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Microscopic theory of ionic motion in solids
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Drag and diffusion of mobile ions in solids are of interest for both purely theoretical and applied scientific
communities. This article proposes a theoretical description of ion drag in solids that can be used to estimate
ionic conductivities in crystals, and forms a basis for the rational design of solid electrolyte materials. Starting
with a general solid-state Hamiltonian, we employ the nonequilibrium path integral formalism to develop a
microscopic theory of ionic transport in solids in the presence of thermal fluctuations. As required by the
fluctuation-dissipation theorem, we obtain a relation between the variance of the random force and friction.
Because of the crystalline nature of the system, however, the two quantities are tensorial. We use the drag tensor
to write down the formula for ionic mobility, determined by the potential profile generated by the crystal’s ions.
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I. INTRODUCTION

As a part of the search for improved energy storage meth-
ods [1,2], substantial attention has been dedicated to the
study and development of solid-state batteries in the last
decade [3–5]. This technology relies on the use of solid elec-
trolytes to conduct ions between the anode and the cathode.
The use of all-solid components is advantageous from the
safety point of view due to the increased stability of solid-
solid interfaces compared to solid-liquid interfaces [6]. The
main technological challenge lies in finding solid electrolyte
materials with a high ionic conductivity at room temperature.

Four main characteristics distinguish solid electrolytes
from their liquid counterparts. First, unlike liquid electrolytes,
which act as sources of reagents in addition to providing
a pathway between the electrodes, solid electrolytes act ex-
clusively as bridges connecting the electrodes and are not
consumed in the process of operation. Second, the solid
framework through which the ions flow is not mobile, al-
though its atoms vibrate around their equilibrium positions.
Because of the periodicity of the vibrational motion, the inter-
action between the mobile ions and the framework cannot be
generally regarded as a collection of uncorrelated collisions,
as would be the case in a liquid. Hence, it is not immediately
obvious that treating the motion of the mobile ions as Brown-
ian is appropriate, suggesting that the Nernst-Einstein relation
might be inapplicable in this case [7,8]. The third aspect that
sets solid electrolytes apart is a nontrivial potential landscape
produced by the framework ions and electrons, through which
the mobile ions navigate. This landscape contains local energy
minima, which can function as traps for the mobile ions,
requiring them to regularly overcome potential barriers of
fractions of electronvolts during their motion [7,9–16]. The
energy needed to escape the local minima originates from

the framework itself as the thermally vibrating lattice kicks
the mobile ions. Finally, the fourth key difference lies in the
role played by quantum mechanics. Although the heavy ions
traveling through the framework at typical battery operation
temperatures are classical objects, they interact strongly with
the quantum electrons of the framework. Moreover, the vibra-
tional modes of the framework are also quantum-mechanical
objects with Bose statistics. These distinguishing features in-
dicate that the problem of ionic conductors falls in the domain
of solid-state physics and should be addressed in this context.

On the theoretical side, nudged elastic band (NEB) cal-
culations have provided insight into low-energy pathways
for mobile ions in solid electrolytes [7]. Classical molecular
dynamics (MD) and ab initio molecular dynamics (AIMD)
simulations, meanwhile, are an integral part of research in
ionic conductors. They have been instrumental in shedding
light on the atomic-scale processes behind the ionic con-
duction by identifying body-centered-cubic crystals as the
optimal lattice structures for fast ionic conduction [7,14],
demonstrating the importance of cooperative (correlated)
ionic transport [14,17], studying the role of frustration
mechanisms [16,18,19], exploring the effects of anharmonic-
ity [20,21], and providing a deeper understanding of the role
played by the lattice dynamics [15,22] and structural modifi-
cation [23,24]. AIMD simulations have also been used, with
some success, to calculate the conductivity of mobile ions
in solid electrolytes via computation of the tracer diffusion
coefficient, Dtr , and its insertion into the Nernst-Einstein
equation [7,8,25–29]. The Nernst-Einstein equation, however,
has been shown to be invalid in the presence of correlation be-
tween particles, leading to an underestimation of conductivity
unless these correlations are accounted for [7,8,30].

Despite MD simulations’ undisputed success and utility,
the technique has some limitations, mainly originating from
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FIG. 1. Diffusion trajectories of ions in AgCl at 600 K (left) and
α-AgI at 700 K (right), obtained from ab initio molecular dynamics
simulations. Ag atoms are represented in grey, while Cl and I atoms
are represented in green and purple, respectively. The trajectory of a
single Ag ion is highlighted in orange. The positions are represented
every 0.1 ps, for a total time of 10 ps.

the computational cost. To ensure accuracy, the time steps
in the simulations must be small (on the order of femtosec-
onds), meaning that the total simulation time is often limited
to a few nanoseconds. Consequently, it is not uncommon to
use temperatures much higher than those expected in device
operation (of, e.g., solid-state batteries) to speed up the dy-
namics and observe sufficient ionic activity within the limited
time window [28,31]. Even then, the computation times are
substantially shorter than experimentally relevant time scales.
Moreover, given the structural complexity of many ionic con-
ductors, simulations have generally been restricted to simple
systems, or more complex systems limited to a few unit cells
since increasing the system size renders the calculations pro-
hibitively expensive. Accordingly, the study of multiple ions
separated by large distances is highly challenging. It is there-
fore apparent that a complementary theoretical methodology,
able to address the interplay between ions and the lattice over
greater time and length scales, is desirable. As mentioned
above, lattice vibrations impart kinetic energy onto mobile
ions, allowing them to escape potential-energy valleys. To
illustrate this, consider the examples of α-AgI and AgCl. The
first is a superionic conductor, where, at any given time, a
large fraction of the silver ions are mobile, equivalently to mo-
bile interstitials [32]. In contrast, AgCl is a solid with rocksalt
structure, where mobile Ag ions are thermally generated as
the interstitial moieties of Frenkel pairs [33]. These mobile
ions traveling through the solid have to regularly escape local
potential minima assisted by the framework’s thermal fluctu-
ations. This motion resembles a “hopping” transport, where
the ions oscillate around a local minimum before moving to
an adjacent one. This is evident in the trajectories obtained
from molecular dynamics simulations of the thermal diffusion
in the ionic conductors AgCl and α-AgI (Fig. 1).

The diffusion of the mobile ions is reminiscent of a ran-
dom walk associated with Brownian motion. Just as in the
case of Brownian motion, however, the fluctuation-dissipation
theorem demands that the lattice-to-ions energy flow must
be accompanied by the reverse process, where the lattice
saps the energy from the moving ions similar to the macro-
scopic drag phenomenon. Note that, unlike the traditional
drag and diffusion in liquids, the size of the moving particles

(mobile ions) is comparable to that of the bath particles (lattice
ions). Therefore, each collision between the two components
can substantially modify the energy of the mobile ions. By
contrast, Brownian particles (pollen organelles in the original
experiment) experience an astronomical number of collisions
before moving by an appreciable amount, allowing one to treat
the collisions as uncorrelated white noise.

The problem of a small mobile particle coupled to a dissi-
pative thermal bath has been of interest to the physics commu-
nity for a long time [34,35]. In recent years, there have been
significant advances in understanding the dynamics of impu-
rities immersed in bosonic [36–40] and fermionic [36,41,42]
systems. The authors of Ref. [43] demonstrated the emergence
of the Brownian motion in D-dimensional Bose-Einstein
condensate systems while Ref. [44] focused on the micro-
scopic origins of friction in one-dimensional quantum liquids.
Because these problems are commonly viewed from the per-
spective of (ultra)cold-atom experiments, they are typically
formulated in one dimension.

In this work, we construct a general microscopic theory
applicable to three dimensions to describe the motion of ions
through a solid framework that can be used to estimate ionic
conductivities and form a basis for the design of solid elec-
trolyte materials. It will be shown that our approach results
in a simple and intuitive temperature-free expression for the
steady-state ionic mobility in a crystal, thereby mitigating
the two predominant obstacles associated with MD simula-
tions. In addition, we demonstrate the practical application of
our formalism using first-principles calculations to compute
approximate ionic mobilities for a range of small crystals,
laying a promising foundation on which further refinements
may be developed. (Note that the theoretical formalism is
developed in Secs. II–IV; readers only interested in numerical
applications can skip directly to Sec. V.) In Sec. II, we set
up the Hamiltonian for a system with vibrational modes and
mobile masses. We also demonstrate how the motion of the
mobile particles can be calculated using the classical frame-
work. Section III focuses on the derivation of the semiclassical
equations of motion for the mobile particles starting from the
nonequilibrium quantum formulation. In Sec. IV, we establish
the fluctuation-dissipation relation in crystalline materials and
derive the expression of the ionic mobility in solids. A pro-
totypical application of our formalism to the determination of
ionic mobilities in real crystal, by way of ab initio numerical
calculations, is given in Sec. V. Conclusions are found in
Sec. VI.

II. EFFECTIVE HAMILTONIAN

The aim of this section is to set up the effective Hamil-
tonian which will be used to study the system dynamics.
In Sec. II A, we start with a general solid-state Hamiltonian
and integrate out the electronic degrees of freedom to write
down an effective Hamiltonian that depends only on the ionic
coordinates. Next, in Sec. II B, we split the system’s ions into
two groups: the stationary framework and the mobile species.
In Sec. II C, we use the classical approach to integrate out the
framework degrees of freedom and obtain the equations of
motion for the mobile ions with a memory term and a stochas-
tic thermal component. The result of this section will be used
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in Sec. IV to study the drift and diffusion of mobile ions in a
solid framework. Section II D reformulates the Hamiltonian
from Sec. II B using quantum mechanics to be used in the
path integral derivation in Sec. III. We will show that in the
semiclassical limit, the path integral approach gives the same
result as the classical formulation. Therefore, the readers who
are interested only in this limit can skip to Sec. IV directly
after Sec. II C.

