioned in
the introduction, the uncorrelated case, in which σx = 1 with
probability p and σx = −1 with probability 1 − p, has been
extensively studied. The classical case on a square lattice
has a site percolation transition at pc ≈ 0.5927 [32,33]. The
existence of a metal–insulator transition for the quantum case
is still subject to controversy. In agreement with the one-
parameter scaling hypothesis, several papers provide evidence
that all the eigenstates are localized for p > pc [34,43,45],
while others show the possible existence of extended states at
some specific energies, at least for p � pQ for some pQ � pc

[35,36,38–42,90]. To compare the Ising correlated model in
our paper with the uncorrelated case, we parametrize the
probability p as

p(T ) = M(T ) + 1

2
, (5)

where M(T ) is the magnetization per site of the 2d Ising
model defined in Eq. (2). Thus, the spin configurations for
the uncorrelated case will have the same magnetization as
the Ising model. This procedure is equivalent to drawing
spin configurations σ from the Boltzmann distribution and
subsequently destroying all spatial correlations by randomly
permuting the spins.

III. METHODS

With the aim to understand the localization properties, we
use several probes that address different facets of the system
in question.

First, we consider the level spacing statistics of the
eigenenergies. This is quantified by the so-called r value
[91,92], which measures the degree of repulsion between two
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adjacent energy levels,

r = 〈min(δn/δn+1, δn+1/δn)〉, (6)

where δn is the level spacing between two adjacent energies
and 〈 · 〉 refers to the combined disorder and spectral aver-
aging. In an ergodic phase, the r value is expected to be
rGOE ≈ 0.531 [91,92], which is the same as that of a random
matrix. Conversely, in a localized phase, energy levels are
uncorrelated and the r value is rPoisson = 2 log 2 − 1 ≈ 0.386
[91,92].

The second marker that we use to discern an extended
phase from a localized one is the generalized inverse partic-
ipation ratio, IPRq [3],

IPRq(E ) =
∑

x

|〈x|E〉|2q, (7)

where |E〉 is an eigenstate of Ĥ∞ at energy E . We focus our
attention on two values of q: q = 1/2 and q = 2. In an ergodic
phase, IPR1/2 ∼ L and IPR2 ∼ L−2, while in a localized phase
IPR1/2,2 ∼ O(L0). To better quantify the scaling of the IPRq

with system size, we define the multifractal exponent

Dq(L) = 1

1 − q

〈log IPRq〉
log L2

, (8)

which takes the value Dq = 1 in an ergodic phase and Dq = 0
in a localized phase. Generally, Dq can assume intermedi-
ate values, 0 < Dq < 1, in which case we say that the state
presents multifractality. Multifractal states are characterized
by strong fluctuations of their amplitude in space, such as
those found exactly at the Anderson transition [3].

Finally, we study the out-of-equilibrium dynamics by an-
alyzing the spread of a wave packet initially localized at x0

(i.e., in the state |x0〉). The subsequent spread of the wave
packet is analyzed using two different quantities: the survival
probability,

R(t ) = 〈|〈x0|e−iĤ∞t |x0〉|2〉, (9)

and the mean-square displacement,

〈�X 2(t )〉 =
〈∑

x

d (x, x0)2|〈x|e−iĤ∞t |x0〉|2
〉
, (10)

where d (x, x0) is the euclidean distance between the two
lattice points x0 and x belonging to Z2. In Eqs. (9) and (10) the
expectation value 〈 · 〉 includes an average over the initial site
|x0〉 in addition to the average over disorder (i.e., over Ising
configurations).

The return probability R(t ) is a local probe, and is therefore
sensitive to localization. Indeed, if the system has a nonzero
density of localized eigenstates, then the survival probability
converges at asymptotically long times to a system-size-
independent value given by

lim
τ→∞

1

τ

∫ τ

0
dt R(t ) =

∑
E

〈|〈x0|PE |x0〉|2〉, (11)

where PE is the projector onto eigenstates at energy E . On
the other hand, the mean-square displacement 〈�X 2(t )〉 is a
global measure and hence its behavior reflects the existence
of extended states.

