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Hinge-mode dynamics of periodically driven higher-order Weyl semimetals
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We study the stroboscopic dynamics of hinge modes of a second-order topological material modeled by a
tight-binding free fermion Hamiltonian on a cubic lattice in the intermediate drive frequency regime for both
discrete (square pulse) and continuous (cosine) periodic drive protocols. We analyze the Floquet phases of this
system and show that its quasienergy spectrum becomes almost gapless in the large drive amplitude regime
at special drive frequencies. Away from these frequencies, the gapped quasienergy spectrum supports weakly
dispersing Floquet hinge modes. Near them, these hinge modes penetrate into the bulk and eventually become
indistinguishable from the bulk modes. We provide an analytic, albeit perturbative, expression for the Floquet
Hamiltonian using Floquet perturbation theory (FPT), which explains this phenomenon and leads to analytic
expressions of these special frequencies. We also show that in the large drive amplitude regime, the zero-energy
hinge modes corresponding to the static tight-binding Hamiltonian display qualitatively different dynamics at
these special frequencies. We discuss possible local density of state measurement using a scanning tunneling
microscope, which can test our theory.
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I. INTRODUCTION

Topological materials have been a subject of intense theo-
retical and experimental studies in recent years [1]. The study
of these systems began with spin-Hall systems [2], topological
insulators [3], and Dirac and Weyl semimetals [4,5]. The key
property of these materials, which distinguishes them from,
for example, trivial insulators, is manifestation of the bulk-
boundary correspondence [6]. In these materials, nontrivial
topology of the bulk bands results in the presence of symmetry
protected surface states. Thus a d-dimensional solid hosting
a topological phase exhibits topologically protected gapless
states localized in its d − 1 dimensional surface.

More recently, a new class of topological materials, dubbed
as higher-order topological materials (HOTMs), have been
studied intensively [7–36]. A nth order HOTM has nonzero
2n moment in the bulk (quadrupole for n = 2 and octupole for
n = 3) and hosts d − n dimensional topologically protected
states on its edges or corners; all other higher dimensional sur-
face modes are gapped out. For example in two-dimensional
(2D) second-order topological materials (SOTM), there is a
nonzero quadrupole moment in the bulk and the edge states
are gapped, while topologically protected states appear at the
corner [8,10–12,14,15,17–20,22]. Similarly, 3D SOTMs host
gapless hinge modes with gapped surface states [10,11,13,15].
A class of such materials include the higher-order Dirac
semimetals (HODS) [31–36] and the more recently found
higher-order Weyl semimetals (HOWS) [23–30]. Apart from
the standard Fermi arc states of the typical Weyl semimet-
als, HOWSs also host gapless hinge states with quantized
charge.

The physics of closed quantum systems driven out of
equilibrium has also been studied extensively in recent
years [37–44]. The quantum dynamics of such systems in-
volving periodic drive protocols are of particular interest;
they exhibit a host of phenomena, which usually have no
counterpart in either equilibrium or aperiodically driven quan-
tum systems [45–47]. Such phenomena include dynamical
freezing [48–52], dynamical localization [53–56], dynamical
phase transitions [57–59], presence of time crystalline phases
[60–62], and possibility of tuning ergodic properties of a
quantum system [63]. More interestingly, it is realized that
such drives can be used to engineer transition between topo-
logically trivial and nontrivial phases of matter [64–68].

In this paper, we study a driven tight-binding hopping
Hamiltonian for free fermions, which is known to host topo-
logical Weyl-semimetallic phase in equilibrium [24]. We
study this system for continuous and discrete drive protocols.
The summary of our main results and their connection to
existing ones are charted below.

A. Summary of results

The central results that we obtain from our study are as
follows.

(i) First, we chart out the phase diagram of the equilibrium
model and demonstrate that it hosts second-order topological
phases with a bulk gap and zero-energy hinge states. These
states serve as initial states in our dynamics studies.

(ii) Second, we use FPT to compute the Floquet Hamil-
tonian of the driven system corresponding to both discrete
square pulse and continuous cosine drive protocols. The
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Floquet phases obtained from these perturbative analytic
Hamiltonians agree remarkably well with that obtained from
exact numerics in the large drive amplitude and intermedi-
ate frequency regime where second-order Magnus expansion
fails.

(iii) Third, we demonstrate the existence of special drive
frequencies for which the bulk Floquet spectrum becomes
almost gapless. At these frequencies, the first-order analytic
Floquet Hamiltonian leads to a gapless spectrum; thus the
contribution to the gap in the Floquet spectrum comes from
higher-order terms, which are small. This picture is corrob-
orated by exact numerical study of the system, which also
indicates a drastic reduction of the Floquet spectrum gap at
these special frequencies.

(iv) Fourth, we find that the Floquet spectrum supports
weakly dispersing hinge modes when the drive frequency is
different from these special frequencies. We provide analytic
expressions of these hinge states for the discrete protocol
for a representative drive frequency starting from the pertur-
bative first-order Floquet Hamiltonian; we find the analytic
expressions to be qualitatively similar to those obtained from
exact numerics. In contrast, the hinge modes of the Floquet
spectrum delocalizes into the bulk and becomes almost in-
distinguishable from the bulk modes at these special drive
frequencies.

(v) Fifth, we study the manifestation of such a small bulk
Floquet gap on the dynamics of the hinge modes. Start-
ing from an initial zero-energy eigenstate of the equilibrium
Hamiltonian, which is localized at one of the hinges, we show,
by computing the spatially resolved probability distribution of
the driven hinge state, that the dynamics keeps the state local-
ized to the initial hinge when the bulk Floquet gap is large.
In contrast, at the special drive frequencies where the bulk
Floquet gap becomes small, the hinge modes show coherent
propagation between diagonally opposite hinges with a fixed
periodicity. We provide an analytic estimate of this periodicity
using the first-order perturbative Floquet Hamiltonian.

(vi) Finally, we point out that such a periodic variation
would reflect in the local density of state (LDOS) of the
fermions and is hence measurable by a scanning tunneling mi-
croscope (STM). This allows for the possibility of verification
of our theoretical results in standard STM experiments.

B. Comparison with existing works

Most of the theoretical efforts in the direction of Flo-
quet engineering of HOTMs have been based on either a
class of hopping Hamiltonians on specific lattices [69–79] or
driven topological superconductors [80–87]. The drive pro-
tocols followed in these studies are either continuous arising
from interaction of such systems with light [69,73,81–83,87]
or specifically engineered discrete ones where one of the
Hamiltonian parameters are changed discontinuously with
time [70–72,74–80,84–87]. These studies clearly establish
that such periodic driving can be used to engineer higher-order
topological Floquet phases even when the ground state of the
equilibrium parent Hamiltonian do not host such a phase. The
theoretical analysis leading to this result may be classified
into two distinct categories. The first involves construction of
exact Floquet unitaries for discrete protocols followed by their

numerical analysis to unravel the existence of the higher-order
Floquet phase [84–86]. The second class of studies, carried
out for both discrete and continuous protocols, involves an-
alytic computation of the Floquet Hamiltonian of the system
in the high-frequency regime using perturbation techniques,
which uses T as the expansion parameter [69–71,80]. The
latter class provide analytic insight into the properties of the
Floquet Hamiltonian only in the high-frequency regime where
such low T expansions are accurate. To the best of our knowl-
edge, such studies have not been extended to the intermediate
frequency regime where these perturbative methods fail. Our
study, on the other hand, uses FPT to explore this intermediate
frequency regime both analytically and numerically. In the
process, we encounter features like dispersion of hinge modes
and closing of bulk band gap, which have no analog both
in the undriven and in the high frequency driven version.
As we discuss in detail in Sec. IV C, this closing of the
band gap, in addition to being an artifact of the first-order
theory, does not lead to a change in topology, as this is not
accompanied by a band inversion. Nevertheless, this leaves
dynamical signatures, which serve as diagnostic tools of our
Floquet phases. To the best of our knowledge, such diagnosis
of Floquet phases has not been discussed in the literature
so far.

The plan of the rest of the paper are as follows. In Sec. II,
we define the starting Hamiltonian and chart out its equilib-
rium phase diagram. This is followed by Sec. III where we
derive the analytic, albeit perturbative, Floquet Hamiltonian
using FPT for both discrete and continuous drive protocols.
Next, in Sec. IV, we discuss the Floquet phases and compare
the FPT results with those from exact numerics. This is fol-
lowed by Sec. V where we discuss the dynamics of the hinge
modes. Finally we discuss our main results and conclude in
Sec. VI. A derivation of the Floquet Hamiltonian for both
continuous and discrete protocol using Magnus expansion is
presented in the Appendix.

