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Quantum transport is developed in the Wigner function representation for a Bloch electron quasiparticle
interacting with a disordered binary alloy in the presence of a homogeneous electric field of arbitrary time
dependence and amplitude. The electron quasiparticle is described by a single-band effective Hamiltonian,
and the homogeneous electric field is treated in the vector potential gauge. The methodology for the quantum
transport analysis proceeds by first transforming the Liouville equation to one in which the interaction Hamilto-
nian (the binary alloy Hamiltonian) appears quadratically. The basis states employed in evaluating the requisite
matrix elements are the instantaneous eigenstates of the electron quasiparticle Hamiltonian in the presence of
the electric field. The Wigner quantum transport equations are derived, and the binary alloy collision term is
suitably ensemble averaged over the disordered binary alloy matrix elements. In addition, the general drift and
diffusion terms are exactly obtained, resulting in the complete Wigner-Boltzmann equation for the binary alloy
system. In approximating the collision term for the two separate cases of parabolic energy dispersion and the
long-wavelength limit, it is found that the reduced Wigner-Boltzmann equation includes the manifestation of the
intracollisional field effect and other quantum generalities. As a contrast to the actual random alloy treatment,
attention is given to the canonical problem of quantum transport for a virtual crystal (VC). As an alternative
to the random binary alloy scattering problem, the VC Hamiltonian adopted for this treatment is derived by
ensemble averaging the random binary alloy Hamiltonian. The resulting Wigner transport equation for the VC
case is descriptive of Bloch dynamics in a graded semiconductor alloy.
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I. INTRODUCTION

The challenge of describing electron dynamics in a
semiconductor where the Bloch bands are influenced by com-
positional alloying, as well as other constitutive modifications,
has long been a cornerstone issue for many applications
in solid-state physics. In this regard, the development of
user-friendly formulations for treating alloy scattering, and
compositionally tailored Bloch bands has had a long and
useful history [1,2]. Needless to say, in addressing problems
involving alloying and a degree of compositional disorder, it is
often a matter of computational practicality to transition from
a microscopic description to a suitable average of the problem
that smoothes out the fluctuations inherit in the compositional
disorder. Such is the situation, for example, when replacing
the microscopic alloy potential energy by the so-called virtual
crystal approximation (VCA) [3]. When such an averaging
of practicality is involved, it is always natural to question the
impact of such a transition on the quantum transport dynamics
and on the dynamical variables of interest. In this work, we
address such a consideration.

For purposes of this analysis, we consider the simplest
model disordered binary alloy system of composition AxB1−x

[1,2]. For the binary alloy model, it is assumed that the two
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constituent atoms of the alloy are ideally arranged on a peri-
odic lattice in a random binary distribution; lattice distortions,
and long/short-range correlations between the constituent
atoms are neglected. The potential energy for the binary alloy
model is expressed as

U (r, {ri}) =
NA∑
ra

UA(r − ra) +
NB∑
rb

UB(r − rb); (1)

here, with NA + NB = N , the constitutive atoms are randomly
distributed over N perfectly periodic lattice sites, namely, ra

and rb (which are otherwise random variables referred to as
{ri}). Thus, although A and B posses potential energy UA(r)
and UB(r) with the same periodicity, they are randomly dis-
tributed over N sites in a random binary configuration.

In this work, we consider the quantum dynamics for an
electron described by a single-band effective Hamiltonian in
a homogeneous electric field of arbitrary time dependence,
interacting with an inhomogeneous potential energy of the
disordered binary alloy of Eq. (1). As such, the total Hamilto-
nian is given by

Ĥ = ε̂n(p̂ + pc) + U (r, {ri}) + V (r). (2)

Here, ε̂n(p̂ + pc) is the single-band effective Hamiltonian of
the Bloch band εn(K), p̂ = −ih̄∇r is the electron momentum
operator, U (r, {ri}) is the binary alloy potential energy defined
in Eq. (1), and V (r) is an arbitrary external potential energy.
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In Sec. II, we develop the elements of the Liouville equa-
tion and the Wigner distribution function (WDF) [4] necessary
to derive the Wigner-Boltzmann transport equation for the
Hamiltonian of Eq. (2). The basis functions to be used in
establishing the required matrix elements for this analysis will
be the instantaneous eigenstates of ε̂n(p̂ + pc) in Eq. (2). The
Liouville equation is utilized by transforming to an equivalent
form in which the binary alloy term in Eq. (2) is treated
quadratically. In Sec. III, we make use of the transformed
Liouville equation to derive the Wigner-Boltzmann transport
equation for the Hamiltonian of Eq. (2). The realized equa-
tion is then ensemble averaged over the binary distribution
of the random variables {ri} relevant to U (r, {ri}) in Eq. (2)
to find the ensemble averaged Wigner-Boltzmann transport
equation. The generalized drift and diffusion terms are exactly
obtained. Noting the complexity of the collision term, we
examine this term for the two separate approximate conditions
of parabolic dispersion and the long-wavelength carrier limit
to observe noted quantum effects. In Sec. IV, we take the
ensemble average of the Hamiltonian in Eq. (2). This results
in a virtual crystal (VC)-type of Hamiltonian; the Wigner-
Boltzmann equation is developed for this VC Hamiltonian.
The resulting Wigner-Boltzmann transport equation for the
VC is descriptive of the Bloch dynamics in a single-band
graded semiconductor alloy. In Sec. V, we summarize our
results, emphasizing the importance of the ensemble averag-
ing over random variables in quantum transport problems.
In addition, the dynamical scenarios that emerge from the
two different ensemble averaging sequences are causally ad-
dressed; it is shown from the Liouville equation that the
density matrix and the interaction Hamiltonian possess dif-
ferent statistical correlation relations for the two different
sequences which, in turn, gives rise to the different dynamical
equations of motion.