We are also interested in the dynamics at finite time scales.
In order to characterize the type of propagation, we define the
dynamical exponent

α(t ) = d log 〈�X 2(t )〉
d log t

. (12)

The propagation of the wave packet is ballistic for α(t ) = 2,
diffusive for α(t ) = 1 and anomalous (subdiffusive) if 0 <

α(t ) < 1.

IV. RESULTS

A. Spectral and eigenstate properties

In this section, we analyze the properties of the eigenvalues
and eigenstates of Ĥ∞ in Eq. (4). In order to understand the lo-
calization properties of the system, we focus on the r value in
Eq. (6) and the Dq exponents in Eq. (8). The results presented
in this section were obtained using shift-invert diagonalization
techniques, computing 32 eigenstates and eigenvalues at a
specific target energy E [93], for system sizes up to L = 103.

Before starting, it is important to point out that systems
with geometrical disorder have the peculiarity that states with
the smallest localization length are found in the middle of the
spectrum (E = 0 in our case), in contrast to systems subject
to diagonal disorder (see, e.g., Refs. [16,25,27]). Thus, we
focus our investigation on two energy values, one far away
from and one at the band center. Figures 2 and 5 show
the r value, D1/2 and D2, for energies E ≈ 0.8 and E ≈ 0,
respectively [94].
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FIG. 2. Analysis of eigenvalue and eigenstate properties at E ≈
0.8. (a): r-value statistics as a function of temperature T for several
system sizes L. The dashed line in (a) is for uncorrelated disorder
with the largest system size. (b) Multifractal exponent D2 as a func-
tion of temperature T for the same parameters as panel (a). The
inset in (b) shows D1/2 as a function of T . (c) Finite size collapse of
the r-value statistics (a). (d) Finite size collapse of D2 (b) The inset
shows the finite size collapse for the D1/2 multifractal exponent. Both
panels (c) and (d) use the Ising critical exponent ν = 1.
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1. E ≈ 0.8

Let us consider the data at E ≈ 0.8. Panels (a) and (b) in
Fig. 2 are dedicated to the r value and to the two fractal expo-
nents D1/2,2, respectively, as a function of T − Tc. In Fig. 2(a)
the r value reaches the GOE result for T < Tc, while for
T > Tc the curves deviate from the ergodic behavior showing
a trend towards the Poissonian value with increasing L.

Figure 2(a) also shows the r value of the uncorrelated
model defined in Sec. II for the largest system size, L = 1000.
First, we notice that for T − Tc � −0.025 the r statistics ap-
proaches the GOE value. Whether this behavior is due to the
existence of a metal-insulator transition for the uncorrelated
case, as asserted in several papers [16,27,35,36,38–42,90], or
whether it merely indicates a finite size crossover in which the
localization length becomes comparable to the system size L,
is beyond the scope of our paper. However, it is interesting
to observe that at T ≈ Tc − 0.025 the magnetization takes the
value M ≈ 0.64, corresponding via Eq. (5) to an uncorrelated
probability p 
 0.82, which is notably larger than the classi-
cal percolation threshold pc ≈ 0.59. Thus, if a delocalization
transition does take place in the uncorrelated case (quantum
percolation), we can at least propose a lower bound for it:
pQ � 0.82 > pc. As a result, T ≈ Tc − 0.025 represents the
temperature below which we cannot distinguish the role of
Ising interactions/correlations. Due to the limitation in system
sizes, we were not able to make conclusive statements at
small temperatures and we focus our analysis on the regime
T − Tc � −0.025.

In agreement with the r-value statistics, the behavior of the
fractal exponents D1/2,2 changes around T ≈ Tc, see Fig. 2(b)
and its inset. In the ferromagnetic phase the fractal exponent
tends to the ergodic value (Dq → 1), while in the paramag-
netic phase it tends to the localized value (Dq → 0) since the
largest connected cluster is finite.