A. Ionic Hamiltonian

The most general microscopic Hamiltonian for a solid
composed of ions and electrons can be written as

H = Ke + Vee + Ki + Vii + Vei + Ee + Ei, (1)

where Ke (Ki) is the kinetic energy of electrons (ions), Vee

(Vii) is the electron-electron (ion-ion) interaction, Vei is the
electron-ion interaction, and Ee (Ei) is the external potential
acting on electrons (ions). Generally, the external potentials
Ee/i can be time dependent, resulting in a nonequilibrium
behavior.

From the practical standpoint, the time variation of Ee(t )
seen in applications is expected to be sufficiently slow to treat
its impact on the electrons quasistatically. Additionally, be-
cause ions are much heavier than electrons, one can follow the
Born-Oppenheimer approximation and view them as static, as
far as the electrons are concerned. Consequently, we can write
the electronic Hamiltonian operator as

Ĥe({R}, t ) = K̂e + V̂ee + V̂ei({R}) + Êe(t ), (2)

where {R} is the set of all the ionic coordinates. We stress
that {R} and t are parameters of the electronic Hamiltonian
operator, not dynamic variables.

It is useful to write V̂ei({R}) = V̂ei({R0}) + δV̂ei({R}),
where V̂ei({R0}) is the interaction between electrons and the
system’s native ions when the ions are located at their energy
minima. Note that δV̂ei({R}) can also include the interaction
of the system’s electrons with extra ions added to the system.
We also define Ĥ0

e = K̂e + V̂ee + V̂ei({R0}) as the electronic
Hamiltonian in a stationary unperturbed solid, so that the full
electronic Hamiltonian is Ĥe = Ĥ0

e + δV̂ei({R}) + Êe(t ).
Although the composition of solid electrolytes can vary

widely, they must be electronic insulators to guarantee that
the current passing through them is exclusively ionic. Con-
sequently, Ĥ0

e must possess a sufficiently wide gap for
δV̂ei({R}) + Êe(t ) not to create electron-hole excitations lead-
ing to electronic transport. As a result, the perturbation only
leads to a modification of Ĥ0

e ’s energies, following the adi-
abatic theorem. Formally, the Helmholtz free energy for the
electrons is given by

Fe = − 1

β

∑
n

ln
∣∣−β

[
G−1

n − δVei({R}) − Ee(t )
]∣∣

= − 1

β

∑
n

ln
∣∣−βG−1

n

∣∣
︸ ︷︷ ︸

F 0
e

− 1

β

∑
n

ln |1 − Gn[δVei({R}) + Ee(t )]|, (3)

where β−1 = kBT , kB is the Boltzmann constant, T is the
temperature, G−1

n = iωn + μ − H0
e is the Green’s function

matrix, μ is the chemical potential, and ωn are the fermionic
Matsubara frequencies. F 0

e is the electronic contribution to the
free energy in an unperturbed system and the second term
gives the perturbation-induced correction. The latter can be
rewritten as

δFe = − 1

β

∑
n

ln |1 − GnδVei({R})|

− 1

β

∑
n

ln |1 − [1 − GnδVei({R})]−1GnEe(t )|. (4)

Combining the electronic free energy with the remaining
terms of H gives the effective Hamiltonian describing the
ionic motion:

Hi = Ki +

U ({R})︷ ︸︸ ︷
Vii + F 0

e − 1

β

∑
n

ln |1 − GnδVei({R})| +Ei(t )

− 1

β

∑
n

ln |1 − [1 − GnδVei({R})]−1GnEe(t )|. (5)

U ({R}) describes the interaction between ions, including the
electronic effects, and can be computed ab initio using density
functional theory (DFT) by calculating the energy of a system
with ionic coordinates {R}.

The last term in Eq. (5) gives the energy due to the elec-
trons’ interaction with the external potential, including the
effects of the perturbed ionic background. For a stable solid
not undergoing a phase transition, it is reasonable to expect
that the system-wide electronic density will not change drasti-
cally in response to the small shift in ionic coordinates around
their equilibrium positions. Therefore, we drop δVei({R}) in
this expression, rendering it independent of the ionic position.
Consequently, the effective ionic Hamiltonian involves only
the first line of Eq. (5) because the last line does not depend
on R after δVei is dropped and, to the leading order in Ee, gives
the Hartree energy of electrons in an external potential.

B. Ion-framework interaction

To study the ionic motion described by Eq. (5), we divide
the ions into two groups: those that propagate through the
solid (mobile ions) and those that vibrate around their equi-
librium positions and provide the solid framework (stationary
ions). We make this distinction explicit by rewriting Eq. (5) as

Hi = KM
i + KS

i + U ({r}, {u}) + Ei(t ), (6)

where r (u) are the positions of the mobile (stationary) ions.
At this point, there are two main approaches that can be

used to solve the problem. On the one hand, it is possible to
view the system as entirely classical to obtain the trajectories
of the mobile ions. The benefit of this method is that it is con-
ceptually simpler and puts fewer restrictions on the interaction
between the mobile and the stationary ions. The downside is
that the thermal motion of the framework is not automatically
captured from the partition function. In addition, the classi-
cal formalism might be inapplicable when quantum effects
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become important, such as for proton diffusion or in certain
cold-atom setups.

On the other hand, one can start by assuming that the
framework ions do not deviate substantially from their equi-
librium positions u0 and expand the potential energy term
for small displacement δ = u − u0. Following this expan-
sion, one writes δ in terms of the oscillatory modes of
the framework. The interaction between the two groups of
ions then becomes linear in δ. By second-quantizing the
modes, quantum mechanics is included in the problem for-
mulation, delaying the semiclassical treatment until the very
end. This approach makes it possible to include quantum-
mechanical corrections beyond the leading-order classical
behavior. Most importantly, this method explicitly encodes
the thermal occupancy of phonons, producing the correct
fluctuation-dissipation relation. Naturally, in the classical
limit, the two approaches should give identical results. There-
fore, for the sake of completeness, we show both treatments.

C. Classical formulation

It is convenient to start by separating the interaction term
into three components: U ({r}, {u}) → U S ({u}) + U M ({r}) +
U ({r}, {u}). Next, suppressing the function arguments for
brevity, we can write the Lagrangian for the system as

L = (KM
i − U M

)+ (KS
i − U S

)− U − ES
i − EM

i . (7)

Assuming that the motion of the framework ions can be de-
scribed using the harmonic approximation, the homogeneous
portion of the framework Lagrangian becomes

KS
i − U S → 1

2 u̇T mu̇ − 1
2 uT Vu. (8)

Here, we combined the positions of the framework ions into
a DI-dimensional vector u =⊕I

j=1 u j , where I is the number

of the framework ions and D is the system dimensionality.
m =⊕I

j=1 mj1D×D is a block-diagonal matrix, where mj is
the mass of the jth framework ion.

The homogeneous equation of motion mü = −Vu can be
transformed into a symmetric eigenvalue problem by first
defining ũ = m1/2u so that

¨̃u = −�2
s ũ = −m−1/2Vm−1/2ũ = −Ṽũ, (9)

with the eigenvectors εs and corresponding eigenvalues
�s. Hence, we can write ũ(t ) = εζ (t ) [so that u(t ) =
m−1/2εζ (t )], where ζ (t ) is a column vector of normal coor-
dinates giving the amplitude of each mode, while ε is a row of
column vectors εs.

Returning to the inhomogeneous equation of motion for the
framework ions, we write

mü = −Vu − ∇u
(
U + ES

i

)
→ ¨̃u = −Ṽũ − m−1/2∇u

(
U + ES

i

)
→ ζ̈ = −�2ζ − ε−1m−1/2∇u

(
U + ES

i

)
, (10)

where �2 = ε−1Ṽε is a diagonal matrix of the squared eigen-
frequencies.

For a single normal coordinate, the expression above takes
the form ζ̈ j = −�2

j − f j , which can be solved using the
Green’s functions. Recalling that the Green’s function for a
harmonic oscillator is given by

Gj (t, t ′) = sin [� j (t − t ′)]
� j

	(t − t ′), (11)

we have

ζ j (t ) = ζ H
j (t ) −

∫ t

dt ′ sin [� j (t − t ′)]
� j

f j = ζ H
j (t ) −

∫ t

dt ′ sin [� j (t − t ′)]
� j

[
ε−1m−1/2∇u

(
U + ES

i

)]
j

= ζ H
j (t ) −

∫ t

dt ′ sin [� j (t − t ′)]
� j

[∇u
(
U + ES

i

)]T
m−1/2ε j, (12)

where ζ H
j (t ) is the homogeneous solution and the subscript j at the brackets indicates that we pick out the jth element of the

column vector. The last line follows from the fact that ε is an orthogonal matrix, m is a diagonal matrix, and that the transpose
of the expression in the brackets it the expression itself.

Finally, using ũ =∑ j ζ jε j , we obtain

u(t ) = u0 + δH (t ) −
∑

j

m−1/2ε j

{∫ t

dt ′ sin [� j (t − t ′)]
� j

[∇u
(
U + ES

i

)]T
m−1/2ε j

}
, (13)

where u0 gives the equilibrium positions of the framework ions and δH (t ) is the displacement from the equilibrium coming from
the homogeneous solution.

Reinserting the expression of u(t ) into the interaction energy U (u, r), we can calculate the force that this interaction exerts on
the mobile ions −∇rU (u, r) = −∇rU (u0 + δ, r). By assuming that the framework ions do not move far from the equilibrium,
we expand the expression in δ to obtain

−∇rU (u0 + δ, r) ≈ −∇rU (u0, r) − ∇r[∇u0U (u0, r) · δ]

≈ −∇rU (u0, r)− ∇r[∇u0U (u0, r) · δH (t )]+ 2

h̄

∑
j

∇r(t )

{
Yj (r(t ))

∫ t

dt ′ sin [� j (t − t ′)][Yj (r(t ′))+ Wj (t
′)]
}
,

(14)
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Ys(r) =
√

h̄

2�s
[∇u0U (r, u0)]T m−1/2εs, (15)

Ws(t ) =
√

h̄

2�s

[∇u0 ES
i (u0, t )

]T
m−1/2εs. (16)

We show below that one arrives at the same expression in
the semiclassical limit of the quantum-mechanical formula-
tion, except that the quantum-mechanical treatment explicitly
gives the temperature dependence of the homogeneous term.