II. LIOUVILLE EQUATION AND THE WIGNER
FUNCTION REPRESENTATION

A. Liouville equation

In considering the problem of interest, we note that the
Hamiltonian of Eq. (2) is expressed as a separation of kinetic
and potential energy terms. Further, when considering an ad-
ditional imposition of a spatially homogeneous, but arbitrarily
time-dependent electric field, we previously showed [5–7] that
this can be treated in the vector potential gauge by adding
a time-dependent momentum pc(t ) to the mechanical momen-
tum, so that

Ĥ0 = Ĥ0[p̂ + pc(t )], (3a)

where

pc(t ) = h̄kc(t ) = e
∫ t

t0

E(t ′)dt ′. (3b)

Therefore, as a starting point for the quantum analysis, we
begin with the Liouville equation for our system as

ih̄
∂�̂

∂t
= [Ĥ (r, p̂, t ), �̂] ≡ [Ĥ0[p̂ + pc(t )] + Ĥ ′(r, t ), �̂]. (4)

It follows from time evolution treatment in our previous work
[5] that Eq. (4) can be transformed conveniently with a unitary

transformation Û (t, t0), defined by

ih̄
∂

∂t
Û (t, t0) = Ĥ0[p̂ + pc(t )]Û (t, t0), (5)

with Û +Û = ÛÛ + = 1̂ and Û (t, t ′)Û (t ′, t0) = Û (t, t0), so
that

ih̄
∂�̂

∂t
= [Ĥ0, �̂] + [Ĥ ′(t ), Û (t, t0)�̂(t0)Û (t0, t )]

− i

h̄

[
Ĥ ′(t ),

∫ t

t0

dt ′Û (t, t ′)[Ĥ ′(t ′), �̂(t ′)]Û (t ′, t )

]
.

(6)

It is noted that in the transformation from Eq. (4) to Eq. (6),
the Liouville equation has separated the interaction term into
two components, the first is linear in the interaction Hamil-
tonian Ĥ ′ and is characterized by the density matrix initial
condition; the second term is quadratic in the interaction
Hamiltonian and contains explicit quantum correlations of �̂

with Ĥ ′, along with temporal memory effects. Thus, we use
Eq. (6) as a preferred form of the Liouville equation to develop
the Wigner-Boltzmann quantum transport equations for our
interest.

B. Wigner distribution function

In defining the single-particle WDF for our problem, which
is generally a function of canonical variables f (r, p, t ), we
take the Fourier transform of the single-particle density matrix
in an appropriate basis. For this purpose, we use the instan-
taneous eigenstates of ε̂n[−i∇r + kc(t )]. The instantaneous
eigenstate equation is then in the wave-vector K representa-
tion

ε̂n[−i∇r + kc(t )]|K〉 = εn[K + kc(t )]|K〉, (7a)

where

|K〉 = �−1/2eiK·r, (7b)

� is the normalization volume, k(K, t ) = K + kc(t ), and
kc(t ) is noted in Eq. (3b).

In determining the WDF for this analysis, we use the |K〉
states of Eq. (7b) as a basis to establish the off-diagonal matrix
elements [6] of �̂ to obtain f (r, p, t ) → F (r, K, t ) with p =
h̄K. Then

F (r, K, t ) ≡ �−1
∑

u

�K+u/2,K−u/2(t )eiu·r, (8)

where �KK′ ≡ 〈K|�̂|K′〉. It follows that F (r, K, t ) satisfies the
sum rules ∑

K

F (r, K, t ) = �(r, t ), (9a)

where �(r, t ) is the electron density and∫
�

drF (r, K, t ) = �KK(t ). (9b)

Kinematically, for any operator B̂, we have the expectation
value

〈B〉 ≡ Tr{�̂B̂} =
∑

K

∫
�

drF (r, K)BW (r, K), (10a)
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where BW (r, K) is the Wigner-Weyl form for B̂, given by

BW (r, K) = �−1
∑

u

BK+u/2,K−u/2eiu·r. (10b)

It then follows that for a local coordinate-dependent oper-
ator B̂(r), the equation for 〈B〉 in Eq. (10a) is further reduced
to

〈B〉 =
∑

K

∫
�

drF (r, K)BW (r). (11)

Alternatively, if B̂ is diagonal in the K basis, i.e., BKK′ =
BKδKK′ , then Eq. (10a) reduces to

〈B〉 =
∑

K

∫
�

drF (r, K)BK. (12)

In using the Hamiltonian of Eq. (2) in Eq. (6) with Ĥ0 =
ε̂n[−i∇r + kc(t )] + V (r) and Ĥ ′ = U (r, {ri}), we can take
the required matrix elements and express the time rate of
change of the WDF as

∂

∂t
F (r, K, t ) = Tε + TV + C1 + C2. (13)

Here, from Eq. (10a), we see that Tε and TV become [5]

Tε = − i

h̄�

∑
u

[εn(k + u/2) − εn(k − u/2)]�K+u/2,K−u/2

= −1

h̄
sin(∇r · ∇K )[εn(K + kc)F (r, K′)]K′=K (14)

and

TV = − i

h̄�

∑
u

[V, �̂]K+u/2,K−u/2eiu·r

= 1

h̄
sin(∇r · ∇K )[V (r)F (r′, K)]r′=r. (15)