II. MODEL HAMILTONIAN AND EQUILIBRIUM PHASES

We begin with the low-energy model tight-binding Hamil-
tonian on a cubic lattice involving four spinless fermions
within an unit cell hosting higher-order Weyl semimetal
phases [24]. A schematic picture of the model is shown in the
top left panel of Fig. 1. In momentum space, the Hamiltonian
of this system is given by

H =
∑

�k
ψ

†
�k H0(�k)ψ�k,

H0(�k) = a4�1 + a2�2 + a3�3 + a1�4 + ia5�2�3,

a1(2) = (γz + λ cos kx(y) ), γz = γ0 + λ

2
cos kz,

a3(4) = λ sin kx(y), a5 = m0 sin kz, (1)

where ψk denotes a four-component annihilation operator for
fermions, the lattice spacing has been set to unity, γ0(λ) de-
notes intra-(inter-)cell hopping amplitudes as shown in Fig. 1,
�k = (kx, ky, kz ) indicates crystal momenta, and the matrices
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FIG. 1. Top panel: Left: A lattice realization of a two-
dimensional quadrupolar insulator (QI) with four orbitals as indi-
cated by 1–4 numbers. The 3D structure is obtained by stacking 2D
QIs. The red and blue lines denote intracell and intercell hopping,
respectively. Right: Plot of the bulk bandgap as obtained from Eq. (3)
for different values of γ and m. The black regime is gapless with
4 or 8 Weyl nodes as indicated and the rest including the central
hexagon-like regime are gapped. Bottom panel: The location of Weyl
points for γ = −1.0 (left) and m = 0.75 and γ = −0.2 and m = 2.0
(right). The green-solid and blue dashed lines are schematic repre-
sentations of the surface and hinge arcs respectively. All energies are
scaled in units of λ and the circles for plots in the bottom panels are
guide to the eye.

�μ are given, in terms of outer product of two Pauli matrices
τ and σ , by

�α = −τy ⊗ σα, �0 = τz ⊗ Iσ , �4 = τx ⊗ Iσ . (2)

Here Iτ and Iσ denote 2 × 2 identity matrices and the index α

takes values 1,2,3. The matrices �μ satisfy the commutation
relation {�μ, �ν} = 2δμνIτ ⊗ Iσ .

The model in Eq. (1) preserves inversion I = Iτ ⊗ σy and
mirror My = τx ⊗ σx symmetries, while time reversal T0 = K
(where K denotes complex conjugation), the fourfold rota-
tional symmetry Cz

4 and mirror along x, Mx = τx ⊗ σz, are
broken. In addition, the model preserves MxT0. We note that
for the model Mz is defined through I = MxMyMz and that for
m0 = 0, H0 preserves Cz

4 along with other symmetries men-
tioned above and hosts a higher-order topological semimetal
phase. The energy spectrum of Eq. (1) is given by

E±,± = ±
√∑

i=1,5

a2
i ± 2|a5|

√
a2

1 + a2
4, (3)

where E+− and E−− correspond to the lowest conduction and
highest valence band respectively. For Fermi energy εF =
0, the band spectrum in Eq. (3) can be gapped or gapless
depending on the dimensionless parameters γ = γ0/λ and
m = m0/λ. It is evident from the top right panel of Fig. 1 that

FIG. 2. Top panels: Left: Plot of surface Fermi arc of undriven
Hamiltonian [Eq. (1)] as a function of ky with open boundary con-
dition (OBC) along z and kx = 0 for gapless bulk regime with eight
Weyl nodes (γ = −0.2, m = 2.0). Right: The gapless hinge mode
is obtained as a function of kz with OBC along x and y with the
same parameter set. It connects two middle node at kz = 0. Middle
panels: Same as the corresponding top panels but for gapless bulk
with four Weyl nodes (γ = −1.0, m = 0.75). Bottom panels: Left:
Energy spectrum for gapped bulk (γ = −0.2, m = 0.4) as a function
of kz with kx = 0 and OBC along y. The surface localized modes,
indicated by orange solid lines, are gapped. Right: The hinge mode,
obtained with OBC along x and y denoted by red line is gapless,
reflecting the typical quadrupolar insulating phase.

the spectrum is gapless for −1.5 � γ � 1.5 except the central
hexagonal-like regime, satisfying |γ | � 0.5 and

|m| �
√

(1 − |γ |) + 1

2

√
3 − 8|γ | + 4γ 2, (4)

where the spectrum is gapped.
The gapless regime can further be divided into two regimes

based on the number of Weyl nodes. Note that the Weyl nodes
in this particular model lie in the ky − kz plane (bottom panels
of Fig. 1) (instead of the high symmetric lines kx = 0 and
ky = 0). The gapless regime with |γ | < 0.5 exhibits eight
Weyl nodes, which are connected through surface Fermi arc
along the z surface, as shown in the top left panel of Fig. 2.
A further cut of this surface either along x or y does not
give rise to any hinge mode. Instead, the hinge mode exists
along kz, connecting two Weyl nodes closest to kz = 0 as
depicted in the top right panel of Fig. 2. Thus the hinge and
surface modes are perpendicular to each other in the present
model. As we move away from |γ | < 0.5 to |γ | � 0.5, four
Weyl nodes annihilate in pairs while the rest four retain. As
before, we find gapless surface and hinge modes connecting
Weyl nodes at the center of momenta ky = 0 and kz = 0,
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respectively (center left and right panels of Fig. 2). Finally,
for the central hexagonal-like regime with |γ | < 0.5 shown
in the right panel of Fig. 1, all Weyl nodes annihilate in
pairs, resulting in gapped insulating phase. In this regime, the
surface bands denoted by orange solid line in the bottom left
panel of Fig. 2 are gapped, whereas the hinge mode is found
to be gapless (see bottom right panel Fig. 2), indicating the
standard quadrupolar topological insulating (QTI) phase.

III. FLOQUET PERTURBATION THEORY

The studies of topological properties of a periodically
driven closed quantum system relies on computation of its
Floquet Hamiltonian HF , which is related to its unitary evolu-
tion operator U (T, 0) via the relation [44]

U (T, 0) = Tt [e
−i

∫ T
0 H (t )dt/h̄] = e−iHF T/h̄, (5)

where Tt denotes time ordering, T = 2π/ωD is the time pe-
riod of the drive, ωD is the drive frequency, and h̄ is Planck’s
constant. The knowledge of HF allows one to compute Flo-
quet eigenstates; it is well known that they host nontrivial
topological properties exhibiting transitions from trivial to
nontrivial topological phases as a function of the drive fre-
quency. It is well known that a driven system may host
such topological phases and associated transitions between
them even when the corresponding equilibrium Hamiltonian
is topologically trivial [64–68].

The exact computation of the Floquet Hamiltonian for a
generic quantum system is difficult; one therefore relies on
several perturbative method for its computation [44,88]. One
such perturbative scheme is the Magnus expansion where T
is taken as the perturbation parameter. However, the conver-
gence of such an expansion is difficult to ascertain; moreover,
it almost always fails to provide qualitatively accurate results
in the intermediate or low frequency regimes. In contrast, the
properties of HF in the intermediate drive frequency regime
is known to be well described by the Floquet perturbation
theory, which uses the inverse of the drive amplitude as the
perturbation parameter [56,89,90].

In this section, we shall provide an analytic computation
of the Floquet Hamiltonian of the model in the presence of a
periodic drive, which is implemented by making γ a periodic
function of time: γ (t ) = γ0 + γ1(t ) using Floquet perturba-
tion theory (for a review of this method, see Ref. [44]). The
precise time dependence of γ1(t ) depends on the protocol.

In this section, we shall study two such protocols. The first,
which constitutes a square pulse, leads to

γ1(t ) =
{−γ1, 0 � t < T

2
γ1,

T
2 � t � T,

(6)

where γ1 is the amplitude of the pulse and T denotes its
time period. The second constitutes a continuous protocol for
which

γ1(t ) = γ1 cos ωDt . (7)

For implementing the FPT, we write H (t ) = H0 + H ′(t ),
where

H ′(t ) = γ1(t )(�2 + �4). (8)
Note that H ′(t ) does not break any of the additional symme-
tries discussed earlier.