D. Quantum formulation

For the quantum-mechanical approach, we start by expand-
ing the potential term to the second order in the framework ion
displacement δ = u − u0 to get

U ({r}, u) ≈ U ({r}, u0) + [∇u0U ({r}, u0)]T δ

+ 1
2δT [(∇u0 ⊗ ∇u0 )U ({r}, u0)]δ. (17)

Note that we combined all the framework coordinates and
displacements into two vectors, u =⊕ul and δ =⊕ δl , as
was done in the classical treatment.

The last portion of Eq. (17) can be identified as the elastic
potential energy with the term in the brackets being the matrix
of force constants coupling the displacements of the stationary
ions. For a fixed {r}, combining this term with the kinetic
energy KS

i gives rise to a collection of oscillatory modes.
Strictly speaking, changing {r} modifies the force-constant
matrix and alters the mode frequencies. However, it is rea-
sonable to expect that, for a stable system, moving the mobile
ions through the system does not drastically alter the structure
of the stationary framework. Consequently, we will assume
that the term in the brackets does not depend on {r}, allowing
us to promote Hi to the operator status and write

Ĥi =
∑

s

h̄�s

(
a†

s as + 1

2

)
+ ES

i (û, t )

+
∑

j

p̂†
j p̂ j

2Mj
+ U ({r̂}, u0) + EM

i ({r̂}, t )

+ [∇u0U ({r̂}, u0)]T δ̂, (18)

where the first term is the second-quantized Hamiltonian of
the oscillatory modes s with frequency �s independent of {r},
resulting from combining KS

i with the last term in Eq. (17).
If the framework is crystalline, these vibrational modes cor-
respond to phonons and the mode label s denotes the phonon
branch and momentum. The first term in the second line of
Eq. (18) is the kinetic energy KM

i with p j corresponding to
the momentum of the jth mobile ion and Mj to its mass. Note
that we split the effects of the external potential into portions
corresponding to stationary and mobile ions.

Using the fact that the external perturbation is not expected
to vary substantially on the scale of δ, we write

Ê S
i (û, t ) ≈ ES

i (u0, t ) + [∇u0 ES
i (u0, t )

]T
δ̂. (19)

The first term does not depend on the ionic displacement and,
therefore, does not impact the system’s dynamics. Hence, we
drop this term from the Hamiltonian.

To describe δ in terms of the solid’s vibrational modes,
recall that, in the harmonic approximation, the displacement
is

δ̂ =
∑

s

(
as + a†

s

)√ h̄

2�s
m−1/2εs, (20)

where εs is the polarization vector for mode s. Using this
definition, we obtain

Ĥi =
∑

s

h̄�s

(
a†

s as + 1

2

)
+ p̂† M−1

2
p̂ +

U (r̂,t )︷ ︸︸ ︷
U (r̂) + EM

i (r̂, t )

+
∑

s

[Ys(r̂) + Ws(t )]︸ ︷︷ ︸
Cs (r̂,t )

(as + a†
s ). (21)

In writing this expression, we combined all mobile ion posi-
tions {r} and momenta {p} into DI-dimensional coordinates
r =⊕I

j=1 r j and p =⊕I
j=1 p j , where I is the number of

mobile ions.
The second line of Eq. (21) describes the mobile ions

in the presence of a potential produced by the framework
ions at their equilibrium positions [U (r̂) ≡ U (r̂, u0)] and an
external time- and position-dependent perturbation EM

i (r̂, t ).
M =⊕I

j=1 Mj1D×D is a block-diagonal matrix.
Finally, the last line of Eq. (21) gives the coupling be-

tween the oscillatory modes and the mobile ions [Ys(r̂)], and
the modes and the external potential [Ws(t )]. To make the
subsequent derivation more compact, we combine the two
coupling terms into one, denoted by Cs(r̂, t ), as shown by the
underbrace.

III. SYSTEM DYNAMICS

With the effective time-dependent ionic Hamiltonian given
by Eq. (21), we can now address the dynamics of the system.
We begin by formulating the problem using the path integral
language and then proceed to extract the semiclassical equa-
tions of motion for the mobile ions.

A. Path integral

Recall that if, at t = 0, the system is described by a density
operator ρ̂0, then the expectation value of some operator Ô at
τ > t is given by

〈Ô〉(τ ) = Tr
[
e

iĤiτ
h̄ Ôe−

iĤiτ
h̄ ρ̂0

]
Tr[ρ̂0]

=
∑
n,r

〈r, n|e iĤiτ
h̄ Ôe−

iĤiτ
h̄ ρ̂0|r, n〉

Tr[ρ̂0]
.

(22)

To go from the first line to the second one, we used the fact that
the trace of the operator can be taken in any complete basis,
allowing us to choose |r, n〉 = |r〉 ⊗ |n〉 with |n〉 enumerating
all the Fock states for the vibrational modes and |r〉 corre-
sponding to the multiparticle position states. In this study,
we are primarily interested in how the mobile ions behave
when interacting with the solid. Therefore, we assert that Ô
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corresponds to some observable for the mobile ions so that, in
the particle-mode space, it becomes Ô → Ô ⊗ 1̂.

To proceed from Eq. (22), we employ the standard path
integral approach of rewriting the time evolution operators

as e± iĤiτ
h̄ = (e± iĤi�

h̄ )N−1 for τ/(N − 1) = � and N → ∞, and
inserting identity operators between the multiples:

〈Ô〉(τ ) = 1

Tr[ρ̂0]

∑
n,r

〈r, n|11
−e

iĤi�
h̄ 12

− · · · e
iĤi�

h̄ 1N
−

× Ô1N
+e− iĤi�

h̄ · · · e− iĤi�
h̄ 11

+ρ̂0|r, n〉. (23)

The subscript on the identity operators indicates whether they
are located on the right (+) or on the left (−) of Ô. The
superscript indicates how many time steps from t = 0 the
operator is positioned (note that the negative sign in the ex-

ponential moves the time forward, and the positive one moves
it backward).

It is convenient to choose the identity operators composed
of bosonic coherent states:

1 j
± ≡

∫
dr j

±

∫
d s̄ j

± ds j
±

π
e−s̄ j

±s j
±|r j

±, s j
±〉〈r j

±, s j
±|. (24)

Here, s j
± is a column vector of complex numbers, one for each

vibrational mode s, and s̄ j
± is its conjugate transpose. Because

|r j
±, s j

±〉 = |r j
±〉 ⊗ |s j

±〉, Eq. (24) can be regarded as a direct
product of two identities.

In the first part of the right-hand side of Eq. (25), we
have a term 〈r, n|r1

−, s1
−〉〈r1

−, s1
−| · · · . Because 〈r, n|r1

−, s1
−〉 is

a number, we can move it to the right of Eq. (25) to obtain∑
r,n · · · ρ̂0|r, n〉〈r, n|r1

−, s1
−〉. This step allows us to eliminate

the summation over r and n because it has the form of a
resolution identity. With this rearrangement, we obtain

〈Ô〉(τ ) =
∫ D(· · · )

Tr[ρ̂0]
exp

[
−

N∑
j=1

(s̄ j
−s j

− + s̄ j
+s j

+)

]
〈r1

−, s1
−|e iĤi�

h̄ |r2
−, s2

−〉〈r2
−, s2

−| · · · e
iĤi�

h̄ |rN
−, sN

−〉

× 〈rN
+, sN

+|e− iĤi�
h̄ · · · |r2

+, s2
+〉〈r2

+, s2
+|e− iĤi�

h̄ |r1
+, s1

+〉〈rN
−, sN

−|Ô|rN
+, sN

+〉〈r1
+, s1

+|ρ̂0|r1
−, s1

−〉, (25)

where D(· · · ) contains all the differentials and π−1 prefactors of the integrals.
Computing the matrix elements, as shown in Appendix A, followed by the integration over the mode fields, as outlined in

Appendix B, gives

〈Ô〉(τ ) = 1

Tr[ρ̂m]

∫
D(· · · )〈rN

−|Ô|rN
+〉〈r1

+|ρ̂m|r1
−〉
∣∣∣∣ M
2π�h̄

∣∣∣∣N−1∏
s

exp

[
−1

2
coth

(
β h̄�s

2

)
QsQ

∗
s

]

×
∏

s

exp

[
i
�2

h̄2

N∑
ln=1

sin (��s(n − l ))(Ys(rn
+) − Ys(rn

−))	(n − l )
(
Ys(rl

+) + Ys(rl
−) + 2Ws(l�)

)]

×
N−1∏
j=1

exp

[∑
σ=±

σ
i
(
r j+1
σ − r j

σ

)T
M
(
r j+1
σ − r j

σ

)
2�h̄

− σ
i�

h̄
U (r j

σ )

]
(26)

with

Qs = �

h̄

N∑
l=1

e−i��sl [Ys(rl
+) − Ys(rl

−)]. (27)

Note that the ρ̂ in the trace is that of the mobile particles since the mode portion is canceled by the field integration.