The last two terms in Eq. (13), namely C1 and C2, are derived
from the linear and quadratic terms in H ′ of Eq. (6). As such,
taking the required matrix elements, we find that

C1 = 1

ih̄�

∑
u

〈
K + u

2

∣∣∣∣
× [Ĥ ′(t ), Û (t, t0)�̂(t0)Û (t0, t )]

∣∣∣∣K − u
2

〉
eiu·r, (16)

C2 = − 1

h̄2�

∑
u

〈
K + u

2

∣∣∣∣
[

Ĥ ′(t ),
∫ t

t0

dt ′Û (t, t ′)

× [Ĥ ′(t ′), �̂(t ′)]Û (t ′, t )

]∣∣∣∣K − u
2

〉
eiu·r. (17)

In the expression for C1 of Eq. (16), the �̂(t0) dependence
gives rise to off-diagonal initial conditions which are gen-
erally zero, however, see Appendix A for further discussion
of C1(r, K, t ). For C2, expanding the outside commutator
reveals that C2 can be written as the sum of two terms C2 =
C(1)

2 + C(2)
2 , each term belonging to one of the terms of the

expanded commutator. It thus follows that

C(1)
2 = − 1

h̄2�

∫ t

t0

dt ′ ∑
u

〈
K + u

2

∣∣∣∣Ĥ ′(t )Û (t, t ′)

× [Ĥ ′(t ′), �̂(t ′)]Û (t ′, t )

∣∣∣∣K − u
2

〉
eiu·r, (18a)

C(2)
2 = 1

h̄2�

∫ t

t0

dt ′ ∑
u

〈
K + u

2

∣∣∣∣Û (t, t ′)[Ĥ ′(t ′), �̂(t ′)]

× Û (t ′, t )Ĥ ′(t )

∣∣∣∣K − u
2

〉
eiu·r. (18b)

With regard to the explicit form of Û (t, t0) from Eq. (5),
we note that we divided the full Hamiltonian of Eq. (2) into
two parts in Eq. (4), namely, Ĥ0 = ε̂n[−i∇r + kc(t )] + V (r)
and Ĥ ′ = U (r, {ri}). Here, ε̂n[−i∇r + kc(t )] is chosen as
the source of the instantaneous eigenstates from Eqs. (7a)
and (7b). Then, in using Eq. (5) along with Û0 defined by
ih̄∂Û0/∂t = ε̂n[−i∇r + kc(t )]Û0, it follows that

ih̄
∂

∂t
(Û †

0 Û ) = Û †
0 V (t )Û .

Upon integration, we obtain

Û (t, t0) = Û0(t, t0)
{

Î − i

h̄

∫ t

t0

dt ′Û0(t0, t ′)V (t ′)Û (t ′, t0)
}
,

an exact result for the given Û0 above and Û (t, t0) from
Eq. (5). But, as a first approximation, letting Û (t, t0) ≈
Û0(t, t0) under the integral, and then taking the matrix ele-
ments with respect to |K〉 of Eq. (7b), we find that

UKK′ (t, t0) ≈ e− i
h̄

∫ t
t0

εn[k(τ )]dτ

[
δKK′ − i

h̄

∫ t

t0

dt ′VKK′ (t ′)

× e
i
h̄

∫ t ′
t0

{εn[k(τ )]−εn[k′(τ )]} dτ

]
.

Here, we see that UKK′ contains the leading instantaneous
eigenstate term, but also, in the second term, a higher-order
term in the inhomogeneous external potential V (r). Since we
only focus attention on U (r, {ri}) in this work, we elect to
retain only the lowest-order term in UKK′ so that

UKK′ (t, t0) ≈ e− i
h̄

∫ t
t0

εn[k(τ )]dτ
δKK′ ,

with Û (t, t0) ≈ Û0(t, t0). This approximation is adopted from
now on.

In Eq. (18a), inserting in between Ĥ ′ and Û (t, t ′) the
complete set of states representing by the term

∑
K′ |K′ +

u/2〉〈K′ + u/2|, and noting that〈
K + u

2

∣∣∣∣Ĥ ′
∣∣∣∣K′ + u

2

〉
= H ′

KK′ ,

Û (t ′, t )

∣∣∣∣K − u
2

〉
= e− i

h̄

∫ t ′
t εn(k(τ )−u/2)dτ

∣∣∣∣K − u
2

〉
,

〈
K′ + u

2

∣∣∣∣Û (t, t ′) = e
i
h̄

∫ t ′
t εn[k′(τ )+u/2]dτ

〈
K′ + u

2

∣∣∣∣, (19)
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we then get

C(1)
2 = − 1

h̄2�

∑
u,K′

H ′
KK′ (t )

∫ t

t0

dt ′
〈
K′ + u

2

∣∣∣∣[Ĥ ′(t ′), �̂(t ′)]
∣∣∣∣K − u

2

〉
e

i
h̄

∫ t ′
t [εn[k′(τ )+u/2]−εn[k(τ )−u/2]dτ eiu·r. (20)

Finally, expanding the commutator and using the expression for F (r, K, t ) defined in Eq. (8), we get for C(1)
2 = C(1)

2 (r, K, t )
above

C(1)
2 = − 1

h̄2�

∑
u,K′,K′′

H ′
KK′ (t )

∫ t

t0

dt ′
{

H ′
K′K′′ (t ′)

∫
�

dr′F
(

r′,
K′′ + K

2
, t ′

)
e−i(K′′−K)·r′

eiu·(r−r′ ) − H ′
K′′K(t ′)

×
∫

�

dr′F
(

r′,
K′ + K′′

2
, t ′

)
e−i(K′−K′′ )·r′

eiu·(r−r′ )