It is tempting to suggest that the data are consistent with the
emergence of a metal–insulator transition at T ≈ Tc, at least
for certain energies. In this scenario, the quantum percolation
threshold coincides with the classical Ising transition. For
T < Tc the wave functions are ergodic in the largest cluster,
implying that Dq → 1 in the thermodynamic limit (L → ∞),
whereas Dq → 0 trivially in the paramagnetic phase. It would
then be reasonable to expect the behavior at the transition
point to be dominated by the Ising criticality and thus the
quantum and classical cases share the same critical expo-
nents. To support this idea, we rescale the two dimensionless
probes, r and Dq, using the known classical critical exponent
ν = 1 that governs the correlation length ξ ∼ |T − Tc|−ν of
the 2d Ising transition. We find a good collapse, as shown in
Figs. 2(c) and 2(d), which also provides further evidence in
favour of a quantum percolation transition.

However, it is important to point out that—keeping in
mind the difficulties associated with detecting localization
properties in 2d and absent an analytical solution—we must
remain open to the possibility that the system is localized
for T < Tc, but with a localization length much larger than
the linear system sizes we are able to access numerically.
In favor of a possible large localization length, we can refer
to the recent work in Ref. [25] where a 1d tight-binding
model with linear offshoots whose lengths are distributed
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T Tc
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r
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T Tc

0.2

0.4
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0.8

D
2

(b) E ≈ 0

FIG. 3. Analysis of eigenvalue and eigenstate properties at E ≈
0. (a): r-value statistics as a function of temperature T for several
system sizes L. The dashed line in (a) is for uncorrelated disorder
with the largest system size. (b) Multifractal exponent D2 as a func-
tion of temperature T for the same parameters as panel (a). The inset
in (b) shows D1/2 as a function of T .

randomly (random quantum combs) has been investigated.
The random quantum comb shares some similarities with
our problem and it could be thought as a quasi-1d version
thereof, without correlations. Using analytical and numerical
techniques, Ref. [25] showed that the system is localized with
a localization length extremely large at some energies [where
for uniform hopping one finds ξloc ∼ O(103)]. In this latter
scenario, a finite size crossover between ergodic and localized
behavior would shift to lower and lower temperatures as the
system size is increased, possibly down to T = 0 (pQ → 1).
In Appendix C, we present a pedagogical computation, in
the weak-scattering approximation [95] W � 1 and T � Tc,
which allows to estimate the mean-free path, �, as a function
of temperature and disorder amplitude. This argument pro-
vides evidence that � ∝ (Tc/T −1)

W 2 , which, combined with the
one-parameter scaling, implies an exponentially large local-
ization length in (Tc/T − 1)/W 2, for T � Tc and W � 1.

Although it is important to exercise caution in claiming that
a transition exists, we can certainly assert that Ising correla-
tions play an important role. Indeed, our results demonstrate
that they modify substantially the localization properties—
see, e.g., Fig. 2(a)—either by increasing the localization
length or by shifting to a lower temperature the putative
quantum percolation transition of the equivalent uncorrelated
problem with p set by Eq. (5).

2. E ≈ 0

In this section, we consider energies belonging to the mid-
dle of the spectrum (E ≈ 0), where we find a remarkable
difference in the behavior of the system between the Ising
correlated disorder and the uncorrelated case. Figure 3 is
dedicated to the r value and the fractal exponents D1/2,2 at
E = 0 as a function of T . In contrast to the E ≈ 0.8 data,
see Fig. 2, we observe a stronger trend to localization. This is
in agreement with the general picture that the most localized
states are near the band center [16,25,27].