We focus on the regime of large drive amplitude,
i.e., γ1 � γ0, λ, m0. In this case, we can treat H ′(t ) ex-
actly and H0 perturbatively to find the Floquet unitary
and hence HF . The first term in such an expansion
constitutes the unitary evolution operator U0(t, 0) given
by

U0(t, 0) = Tt exp

[−i

h̄

∫ t

0
dt ′H ′(t ′)

]
. (9)

For the square pulse protocol given by Eq. (6), this yields

U (s)
0 (t, 0) = exp[iγ1t (�2 + �4)/h̄] 0 � t � T/2,

= exp[iγ1(T − t )(�2 + �4)/h̄] T/2 � t � T,

(10)

which yields U (s)
0 (T, 0) = I and H (0;s)

F = 0. For the continu-
ous drive protocol given by Eq. (7), one gets

U (c)
0 = exp

[
− iγ1 sin ωDt

ωDh̄
(�2 + �4)

]
, (11)

which also yields H (0;c)
F = 0.

Next we consider the first-order term in the Floquet pertur-
bation theory, which is given by

U1(T, 0) = −i

h̄

∫ T

0
dtU †

0 (t, 0)H0U0(t, 0),

H (1)
F = ih̄

T
U1(T, 0). (12)

A straightforward calculation using Eqs. (1) and (10) yields
for the square pulse protocol

H (1);s
F = 1

2
((a1 + a2)(�4 + �2) + ia5(�2�3 + �3�4)) + h̄ sin (

√
2γ1T/h̄)

2
√

2γ1T
((a1 − a2)(�4 − �2) + ia5(�2�3 − �3�4))

+ i
h̄(cos (

√
2γ1T/h̄) − 1)

2γ1T
((a1 − a2)�2�4 + (�2 + �4)(a3�3 + a4�1) + ia5�3) + h̄ sin (

√
2γ1T/h̄)√

2γ1T
(a3�3 + a4�1).

(13)

224312-4



HINGE-MODE DYNAMICS OF PERIODICALLY DRIVEN … PHYSICAL REVIEW B 105, 224312 (2022)

Note that the symmetries of the undriven Hamiltonian is retained in the effective Floquet Hamiltonian H (1);s
F . A similar

calculation for the continuous protocol using Eqs. (1) and (11) yields

H (1);c
F = 1

2
[(a1 + a2)(�2 + �4) + ia5(�2�3 + �3�4)] + J0

(√
2γ1T

h̄π

)[
a3�3 + a4�1 + 1

2
((a1 − a2)(�4 − �2)

+ ia5(�2�3 − �3�4))
]
, (14)

where J0 denotes zeroth-order Bessel function of the first kind and we have used the identity exp[iα sin x] = ∑
n Jn(α) exp[inx].

We note that for the square pulse protocol H (1);s
F takes a

particularly simple form around
√

2γ1T/h̄ = 2nπ (for n �=
0 ∈ Z) where only the first term in Eq. (13) survives. We
shall see in Sec. IV C that this leads to presence of ring of
Weyl nodes in the spectrum of H (1);s

F . A similar simplification
occurs for the continuous drive protocol at

√
2γ1T = παn,

where αn denotes the position of the nth zero of the Bessel
function. These features, for either square pulse or continuous
protocols, are difficult to obtain within a Magnus expansion
as shown via explicit calculation in the Appendix; in fact, it
can be shown that our results in Eqs. (13) and (14) constitute
an infinite re-summation of a class of terms in the Magnus
expansion [63].

Next, we compute the second-order terms in the perturba-
tive expansion. The expression for such terms can be written,
in terms of H0(t ) = U †

0 (t, 0)H0U0(t, 0) as

U2(T, 0) =
(−i

h̄

)2 ∫ T

0
dt1H0(t1)

∫ t1

0
dt2H0(t2),

H (2)
F = ih̄

T

(
U2(T, 0) − 1

2
U 2

1 (T, 0)

)
. (15)

For the square pulse protocol given by Eq. (6), it turns out that
U0(t, 0) = U0(T − t, T/2) for all t � T/2. It can be shown
that this symmetry allows one to write

U s
2 (T, 0) = 2

(−i

h̄

)2 ∫ T/2

0
dt1H0(t1)

∫ T/2

0
dt2H0(t2), (16)

thereby implying that U s
2 (T, 0) = 1

2 [U s
1 (T, 0)]2. Thus the

second-order correction H (2);s
F vanishes identically. So for the

square pulse protocol H (1);s
F provides the Floquet Hamiltonian

up to third order in perturbation theory.
The symmetry property mentioned above does not hold

for the continuous protocol given in Eq. (7). In this case
one obtains a finite contribution to the second-order Flo-
quet Hamiltonian. The computation is straightforward, though
somewhat cumbersome. The final result is

H (2);c
F = − 1√

2

∞∑
n=−∞

J2n+1

(√
2γ1T
h̄π

)
(2n + 1)h̄ωD

[((
a2

1 − a2
2 + a2

5

)
(�2 − �4) − 2(a1 + a2)(a3�3 + a4�1) − 2ia1a5(�2 + �4)�3

+ 2ia3a5�2�4
) + J0

(√
2γ1T

h̄π

)((
(a1 − a2)2 + a2

5 + 2
(
a2

3 + a2
4

))
(�2 + �4) + 2ia1a5(�2 − �4)�3

)]
. (17)

We note that for h̄ωD ∼ O(γ1), the second-order Floquet
terms are suppressed by a factor of O(1/γ1); thus in this
regime, we expect the first-order term to be reasonably ac-
curate.

Before closing this section, we note that the presence of
such gapless first-order Floquet Hamiltonian implies that at
least at the high-frequency regime, the exact Floquet Hamil-
tonian will at most have a tiny gap in its spectrum. This is due
to the fact that such a gap can only originate from higher-order
terms, which are small in the high-frequency regime. We shall
discuss this issue and its implication for the hinge modes of
the model in more details in Secs. IV and V.

IV. FLOQUET PHASES

In this section, we analyze the spectrum of H (1)
F in the

intermediate and high-frequency regime and compare the re-
sult with those obtained from numerical computation of exact
HF . For the sake of concreteness, we shall mainly focus on
the regime where H (t = 0) hosts a quadrupolar insulating
ground state. In Sec. IV A, we discuss the Floquet phases

of the model. This is followed by analysis of the proper-
ties of HF for some special drive frequencies in Secs. IV B
and IV C.

A. The bulk spectrum

The computation of the exact Floquet Hamiltonian, which
shall be used for obtaining the Floquet phases, can be carried
out as follows. For the square pulse protocol, we write the
Hamiltonian H[γ = γ0 ± γ1] = H±. In terms of H±, one can
write the evolution operator as

U ex
s (T, 0) = e−iH+T/(2h̄)e−iH−T/(2h̄). (18)

To evaluate U ex
s , we first obtain the eigenvalues and eigen-

vectors of H±. This can be done analytically for periodic
boundary condition, but needs to be done numerically for
open boundary condition. We use the latter here for extracting
the properties of the Floquet phases. We define the corre-
sponding eigenvalues and eigenvectors as ε±

n and |n±〉. On the
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basis of these eigenstates U ex
s (T, 0) can be written as

U ex
s (T, 0) =

∑
n+,m−

e−i(ε+
n +ε−

m )T/(2h̄)c−+
mn |m−〉〈n+|. (19)

The diagonalization of U ex
s in this basis leads to the eigen-

values λp = eiθp and the corresponding eigenvectors |p〉.
The exact Floquet eigenvalues and eigenvectors can then be
found as

H ex
F =

∑
p

εF ;ex
p |p〉〈p|, εF ;ex

p = h̄

T
arccos{Re[λp]}. (20)

The ground state of H ex
F is then used to distinguish between

the different Floquet phases. This is typically done by exam-
ining the bulk gap and surface modes in the Floquet spectrum
and also by determining the presence of the hinge modes. A
similar analysis is done using the perturbative Floquet Hamil-
tonian H (1);s

F .
For the continuous protocol, the computation of the Flo-

quet Hamiltonian turns to be more challenging. The procedure
involves division of the evolution operator into N trotter
steps; the width of these steps δt = T/N are chosen such
that H[t j] 
 H[t j + δt] for any Trotter slice t j . For our pur-
pose, numerically we find that N = 50 is enough to satisfy
this criteria; all data corresponding to N > 50 coincides
with their N 
 50 counterparts for all frequencies studied
in this paper. Writing the eigenvalues and eigenfunctions of
H (t j ) as ε

j
n and |n j〉 respectively, we express the evolution

operator as

U ex
c =

∏
j=1,N

∑
n

e−iε j
n T/h̄|n j〉〈n j |. (21)

This is then diagonalized to find the corresponding eigen-
values and eigenvectors. The rest of the analysis fol-
lows the same steps as detailed for the discrete case.
The results obtained from the exact Floquet Hamiltonian
are compared to those obtained from perturbative result
Hc

F = H (1)c
F + H (2)c

F .
The plot of the smallest bandgap (the smallest difference in

quasienergy between the lowest positive and highest negative
quasienergy bands) of the Floquet Hamiltonian is shown in
Fig. 3. The top panel shows the band gap as obtained using
the expressions of HF from FPT as given in Eqs. (13), (14),
and (17). The top left (right) panel shows the Floquet per-
turbation theory results for discrete square pulse (continuous
cosine drive) protocols. These plots are compared to the exact
results plotted in the respective bottom panels. The plots show
remarkable match in the high (h̄ωD � γ1) and intermediate
frequency regime (h̄ωD ∼ γ1), which clearly reflects the ac-
curacy of FPT in this regime.