}
e

i
h̄

∫ t ′
t {εn[k′(τ )+u/2]−εn[k(τ )−u/2]}dτ . (21)

Similarly, we find that the other term C(2)
2 satisfies the relation

C(2)
2 = C(1)∗

2 . Thus, the term C2(r, K, t ) is given by

C2(r, K, t ) = C(1)
2 + C(1)∗

2 = 2ReC(1)
2 (r, K, t ). (22)

III. ELECTRON QUASIPARTICLE SCATTERED BY A
RANDOM BINARY ALLOY

The time evolution of the Wigner function is defined by
Eq. (13), with C1 and C2 given by Eqs. (16) and (22), re-
spectively. Since the Wigner function F (r, K, t ) of Eq. (13) is
dependent upon the random variables inherent in the potential
energy of the binary alloy of Eq. (1), that is, the set {ri}, it is
incumbent upon us to take the ensemble average of the Wigner
equation over the appropriate random variables. Since these
variables are explicitly introduced in UA,B of Eq. (1), they are
subsequently found in the matrix elements of C2 and C1 (see

Appendix A). We now focus on the Hamiltonian Ĥ ′ of Eq. (2),
that is, U (r, {ri}), so as to calculate the appropriate matrix
elements relevant to the C2 term. Considering from Eq. (1),
we now refer to U (r, {ri}) as Ĥ ′ for purposes of the analysis
so that

U (r, {ri}, t ) ≡ Ĥ ′(r, t ) =
NA∑
ra

UA(r − ra, t )

+
NB∑
rb

UB(r − rb, t ); (23)

note we introduced a “t ′′ dependence into U (r, {ri}, t ) to
allow for a time-dependent tracking in subsequent analysis.
For NA + NB = N , we then form H ′

KK′ (t )H ′
K′,K−q(t ′) for use

in Eq. (21). Using Ĥ ′(t ) of Eq. (23), we can write

H ′
KK′ (t )H ′

K′,K−q(t ′) = [UA(t )]KK′[UA(t ′)]K′,K−q

NA∑
ra

e−i(K−K′ )·ra

NA∑
ra′

ei(K−K′−q)·ra′

+ [UB(t )]KK′[UB(t ′)]K′,K−q

NB∑
rb

e−i(K−K′ )·rb

NB∑
rb′

ei(K−K′−q)·rb′

+ [UA(t )]KK′[UB(t ′)]K′,K−q

NA∑
ra

e−i(K−K′ )·ra

NB∑
rb

ei(K−K′−q)·rb

+ [UB(t )]KK′[UA(t ′)]K′,K−q

NB∑
rb

e−i(K−K′ )·rb

NA∑
ra

ei(K−K′−q)·ra . (24a)

Here,

[Ui(t )]KK′ =
∫

�

Ui(r, t )ei(K−K′ )·rdr, (24b)

with i = (A, B), independent of ra or rb, respectively.
We seek to evaluate the statistical ensemble average of Eq. (24a), namely, 〈H ′

KK′ (t )H ′
K′,K−q(t ′)〉. This requires suitable

configuration averaging over the random variables ra and rb in Eq. (24a), or the exponential sums over ra and rb therein.
Such configuration averaging is given in Appendix B using the relevant assumption about a Gaussian distribution of the random
variables. In this regard, in evaluating such a sum in Eq. (24a), we generally seek spatial averages of the form

〈SA〉 = NA

∫
draeiαa·raρ(ra), (25a)

〈SB〉 = NB

∫
drbeiαb·rbρ(rb). (25b)
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It is noted that integrals of the type of Eqs. (25a) and (25b) can be evaluated exactly for the Gaussian distribution [8–10]
function [Appendix B, Eq. (B2a)]; as such

I =
∫

dre±iα·rρ(r) = e−α2/4β, (26)

where α = αa,b and β = βA,B, respectively and for the sums of Eq. (24a), α = |K − K′| or |K − K′ − q|. Therefore, we can
express the ensemble average of Eq. (24a) as

〈H ′
KK′ (t )H ′

K′,K−q(t ′)〉 = N2n(K − K′)n(K − K′ − q)(C2[UA(t )]KK′[UA(t ′)]K′,K−q + (1 − C)2[UB(t ′)]KK′[UB(t )]K′,K−q

+C(1 − C){[UA(t ′)]KK′[UB(t )]K′,K−q + [UB(t ′)]KK′[UA(t )]K′,K−q}). (27)

Here C = NA/N , 1 − C = NB/N , NA + NB = N , and n(Q) = exp(−|Q|N〈r2〉/6). Also, of course, since U (r, {ri}, t ) in Eqs. (23)
and (24a) is actually a function of r alone, U = U (r, {ri}), then Eq. (24a) is time independent, so that t = t ′ = t0 for this case;
but we inserted “t ′′ dependence for purposes of generality in utilizing C2 in Eq. (22) and in tracking matrix elements analysis.