B. Hubbard-Stratonovich transformation

As the next step, we employ the Hubbard-Stratonovich transformation to separate the product QsQ∗
s in the exponential. The

first step is to define a unity

1 ≡ 2

π
tanh

(
β h̄�s

2

)∫
dξsdξ ∗

s exp

[
−2ξ ∗

s tanh

(
β h̄�s

2

)
ξs

]
, (28)

where ξs is a complex variable and ξ ∗
s is its conjugate so the integration takes place over the entire complex plane. The equality

holds even if one shifts ξs and ξ ∗
s by arbitrary independent complex numbers. Hence, we choose ξs → ξs + i

2 coth( β h̄�s

2 )Qs and
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ξ ∗
s → ξ ∗

s + i
2 coth( β h̄�s

2 )Q∗
s . Inserting this unity into Eq. (26) and rearranging the terms yields

〈Ô〉(τ ) =
∫

D(· · · )〈rN
−|Ô|rN

+〉〈r
1
+|ρ̂m|r1

−〉
Tr[ρ̂m]

∣∣∣∣ M
2π�h̄

∣∣∣∣N−1∏
s

2

π
tanh

(
β h̄�s

2

)∫
dξsdξ ∗

s exp

[
−2ξ ∗

s tanh

(
β h̄�s

2

)
ξs

]

×
∏

s

exp

{
−i

�

h̄

N∑
n=1

[Ys(rn
+) − Ys(rn

−)][ξse
i��sn + ξ ∗

s e−i��sn]

}

×
∏

s

exp

[
i
�2

h̄2

N∑
ln=1

sin (��s(n − l ))(Ys(rn
+) − Ys(rn

−))	(n − l )
(
Ys(rl

+) + Ys(rl
−) + 2Ws(l�)

)]

×
N−1∏
j=1

exp

[∑
σ=±

σ
i
(
r j+1
σ − r j

σ

)T
M
(
r j+1
σ − r j

σ

)
2�h̄

− σ
i�

h̄
U
(
r j
σ

)]
. (29)

At this point, it might be unclear why we used the decoupling. After all, it appears to have reinserted a phononic field that we
just integrated out. In fact, it is not quite that: this decoupling eliminated a specific type of term (the product of differences of
Ys), the benefit of which will become apparent when we treat the system semiclassically.

C. Semiclassical approximation

We start by rewriting the coordinates as r j
± = (r j

c ± r j
q)/

√
2. Expanding the terms in the exponential in Eq. (29) to the leading

order in r j
q gives

U (r j
+) − U (r j

−) →
√

2
[∇U (r j

c/
√

2)
]T

r j
q, Ys(r

j
+) + Ys(r

j
−) → 2Ys(r j

c/
√

2),

Ys(r
j
+) − Ys(r

j
−) →

√
2
[∇Ys(r j

c/
√

2)
]T

r j
q,

1

2

∑
σ=±

σ
(
r j+1
σ − r j

σ

)T
M
(
r j+1
σ − r j

σ

)→ (
r j+1

q − r j
q

)T
M
(
r j+1

c − r j
c

)
. (30)

Following this expansion, we write

N−1∏
j=1

exp

[∑
σ=±

σ
i
(
r j+1
σ − r j

σ

)T
M
(
r j+1
σ − r j

σ

)
2�h̄

]
→ exp

[
N−1∑
j=2

i
r j

q · M
(
2r j

c − r j−1
c − r j+1

c
)

�h̄

]
(31)

in Eq. (29), where we set rq to vanish at the endpoints of the time contour. Inserting the rest of the expressions from Eq. (30)
into Eq. (29) and integrating over rq results in

〈Ô〉(τ ) = 1

Tr[ρ̂m]

∣∣∣∣ M
2π�h̄

∣∣∣∣N−1∏
s

2

π
tanh

(
β h̄�s

2

)∫
dξsdξ ∗

s exp

[
−2ξ ∗

s tanh

(
β h̄�s

2

)
ξs

]

×
∫ ∏

j

dr j
c

N−2∏
n=2

δ

{
M
(
2r j

c − r j−1
c − r j+1

c
)

h̄�
− �

h̄

√
2∇U (r j

c/
√

2) − �

h̄

√
2∇Ys

(
rn

c/
√

2
)[

ξse
i��sn + ξ ∗

s e−i��sn
]

+�2

h̄2

N∑
l=1

sin (��s(n − l ))
√

2∇Ys(rn
c/

√
2)	(n − l )2

[
Ys(rl

c/
√

2) + Ws(l�)
]}〈

rN
c

∣∣Ô∣∣rN
c

〉〈
r1

c

∣∣ρ̂p

∣∣r1
c

〉
. (32)

Relabeling rc√
2

→ r in Eq. (32), one can identify the equation of motion for the ions inside the Dirac delta function,

M
rn−1 − 2rn + rn+1

�2
= −∇U (rn, n�) + 2

�

h̄

∑
s

∇Ys(rn)
n∑

l=1

sin[��s(n − l )][Ys(rl ) + Ws(l�)]

−
∑

s

∇Ys(rn)
[
ei��snξs + e−i��snξ ∗

s

]
︸ ︷︷ ︸

f̃n

. (33)

The first line of Eq. (33) describes the motion of the ions in a t- and r-dependent potential. The second line introduces the
recoil: mobile ions experience a force at time n as a consequence of the stationary ions being perturbed by the external potential
and the mobile ions at time l . Finally, the third line describes the stochastic thermal force with the probability distribution of ζs

given by the integrand of Eq. (28). The right-hand side of Eq. (33) agrees with Eq. (14) obtained using the classical approach, but
Eq. (33) also explicitly gives the temperature dependence of the homogeneous solution of the framework’s equations of motion.
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IV. DRIFT AND DIFFUSION

A. Fluctuation-dissipation in solids

Because the thermal force originates from the vibrations of
the solid, it exhibits a finite correlation in time, which can be
quantified using the correlation tensor

〈f̃n ⊗ f̃l〉 =
∑

s

∇Ys(rn) ⊗ ∇Ys(rl )

× coth

(
β h̄�s

2

)
cos [��s(n − l )]. (34)

See Appendix D for the derivation.
In accordance with the fluctuation-dissipation theorem, the

recoil and thermal noise terms in Eq. (33) form a fluctuation-
dissipation pair as they originate from the same physical
phenomenon, namely, the interaction of mobile ions with the
framework. To bring this relationship to a more familiar form,
let us consider a scenario where there is no external perturba-
tion, eliminating the Ws term and the time dependence of U
from Eq. (33). As shown in Appendix E, for � → 0, we can
write the recoil term as

2
�

h̄

∑
s

∇Ys(rn)
n∑

l=1

sin [��s(n − l )]Ys(rl )

≈ ∇
∑

s

Y 2
s (rn)

h̄�s
− 2

∑
s

∇Ys(rn)
cos [��sn]

h̄�s
Ys(r1)

− 2
�

h̄

∑
s

n−1∑
l=1

cos [��s(n − l )]

�s
∇Ys(rn) ⊗ ∇Ys(rl )ṙl .

(35)

The first term describes the softening of the potential U due to
the solid’s elasticity, as one can see by combining it with the
first term on the right-hand side of Eq. (33). The second one
is the boundary term carrying the information about the initial
configuration and vanishing as n → ∞.

Comparing the final term to Eq. (34) for T  1 with
coth(β h̄�s/2) ≈ 2β−1/h̄� shows that it can be written as
−β�

∑n−1
l=1 〈f̃n ⊗ f̃l〉ṙl . This relation between the recoil term

and the noise correlation tensor is a consequence of the
fluctuation-dissipation theorem. To make this connection
more explicit, we write the high-T version of the correlation
tensor explicitly as

〈f̃n ⊗ f̃l〉 =
∑

s

∇[∇u0U (r̂, u0)]T m−1/2εs

⊗ ∇[∇u0U (r̂, u0)]T m−1/2εs
cos [��s(n − l )]

β�2
s

.

(36)

If the system is three dimensional, the vibrational modes at
low energy have a density of states that is quadratic in �s,
corresponding to acoustic modes. This density of states can-
cels the �2

s term in the denominator, preventing a low-energy
divergence seen in one- and two-dimensional systems. This
cancellation means that the oscillatory cosine term strongly
suppresses the correlation tensor for n �= l . In the case of low-
dimensional systems, one needs to suppress the divergence

by, for example, confining the system in an external potential,
eliminating the zero-frequency modes.

If the velocities and the positions of the mobile ions change
on much longer time scales than the decay of the correlation
tensor, we can replace ṙl → ṙn and rl → rn, and, for n  1,
extend the lower bound of the l summation to −∞ in Eq. (35).
We can then write the last term of Eq. (35) as −γnṙn with

2kBT γn = 2�

n∑
l=−∞

〈f̃n ⊗ f̃l〉 = �

∞∑
l=−∞

〈f̃n ⊗ f̃l〉. (37)

The second equality holds because, after the rl → rn replace-
ment in 〈f̃n ⊗ f̃l〉, l appears only in the cosine term.

One can identify γn as the position-dependent drag tensor.
The relation between γn and the noise correlation tensor in
Eq. (37) is precisely the form required by the fluctuation-
dissipation theorem in the Langevin limit, where rapid light
particles of the medium impact slow impurities in a white-
noise-like manner. Performing the summation over l yields

γn = 2π
∑

s

∇Ys(rn) ⊗ ∇Ys(rn)
δ(�s)

h̄�s
, (38)

demonstrating that, in the Langevin regime, mobile particles
dissipate energy via low-frequency framework modes.

Because, in the limit of �s → 0, all crystal atoms move
with the same phase and amplitude, leading to m−1/2εs →
1I ⊗ εs/(

√
mL), where m is the mass of all the atoms in the

unit cell, L is the number of unit cells in the system, and the
newly defined εs is a D-dimensional polarization vector. This
form results in a substantial simplification:

Ys(r) =
√

h̄

2�s
[∇u0U (r, u0)]T [1I ⊗ εs/(

√
mL)]

=
√

h̄

2�s

[(∑
l

∇u0
l

)
U (r, u0)

]T

[εs/(
√

mL)]. (39)

One can identify the term in the parentheses as the gradient
with respect to the uniform shift of all the stationary ions.

B. Superionic conduction

It is convenient to study the motion of the mobile ions
in superionic conductors using the independent-ion approx-
imation by setting r to represent the location of a single
mobile ion. In the presence of an external constant force F, the
equation of motion of a single ion becomes M r̈ = −∇Ū (r) +
F − γ (r)ṙ + f̃ . The bar over U indicates that this potential
includes the softening effects of the first term in Eq. (35). In
this approximation, a uniform shift of the stationary ions is
equivalent to a shift of the mobile ion in the opposite direction,
yielding

∇Ys(r) = −
√

h̄

2mL�s
[HrU (r)]εs, (40)

where Hr is the Hessian operator. Explicitly, the drag matrix
is given by

γ = [HrU (r)]

[∑
s

2π

2mL

δ(�s)

�2
s

εs ⊗ εs

]
[HrU (r)]. (41)
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For the expression in the brackets, we write

2π

2m

∑
s

δ(�s)
εs ⊗ εs

�2
s L

= 2π

2m

∑
b,q

δ(�b,q)
εb,q ⊗ εb,q

�2
b,qL

= 2πV

2(2π )3mL

∑
b

∫
dq

εb,q ⊗ εb,q

�2
b,q

δ(�b,q). (42)

Here, b labels the phonon branch and V is the volume of the system. Because mL is the total mass of the system, V/(mL) gives
the density ρ. In the q → 0 limit, �b,q → vb(θ, φ)q, where vb(θ, φ) is the direction-dependent sound velocity for branch b.