The plots in both the top and bottom panel indicate the
presence of regimes with extremely small gaps in the Floquet
spectrum as a function of γ1 or T . These regimes appear
around drive frequencies Tc and amplitude γ1c, which sat-
isfy

√
2γ1cTc/h̄ = 2nπ for the discrete protocol and along√

2γ1cTc/h̄ = παn for the continuous protocol as shown in
Fig. 3. This feature is easy to understand from the expressions
of the first-order Floquet Hamiltonians given in Eqs. (13) and
(14); for these drive frequencies and amplitude both of these

FIG. 3. Top left panel: Plot of the smallest Floquet bandgap for
H (1);s

F as a function of λ/(h̄ωD) and γ1/λ. Top right panel: A similar
plot corresponding to H (1);c

F . Bottom left (right) panel: Similar plot
corresponding to the exact Floquet Hamiltonian for the discrete
square pulse (continuous cosine drive) protocols. For all plots γ =
−0.35 and m = −0.08. See text for details.

Hamiltonians reduce to

H∗
F = 1

2 [(a1 + a2)(�2 + �4) + ia5(�2�3 + �3�4)], (22)

which, as we shall see in Sec. IV C, supports gapless bulk
modes. Further, as shall be analyzed in details in Sec. IV C,
a relative sign change of the mass of the gapped edge modes
occur at both the x and one of the y edges of the system as
the system traverses through these nearly gapless points. The
spectrum of the exact Floquet Hamiltonian, in contrast, retains
a small gap across these points; we shall discuss this feature
in details in Sec. IV C.

For the square pulse protocol, the magnitude of the gap
becomes smaller as the drive frequency is lowered from T =
2π h̄/(

√
2γ1) as can be seen from the left panels of Fig. 3.

This feature can be easily understood by noting that the terms
in the Floquet Hamiltonian H (1);s

F , which are to be added to
H∗

F to obtain a spectral gap have amplitudes ∼1/(γ1T ) and
thus decrease rapidly with decreasing frequency. In contrast,
for the continuous protocol, as shown in the right panel, the
gap at higher frequencies is much more robust. This can be
understood from the expression of H (1);c

F , which indicates
that the amplitude of the terms added to H∗

F [Eq. (22)] for a
finite spectral gap is proportional to J0(

√
2γ1T/(π h̄)); their

amplitude therefore decreases more slowly with decreasing
frequency.

Thus we find that the Floquet Hamiltonians derived using
FPT support near gapless regimes as a function of both γ1 and
T . We also note that the predictions based on first-order FPT
results are validated from numerical computations of the bulk
spectrum gap of the exact Floquet Hamiltonians as shown in
the bottom plots of Fig. 3. In the next subsections, we shall an-
alyze the properties of these gapped and near-gapless phases
for specific drive frequencies. We close this subsection by not-
ing that the second-order Magnus expansion can not explain
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FIG. 4. Top left panel: Plot of energy spectrum of the first-order
Floquet Hamiltonian H (1);s

F as a function of ky for kz = 2 with PBC
along z and y and OBC along x for

√
2γ1T/h̄ = π . Top right panel:

Surface bands of H (1);s
F plotted as a function of kz using OBC along

x and y. The red bands show Floquet hinge localized modes. Bottom
left panel: Plot of |ψ (x, y; kz = 1)|2 as a function of x and y for the
Floquet hinge localized mode. Bottom right panel: Surface bands
of H (1);c

F plotted as a function of kz using OBC along x and y for
h̄ωD/λ = 3.3. For all plots γ = −0.35, m = −0.08.

these transitions as shown in the Appendix. The second-order
Floquet Hamiltonian obtained from the Magnus expansion
yields Floquet phases with large gaps for both continuous and
discrete protocols at all frequencies.

B. Gapped phases of the first-order Floquet Hamiltonian

In this section, we shall discuss the property of the gapped
phases. For this purpose we shall use the square pulse protocol
with a time period T ′, which satisfies

√
2γ1T ′/h̄ = π . The

reason for this choice is that the Floquet Hamiltonian H (1);s
F is

particularly simple at this point making several aspects of the
phase analytically tractable.

For T = T ′, the perturbative Floquet Hamiltonian can be
written as

H (1);s
F (T ′) = H∗

F −
√

2ih̄

π
((a1 − a2)�2�4

+ (�2 + �4)(a3�3 + a4�1) + ia5�3). (23)

The bulk spectrum of H (1);s
F (T ′) is found to be gapped as can

be seen from the top left panel of Fig. 4 where the energy
spectrum is plotted as a function of ky for kz = 2 with open
boundary condition (OBC) along x direction and periodic
boundary condition (PBC) along z and y. This shows gapped
surface states modes similar to the undriven case but does not
show topologically protected zero-energy surface modes. To
check for the possibility of the topologically protected hinge
modes, next we consider OBC along x and y directions in
conjunction with PBC along z and plot the band spectrum in
the top right panel of Fig. 4 as a function of kz. Interestingly,
we find finite energy dispersive modes at the center of the
bulk bands for kz �= 0. This is in contrast to the standard
quadrupolar insulators, which host gapless hinge modes. To
identify the nature of this energy mode, we plot probability

FIG. 5. Left panel: Surface bands of exact Floquet Hamiltonian
for a square pulse protocol plotted as a function of kz using OBC
along x and y with

√
2γ1T/h̄ = π . Right panel: Plot of |ψ (x, y; kz =

1)|2 as a function of x and y for the hinge mode. All parameters are
same as those in Fig. 4

density of the corresponding eigenstate, |ψ (x, y; kz )|2, in the
x − y plane for kz = 1 as shown in the bottom left panel Fig. 4.
Clearly, the finite energy mode appears to be the hinge mode
of driven Hamiltonian. Thus the Floquet Hamiltonian seems
to support dispersing hinge modes at finite kz. The energy of
the hinge modes becomes zero at kz = 0 when m is finite or
at all values of kz, which allow hinge modes when m0 = 0.
The bottom right panel of Fig. 4 shows the presence of hinge
modes in the gapped phase of the Floquet Hamiltonian ob-
tained using a continuous protocol for representative value of
drive parameters. We find analogous dispersive hinge modes
although the dispersion turns out to be flatter compared to its
discrete protocol counterpart.

The hinge modes obtained from the analysis of H (1);s
F can

be compared to the ones obtained from exact numerics for
the same parameter value. The dispersion of these modes
are shown in the left panel of Fig. 5 while the probability
density |ψ (x, y; kz = 1)|2 for the hinge states are plotted in
the right panel of the figure. We find the presence of hinge
modes in the spectrum of exact Floquet Hamiltonian for the
square pulse protocol, which is qualitatively consistent with
the results obtained from H (1);s

F . We note that the exact hinge
modes display a much flatter dispersion compared to their
analytic counterparts; moreover, they start to deviate from
E = 0 for |kz| � 2.6 predicting absence of zero-energy states
beyond −2.6 � kz � 2.6 for the chosen set of parameters. The
latter feature is also seen for m0 = 0 where all modes with
|kz| � 2.6 correspond to E = 0.