We note that Eq. (27) can be re-expressed in direct compact form with t = t ′ = t0 as

〈H ′
KK′ (t )H ′

K′,K−q(t ′)〉 = �KK′ (t0)�K′,K−q(t0), (28a)

where

�KK′ (t0) = Nn(K − K′){C[UA(t0)]KK′ + (1 − C)[UB(t0)]KK′ }. (28b)

Then, inserting the time-independent ensemble average of Eqs. (28a) and (28b) into the scattering term of Eq. (21), we obtain
for Eq. (22)

C2(r, K, t ) = 2

h̄2�
Re

∑
u,K′,q

�KK′

∫ t

t0

dt ′
{
�K′+q,K

∫
�

dr′F
(

r′, K′ + q
2
, t ′

)
eiq·r′

eiu·(r−r′ )

−�K′,K−q

∫
�

dr′F
(

r′, K − q
2
, t ′

)
eiq·r′

eiu·(r−r′ )
}

e
i
h̄

∫ t ′
t {ε[k′(τ )+u/2]−ε[k(τ )−u/2]}dτ . (29)

Here, �KK′ and �K′,K−q are time independent as being in-
ferred from Eqs. (28a) and (28b). Thus, from Eqs. (13) and
(29), we can write the Wigner equation for the binary al-
loy Hamiltonian of Eq. (2) [taken as Eq. (13) with C1 =
C1(r, K, t )] as

∂

∂t
F (r, K, t ) + 1

h̄
sin(∇r · ∇K )[ε(K + kc)F (r, K′)]K′=K

= C2(r, K, t ) + C1(r, K, t ), (30)

where C2(r, K, t ) is given in Eq. (29), and we omit the band
index n for purposes of notational brevity. In transforming
to gauge invariant variables [6], we transform the Wigner
equation (30) from (K, t ) variables to [k(t ), t] variables using
the transformation equations

k(t ) = K + kc(t ) = K + e

h̄

∫ t

t0

E(t ′)dt ′, (31a)

W [r, k(t ), t] = F (r, K, t ). (31b)

It then follows that

∂

∂t
F (r, K, t ) = ∂

∂t
W (r, k, t ) + h̄−1eE · ∇kW (r, k, t ),

∇xi F (r, K, t ) = ∇xiW (r, k, t ).

Thus, the Wigner equation (30) becomes

∂

∂t
W (r, k, t ) + 1

h̄
sin(∇r · ∇k )[ε(k)W (r, k′, t )]k′=k

+ h̄−1eE · ∇kW (r, k, t ) = C2(r, k, t ) + C1(r, k, t ). (32)

Here, C2(r, k, t ) transforms from Eq. (29) as

C2(r, k, t ) = 2

h̄2�
Re

∑
u,k′,q

�kk′

∫ t

t0

dt ′
{
�k′+q,k

∫
�

dr′W

×
(

r′, k′ + q
2
, t ′

)
eiq·r′

eiu·(r−r′ ) − �k′,k−q

×
∫

�

dr′W
(

r′, k − q
2
, t ′

)
eiq·r′

eiu·(r−r′ )
}

× e
i
h̄

∫ t ′
t {ε[k′(τ )+u/2]−ε[k(τ )−u/2]}dτ . (33)

The collision term (33) in Eq. (32) adds substantial compli-
cation to the solution of the equation, requiring sums over u,
q, and k′ as well as integrals over r′ and t ′. However, in key
approximate physical limits, significant insight and simplicity
is revealed. Such approximations are now considered for both
q 
 0 [11] and the parabolic energy dispersion. In neglecting
the dependence on q in both the matrix elements and W in
Eq. (33) and summing the remaining terms over q and u, we
find

C2(r, k, t ) ≈ 2

h̄2 Re
∑

k′
|�kk′ |2

∫ t

t0

dt ′[W [r, k′(t ′), t ′]

−W [r, k(t ′), t ′]]e
i
h̄

∫ t ′
t {ε[k′(τ )]−ε[k(τ ]}dτ ,

(34a)
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where

|�kk′ |2 = |Nn(K − K′)[C(UA)KK′ + (1 − C)(UB)KK′]|2.
(34b)

We note that C2(r, k, t ) in Eq. (34a) is the generalization of
the Boltzmann scattering term, including the intracollisional
field effect, and the average matrix elements are the matrix
elements of the binary distribution of the constituent potential
energies, UA and UB.

On the other hand, for the case of parabolic energy disper-
sion, we have

ε(k′(τ ) + u/2) − ε(k(τ ) − u/2) ≈ ε[k′(τ )] − ε[k(τ )]

+ 1
2 [∇k′ε[k′(τ )] + ∇kε[k(τ )]] · u, (35)

so that

1

h̄

∫ t ′

t
[ε[k′(τ ) + u/2] − ε[k(τ ) − u/2]]dτ

≈ 1

h̄

∫ t ′

t
[ε[k′(τ )] − ε[k(τ )]]dτ

+ 1

2

∫ t ′

t
dτ [v[k′(τ )] − v[k(τ )]] · u

≡ 1

h̄

∫ t ′

t
[ε[k′(τ )] − ε[k(τ )]]dτ + r̄(k, k′; t, t ′) · u;

(36a)

here

r̄(k, k′; t, t ′) = 1

2

∫ t ′

t
dτ [v[k′(τ )] − v[k(τ )]]. (36b)

Therefore, C2(r, k, t ) of Eq. (33) takes on a u-term con-
taining the sum

�−1
∑

u

eiu·(r−r′−r̄) = δ(r − r′ − r̄),

so that the integral over r′ can be evaluated in Eq. (33) to
obtain

C2(r, k, t ) = 2

h̄2 Re
∑
k′,q

�kk′

∫ t

t0

dt ′

×
{

�k′+q,kW

(
r − r̄, k′ + q

2
, t ′

)

−�k′,k−qW

(
r − r̄, k − q

2
, t ′

)}

× eiq·(r−r̄)e
i
h̄

∫ t ′
t {ε[k′(τ )]−ε[k(τ )]}dτ . (37)

We note that Eq. (37) is a generalization of a result due to
Price [12]. As noted by Price, we conclude that in the weak
field limit, r̄ of Eq. (36b) is of the order of a typical de
Broglie wavelength so that its appearance in Eq. (37) will be
significant only if W (r, k, t ) changes appreciably over such a
dimension.