For the Ising interacting case in the paramagnetic phase,
the r value is Poissonian; in the ferromagnetic phase, it never
reaches the GOE value and a trend to Poissonian is in fact
visible with increasing L. For completeness, in Fig. 3(a) we
show the r value for the corresponding uncorrelated case,
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FIG. 4. Density of states and probability density of IPR2. Panels
in the top row refer to the uncorrelated case, while panels in the
second row refer to the Ising correlated disorder. [(a), (c)] Density
of states ρ(E ), Eq. (13), for several temperatures and L = 256. The
insets magnify the energy window around E ≈ 0. [(b), (d)] Probabil-
ity distribution P(x) of x = IPR2 for several L. The vertical dashed
lines are guides to the eye, indicating the values of IPR2 for the most
prevalent CLS. The inset in (d) shows the probability distribution
P(x) of x = − log IPR2 for the Ising case.

which is Poissonian. A behavior similar to the r value is
observed for the fractal exponent D2, shown in Fig. 3(b). A
careful analysis shows that a slow scaling D2 → 0 is present
also in the ferromagnetic phase. Thus, from both probes—the
r value and the D2 exponent—we would conclude that the
eigenstates are localized. However, the D1/2 exponent, which
is more susceptible to extended states (see Sec. III), saturates
with L to a strictly positive value for T < Tc. This suggests
the existence of extended states or at least less localized ones.
This contradictory behavior between the r value, the D2 and
the D1/2 exponents could be explained by the coexistence of
states with different localization properties.

In order to better understand this behavior, we take a closer
look at the eigenvalues and eigenfuctions around E = 0. Let
us start with the energy spectrum, by inspecting the density of
states (DOS) defined as

ρ(E ) =
〈∑

i

δ(E − Ei )

dim(H)

〉
, (13)

where {Ei} denotes the set of eigenvalues and dim(H) is the
dimension of the Hilbert space, which ensures the normaliza-
tion

∫
dE ρ(E ) = 1 [96].

In Figs. 4(a) and 4(c) we show the DOS of the uncorrelated
and of the Ising case, respectively, for several values of T .
The DOS for the uncorrelated quantum percolation problem
has received a lot of attention and has already been studied
extensively [97–100]. This earlier work highlighted that the
DOS has a spike singularity at E = 0 due to the macroscopic
degeneracy of special states, surrounded by a pseudogap

FIG. 5. Simple compact localized state. (a): The local spin con-
figuration that hosts a CLS zero-mode strictly localized on two sites.
(b) The corresponding wave function of the E = 0 mode.

[97–100], see also the inset of Fig. 4(a). The existence of
this peculiar structure in the DOS is due to a finite density of
compact localized states. The CLS are defined as eigenstates
of Ĥ∞ whose support is confined to a strictly finite number of
sites, see Fig. 1(f). These states are typical in tight-binding
models with geometrical/configurational disorder and they
have been found in several models [101], e.g., in random
combs, random graphs, quantum spin ice, and electronic mod-
els that host flat bands [25,26,71,102–112]. In the present
case, these states are generated by special local configurations
of disorder (spins) [71]. Figure 5(a) shows an example of a
local spin configuration—see also Figs. 1(b) and 1(f)—which
hosts an E = 0 eigenstate that is fully localized on two sites,
see Fig. 5(b). Other spin configurations hosting different E =
0 CLS can be found in, e.g., Refs. [25,27,40,71]. Importantly,
it is easy to see that CLS of the form illustrated in Fig. 5
appear with finite probability and, on average, their number
scales with the volume of the system ∼L2. As a result, the
degeneracy of states with E = 0 is macroscopic and the DOS
has a spike singularity in the middle of the spectrum [113].

Having explained the presence of the spike singularity
in the DOS, we now discuss briefly the presence of the
pseudogap around E = 0, Fig. 4(a) and inset. It turns out
that the pseudogap in the DOS is a different manifestation
of the existence of a finite density of CLS in the system.
In Refs. [98,100] the pseudogap is studied in detail both
theoretically and numerically, and evidence is provided that
the magnitude of the pseudo-gap is proportional to 1/

√
f0,

where f0 is the density of CLS at E = 0. Therefore, the
more CLS there are, the more pronounced the pseudogap is.
Furthermore, the presence of CLS can also be observed in
the probability distribution P(x) of x = IPR2. P(x) exhibits
several spikes, highlighted by dashed lines in Fig. 4(d), the
highest of which occurs at IPR2 ≈ 1/2 and is due to the
CLS localized on two sites, as illustrated in Fig. 5. Spikes
at IPR2 ≈ 1/n with n ∈ N are CLS uniformly localized on
n sites.