If we make vb isotropic (as one can expect it to be in a polycrystalline macroscopic sample), the integral can be written as

1

2(2π )2ρ

∑
b

∫
dq

εb,q ⊗ εb,q

v2
bq2

δ(vbq) = 1

2(2π )2ρ

∑
b

∮
dφ

∫
dθ sin θ

∫
dq q2 εb,q ⊗ εb,q

v2
bq2

δ(vbq)

= 1

2(2π )2ρ

[∫
d� r̂ ⊗ r̂

∫
dq

δ(vLq)

v2
L

+
∫

d� (1 − r̂ ⊗ r̂)
∫

dq
δ(vT q)

v2
T

]

= 1

2(2π )2ρ

4π

3

(
1

2v3
L

+ 1

v3
T

)

= 1

12πρ

(
1

v3
L

+ 2

v3
T

)
, (43)

where d� denotes the integration over the solid angle, while
vL and vT are the speeds of sound for longitudinal and trans-
verse modes, respectively. At each momentum q, there are
three phonon branches: a longitudinal one propagating in the
r̂ direction and two transverse ones propagating in φ̂ and θ̂

directions. It is these branches that give rise to the three terms
in the second line above.

Combining the results yields

γ = 1

12πρ

(
1

v3
L

+ 2

v3
T

)
[HrU (r)]2. (44)

The expression for γ suggests what types of systems would
lead to the smallest energy dissipation of mobile ions. One can
see that dense (high ρ) and stiff (high vL and vT ) materials
yield a lower γ . Furthermore, the movement of the ion is
dissipationless in regions of the potential where the Hessian
vanishes, which are the saddle-point regions of the periodic
potential in the unit cell of the crystal.

In the long-time limit, the inertia term M r̈ and the random
force f̃ can be dropped from the single-ion equation of mo-
tion, leading to γ (r)ṙ = −∇Ū (r) + F or, alternatively, ṙ =
γ−1(r)[−∇Ū (r) + F]. As the mobile ion moves in response
to the applied force F, it will speed up and slow down periodi-
cally due to the spatially varying potential landscape. Because
the potential and the drag terms have the lattice periodicity, it
is reasonable to expect that ṙ will exhibit the same variation.
Hence, we define a velocity field v(r), written in Fourier space
as

vK = (2π )3/2
∑
K′

γ−1
K−K′ [−iK′ŪK′ + Fδ0,K′ ]. (45)

Setting K → 0 yields the drift velocity v0. Because ŪK =
Ū−K, γK = γ−K, and (2π )3/2γ−1

K=0 = 〈γ−1〉 is the average of
the inverse drag tensor,

vdrift = vK→0 = 〈γ −1〉qE. (46)

From the above expression we can readily obtain the ion
mobility:

μ = vdrift

E
= q〈γ −1〉, (47)

where 〈γ −1〉 can be computed from first principles for any
crystal lattice.

Note that this is the mobility per mobile ion—similar to the
definition of the mobility of electrons and holes in metals or
semiconductors, which naturally excludes the electrons that
are not involved in the transport. This mobility originates
from the ion-lattice collision frequency, which depends on the
structure of the medium, but not on the temperature, reminis-
cent of the Drude model for electrons.

It might appear counterintuitive that temperature does not
appear in γ given that the lattice vibrations depend on the
temperature. Moreover, experimentally measured conductiv-
ity does indeed exhibit temperature dependence. To resolve
this apparent contradiction, we reiterate that γ is related to
drag, which is a purely dissipative process, caused by ionic
collisions. The (random) thermal motion of the lattice does
not, on average, change the amount of energy transferred from
the mobile ions to the crystal, explaining the lack of T in γ .
On the other hand, increasing the temperature can introduce
more mobile ions to the system as larger thermal vibrations
liberate more of them from the local energy minima. Thus,
the experimentally observed temperature dependence of the
conductivity stems not from increased mobility, but rather
from increased ionic density.

Knowing the potential landscape U (r), which can be
obtained for example from density functional theory calcula-
tions, it is possible to obtain estimates for the ionic mobilities
from Eq. (44). One of the advantages of this method is that, by
construction, the whole potential surface is taken into account.
In contrast, in molecular dynamics a satisfactory sampling
of the configuration space requires, in practice, very long
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FIG. 2. Three-dimensional potential energy profile, U (r), of a
mobile Ag ion for AgCl (left) and α-AgI (right). The isosurfaces
show the minimum energy at which a continuous connecting path-
way exists for the unit cell. The positions of the fixed ions are
indicated. Ag atoms are represented in gray, while Cl and I atoms
are represented in green and purple, respectively.

integration times. In theory, the expectation that in molecular
dynamics the system will eventually pass through all possible
states, if allowed to evolve indefinitely, is based on the ergodic
hypothesis, which states that the time average equals the en-
semble average [45]. Such an approach is not necessarily valid
for nonequilibrium systems.

Additionally, molecular dynamics simulations require the
choice of a time integration step that is small enough to guar-
antee the convergence of the integrated coordinates. Thus, it
is impractical to simulate using the same method diffusion or
drag in conditions where the conductivity varies by orders of
magnitude. In contrast, the present approach measures ener-
gies, rather than time, and is therefore widely applicable to
different materials.

V. NUMERICAL RESULTS

In order to substantiate our results, we make use of ab
initio DFT to calculate the ionic mobility for some crystalline
electrolytes.

The variations of the potential energy surface can be quan-
tified by computing U (r) from first principles, which we
do, as illustration, for single unit cells of the metal-halide
electrolytes AgCl, LiCl, LiI, α-AgI, and α-CuBr, as shown
in Fig. 2 for AgCl and α-AgI. From here, we can obtain
μ per mobile ion [Eq. (47)], for each compound via the
calculation of γ (r), as defined in Eq. (44). These ionic mo-
bilities, μcalc, assuming q = e, are listed in Table I. A precise
comparison between experiment and theory is not possible
because of the lack of data for disparate samples taken under
consistent experimental conditions. Moreover, the presence
of nonidealities in experimental samples—for instance, ex-
perimental samples are often polycrystalline, may exhibit
size effects, and may have more than one mobile defect or

TABLE I. Directionally averaged calculated ionic mobilities per
mobile ion, μcalc [Eq. (47)], computed via γ [Eq. (44)], using the
potential from ab initio calculations.

Compound AgCl LiCl LiI α-AgI α-CuBr

μcalc (cm2/V s) 0.0012 0.043 0.99 0.25 0.18

ionic species—necessarily means that our calculated mobili-
ties are not perfectly reflective of real-world measurements.
Nonetheless, it is still useful to compare our results with ionic
mobilities extracted from experimental studies of AgCl [46],
LiI [47], α-AgI [48], and α-CuBr [49]. The ionic mobilities
obtained by fitting the conductivity (see Methods Sec. VII for
details) are 0.08, 0.13, 0.022, and 0.001 cm2/V s, respectively.
While there are significant discrepancies between the calcu-
lated and theoretical results, the comparison of these values
nevertheless shows a consistency within one to two orders of
magnitude. After factoring in the experimental complexities,
mentioned above, and the simplifying approximations used
in the calculations, we believe that our results represent a
promising first step toward reliable first-principles determina-
tion of ionic mobility via Eq. (47), and provide motivation
for future experiments on clean, single-crystal samples under
consistent conditions, whose measurements could be more
readily compared with our simulated mobilities.

In comparison with more established methods such
as deriving the conductivity from molecular dynamics
simulations of diffusion, this technique has the advantage
of being applicable to systems that have mobilities of any
order of magnitude. In contrast, molecular dynamics are often
limited to higher temperatures where enough diffusion events
can be observed [28,31]. On the other hand, in comparison
with NEB methods, which allow us to explore only the
minimum energy path, the method introduced here takes
into account the whole potential landscape, and it is easily
extendable to anisotropic systems.

VI. CONCLUSIONS

In summary, we have developed a microscopic theory for
ionic motion in crystals. We found that the ionic mobility
depends essentially on the lattice softness (via the third power
of the sound velocity) and the curvature of the atomic potential
felt by the ions; namely, hard materials with smooth atomic
potentials are the best candidates for high ionic mobility. This
theory yields a tractable route for the calculation of ionic
mobilities via modern ab initio or other theoretical methods.
Further, the ab initio approach can, in principle, be extended
to account for the extrinsic effects that impact measured ionic
mobilities, such as grain boundaries, impurities, and other
types of defect that are already well known in solid-state
physics. Our numerical results represent a promising first
step in the calculation of ionic mobilities from a condensed
matter perspective and without the use of molecular dynamics.
The consistency of our results with experimentally extracted
mobilities, while not wholly satisfactory, is encouraging and
motivates both improved numerical calculations as well as
new, well-controlled experiments that would allow for a true
like-for-like comparison between theory and real-world mea-
surements.

The last century has seen the development of a powerful
theoretical framework to study the effect of defects and inter-
faces in the motion of electrons in solids. The same, however,
cannot be said for the case of ions. The understanding of
how ions interact with defects and interfaces in solids is an
unexplored landscape, and any further progress in the devel-
opment of solid-state electrolytes, which are the key elements
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of solid-state batteries, depends fundamentally on progress in
this area of research.

VII. METHODS

a. Density functional theory at 0 K. DFT calculations are
performed using the QUANTUM ESPRESSO [50,51] code. Struc-
tural relaxations and total energy calculations are performed
using a projector augmented wave (PAW) basis [52,53]
and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [54]. The kinetic energy cutoffs of the charge
density and wavefunctions are set to at least the minimum
recommended values of the PAW pseudopotential [53]. The
Brillouin zones for all materials are sampled using uniform
grids of 4 × 4 × 4 (total energies) and 6 × 6 × 6 (phonons) K
points.