To understand such dispersing hinge modes, we first ad-
dress the case with m = 0. This is followed by a perturbative
treatment for a small, nonzero value of m. The first-order Flo-
quet Hamiltonian, given in Eq. (13) at this driving frequency
is given, for m = 0, by [Eq. (23)]

H (1);s
F (T ′; �k) = 1

2
(2γz + λ cos kx + λ cos ky)(�2 + �4)

− i

√
2h̄

π
λ[(�2 + �4)(sin kx�3 + sin ky�1)

+ (cos kx − cos ky)�2�4], (24)

where we have used Eq. (1) for expressions of ai for i = 1..4
and γz. The analysis of hinge modes can then be cast as a
solution of the edge problem for H (1);s

F (T ′; kx = ±ky, kz ). For
the sake of definiteness we choose kx = ky = k here; along

224312-7



GHOSH, SAHA, AND SENGUPTA PHYSICAL REVIEW B 105, 224312 (2022)

this line

H (1);s
F (T ′; k, kz ) = 1

2
(2γz + 2λ cos k)�1

− i

√
2h̄

π
λ sin k�1�2, (25)

where �1 = �2 + �4 and �2 = �1 + �3. Equation (25) cor-
responds to a 1D hopping Hamiltonian with its two ends at the
two diagonally opposite corners of the original lattice (treating
kz as a parameter). Thus the end modes of this Hamiltonian
will correspond to any hinge localized mode of the original
problem.

To find the end mode, we need a solution of

H (1);s
F (T ′; k = −i∂ξ , kz )φ(ξ ) = Eφ(ξ ), (26)

with φ(ξ = 0) = 0 where the edge is at ξ = 0. Here we have
chosen a semi-infinite line occupying ξ > 0 and have used the
identification k = −i∂ξ with ξ = 1√

2
(x + y). To this end, we

consider the wavefunction φ± given by

φ±(ξ ) = e−αξ e±iβξχ. (27)

Substituting Eq. (27) in Eq. (26), we find

(γz + λ cos (iα ± β ))�1χ − i

√
2h̄

π
λ

sin (iα ± β )�1�2χ = Eχ. (28)

Next, we try a solution of the form �2χ = pχ (where p =
±√

2 constitute the two doubly degenerate eigenvalues of �2)
and E = 0. This leads to(

(γz + λ cos (iα ± β )) − i

√
2h̄

π
λ sin (iα ± β )p

)
�1χ = 0.

(29)
For Eq. (29) to hold, we need to equate its real and imaginary
parts to zero. This gives us the conditions

γz + λ cosh α cos β = −
√

2h̄

π
λp sinh α cos β,

sinh α sin β = −
√

2h̄

π
p cosh α sin β,

(30)

which needs to be satisfied by α > 0 and β. If β = π , this
therefore leads to the condition

γz ± λ cosh α = ∓
√

2h̄

π
λp sinh α. (31)

This condition, however, is not satisfied for any (kz, α) pair
corresponding to our chosen set of parameters. In contrast, for
β �= 0, π/2, π , we need

tanh α = −
√

2h̄

π
p, cos β = −γz

λ
cosh α. (32)

Also, we note that no solution exists for β = π/2 provided
γz �= 0.

For a localized solution at this edge, α should be positive;
so p should be chosen to be the negative eigenvalue of �2,
namely −√

2 and |γz/λ| < sech α. This provides the allowed
range of kz for zero-energy hinge modes for m = 0. For our
chosen set of parameter values, this second condition implies
that our analysis does not hold for |kz| > 2.6. We note here

FIG. 6. Plot of the hinge mode dispersion as a function of kz

using analytical solution [μ1 from Eq. (35) with m = −0.08] (red
squares), numerical solution of H (1);s

F using OBC along x, y and PBC
along z (blue line), and HF obtained from exact numerics (yellow
line). The analytical result shows near exact match with the numeri-
cal result obtained from H (1);s

F for small kz. All parameters are same
as those in bottom left panel of Fig. 5.

that a similar analysis carried out for the diagonally opposite
hinge (for which α < 0) would yield a similar solution but
with p chosen to be positive eigenvalues of �2.

The analysis above indicates that there are two linearly
independent solutions for χ1,2 given by

ψ1,2(ξ ) = N e−αξ sin (βξ )χ1,2,

χ1(2) =
(

− i√
2
,+(−)

i√
2
, 0(1), 1(0)

)T

, (33)

which satisfies ψ (ξ = 0) = 0. Here χ1,2 denotes the eignvec-
tors of �2 corresponding to p = −√

2. We note that naively
one may conclude the existence of two hinge modes per hinge
from such a solution, which contradicts exact numerics that
yields one such state. It is to be stressed that our solution does
not necessarily mean the existence of two such modes since
the edge mode needs to respect Cz

4, My, Mx, and I symmetries.
This may indeed lead to choice of a specific linear combi-
nation of the two solutions leading to the correct number of
modes. However, a detailed analysis of this requires a solution
constituting all four edge modes; we do not attempt it in this
paper.

Instead, to understand the dispersion of the hinge modes
in the presence of a finite m0, we now switch to the case
of nonzero m0. We find that allowing the presence of a
nonzero a5 in Eq. (13) introduces an additional term in the
H (1);s

F (T ′; k, kz ) [Eq. (25)] given by

Hm = m0 sin kz

(
i(�2�3 + �3�4) −

√
2

π
�3

)
. (34)

Projecting this term in the space spanned by χ1,2 and diago-
nalizing, one obtains two eigenvalues and eigenvectors as

μa = (−1)am0 sin kz(π + (−1)a1)/π,

ψm,a = 1√
2

(ψ1 + (−1)a+1ψ2),
(35)

where a = 1, 2. The mode, which remain close to E = 0 at
small m0 corresponds to a = 1. As shown in Fig. 6, this
mode shows remarkable match with the numerical spectrum
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obtained from H (1);s
F at T = T ′ for small kz; however, it fails to

reproduce the up turn of the spectrum at large kz. It also shows
qualitatively similar behavior to the corresponding exact hinge
mode spectrum for small kz, which produces a dispersing
spectrum with much flatter dispersion. This prompts us to
choose the linear combination ψ ∼ ψ1 + ψ2 as the hinge
mode solution for m0 = 0; the other mode corresponding to
a = 2 seems to be an artifact of treating a single hinge, which
we ignore. We also note that our analysis not only explains the
dispersion of the hinge modes for finite m0 but also predicts
that for m0 = 0, there are no zero-energy hinge states for
kz satisfying sechα > |(γz/λ)| (which translates to |kz| > 2.6
for our chosen parameters). This matches with the result of
exact numerics where the hinge modes for m0 = 0 starts to
deviate from zero energy beyond |kz| ∼ 2.6 for the chosen set
of parameters.

C. Gapless points in the first-order Floquet spectrum

In this section, we shall analyze the Floquet Hamiltonian
at the gapless point using the first-order perturbative Hamil-
tonian, which allows some analytic insight into the nature of
these points. For the discrete square pulse protocol such points
occur at

√
2 γ1 T/h̄ = 2nπ while for the continuous protocol,

they occur at
√

2γ1T/h̄ = παn. For both these points, the
first-order perturbation theory yields H = H∗

F . In this section,
we shall analyze the bulk and the surface properties of H∗

F .

1. Bulk modes

We begin our analysis with the bulk modes of H∗
F using

PBC in all directions. This yields

ε±,± = ± 1√
2
||a1 + a2| ± |a5||. (36)

It turns out that the spectrum contains zero-energy curves,
which constitutes stacks of Weyl nodes for kz �= 0, π and
Dirac nodes for kz = 0, π . The former constitutes a crossing
of two bands leading to Weyl nodes at the crossing points. At
kz = 0, π , both the positive and negative quasienergy bands
are twofold degenerate; hence, in this case, one has a crossing
of all four bands leading to Dirac nodes.

The generic condition on the momenta (kx, ky, kz ) for these
band crossings is given by

−
√

1 + m2 � μ(kx, ky ) �
√

1 + m2,

cos k±
z = μ(kx, ky)

1 + m2
± |m|

1 + m2

√
1 + m2 − μ2(kx, ky),

(37)

where we have used Eqs. (36) and (1) and μ(kx, ky) =
(2γ + cos kx + cos ky). The band spectrum corresponding to
Eq. (36), shown in Fig. 7, demonstrates these nodes for differ-
ent values of kz. Notice that for fixed kz, the bulk gap closes in
the kx − ky plane along a single or multiple curves, giving rise
to nodal lines/rings Weyl (for kz �= 0, π ) or Dirac semimetals
(for kz = 0, π ) [91]. The shape of the lines/rings depends
on the values of kz, γ and m and is determined by Eq. (37).
We note that the Dirac line nodes on mirror-invariant planes
kz = 0 and kz = π are protected by Mz, I , and T0 symmetries,
which leads to the twofold degeneracy of the bulk bands. For

FIG. 7. Contour plot of ε+,− in the kx − ky plane. Top left panel:
For kz = 0, the twofold degenerate conduction and valence bands
meet along the arcs, giving rise to line node Dirac semimetals.
Right panel: For kz = π . Bottom left panel: For kz = 1.25 where two
bands cross leading to line node Weyl semimetal. Right panel: For
kz = 2.25. For all plots γ = −0.35, and m = −0.08.

kz �= 0, π , these symmetries are broken; this leads to lifting of
the degeneracies and a generic crossing between two nonde-
generate bands leading to Weyl nodes.