Now we turn back to the Ising correlated case and we
analyze its DOS shown in Fig. 4(c) and its inset. In this case,
we do not observe a pronounced pseudogap nor a pronounced
spike at E = 0, as seen in the inset of Fig. 4(c). Assuming that
the relation between the height of the spike with the pseu-
dogap dip, 1/

√
f0 [98,100], remains unchanged, we might

conjecture that the number of CLS at E = 0 is suppressed by
the presence of Ising interactions. To verify this conjecture,
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we inspect the probability distribution function of IPR2 for the
Ising case, Fig. 4(d), for several system sizes L. The spikes at
IPR2 ≈ 1/n (vertical dashed lines)—while still present—are
now significantly smaller in height. This supports the main
idea that in the case of Ising correlated disorder, CLS are rarer,
although still of seemingly finite density. Indeed, most of the
probability is concentrated at small values IPR2 ≈ 10−3, e.g.,
P(x≈10−3 )
P(x≈1/2) ∼ 102, and a systematic shift of the highest spike to

smaller values with increasing L is visible. To better highlight
the behavior of the most delocalized states contributing to
IPR2, we consider the probability distribution P(x) of x =
− log IPR2, shown in the inset of Fig. 4(d). Although slow,
a trend to delocalization is clear, meaning that most of the
probability mass of IPR2 shifts to smaller values (− log IPR2

to larger values). However, the height of the spikes at IPR2 ∼
1/n with n ∈ N is stable with L. This is consistent with the
coexistence of more delocalized states at IPR2 � 1 and CLS
at E = 0. In this scenario, the fractal exponent D2 tends to
zero due to the presence of a finite density of CLS, while D1/2

can have a strictly positive value due to the most delocalized
states, in agreement with the results shown in Fig. 3(b) in the
ferromagnetic phase.

B. Dynamical properties

Having discussed the possible existence of a metal–
insulator transition that coincides with the classical critical
temperature Tc, we now study the finite-time dynamics of Ĥ∞.
We investigate the time evolution of a particle initialized at a
given (randomly chosen) site on the cluster, and compute its
probability to be on that site as a function of time R(t ), Eq. (9),
as well as the expectation value of the distance from that
site 〈�X 2(t )〉, Eq. (10). The evolution of R(t ) and 〈�X 2(t )〉
are computed using Chebyshev integration techniques [114],
allowing us to reach large system sizes (Lmax = 3000) and
long times (tmax ≈ 104).

In particular, this section aims to shed light on the putative
quantum percolation transition of Ĥ∞ and we therefore focus
our attention on temperatures close to the critical one. We
report a change in the dynamical properties of the system in
crossing the classical phase transition. In the paramagnetic
phase, the system is localized. However, in the ferromagnetic
phase (T � Tc) we see unbounded propagation for the system
sizes and time scales that we are able to access numerically.

Figure 6 shows both dynamical probes, R(t ) and 〈�X 2(t )〉,
for a range of temperatures around Tc, and for fixed system
size L = 1500. After a quick and temperature-independent
ballistic propagation at short times, i.e., 〈�X 2(t )〉 ∼ t2, a
temperature-dependent dynamics sets in. In the paramagnetic
phase (T > Tc), the survival probability saturates to a size-
independent value R(t → ∞) ∼ O(L0), which is a function
of the temperature T . As expected, the saturation value of
R(t ) decreases as the temperature is lowered, meaning that
the system is more delocalized at lower temperatures. In the
ferromagnetic phase, after the initial ballistic decay, R(t ) falls
off algebraically [R(t ) ∼ 1/tγ ] up to t ∼ 103 and then starts to
saturate to a size-independent value. We note that it saturates
to a value that is appreciably greater than the one imposed by
the finite-size nature of the system. It also is important to point
out that the saturation of R(t → ∞) to a size-independent