For the calculation of U (r) we allow one ion of the mobile
metal species to move while keeping all other ions fixed. The
mobile ion is moved within the cubic unit cell by intervals of
1/64 of the lattice parameter, a. Only configurations in which
the distance from the mobile ion to any fixed ion is greater
than (5/12)a (α-AgI and α-CuBr) or (1/3)a (AgCl, LiCl, LiI)
are permitted. In the cases of α-AgI and α-CuBr we note
that the metal ions have partial occupation and thus multiple
possible positions. We therefore compute the total energies
of all possible permutations of the positions of the mobile
ions within the unit cell. The resulting minimum energy con-
figurations are those in which the metal ions are located at
the tetrahedral positions on adjacent faces, in agreement with
AIMD calculations for α-AgI [55]. Accordingly, to compute
U (r) for these materials we fix one of the tetrahedral metal
ions and allow the other to move to all other permitted posi-
tions, as described above.

Phonon calculations are performed using SG15 opti-
mized norm-conserving Vanderbilt (ONCV) pseudopoten-
tials [56,57] and a PBE exchange-correlation functional, with
a 60 Ry kinetic energy cutoff for wavefunctions. Sound veloc-
ities are derived from the phonon dispersions along the �-X
path for cubic cells, as defined in Ref. [58].

The volumetric images shown in Fig. 2 were generated in
VESTA [59].

b. Ab initio molecular dynamics simulations. AIMD simu-
lations are carried out using the SIESTA code [60]. The forces
are calculated using the local density approximation (LDA)
of density functional theory [61], and a Harris functional is
used for the first step of the self-consistency cycle. The core
electrons are represented by pseudopotentials of the Troullier-
Martins scheme [62]. The basis sets for the Kohn-Sham
states are linear combinations of numerical atomic orbitals,
of the polarized double-ζ type [63,64]. The � point is used
for Brillouin zone sampling. α-AgI AIMD calculations are
performed in 256-atom supercells. AIMD calculations for
rocksalt structures are performed in 216-atom supercells. The
temperature is controlled by means of a Nosé thermostat [65].
The integration time step used is 1 fs and the total integration
time is 26 ps. The equilibration time varies between different
temperatures and systems and is determined by examining the
mean square displacement.

c. Calculations of the ionic mobility from existing exper-
imental data. Experimental mobilities are found by fitting
existing experimental data in the literature. We have assumed
that there is only one mobile ion species. The conductivity
is fitted using σ = qnμ, where n = N exp(−Ea/kBT ) is the
number of mobile ions. Here, N is the total number of atoms
of the mobile species in the crystal, Ea is the activation en-
ergy necessary to make the ion mobile, kB is the Boltzmann
constant, and T is the temperature.
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APPENDIX A: MATRIX ELEMENTS

Starting with 〈r j+1
+ , s j+1

+ |e− iĤi�
h̄ |r j

+, s j
+〉, we note that the Hamiltonian is normal ordered with respect to the second-

quantization operators. This means that as and a†
s are replaced by s j

+ and s̄ j+1
+ (since the annihilation operators act on the

ket and creation ones act on the bra, they pick up the corresponding time slice index). This gives

〈r j+1
+ , s j+1

+ |e− iĤi�
h̄ |r j

+, s j
+〉 = exp

[
− i�

h̄

∑
s

h̄�ss̄
j+1
+ s j

+

]
〈s j+1

+ | ⊗ 〈r j+1
+ |

× exp

[
− i�

h̄

(
1

2
p̂†M−1p̂ + U (r̂, t ) +

∑
s

[s̄ j+1
+ Cs(r̂, t ) + s j

+Cs(r̂, t )]

)]
|r j

+〉 ⊗ |s j
+〉. (A1)

With all the second-quantization operators replaced by complex numbers, we can evaluate 〈s j+1
+ |s j

+〉 = es̄ j+1
+ s j

+ . We combine the
exponential in the first line of the equation above with this term to get

exp

[
− i�

h̄

∑
s

h̄�ss̄
j+1
+ s j

+

]
es̄ j+1

+ s j
+ = exp

[
− i�

h̄

∑
s

h̄�ss̄
j+1
+ s j

+ +
∑

s

s̄ j+1
+ s j

+

]
= exp

[∑
s

e− i��s
h̄ s̄ j+1

+ s j
+

]
, (A2)

where the last equality holds because � � 1.
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Next, in the limit � → 0, the exponential can be split into four parts:

exp

[
− i�

h̄

(
1

2
p̂†M−1p̂ + U (r̂, t ) +

∑
s

[s̄ j+1
+ Cs(r̂, t ) + s j

+Cs(r̂, t )]

)]

≈ exp

[
− i�

h̄

∑
s

s̄ j+1
+ Cs(r̂, t )

]
exp

[
− i�

h̄

1

2
p̂†M−1p̂

]
exp

[
− i�

h̄
U (r̂, t )

]
exp

[
− i�

h̄

∑
s

s j
+Cs(r̂, t )

]
. (A3)

The first exponential acts on the bra so that r̂ → r j+1
+ , while the last two act on the ket with r̂ → r j

+. The remaining part is

〈r j+1
+ |e− i�

h̄
1
2 p̂†M−1p̂|r j

+〉 =
∫

dp〈r j+1
+ |p〉〈p|e− i�

h̄
1
2 p̂†M−1p̂|r j

+〉

=
∫

dpe− i�
h̄

1
2 pT M−1p〈r j+1

+ |p〉〈p|r j
+〉

=
∫

dp exp

[
− i�

h̄

1

2
pT M−1p + ipT r j+1

+ − r j
+

h̄

]
1

(2π h̄)ID

=
∣∣∣∣ M
2π i�h̄

∣∣∣∣1/2

exp

[
i(r j+1

+ − r j
+)T M(r j+1

+ − r j
+)

2�h̄

]
(A4)

where I is the number of mobile ions. Combining the components gives

〈r j+1
+ , s j+1

+ |e− iĤi�
h̄ |r j

+, s j
+〉 = exp

[∑
s

e− i��s
h̄ s̄ j+1

+ s j
+

]∣∣∣∣ M
2π i�h̄

∣∣∣∣1/2

exp

[
− i�

h̄

∑
s

[s̄ j+1
+ Cs(r

j+1
+ , ( j + 1)�) + s j

+Cs(r
j
+, j�)]

]

× exp

[
i(r j+1

+ − r j
+)T M(r j+1

+ − r j
+)

2�h̄
− i�

h̄
U (r j

+, j�)

]
. (A5)

Similar steps lead to

〈r j
−, s j

−|e iĤi�
h̄ |r j+1

− , s j+1
− 〉 = exp

[∑
s

e
i��s

h̄ s̄ j
−s j+1

−

]∣∣∣∣ iM
2π�h̄

∣∣∣∣1/2

exp

[
i�

h̄

∑
s

[s̄ j
−Cs(r

j
−, j�) + s j+1

− Cs(r
j+1
− , ( j + 1)�)]

]

× exp

[
− i(r j+1

− − r j
−)T M(r j+1

− − r j
−)

2�h̄
+ i�

h̄
U (r j

−, j�)

]
. (A6)

A quick way to do it is to replace � → −�, switch the subscripts from + to −, and interchange j ↔ j + 1.
For 〈rN

−, sN
−|Ô|rN

+, sN
+〉, we have

(〈rN
−| ⊗ 〈sN

−|)(Ô ⊗ 1̂)(|rN
+〉 ⊗ |sN

+〉) = 〈rN
−|Ô|rN

+〉〈sN
−|sN

+〉 = 〈rN
−|Ô|rN

+〉es̄N
−sN

+ . (A7)

Finally, we calculate 〈r1
+, s1

+|ρ̂0|r1
−, s1

−〉. We assume that at t = 0 the mobile and stationary ions are described by their own
independent density operators. Specifically, we allow the stationary ions to be in a thermal equilibrium with an external bath,
while the mobile ions start with a known density distribution ρ̂m, allowing us to write ρ̂0 = ρ̂m ⊗ e−βĤS , so that

〈r1
+, s1

+|ρ̂0|r1
−, s1

−〉 = 〈r1
+|ρ̂m|r1

−〉〈s1
+|e−βĤS |s1

−〉 = 〈r1
+|ρ̂m|r1

−〉 exp

(∑
s

e−β h̄�s s̄+s1
−

)
, (A8)

where we have used 〈φ|eka†a|ψ〉 = eek φ̄ψ .

APPENDIX B: FIELD INTEGRATION

Plugging Eqs. (A5)–(A8) into Eq. (25) gives

〈Ô〉(τ ) = 1

Tr[ρ̂0]

∫
D(· · · )〈rN

−|Ô|rN
+〉〈r1

+|ρ̂mr1
−〉
∣∣∣∣ M
2π�h̄

∣∣∣∣N−1∏
s

exp

[
−

N∑
j=1

(s̄ j
−s j

− + s̄ j
+s j

+) + s̄1
+s1

−e−β h̄�s + s̄N
−sN

+

]

×
∏

s

exp

[
N−1∑
j=1

e−i��s s̄ j+1
+ s j

+ − i�

h̄

[
s̄ j+1
+ Cs(r

j+1
+ ) + s j

+Cs(r
j
+)
]]
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×
∏

s

exp

[
N−1∑
j=1

ei��s s̄ j
−s j+1

− + i�

h̄
[s̄ j

−Cs(r
j
−) + s j+1

− Cs(r
j+1
− )]

]

×
N−1∏
j=1

exp

[∑
σ=±

σ
i
(
r j+1
σ − r j

σ

)T
M
(
r j+1
σ − r j

σ

)
2�h̄

− σ
i�

h̄
U
(
r j
σ

)]
, (B1)

where ρ̂m is the density operator for the mobile ions at t = 0. Note that we suppress the redundant time label in Cs and U because
it is already present as the superscript of r.