As a final consideration, we note that in Eqs. (34a) and
(37), the implicit manifestation of the intracollisional field
effect appears in the term

I = e
i
h̄

∫ t ′
t {ε[k′(τ )]−ε[k(τ ]}dτ . (38a)

The effect refers to the explicit inclusion of the acceleration
of the electron by the external field during the collision pro-
cess in accordance with Eq. (31) [13]. As an example, using
the effective mass approximation for the energy dispersion
ε(K) = h̄2K2/2m∗, along with Eq. (31), we find that

I = e
i
h̄ [ε(K′ )−ε(K)](t ′−t )+iβ(t ′,t ), (38b)

where

β(t ′, t ) = [v(K′) − v(K)] ·
∫ t ′

t
kc(τ )dτ. (38c)

Here, v(K) = h̄K/m∗ is the effective mass velocity and kc(τ )
is given in Eq. (31) as kc(τ ) = (e/h̄)

∫ τ

0 E(t ′)dt ′(t0 = 0). In
the constant electric field, E = E0, so that kc(τ ) = (e/h̄)E0τ

and

β(t ′, t ) = (e/2h̄)E0 · [v(K′) − v(K)](t ′2 − t2). (38d)

β(t ′, t ) is noted in Eq. (38d) as the broadening pa-
rameter [14], as it introduces collision broadening into the
scattering and transition processes as the electric field in-
creases, but it is simply the power absorbed from the electric
field during the collision duration.

IV. ENSEMBLE AVERAGED HAMILTONIAN: VIRTUAL
HAMILTONIAN

The Hamiltonian of Eq. (2) is an explicit function of ran-
dom variables {ri}. In this regard, it is instructive to perform
an ensemble average of the Hamiltonian over the random
variables in much the same way we ensemble averaged the
collision term C2 in Sec. III. Since the random variables are
contained in Ĥ ′, where

Ĥ ′(r, {ri}) =
NA∑
ra

UA(r − ra) +
NB∑
rb

UB(r − rb), (39)

we form the ensemble average as

〈Ĥ ′〉 =
∫

dr1dr2 . . . drN Ĥ ′(r, {ri})ρ(r1, r2, . . . , rN ). (40)

Here, the probability density is ρ(r1, r2, . . . , rN ) =
ρ(r1)ρ(r2) . . . ρ(rN ), while ρ(ri ) is defined in Eq. (B2a)
of Appendix A, with ∫

driρ(ri ) = 1.

Then, it follows that

〈Ĥ ′〉 = NA

∫
UA(r − ra)ρ(ra)dra

+ NB

∫
UB(r − rb)ρ(rb)drb

= N[CŪA(r) + (1 − C)ŪB(r], (41a)
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where

ŪA(r) =
∫

UA(r − ra)ρ(ra)dra, (41b)

ŪB(r) =
∫

UB(r − rb)ρ(rb)drb. (41c)

UA/B(r) of Eqs. (41b) and (41c) can be further expanded by
noting that both potential energies are periodic with the same
periodicity. Thus, they can be expanded in terms of the same
type of reciprocal-lattice Fourier series as

UA/B(r) =
∑

G

AG/BGeiG·r, (42a)

where

AG/BG = �−1
∫

drUA/B(r)e−iG·r, (42b)

Then, using Eq. (42a) in Eq. (41b), it follows, after integra-
tion while using �(ra) of Eq. (B2a) that

ŪA(r) =
∫

�

dr′UA(r′)TA(r − r′); (43a)

here

TA(r − r′) = �−1
∑

G

eiG·(r−r′ )e−G2/4βA , (43b)

with (4βA)−1 = NA〈r2〉/6. TA(r − r′) of Eq. (43b) is a Gaus-
sian reciprocal lattice sum and can be expanded as a lattice
sum through the method of Poisson sum rule to yield

�−1
∑

G

eiG·(r−r′ )e−G2/4βA =
(

βA

π

)3/2 ∑
l

e−|l−(r−r′ )|2βA ,

(44)
where l is the lattice vector space. It is noted that the right-
hand side of Eq. (44) is recognized as a translated-lattice
“theta function” [15].

Using the result of Eq. (44) in Eq. (43b), we find that

TA/B(r − r′) =
(

βA/B

π

)3/2 ∑
l

e−|l−(r−r′ )|2βA/B . (45a)

Here, TA/B(r) is periodic with the lattice and

(4βA/B)−1 = NA/B〈r2〉/6; (45b)

then Eqs. (41b) and (41c) can be expressed as

ŪA/B(r) =
∫

�

dr′UA/B(r′)TA/B(r − r′), (46)

with TA/B(r − r′) given by Eqs. (45a) and (45b).
Comparatively noting, while the collision matrix elements

yielded an ensemble average of matrix elements, |�kk′ |, in
Eq. (34b), the ensemble average of Ĥ ′ gives a spatial av-
erage dependent upon the UA/B(r) of Eq. (46) expressed
in Eq. (41a). We then observe that the full Hamiltonian of
Eq. (2), when ensemble averaged, becomes

〈Ĥ〉 = ε̂n(p + pc) + N[CŪA(r) + (1 − C)ŪB(r)] + V (r),
(47)

which is akin to a VC-like Hamiltonian.