101 103

t

10−4

10−3

10−2

10−1

100

R
(t

)

(a)
T − T = −0.025

−0.01

0

0.0125

0.025

0.05

101 103

t

100

102

104

〈Δ
X

2
(t

)〉

(b)

∼ t2

∼ t

FIG. 6. Out-of-equilibrium wave packet dynamics. [(a), (b)] Sur-
vival probability R(t ), Eq. (9), and the expectation value of the
distance 〈�X 2(t )〉, Eq. (10), for several T after initialising the parti-
cle at a given site. The blue- and the black-dashed lines are guides to
the eye representing ballistic and diffusive propagation, respectively.
L = 1500 in both panels.

value is necessary but not sufficient for the system to be
localized. Indeed, a finite density of localized states causes
R(t ) to saturate to a strictly positive value [R(t → ∞) > 0],
and therefore it does not exclude the existence of extended
ones. In the ferromagnetic phase, so long at T > 0, we expect
R(t → ∞) to saturate to a finite size-independent value in the
thermodynamic limit, since the system hosts a finite density
of CLS.

The behavior of 〈�X 2(t )〉 in Fig. 6(b), and the dynamical
exponent α(t ), Eq. (12), in Fig. 7, allow us to better investigate
the presence of delocalized states for T < Tc. In Figs. 7(a)
and 7(b) we study the finite size effects in the time evolu-
tion of α(t ). At short times α(t ) ≈ 2 and the propagation
is ballistic, as seen also in Fig. 6(b). In the ferromagnetic
phase, at intermediate times, α(t ) develops a plateau close

101 103
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1.5

2.0

α
(t

)

(a) T − Tc = −0.025

101 103

0.5

1.0
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2.0
(b) T − Tc = 0

L = 500

750

1000

1500
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101 103

t
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2.0

α
(t

)

(c) T − Tc = 0.0125

101 103

t

0.5

1.0

1.5

2.0
(d) T − Tc = 0.025

FIG. 7. Finite size effects in the exponent α(t ). [(a)–(d)] α(t ),
Eq. (12), as a function of time for several L and temperatures around
Tc. The black dashed lines are guides to the eye. The largest system
size (L = 3000) is only shown in panels (b) and (c), for the tempera-
tures closest to the critical one.
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to α ≈ 1, consistent with diffusion. Importantly, this plateau
extends to larger times with increasing system size L, which
may provide evidence that in the limit L → ∞ the system is
diffusive. In the paramagnetic phase instead, as expected, the
dynamical exponent α(t ) decays continuously with time, as
seen in Figs. 7(c) and 7(d), in agreement with the fact that the
system is trivially localized.

In summary, the analysis of the finite size behavior of R(t )
and α(t ) is again suggestive of a possible change in the behav-
ior of the system when the disorder crosses the classical phase
transition, and suggestive of the appearance of delocalized
states for T � Tc leading to a metal–insulator transition at
T ≈ Tc.

V. CONCLUSIONS AND OUTLOOK

In this paper, we investigated the out-of-equilibrium
dynamics of a tight-binding quantum particle coupled to in-
teracting Ising spins in thermal equilibrium in two spatial
dimensions. Of particular interest is the role played by the
correlations between the spins, and by the phase transition that
occurs in the Ising degrees of freedom. For temperatures close
to the phase transition, long-range correlations are present and
the behavior of the system is dominated by the largest con-
nected Ising cluster. Thus, we make the working assumption
of considering the model restricted to the largest cluster. This
is equivalent to the strong coupling limit, in which quantum
tunneling between different Ising domains is forbidden. In
this limit, the model maps to a correlated quantum percolation
problem, and quantum interference is produced by the highly
irregular shape of the spin cluster.