The next step involves integrating over the complex numbers s j
± and s̄ j

±. Before we do that, however, there are two important
features worth highlighting in Eq. (B1). First, each vibrational mode s has 4N complex variables associated with it: s j

± and
s̄ j
± for j = 1, . . . , N . Second, the different modes do not mix directly as there are no products of the form s̄ j

±s′k
±. This feature

considerably simplifies the integration.
Picking out only the terms in the second, third, and fourth lines of Eq. (B1) that depend on the mode s allows us to define a

multidimensional complex Gaussian integral

Is =
∫

D(· · · ) exp[s̄1
+s1

−e−β h̄�s + s̄N
−sN

+] exp

[
−

N∑
j=1

(s̄ j
−s j

− + s̄ j
+s j

+)

]
exp

[
N−1∑
j=1

e−i��s s̄ j+1
+ s j

+ +
N−1∑
j=1

ei��s s̄ j
−s j+1

−

]

× exp

[
−

N−1∑
j=1

i�

h̄
[s̄ j+1

+ Cs(r
j+1
+ ) + s j

+Cs(r
j
+)]

]
exp

[
N−1∑
j=1

i�

h̄
[s̄ j

−Cs(r
j
−) + s j+1

− Cs(r
j+1
− )]

]
. (B2)

To evaluate the integral in Eq. (B2), we first write the terms inside the exponential as

− (s̄+ s̄−)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0 −e−β h̄�s

−e−i��s 1 . . . . . . 0 0
...

...
. . . . .

. ...
...

. . . 0 −1 1 0 . . .

. . . 0 0 −ei��s 1 . . .

. .
. ...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

s+
s−

)
− i�

h̄
(s̄+ s̄−)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
Cs(r2

+)
...

Cs(rN
+)

0
−Cs(rN−1

− )
...

−Cs(r1
−)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− i�

h̄

(
Cs(r1

+) . . . · · · Cs(rN−1
+ ) 0 −Cs(rN

−) · · · −Cs(r2
−) 0

)(s+
s−

)
, (B3)

where (s̄+ s̄−) = (s̄1
+ s̄2

+ · · · s̄N
+ s̄N

− · · · s̄2
− s̄1

−).
Performing the integral requires inverting the matrix in Eq. (B3). The top left (bottom right) quadrants of this matrix are lower

bidiagonal matrices with 1 on the main diagonal and −e−i��s (−ei��s ) on the first subdiagonal. The remaining two quadrants
have a single nonzero entry each, located at their top right corner. It is convenient to write the inverse as

Gs =
(

G++
s G+−

s
G−+

s G−−
s

)
, [G++

s ]ln = e−i��s (l−n)[	(l − n) + nB(�s)], [G−−
s ]ln = ei��s (l−n)[	(l − n) + nB(�s)],

[G+−
s ]ln = ei��s (N+1−l−n)nB(�s), [G−+

s ]ln = e−i��s (N+1−l−n)[nB(�s) + 1], (B4)

where the discrete Heaviside function 	(0) = 1 and nB(x) is the Bose-Einstein distribution. The details of the inversion
procedure can be found in Appendix C. The resulting expression is

Is = |Gs| exp

[
−�2

h̄2

N∑
ln=1

Cs(rl
+)[G++

s ]lnCs(rn
+)(1 − δn,1)(1 − δl,N )

]

× exp

[
−�2

h̄2

N∑
ln=1

Cs(rN+1−l
− )[G−−

s ]lnCs(rN+1−n
− )(1 − δn,1)(1 − δl,N )

]

× exp

[
�2

h̄2

N∑
ln=1

Cs(rl
+)[G+−

s ]lnCs(rN+1−n
− )(1 − δn,1)(1 − δl,N )

]

× exp

[
�2

h̄2

N∑
ln=1

Cs(rN+1−l
− )[G−+

s ]lnCs(rn
+)(1 − δn,1)(1 − δl,N )

]
. (B5)
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Here, the π2N term from the Gaussian integration is canceled by π2N in the denominator originating from Eq. (24). The
expression can be made more symmetric by relabeling N + 1 − n → n for the rN+1−n

− terms (and, of course, changing the
corresponding index of the G matrix element). In addition, for the sake of brevity, we will suppress the Kronecker deltas and set
Cs(rl=N

+ ) = Cs(rl=1
− ) = Cs(rn=1

+ ) = Cs(rn=N
− ) = 0 implicitly. Plugging in the expressions for the inverse matrix elements yields

Is = |Gs| exp

[
−�2

h̄2

N∑
ln=1

Cs(rl
+)e−i��s (l−n)[	(l − n) + nB(�s)]Cs(rn

+)

]

× exp

[
−�2

h̄2

N∑
ln=1

Cs(rl
−)ei��s (−l+n)[	(n − l ) + nB(�s)]Cs(rn

−)

]

× exp

[
�2

h̄2

N∑
ln=1

Cs(rl
+)ei��s (n−l )nB(�s)Cs(rn

−)

]

× exp

[
�2

h̄2

N∑
ln=1

Cs(rl
−)e−i��s (l−n)[nB(�s) + 1]Cs(rn

+)

]
. (B6)

Note that the phase term e−i��s (l−n) in Eq. (B6) is the same for all the exponentials, allowing us to combine the terms as

(Cs(rl
+) Cs(rl

−))

(
	(l − n) + nB(�s) −nB(�s)

−1 − nB(�s) 	(n − l ) + nB(�s)

)(
Cs(rn

+))
Cs(rn

−)

)

= 1√
2

(Cs(rl
+) + Cs(rl

−) Cs(rl
+) − Cs(rl

−))

(
δln/2 −	(n − l )

	(l − n) 1 + 2nB(�s) + δln/2

)(
Cs(rn

+) + Cs(rn
−)

Cs(rn
+) − Cs(rn

−)

)
1√
2

→ 1√
2

(Cs(rl
+) + Cs(rl

−) Cs(rl
+) − Cs(rl

−))

(
0 −	(n − l )

	(l − n) coth
(

β h̄�s

2

))(Cs(rn
+) + Cs(rn

−)
Cs(rn

+) − Cs(rn
−)

)
1√
2
. (B7)

We drop the δln terms because their contribution decays as ∼1/N : �2 ∝ N−2 in the prefactor, while the Kronecker deltas provide
only N terms.

Next, we write Is as

Is = |Gs| exp

[
−�2

h̄2

N∑
ln=1

e−i��s (l−n)

2
(Cs(rl

+) + Cs(rl
−) Cs(rl

+) − Cs(rl
−))

(
0 −	(n − l )

	(l − n) coth
(

β h̄�s

2

))(Cs(rn
+) + Cs(rn

−)
Cs(rn

+) − Cs(rn
−)

)]

= |Gs| exp

[
�2

h̄2

N∑
ln=1

e−i��s (l−n)

2

(
Cs(rl

+) + Cs(rl
−)
)
	(n − l )(Cs(rn

+) − Cs(rn
−))

]

× exp

[
−�2

h̄2

N∑
ln=1

e−i��s (l−n)

2

(
Cs(rl

+) − Cs(rl
−)
)
	(l − n)(Cs(rn

+) + Cs(rn
−))

]

× exp

[
−�2

h̄2

N∑
ln=1

e−i��s (l−n)

2

(
Cs(rl

+) − Cs(rl
−)
)

coth

(
β h̄�s

2

)
(Cs(rn

+) − Cs(rn
−))

]

= |Gs| exp

[
i
�2

h̄2

N∑
ln=1

sin (��s(n − l ))(Cs(rn
+) − Cs(rn

−))	(n − l )
(
Cs(rl

+) + Cs(rl
−)
)]

× exp

[
−�2

h̄2

N∑
ln=1

e−i��s (l−n)

2

(
Cs(rl

+) − Cs(rl
−)
)

coth

(
β h̄�s

2

)
(Cs(rn

+) − Cs(rn
−))

]
, (B8)

where we drop the Cs(rl=N
+ ) = Cs(rl=1

− ) = Cs(rn=1
+ ) = Cs(rn=N

− ) = 0 requirement for � → 0 as the contribution of these terms
goes as ∼1/N .
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The term |Gs| = |G−1
s |−1 = 1/(1 − e−β h̄�s ) = Tr[e−β h̄�b†

s bs ] = Tr[ρ̂s] cancels Tr[ρ̂s] in the denominator of Eq. (B1) for each
mode s, leaving only Tr[ρ̂m]. Combining all the Is terms gives

〈Ô〉(τ ) = 1

Tr[ρ̂m]

∫
D(· · · )〈rN

−|Ô|rN
+〉〈r1

+|ρ̂m|r1
−〉
∣∣∣∣ M
2π�h̄

∣∣∣∣N−1∏
s

exp

[
−1

2
coth

(
β h̄�s

2

)
QsQ

∗
s

]

×
∏

s

exp

[
i
�2

h̄2

N∑
ln=1

sin (��s(n − l ))(Cs(rn
+) − Cs(rn

−))	(n − l )
(
Cs(rl

+) + Cs(rl
−)
)]

×
N−1∏
j=1

exp

[∑
σ=±

σ
i
(
r j+1
σ − r j

σ

)T
M
(
r j+1
σ − r j

σ

)
2�h̄

− σ
i�

h̄
U (r j

σ )

]

= 1

Tr[ρ̂m]

∫
D(· · · )〈rN

−|Ô|rN
+〉〈r1

+|ρ̂m|r1
−〉
∣∣∣∣ M
2π�h̄

∣∣∣∣N−1∏
s

exp

[
−1

2
coth

(
β h̄�s

2

)
QsQ

∗
s

]

×
∏

s

exp

[
i
�2

h̄2

N∑
ln=1

sin (��s(n − l ))(Ys(rn
+) − Ys(rn

−))	(n − l )
(
Ys(rl

+) + Ys(rl
−) + 2Ws(l�)

)]

×
N−1∏
j=1

exp

[∑
σ=±

σ
i
(
r j+1
σ − r j

σ

)T
M
(
r j+1
σ − r j

σ

)
2�h̄

− σ
i�

h̄
U (r j

σ )

]
(B9)

with

Qs = �

h̄

N∑
l=1

e−i��sl [Cs(rl
+) − Cs(rl

−)] = �

h̄

N∑
l=1

e−i��sl [Ys(rl
+) − Ys(rl

−)]. (B10)

APPENDIX C: INVERTING THE MODE MATRIX

Our goal is to invert

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0 −e−β h̄�s

−e−iθ 1 . . . . . . 0 0
...