In developing the Wigner-Boltzmann equation for 〈Ĥ〉, it
is convenient to note that 〈Ĥ〉 can be expressed equivalently
as

〈Ĥ〉 = C[ε̂n(p + pc) + NŪA(r)]

+ (1 − C)[ε̂n(p + pc) + NŪB(r)] + V (r)

≡ CĤA + (1 − C)ĤB + V (r), (48a)

where

ĤA(r, p, t ) = ε̂n[p + pc(t )] + NŪA(r), (48b)

ĤB(r, p, t ) = ε̂n[p + pc(t )] + NŪB(r). (48c)

The ensemble averaged Hamiltonian of Eq. (48a) gives rise
to a dynamical picture envisioned in the early development of
semiconductors with nonuniform bands [16,17]. As such, we
form the Wigner equation for 〈Ĥ〉 of Eq. (48a). Noting from
Eqs. (14) and (15), we see that, in the phase-space variables
(r, K, t ), F (r, K, t ) satisfies

∂F

∂t
= Tε + TU + TV , (49a)

where

Tε = −1

h̄
sin (∇r · ∇K )[ε(K + kc)F (r, K′, t )]K′=K, (49b)

TU = 1

h̄
sin(∇r · ∇K )[N[CŪA(r)

+ (1 − C)ŪB(r)]F (r′, K, t )]r′=r, (49c)

and

TV = 1

h̄
sin(∇r · ∇K )[V (r)F (r′, K, t )]r′=r. (49d)

The results obtained in Eqs. (49a) to (49d) are expressed in
terms of variables (r, K, t ). We now transform the results to
a more conventional, gauge-invariant representation [6], with
the new set of variables [r, k(t ), t] using the transformation
equations (31a) and (31b). Then it follows that

∂

∂t
F (r, K, t ) = ∂

∂t
W (r, k, t ) + 1

h̄
eE(t ) · ∇kW (r, k, t ).

(50)
Thus, the Wigner-Boltzmann transport equation in Eq. (49a)
becomes

∂

∂t
W (r, k, t ) + 1

h̄
eE(t ) · ∇kW (r, k, t ) − T ′

ε − T ′
U − T ′

V = 0,

(51a)

where T ′
ε , T ′

U , and T ′
V are the transformed functions given by

T ′
ε = −1

h̄
sin(∇r · ∇k )[ε(k)W (r, k′, t )]k′=k, (51b)

T ′
U = 1

h̄
sin(∇r · ∇k )[N[CŪA(r)

+ (1 − C)ŪB(r)]W (r′, k, t )]r′=r, (51c)

and

T ′
V = 1

h̄
sin(∇r · ∇k )[V (r)W (r′, k, t )]r′=r. (51d)
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In the limit where the potential terms are slowly varying in
space, we can approximate T ′

ε , T ′
U , and T ′

V by retaining only
the first term in the expansion of sin(∇r · ∇k ); then Eq. (51a)
becomes

∂

∂t
W (r, k, t ) + 1

h̄
F (r, t ) · ∇kW (r, k, t )

+ v · ∇rW (r, k, t ) = 0, (52a)

where

F (r, t ) = eE(t ) − ∇r[N[CŪA(r) + (1 − C)ŪB(r)]]

− ∇rV (r) (52b)

is the generalized force on the electron in the VC-like approx-
imation and v(k) = 1

h̄∇kε(k) is the velocity. The generalized
force affects the electron motion due to the applied force
of the external electric field eE(t ), but also has components
which respond to both the gradient of the VC-potential energy
and the arbitrary external potential energy V (r). Particularly
striking is the role of the gradient of the VC-potential energy
since this component is exactly the type of internal force that
affects the stimulated electron diffusion in nonuniform bands
[16,17].

In the spirit of Wannier [18,19] and Slater [20], it is noted
that if the Hamiltonian of Eqs. (48a) to (48c) is treated as a
single-band Hamiltonian for the dynamics, then it follows that
the wave-packet solution of the wave equation for the problem
has the same trajectory as an electron motion derived from the
analogous classical Hamiltons’ equations. Therefore, we find
that

v = ∇p〈Ĥ (r, p)〉 = 1

h̄
∇kε(k) (53)

and

ṗ = −∇r〈Ĥ (r, p)〉, (54a)

which gives, using p = h̄[k(r, t ) − kc(t )] where h̄k(r, t ) is
the kinetic momentum and kc(t ) is given in Eq. (31),

h̄k̇(r, t ) = eE(t ) − ∇r〈Ĥ (r, p)〉 = eE(t )

−∇r[N[CŪA(r) + (1 − C)ŪB(r)]] − ∇rV (r),

(54b)

the total k-space force. Thus, the associated wave packet
moves in k-space according to Newton’s second law [20].
These terms are borne out in the velocity and force terms of
the collisionless Wigner-Boltzmann equation of Eq. (52a).

V. SUMMARY AND DISCUSSION

The quantum transport equations were developed in the
Wigner function representation for a Bloch electron quasi-
particle under the influence of a random binary alloy. The
Bloch electron was subject to a homogeneous electric field
of arbitrary strength and time dependence using the vector
potential gauge. The electron quasiparticle was described by
a single-band effective Hamiltonian which interacts with a
binary alloy system.

The framework for developing the Wigner transport equa-
tions for the Hamiltonian of interest, including the appropriate

basis states, was established. Treating the binary alloy Hamil-
tonian as a scattering component, the Wigner transport
equation was established and ensemble averaged using an
appropriate Gaussian distribution function. The formulation
resulted in the exact drift and diffusion components, and scat-
tering matrix elements which reflected the binary distribution
of the constitutive binary atom matrix elements. Treating the
scattering term in both the parabolic energy dispersion and
long wavelength limits shows the explicit manifestation of the
intracollisional field effect.