For T > Tc, the Ising model is in the paramagnetic phase
and the size of the largest cluster remains finite in the
thermodynamic limit. As a result, the system is trivially
localized. In the ferromagnetic phase, T < Tc, a spanning
cluster exists and we rely on exact numerical simulations
to understand the localization properties of the system. By
inspecting several localization markers, we observed at cer-
tain energies a strong crossover from localized to delocalized
eigenstates upon crossing the Ising transition. For instance,
the energy levels show repulsion and the fractal dimen-
sions of the eigenstates tend to one in the ferromagnetic
phase. The wave-packet dynamics exhibit quantum diffusion,
with the diffusion becoming progressively more anomalous
as the critical temperature is approached from below. By
using finite size scaling analysis, we provided numerical
evidence that the system might undergo a quantum percola-
tion transition at the critical temperature of the Ising model.
Throughout our paper, we underlined the main differences
between the Ising correlated case and the uncorrelated one.
The center of the energy spectrum hosts a finite density
of compacted localized states, i.e., eigenstates with strictly
finite support. These compact localized states are due to
some particular local realization of disorder and they are re-
sponsible for the appearance of a pseudo-gap at the center
of the density of states. We show that for the interacting
case the total number of compact localized states is highly
suppressed.

To summarize, we numerically investigated the dynamical
properties of a particle coupled to classical Ising spins un-

dergoing a thermal phase transition. We found an important
change in the system’s behavior for temperatures below and
above the critical one. For temperatures belonging to the
paramagnetic phase, the system is localized, while at low
temperature the behavior is consistent with the existence of
a delocalized phase.

Furthermore, our paper presents an example of disorder-
free localization. Despite the translational invariance of the
system, thermal fluctuations induce correlated disorder for the
quantum particles, and localization.

Our paper paves the way for other research lines. For exam-
ple, the investigation of quantum percolation in quasicrystals
[115,116] or in quantum systems coupled with classical ones
having first-order phase transitions, or quasiperiodic cou-
plings, or introducing interactions between the tight-binding
particles, in addition to those between the Ising degrees of
freedom, are important questions that are left for future work.
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APPENDIX A: q = 3 POTTS MODEL INTERACTIONS

In this section, we inspect the behavior of the model in
Eq. (1), but with on-site potential σx ∈ {−1, 0, 1}. The spin
configurations {σx} are drawn from the Boltzmann probability
distribution of a classical 2d q = 3 Potts model at temperature
T [88]. As in the main text, the classical spin configura-
tions at a certain temperature T are obtained using standard
Monte Carlo simulations with the Swendsen–Wang algorithm
(cluster updates) [85]. The classical q = 3 Potts model has a
second-order phase transition at Tc ≈ 2/ log(1 + √

3), and the
correlation length diverges as ξ ∼ |T − Tc|−ν with ν ≈ 0.46
[117,118] as the critical point is approached.

As explained in the main text, to capture the long-range
correlations close to the classical phase transition, we consider
the |W | → ∞ limit, allowing us to focus on the tight-binding
model defined on the largest connected “domain”, see Eq. (4).

Figures 8(a), 8(c), and 8(e) show the r value, D2, and
D1/2, respectively. As for the Ising correlated case (see main
text), we observe a drastic change in behavior in localization
properties when the critical temperature Tc is traversed. In the
ferromagnetic phase of the Potts model (T < Tc), the local-
ization probes are consistent with the existence of extended
states, while for T > Tc the system appears localized. Once
again, using the classical critical exponent ν ≈ 0.46 we obtain
a good scaling collapse, as illustrated in Figs. 8(b), 8(d), and
8(f). This suggests the possible existence of a metal-insulator
transition. As for the case with Ising interactions, it is impor-
tant to point out that a different scenario remains possible,
where the localization length becomes very large, but finite,
once the classical phase transition is crossed.
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FIG. 8. Eigenvalue and eigenstate analysis for the q = 3 Potts
model. [(a), (c), (e)] r statistics, D2 and D1/2, respectively, as a
function of T − Tc. [(b), (d), (f)] Collapse of the the r statistics, D2

and D1/2 exponents, with system size.