As explained earlier at the closing of Sec. III, the gaps for
the bulk Floquet mode of the exact Hamiltonian do not close.
This can be seen by looking at the Floquet spectrum in Fig. 8.
These plots are almost identical except for the presence of a
tiny gap in the spectrum in the regions where the first-order
Floquet theory yields gapless Weyl or Dirac nodes. Thus the
band crossings of the first-order theory becomes avoided level
crossings for the exact Floquet Hamiltonian. The effect of this
reduction of the bulk Floquet gap on the hinge modes shall be

FIG. 8. Contour plot of ε+,− for the exact Floquet Hamiltonian in
the kx − ky plane for the square pulse protocol with

√
2γ1T/h̄ = 2π .

All parameters are same as the corresponding panels in Fig. 7. Note
that the gaps do not close exactly leading to an avoided level crossing.
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discussed in Sec. V. For both Figs. 7 and 8, we have set the
plot range so as to only highlight the contours along which the
bulk band gap is the smallest.

2. Surface and hinge modes

In this section, we shall analyze the surface and hinge
modes around the drive frequencies at which the bulk spec-
trum gap for the first-order Hamiltonian closes. Thus we shall
be concerned with drive frequencies

√
2γ1T/h̄ = 2nπ + δ for

the discrete protocol and
√

2γ1T/h̄ = παn + δ for the contin-
uous protocol, where |δ| � 2π . For both these protocols, the
effective Floquet Hamiltonian in this region, for m = 0, reads

Heff = H∗
F + δc0[(a1 − a2)(�4 − �2)

+ 2(a3�3 + a4�1)], (38)

where c0 is a protocol dependent constant, which takes values
c0s = 1/(4π ) for the discrete protocol and c0c = J−1(αn)/π
for the continuous protocol. The bulk modes corresponding to
PBC are easily calculated to be

ε± = ± 1√
2

[
(a1 + a2)2 + 4δ2c2

0

(
(a1 − a2)2

+ 2
(
a2

3 + a2
4

))]1/2
, (39)

which show a band touching at δ = 0 for �k values, which
yields gapless modes.

In what follows we shall first analyze the surface modes
of Heff as a function of δ. To this end, we use the continuum
limit of this lattice Hamiltonian by expanding around the point
(kx, ky) = (0, 0) and keeping terms till second order in the
momenta. When dealing with the x = 0 surface specifically,
ky will remain a good quantum number, so that, we can neglect
the negligible k2

y terms and write the Hamiltonian as a sum of
two parts, viz,

H (−i∂/∂x, ky, kz ) = HI + HII . (40)

Here HI carries the whole x dependence and is given by

HI = 1

2
(γz + λ)(�2 + �4) + λ

4

∂2

∂x2
(�2 + �4)

+ δλ

8π

∂2

∂x2
(�4 − �2) − i

δλ

2π

∂

∂x
�3, (41)

while HII , which carries the entire ky dependence, can be
written as

HII = 1

2
(γz + λ)(�2 + �4) + δλ

2π
ky�1. (42)

Here and in rest of the section, we choose to work with cos for
clarity. The form of Eq. (38) guarantees that this does not lead
to a loss of generality.

For a surface localized state, we choose as our ansatz
ψky,kz (x) ∼ exp (αx)ei(kyy+kzz) sin (βx)�, satisfying the bound-
ary condition ψ (x = 0) = 0. We note that this corresponds to
a choice of a semi-infinite system along x occupying x > 0 for
α < 0. Plugging in this ansatz in HIψky,kz (x), one gets

HIψky,kz (x) = sin (βx)

[(
1

2
(γz + λ) + λ

4
(α2 − β2)

)
(�2 + �4) + δλ

8π
(α2 − β2)(�4 − �2) − i

δλ

2π
α�3

]
�

+ cos (βx)

[
λ

2
αβ(�2 + �4) + δλ

4π
αβ(�4 − �2) − i

δλ

2π
β�3

]
�. (43)

For ψky,kz (x) to be an eigenfunction of HI , we need two
conditions on �. First, the coefficient of the cos βx term in
Eq. (43) must vanish. Second, � should be an eigenvector
of the matrix appearing in the coefficient of sin βx. The first
condition implies that � should satisfy

[α(�2 + �4) + αb/2(�4 − �2) − ib�3]� = 0, (44)

where b = δ/π . The value of α satisfying this and the lo-
calization condition, which necessitates a negative value of

α is α = −
√

2b2

4+b2 . This yields two degenerate eigenvectors
�1,2. Projecting the � matrices in this null space spanned by
�1,2, one finds that the coefficient of the sin βx term in this
space is proportional to σx. Thus, to satisfy the second con-
dition, the basis vectors of this nullspace should be chosen as
χ± = 1√

2
( 1
±sgn(b)) where sgn(b) denotes the sign of b. We note

that the choice of these eigenvectors need to be carefully done
to maintain the same definition of σx for b > 0 and b < 0.
Projecting HII in this space gives the surface Hamiltonian at

this surface to be

H δ>0
x=0 = −λ|b|

2
kyσy − (γz + λ)

b√
2(4 + b2)

σz. (45)

Thus the mass term changes sign with b. An exactly similar
analysis can be carried out for other edges.

Next, we study the hinge modes for small δ. To this end
we plot the probability density |ψ (x = x0, y = y0)|2 (where
x0 = y0 = 1 is one of the hinges) as a function of δ. We
find that the hinge modes leak into the bulk around δ = 0
where the gap in the first-order Floquet Hamiltonian closes
as can be seen from Fig. 9. We also find that the probability
density |ψ (x0 = 1, y0 = 1; kz = 1)|2 for the hinge modes dips
to a value close to zero for the exact Floquet spectrum where
the gap remains finite at all drive frequencies. Thus we find
that the hinge modes of HF leak significantly into the bulk
at specific drive frequencies for which the first-order Floquet
Hamiltonian vanishes. We shall explore the dynamical conse-
quence of such hybridization in the next section.
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FIG. 9. Left panel: Plot of the probability density of the hinge
mode, |ψ (x0, y0; kz = 1)|2, as a function of δ as obtained from first-
order perturbative Floquet Hamiltonian for a square pulse protocol.
Right panel: Same as the left panel but using exact Floquet Hamil-
tonian. For all plots, γ1/λ = 20.0, γ = −0.35, and m = −0.08. The
chosen hinge corresponds to x0 = y0 = 1 and we note that the behav-
ior remains the same if we focus on any one of the four hinges.

V. DYNAMICS OF THE HINGE MODES

In this section, we study the dynamics of hinge modes
for two representative drive frequencies for the square pulse
protocol. The first corresponds to

√
2γ1T/h̄ = π, 3π where

the Floquet Hamiltonian has large gap while the second cor-
responds to

√
2γ1T/h̄ = 2π where they are almost gapless. In

what follows, we shall study the time evolution of the wave-
function hinge modes localized at each hinge of the sample.
The probability amplitude of the driven wavefunction can be
probed experimentally as we discuss below; hence it serves as
a diagnostic tool of the Floquet phases outlined in the previous
sections.

For a fixed kz, H0 [Eq. (1)] supports four degenerate states
at zero energy when Eq. (4) is satisfied. With appropriate
linear combination of these states, we obtain four zero-energy
states localized at the four hinges of the sample. We start
with one of these hinge modes whose wavefunction is given
by |ψ (0)〉 as the initial state and study its evolution under
the square pulse protocol. We consider a system with L = 10
units cells along x and y and numerically compute the exact
stroboscopic time-evolution operator given by Eq. (18) using
OBC along x and y and PBC along z. We obtain |ψ (nT )〉 =
U n(T, 0)|ψ (0)〉. For each of the four hinge unit cells, chosen
to be at (x, y) = (1, 1), (1, L), (L, 1), and (L, L), we designate
the initial state |ψ (0)〉, which is localized in the αth hinge of
the system as |ψα (0)〉.