...
. . . . .

. ...
...

. . . 0 −1 1 0 . . .

. . . 0 0 −eiθ 1 . . .

. .
. ...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(

a b
c d

)
. (C1)

Using the Banachiewicz identity,

Y −1 =
(

a−1 + a−1b(d − ca−1b)−1
ca−1 −a−1b(d − ca−1b)−1

−(d − ca−1b)−1
ca−1 (d − ca−1b)−1

)
. (C2)

The advantage here is that a is a bidiagonal matrix with 1’s on the main diagonal and identical entries on the subdiagonal.
Writing a = 1 − S, we have

a−1 = (1 − S)−1 =
∞∑

n=0

Sn. (C3)

One can check that for n > N , Sn vanishes, while for n � N , the negative of the subdiagonal entry of a is raised to the power n
and positioned on the nth diagonal. In other words, [a−1] jk = 	( j − k)e−i( j−k)θ , where we define Heaviside function 	(0) = 1.

Next, we have

[ca−1b] jk =
∑
lm

c jl a
−1
lm bmk =

∑
lm

(−1δ j,1δl,N )a−1
lm (−e−β h̄�sδm,1δk,N ) = a−1

N1e−β h̄�sδ j,1δk,N = e−i(N−1)θ e−β h̄�sδ j,1δk,N , (C4)

[a−1b] jk =
∑

m

a−1
jm bmk =

∑
m

a−1
jm (−e−β h̄�sδm,1δk,N ) = −e−i( j−1)θ e−β h̄�sδk,N , (C5)

[ca−1] jk =
∑

l

c jl a
−1
lk =

∑
l

(−1δ j,1δl,N )a−1
lk = −δ j,1e−i(N−k)θ . (C6)
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To obtain (d − ca−1b)−1, note that d is also bidiagonal with 1’s on the diagonal and identical terms on the subdiagonal.
Subtracting ca−1b adds a single element −e−i(N−1)θ e−β h̄�s to the top right corner. Hence, we need to invert

X = (d − ca−1b) =

⎛
⎜⎜⎝

1 0 0 . . . −e−i(N−1)θ e−β h̄�s

−eiθ 1 0 . . . 0
0 −eiθ 1 . . . 0
...

...
...

. . .
...

⎞
⎟⎟⎠ =

(
A B
C D

)
. (C7)

Here, D = 1, B is the last column of X without the final elements, C is the last row of X without the last element, and A is the
remaining (N − 1) × (N − 1) matrix. Invoking the Banachiewicz identity again, we write

(d − ca−1b)−1 =
(

A−1 + A−1B(D − CA−1B)−1
CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1
CA−1 (D − CA−1B)−1

)

=
(

A−1 0
0 0

)
+ (D − CA−1B

)−1
(

A−1BCA−1 −A−1B
−CA−1 1

)
. (C8)

As before, [A−1] jk = 	( j − k)ei( j−k)θ and

[CA−1B] jk =
∑
lm

CjlA
−1
lm Bmk =

∑
lm

(−eiθ δ j,1δl,N−1)A−1
lm (−e−i(N−1)θ e−β h̄�sδm,1δk,1)

= eiθ δ j,1A−1
N−1,1e−i(N−1)θ e−β h̄�sδk,1 = eiθ δ j,1ei(N−2)θ e−i(N−1)θ e−β h̄�sδk,1 = δ j,1e−β h̄�sδk,1, (C9)

[A−1B] jk =
∑

m

A−1
jmBmk =

∑
m

A−1
jm (−e−β h̄�s e−i(N−1)θ δm,1δk,1) = −A−1

j1 e−β h̄�s e−i(N−1)θ δk,1

= −	( j − 1)ei( j−1)θ e−β h̄�s e−i(N−1)θ δk,1 = −e−β h̄�s e−i(N− j)θ δk,1, (C10)

[CA−1] jk =
∑

l

Cjl A
−1
lk =

∑
l

(−eiθ δ j,1δl,N−1)A−1
lk = −eiθ δ j,1A−1

N−1,k

= −eiθ δ j,1	(N − 1 − k)ei(N−1−k)θ = −δ j,1ei(N−k)θ , (C11)

leading to (D − CA−1B)−1 = (1 − e−β h̄�s )−1 = nB(�s) + 1. In addition,

[A−1BCA−1] jk =
∑

l

[A−1B] jl [CA−1]lk =
∑

l

A−1
j1 e−β h̄�s e−i(N−1)θ δl,1eiθ δl,1A−1

N−1,k

= 	( j − 1)ei( j−1)θ e−β h̄�s e−i(N−1)θ eiθ	(N − 1 − k)ei(N−1−k)θ

= e−β h̄�s ei( j−k)θ , (C12)

which yields

[A−1 + (D − CA−1B)−1A−1BCA−1] jk = 	( j − k)ei( j−k)θ + [nB(�s) + 1]e−β h̄�s ei( j−k)θ

= [	( j − k) + [nB(�s) + 1]e−β h̄�s ]ei( j−k)θ

= [	( j − k) + nB(�s)]ei( j−k)θ . (C13)

One can see that the same form holds for the remaining terms of (d − ca−1b)−1, in agreement with G−−
s for θ = ��s.

Having obtained (d − ca−1b)−1, we can calculate the remaining three quadrants of Y −1 as follows:

[−a−1b(d − ca−1b)−1] jk =
∑

l

[−a−1b] jl [(d − ca−1b)−1]lk

=
∑

l

a−1
j1 e−β h̄�sδl,N [	(l − k) + nB(�s)]ei(l−k)θ

= e−β h̄�s [1 + nB(�s)]ei(N−k− j+1)θ = nB(�s)ei(N−k− j+1)θ , (C14)

[−(d − ca−1b)−1ca−1] jk =
∑

l

[−(d − ca−1b)−1] jl [ca−1]lk

=
∑

l

[	( j − l ) + nB(�s)]ei( j−l )θ δl,1a−1
Nk

= [1 + nB(�s)]e−i(N−k− j+1)θ , (C15)
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[a−1 + a−1b(d − ca−1b)−1ca−1] jk = [a−1] jk +
∑
lm

[a−1b] jl [(d − ca−1b)−1]lm[ca−1]mk

= 	( j − k)e−i( j−k)θ +
∑
lm

a−1
j1 e−β h̄�sδl,N [	(l − m) + nB(�s)]ei(l−m)θ δm,1a−1

Nk

= 	( j − k)e−i( j−k)θ + e−i( j−1)θ e−β h̄�s [1 + nB(�s)]ei(N−1)θ e−i(N−k)θ

= 	( j − k)e−i( j−k)θ + e−i( j−k)θ e−β h̄�s [1 + nB(�s)]

= [	( j − k) + nB(�s)]e−i( j−k)θ . (C16)

APPENDIX D: CORRELATION TENSOR

〈f̃n ⊗ f̃l〉 =
〈∑

s

∇Ys(rn)
[
ei��snξs + e−i��snξ ∗

s

]⊗
∑

s′
∇Ys′ (rl )

[
ei��s′ lξs′ + e−i��s′ lξ ∗

s′
]〉

=
∫ ∏

s′′
dξs′′dξ ∗

s′′
∑

s

∇Ys(rn)
[
ei��snξs + e−i��snξ ∗

s

]⊗
∑

s′
∇Ys′ (rl )

[
ei��s′ lξs′ + e−i��s′ lξ ∗

s′
]
Ps′′

=
∑

s

∫
dξsdξ ∗

s ∇Ys(rn)
[
ei��snξs + e−i��snξ ∗

s

]⊗ ∇Ys(rl )
[
ei��slξs + e−i��slξ ∗

s

]
Ps

=
∑

s

∇Ys(rn) ⊗ ∇Ys(rl )
∫

dξsdξ ∗
s

[
ei��snξs + e−i��snξ ∗

s

][
ei��slξs + e−i��slξ ∗

s

]
Ps

=
∑

s

∇Ys(rn) ⊗ ∇Ys(rl )〈ξsξ
∗
s 〉2 cos [��s(n − l )]

=
∑

s

∇Ys(rn) ⊗ ∇Ys(rl ) coth

(
β h̄�s

2

)
cos [��s(n − l )]. (D1)

APPENDIX E: RECOIL TERM

n∑
l=1

sin [��s(n − l )]Ys(rl ) =
n∑

l=1

cos [��s(n − l )] cos [��s] − cos [��s(n + 1 − l )]

sin [��s]
Ys(rl )

=
n∑

l=1

cos [��s(n − l )] cos [��s]

sin [��s]
Ys(rl ) −

n−1∑
l=0

cos [��s(n − l )]

sin [��s]
Ys(rl+1)

=
n−1∑
l=1

cos [��s(n − l )] cos [��s]

sin [��s]
Ys(rl ) −

n−1∑
l=1

cos [��s(n − l )]

sin [��s]
Ys(rl+1)

+ cos [��s]

sin [��s]
Ys(rn) − cos [��sn]

sin [��s]
Ys(r1)

= −
n−1∑
l=1

cos [��s(n − l )]

sin [��s]
[Ys(rl+1) − Ys(rl )] + cos [��s]

sin [��s]
Ys(rn) − cos [��sn]

sin [��s]
Ys(r1)

≈ −
n−1∑
l=1

cos [��s(n − l )]

sin [��s]
∇rYs(rl ) · (rl+1 − rl ) + cos [��s]

sin [��s]
Ys(rn) − cos [��sn]

sin [��s]
Ys(r1)

≈ −
n−1∑
l=1

cos [��s(n − l )]

�s
∇rYs(rl ) · ṙl + cos [��s]

��s
Ys(rn) − cos [��sn]

��s
Ys(r1), (E1)

where the last expression holds in the � → 0 limit.
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