APPENDIX B: ISING INTERACTION

In this section, we show further data for the Ising inter-
acting case, Eq. (1). In Fig. 2 we have shown D2 and D1/2

computed using Eq. (8) at E ≈ 0.8. A different possibility
to extract D2 and D1/2 is to fit directly 〈log IPRq〉 ∼ Dq(1 −
q) log L2 to compute Dq. In Figs. 9(a) and 9(c) we show
IPRq as a function of system size for several temperatures.
First, it is important to point out that for temperatures T > Tc,
〈log IPRq〉 starts to bend as a function of L, as the system
is localized. Fitting the last three points in Figs. 9(a) and
9(c), we can extract the multifractal exponents D2 and D1/2,
respectively. In agreement with the results in Fig. 2 in the
main text, Dq ≈ 1 for T < Tc, consistent with the existence
of an extended phase.

In the main text, we focused our attention to energies E ≈
0 and E ≈ 0.8. For the sake of completeness, in Fig. 10 we
show the r value and D2 for a further energy E ≈ 1+√

5
2 . The

results are similar to the ones for E ≈ 0.8.

APPENDIX C: MEAN FREE PATH

In this section, we estimate the enhancement of
the mean free path, �, due to the presence of Ising
correlations/interactions. This calculation focuses on the
weak-scattering approximation, which assumes that scattering
events due to the random potential are rare and weak; this
in turn corresponds to T � Tc and W � 1. The Hamiltonian
H = H0 + V is decomposed into the free Hamiltonian H0 and
the disorder potential, V = W

∑
x σx|x〉〈x|.
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FIG. 9. D2 and D1/2 analysis for the Ising correlated case.
[(a),(c)] IPR2,1/2 as a function of system size for several tempera-
tures. [(b),(d)] D2,1/2 as a function of T − Tc.

The mean-free path is extracted from the self-energy �±,
which is defined by the Dyson equation

〈G±〉 = G±
0 + G±

0 �±〈G±〉, (C1)

where 〈G±〉 = 〈(E± − H )−1〉 and G±
0 = (E± − H0)−1 are the

disorder averaged Green functions for H and H0, respectively.
E± = E ± iη, with η > 0 an arbitrary infinitesimally small
positive constant.

The life-time τ , which is proportional to the mean free path
(τ ∝ �), is given by

1

τ
= ±2
(�±). (C2)

The self-energy can be approximated using the so-called first-
order Born approximation (1BA) [2,95], which is the lowest
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FIG. 10. Eigenvalue and eigenstate analysis for different ener-
gies (Ising interactions). (a) r-value statistics and (b) D2 exponent
for a fixed system size L = 1000 and several energies E .
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nontrivial order in perturbation theory:

�±,1BA(k) = W 2

L2

∑
k′

CIsing(k − k′)G±
0 (k′), (C3)

where we have used the fact that H0 is diagonal in the mo-
mentum basis; L is the linear size of the system and CIsing

is the averaged Fourier transform of the connected two-point
correlation function 〈〈σxσ0〉〉.

For T < Tc, the two-point correlation function can be
approximated as 〈〈σxσ0〉〉 ∼ M2(T )e−x/ξ (T ) [119], where
ξ−1(T ) = log sinh 2/T [70]. In this approximation, CIsing(k)

is just a Lorentzian, CIsing(k) ∝ M2(T )ξ−1

(ξ−2+k2 ) .

The imaginary part of the free Green function G±
0 , in

the weak scattering approximation, is proportional to the
delta function, namely limη→0 
[G±

0 (E±, k′)] ∝ δ(k2 − k′2),

and

τ−1 ∝ W 2M2(T )
∫ 2π

0
dθ [A1(ξ, θ )], (C4)

with

A1(ξ, θ ) = ξ−1

2k2(1 − cos θ ) + ξ−2
. (C5)

Therefore,

τ−1 ∝ W 2M2(T )√
4k2 + ξ−2

. (C6)

The result shows that τ ∝ � scales as (W 2T )−1 in the limit
T → 0 and W → 0, and diverges as expected.
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