Next, we define column vectors |φβ
i 〉 having weight on the

ith site (i = 1, 2, 3, 4) of a unit cell β in the x − y plane. We
then probe the evolution of the quantity,

�β (nT ) =
4∑

i=1

∣∣〈φβ
i

∣∣ψ (nT )
〉∣∣2 =

4∑
i=1

�
β
i (nT ). (46)

as a function of n. The value of this quantity gives an esti-
mate of the weight of the state in any given unit cell β. Our
definition ensures that �β (0) ∼ δαβ is localized within the
sites of the unit cell in the αth hinge. We note that �

β
i (nT ),

being proportional to the local electronic density of states, can
be directly probed experimentally through scanning tunneling
microscopic (STM) measurements.

Figure 10 illustrates the evolution of spectral weight of
the hinge state initially localized at site (L, 1) for

√
2γ1T =

π, 3π for both m = 0 and a nonzero m = −0.08. For both

FIG. 10. Top panels: Stroboscopic evolution of �α (nT ) where α

denotes the unit cell at each of the hinges (1,1), (1, L), (L, 1), and
(L, L) for m = 0 as a function of n for

√
2γ1T/h̄ = π (left panel)

and
√

2γ1T/h̄ = 3π (right panel). Bottom panels: Same as corre-
sponding top panels but with m = −0.08. For all plots γ = −0.35,
kz = 0.5, and γ1/λ = 20.

values of m we find qualitatively similar behavior; �β (nT )
assume appreciable nonzero value for β ∼ α for all n. This in-
dicates that the state at any stroboscopic time t = nT remains
mostly localized around the hinge at which it had an initial
large overlap. For

√
2γ1T/h̄ = 3π , the state delocalizes to a

greater extent, which is due to the presence of a smaller bulk
Floquet gap. This can be further understood from the spatial
contour of the hinge state shown in Fig. 11 after representative
number (n) of drive periods. We find that the weight of the

FIG. 11. Plot of the spatial profile of �β (nT ) with
√

2γ1T/h̄ =
π for a system with L = 10 unit cells each along x and y in the x − y
plane. The top panels correspond to n = 20 (left) and 32 (right) while
the bottom panels correspond to n = 126 (left) and 3267 (right). All
other parameters are same as top panels of Fig. 10.
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FIG. 12. Top left panel: Plot of overlap probability Pn
F =

|〈ξ n
F |ψα (0)〉|2 of the initial state |ψα (0)〉 localized at the hinge α at

(L, 1) with the Floquet eigenstates |ξ n
F 〉 for

√
2γ1T/h̄ = π and m =

0. Top right panel: Fourier modes of the dynamics for
√

2γ1T/h̄ = π

and m = 0. Bottom panels: Same as corresponding top panels but for√
2γ1T/h̄ = 3π . All other parameters are same as in Fig. 10.

hinge state always remains localized to the hinge where it was
initially localized; this behavior is consistent with having a
gapped Floquet spectrum at the bulk.

The dynamical behavior of the hinge modes can be further
understood by examining the overlap of our initial state with
the Floquet eigenstates, Pn

F = |〈ξ n
F |ψα (0)〉|2 as shown in the

top left panel of Fig. 12. The Floquet eigenstates having appre-
ciable overlap with the initial states are encircled in red; these
include the four zero-energy states (ZES). These coefficients
do not change with time and thus provide a base average value
about which the fluctuation occurs. This value is larger for
higher drive frequency where the gap is larger. The analysis of
the Fourier modes shown in the right panels of Fig. 12 yields
constituent frequencies of these fluctuations. These turn out
to be consistent with the difference in quasienergy values on
which the initial state has substantial projections. We note that
for

√
2γ1T/h̄ = 3π , there is a rapid dissipation of the state in

the bulk. The difference in this case stems from the fact that
the Floquet ZES are separated from the bulk by a reduced
energy gap, resulting in a faster decay. The corresponding
Fourier weights of the mode A(ω), shown in the bottom right
panel of Fig. 12, indicates the presence of multiple Fourier
modes with small overlap due to which the dynamics appears
incoherent. We have checked that this behavior remains qual-
itatively similar even when a small finite m is switched on.

For
√

2γ1T/h̄ = 2π , where the bulk Floquet spectrum is
almost gapless, the dynamics of the hinge mode is qualita-
tively different, as shown in Fig. 13. We find that the hinge
mode shows almost coherent transport between the diagonally
opposite hinges as shown in the top panels of Fig. 13. The
weight of the state starts being localized at the unit cell of
hinge (L, 1) and reaches the hinge (1, L) after n ∼ 80 cycles;
after n ∼ 160 cycles of the drive, the weight of the state again
becomes localized at the hinge where its initial weight was
large. We note that this does not necessarily mean that the
wavefunction of the driven hinge state after n ∼ 160 cycles
exhibits large overlap with the initial wavefunction; there

FIG. 13. Top panels: Stroboscopic evolution of �α (nT ) where α

denotes the unit cell at each of the hinges (1,1), (1, L), (L, 1), and
(L, L) as a function of n for

√
2γ1T/h̄ = 2π with m = 0 (left panel)

and m = −0.08 (right panel). Bottom panels: Plot of the overlap Pn
F

(left panel) and the Fourier modes A(ω) (right panel). Both plots
correspond to

√
2γ1T/h̄ = 2π and m = 0. All other parameters are

same as in Fig. 10.

exists significant difference in the distribution of weights of
these wavefunctions within the hinge unit cell. As shown in
the bottom panels of Fig. 13, the spectral weight Pn

F has a large
overlap with several bulk Floquet modes and has finite weight
in several Fourier modes. This also is in sharp contrast to that
found for

√
2γ1T/h̄ = π where the bulk Floquet gap is large;

for the latter case, the wavefunction of the hinge mode has
significant overlap with only a few Floquet modes.

The difference in dynamics of the hinge mode for√
2γ1T/h̄ = 2π and

√
2γ1T/h̄ = π can be further understood

from the spatial profile of �β (nT ) for representative values
of n as shown in Fig. 14. We find that at intermediate times
0 < n < 80, the amplitude of the driven state is spread out in
the bulk as can be seen from the top right panel of Fig. 14. In
contrast, for n 
 80p, where p is integer, they are localized in
one of the two diagonally opposite hinges with spread along
the respective surfaces. All of these features indicate qualita-
tively different hinge mode dynamics for

√
2γ1T/h̄ = 2π .

To obtain a qualitative analytic understanding of the be-
havior of these hinge modes, we note that, in contrast to their
counterparts for

√
2γ1T/h̄ = π, 3π , several bulk Floquet

modes have high overlap with the initial state representing the
hinge mode. Thus the state representing the driven hinge mode
can be written as

|ψ (nT )〉 =
∑

m

cαme−iEF
m nT |m〉, (47)

where cαm = 〈m|ψα (0)〉, |m〉 denote the bulk Floquet states,
and Em

F are their quasienergies. For having analytic insight
into the problem, we now assume the bulk Floquet modes are
almost similar to the ones with periodic boundary condition;
in this, one can replace |m〉 with |k〉 and EF

m with EF
a (�k). There

are four such eigenvalues for each �k as given by Eq. (36); we
label these with the index a assuming values 1,2,3,4. The sum
over m can then be replaced by an integral over k and a sum
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FIG. 14. Plot of the spatial profile of �
β

i (nT ) with
√

2γ1T/h̄ =
2π for a system with L = 10 unit cells each along x and y in the
x − y plane: (a) n = 20, (b) n=52, (c) n = 80, and (d) n=153. All
other parameters are same as in Fig. 10.

over the index a and we obtain

ψ (x, y; nT ) =
∑

a=1,4

∫
d2k

(2π )2
ca
α (�k)ei(�k·�r−EF

a (�k)nT )

=
∑

a=1,4

∫
d2k

(2π )2
ca
α (�k)ein�a (x,y,:�k),

�a(x, y; �k) = (kxx + kyy)/n − EF
a (�k)T, (48)

where �r = (x, y) and a denotes index for eigenvalues
[Eq. (36)] and the corresponding eigenvectors. For large
n, thus the contribution to ψ (x, y; n) comes from co-
ordinates, which satisfy ∂kx �

a(x, y; �k) = ∂ky�
a(x, y; �k) = 0.

Using Eqs. (36), we find that these are given by

x

n
= ± λT√

2
sin k0

x ,
y

n
= ± λT√

2
sin k0

y . (49)

We now use this to find the shortest number of drive cycles
at which the state reaches the diagonally opposite hinge, we
seek a solution of Eq. (49) for x = y = L and smallest possible
nc > 0. This yields k0

x = k0
y = ±π/2 so that nc = Lγ1/(λπ ).

For L = 10 and γ1 = 20λ, this yields nc = 64, which is close
to the numerical value of nc ∼ 80 (Fig. 14). This analytical
result can be validated by plotting nc, obtained from exact
numerics, as a function L and γ1, as shown in Fig. 15. We
find that in accordance with the analytic prediction, nc varies
linearly with both L and γ1. For L = 10, the slope of the
plot of nc as a function of γ1 is found to be 3.9 while the
theoretical prediction turns out to be L/(λπ ) 
 3.2. Similarly,
for γ1/λ = 20, the slope of the best fit for nc(L) is found
to be 7.4 while the theoretical prediction is γ1/(λπ ) = 6.4.
This difference is partly due to a finite nc, which induces

FIG. 15. Plot of nc as a function of γ1, with λ = 1 for L = 10
(left panel) and as a function of L for γ1/λ = 20 (right panel). Both
the plots indicate linear dependence of nc in accordance with the
prediction of the saddle point analysis. All other parameters are same
as in Fig. 10. See text for more details.

additional corrections to the saddle point value. Thus the time
period between revivals of the hinge mode shown in the top
left panel of Fig. 13 can be qualitatively understood using
this approximate saddle point analysis; however, one needs to
go beyond this simple analysis to obtain more accurate value
of nc.

VI. DISCUSSION

In this paper, we have studied the Floquet dynamics of
hinge modes of second-order topological material modeled
by free fermions hopping on a cubic lattice. The equilibrium
phase diagram of the model shows topological transitions
between gapped quadrupolar phase supporting zero-energy
hinge modes and gapless Weyl semimetals phase.

Upon driving the model by varying one of its parameter
periodically with time, we find the existence of special drive
frequencies at which the bulk gap for the Floquet quasis-
pectrum almost vanishes. Such frequencies exists for both
discrete square pulse and continuous cosine drive protocols.
Our paper shows that this effect can be analytically understood
by computing the perturbative Floquet Hamiltonian of the
system using FPT. In the large drive amplitude region, where
FPT is expected to be accurate, a drive at these frequencies
leads to vanishing bulk gap for the first-order perturbative
Floquet Hamiltonian. This happens at

√
2γ1T/h̄ = 2nπ for

the discrete square protocol and
√

2γ1T/h̄ = παn for the con-
tinuous cosine protocol. Thus the bulk gap becomes small
since it can only originate from higher-order terms in HF ; in
the high drive amplitude regime, such terms are expected to
be small. Thus the Floquet spectrum shows lines where the
bulk quasienergy gap is small. We note that this reduction of
the gap is not captured by the Floquet Hamiltonian obtained
using second-order Magnus expansion.

Our numerical analysis of the Floquet Hamiltonian can
be extended to other protocols. An obvious extension may
occur when the fermions are subjected to a periodically
time-dependent vector potential arising from the presence of
incident radiation. However, in this case, all terms of the
Fermion Hamiltonian [Eq. (1)] shall become time dependent.
This makes the problem difficult to address using analytic
Floquet perturbation theory. Another possibility is to use a
protocol involving periodic kicks. In this case, one can extend
our formalism in a straightforward manner and obtain results,
which are qualitatively similar to the square pulse protocol
provided the drive parameters are chosen appropriately.
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Away from these special points, where the bulk gap is
large, our analysis finds Floquet hinge modes in the Floquet
spectrum. We provide an analytic expression for these Floquet
hinge modes for the discrete protocol with

√
2γ1T/h̄ = π ;

we find that the analytical results agree qualitatively to exact
numerics. In contrast to their equilibrium counterpart, these
hinge modes have kz dependent dispersion as confirmed from
both the first-order analytic Floquet Hamiltonian and exact
numerics. The dispersion of the hinge modes turns out to
be flatter for continuous drive protocols; also the analysis
based on first-order Floquet Hamiltonian predicts stronger
dispersion compared to that obtained using exact numerics.
In contrast, near the special drive frequencies where the gap is
small, the hinge modes leak into the bulk; they become almost
indistinguishable from the bulk when the drive frequency
matches these special frequencies.

The presence of the small Floquet quasienergy gap man-
ifests in the dynamics of the hinge modes. To study such
dynamics we start with an initial zero-energy eigenstate of
the equilibrium Hamiltonian H0, which is localized at one of
the hinge. We then study its dynamics by driving the system
with two representative frequencies. One of these corresponds
to the case where the bulk Floquet Hamiltonian is gapped.
For the square pulse protocol, we choose

√
2γ1T/h̄ = π . In

this case we find that the hinge mode remains localized in
the vicinity of its original position. In contrast, for systems
driven with a frequency, which satisfies

√
2γ1T/h̄ = 2π , the

hinge mode propagates in the bulk and displays wavefront
like propagation between diagonally opposite hinge. This
becomes apparent by computing the spatially resolved prob-
ability of the driven wavefunction given by �α (nT ). We find
that �α (nT ) shows distinct revivals; their time dependence
represents motion of hinge modes between diagonally oppo-
site hinges of the sample. Our analysis shows that the period of
such a motion can be analytically understood within a saddle
point analysis of the driven wavefunction.

The experimental verification of our theory can be achieved
via STM measurements, which track the local density of states
for electrons within an unit cell. For an initial zero-energy
state localized at one of the hinge, the time variation of the
local density of state will clearly depend on �α . Our pre-
diction is that starting from a hinge state localized at (L, 1),
the dynamics with

√
2γ1T/h̄ = π will not show significant

variation of �α′
(nT ) for α′ corresponding to the diagonally

opposite hinge (1, L). In contrast �α′
(nT ) will show periodic

variations for
√

2γ1T/h̄ = 2π with a period of nc.
In conclusion, we have studied the Floquet spectrum and

the hinge mode dynamics of driven second-order topological
Weyl semimetals modeled by free fermions hopping on a
cubic lattice. Our analysis reveals specific drive frequencies
at which the bulk Floquet modes become nearly gapless. We
also find that the dynamics of the hinge modes for such a

Floquet Hamiltonian depend crucially on the proximity to
these special frequencies; they remain localized close to their
initial position away from these frequencies and propagates
coherently between diagonally analogous hinges close to
them. We suggest that the qualitative difference in such dy-
namics would be reflected in LDOS of fermions and shall
therefore be measurable via STM measurements.
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APPENDIX: MAGNUS EXPANSION

In the Appendix, we consider the Floquet Hamiltonian
derived by the standard Magnus expansion method. The first-
order correction in the Magnus expansion of the Floquet
hamiltonian is given by

H (1)
mag = 1

T

∫ T

0
dt1H (t1), (A1)

where H (ti ) = H0 + H ′(ti ). Since for both discrete and con-
tinuous driving, we are using protocols, which average out to
zero over a complete cycle, therefore H (1);s

mag = H (1);c
mag = Hav =

H0. We note that this is equivalent to the results obtained from
FPT in the limit γ1T → 0.

The second-order correction in the Magnus expansion is
given by the expression

H (2)
mag = 1

2ih̄T

∫ T

0

∫ t1

0
dt1dt2[H (t1), H (t2)]. (A2)

For our chosen continuous drive protocol, H (t ) = H (T − t ).
It can be shown that for drives satisfying this symmetry con-
dition, H (2),c

mag = 0. Thus, till second order, the spectrum of
Hc

mag is equivalent to that of Hav , which does not exhibit a
gap closing.

For the square pulse protocol, however, the second-order
contribution is nontrivial and can be calculated as follows:

H (2),s
mag = 1

2ih̄T

∫ T

0

∫ t1

0
dt1dt2([H ′(t1), H0] + [H0, H ′(t2)]).

(A3)
Evaluation of these commutators is straightforward, and one
can show that

H (2),s
mag = γ1T

2ih̄

(
(a1 − a2)�2�4 + (�2 + �4)(a3�3 + a4�1)

+ ia5�3
)
. (A4)

The eigenvalues of H (1),s
mag + H (2),s

mag are

Emag,s
±,± = ±1

2

(
4

5∑
i=1

a2
i + (

(a1 − a2)2 + 2
(
a2

3 + a2
4

) + a2
5

)
(γ1T/h̄)2

± 2|a5|
√

16
(
a2

1 + a2
4

) + 4
(
2a1(a1 − a2) + 3a2

4

)
(γ1T/h̄)2 + (

(a1 − a2)2 + 2a2
4

)
(γ1T/h̄)4

)1/2

. (A5)
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However, this neither reproduces the band closing nor even the substantial reduction in the bandgap at the special points√
2γ1T/h̄ = 2nπ , which we had obtained from first-order FPT and exact numerics respectively.
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