Lastly, we examine the Wigner transport dynamics for the
ensemble averaged Hamiltonian. In this scenario, the binary
potential energy term takes the form of a virtual crystal. The
resulting Wigner transport equation is descriptive of Bloch
electron dynamics in a graded single-band alloy.

It is striking to note that, in treating the binary alloy com-
ponent of the Hamiltonian as a perturbative term, and then
ensemble averaging the transport equation over the random
alloy variables, we exposed the scattering picture of the trans-
port; whereas, in ensemble averaging the Hamiltonian over
the random alloy variables from the on-set, and then devel-
oping the requisite transport equation, we find that the binary
alloy component has a band renormalizing influence on the
behavior of the electron dynamics.

This difference in ensemble average sequencing is best
appreciated by considering its effect on �̂(t ) of Eq. (4) or
Eq. (6). When Eq. (4) is ensemble averaged over alloy random
variables, we find that

ih̄
∂〈�̂〉
∂t

= [Ĥ0, 〈�̂〉] + 〈[Ĥ ′, �̂]〉; (55a)

here 〈. . .〉 signifies the ensemble average. When Eq. (4) is
ensemble averaged after Ĥ , we then find that

ih̄
∂〈�̂〉
∂t

= [Ĥ0, 〈�̂〉] + [〈Ĥ ′〉, 〈�̂〉]. (55b)

One sees that in Eq. (55a), the averaging methods contains
〈[Ĥ ′, �̂]〉, the fully correlated statistical relationship between
�̂ and Ĥ ′; whereas, in Eq. (55b), the averaging procedure
gives rise to [〈Ĥ ′〉, 〈�̂〉], a statistical independence between
�̂ and Ĥ ′. Thus, the specific nature of the ensemble averaging
affects the correlative relationship between �̂ and Ĥ ′, which,
in turn, reflects the nature of the transport dynamical equation.
In this effort, the ensemble average sequencing has resulted
in a Wigner-Boltzmann quantum scattering picture, on the
one hand, and a collisionless Wigner-Boltzmann semiclassical
scenario, on the other.

APPENDIX A: DISCUSSION OF C1(r, K, t )

In this discussion, we expand on the detailed evolution of
the C1(r, K, t ) term of Eq. (16). In opening the commutator
and inserting a complete set of states through the use of
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Eq. (19), we find that Eq. (16) takes the form

C1(r, K, t ) = 1

ih̄�

∑
K′,u

[H ′
KK′ (t )�K′+u/2,K−u/2(t0)e

i
h̄

∫ t0
t [ε(k′+u/2)−ε(k−u/2)]dτ

− �K+u/2,K′−u/2(t0)H ′
K′K(t )e

i
h̄

∫ t0
t [ε(k+u/2)−ε(k′−u/2)]dτ ]eiu·r. (A1)

Further, inverting Eq. (8), we get

�K1K2 (t ) =
∫

�

drF (r, (K1 + K2)/2, t )e−i(K1−K2 )·r. (A2)

Inserting �K1K2 (t ) of Eq. (A2) into Eq. (A1) with the appropriate K1 and K2, then Eq. (A1) becomes

C1(r, K, t ) = 1

ih̄�

∑
K′,u

∫
�

dr′F (r′, (K + K′)/2, t0)[H ′
KK′ (t )ei[(K−K′ )·r′+u·(r−r′ )]e

i
h̄

∫ t0
t [ε(k′+u/2)−ε(k−u/2)]dτ

− H ′∗
KK′ (t )e−i[(K−K′ )·r′−u·(r−r′ )]e− i

h̄

∫ t0
t [ε(k′−u/2)−ε(k+u/2)]dτ ]. (A3)

We note that C1 of Eq. (A3) is memory term dependent upon the Wigner distribution function at initial time t0. Thus, when
C1(r, K, t ) is ensemble averaged over the scatterers in the Wigner-Boltzmann equation, the key determinant for the nonvanishing
value of C1 will be the average over (Ĥ ′F ) in Eq. (A3). In this regard, we point out that, in the scenario where the initial Wigner
distribution function and Ĥ ′(t ) are uncorrelated, for example, should the electrons under consideration be injected initially into
the dynamical process, then the ensemble average over C1 would depend on Ĥ ′ alone. In this case, for discrete impurities [5],
this ensemble average leads to 〈HKK′ 〉 = N�KK′δKK′ , diagonal matrix elements only, which can be absorbed into the energy
function ε(K); thus C1 would vanish for the impurity scatterers case. Also, if as noted by Levinson [21] for the case of phonon
scattering, a distribution at t0 → −∞ was arranged, which was completely uncorrelated with the position of the scatterers; then,
for this situation, the ensemble average of our C1(r, K, t ) would again be zero.

The examples above show that in many cases of interest it is practical, when applying the ensemble average methodology,
to set C1(r, K, t ) = 0. Nevertheless, we point out that for the binary alloy problem under consideration, we established
from Eqs. (28a) and (28b) that 〈Ĥ ′

KK′ 〉 = �KK′ = Nn(K − K′)[C(UA)KK′ + (1 − C)(UB)KK′]. Thus, even when assuming an
uncorrelated Wigner function initially, the value for 〈Ĥ ′

KK′ 〉 = �KK′ allows for the nonvanishing result for the ensemble average
of C1(r, K, t ).

Explicitly using 〈Ĥ ′
KK′ 〉 = �KK′ in Eq. (A3), we can express the ensemble averaged C1(r, K, t ) as

〈C1〉 = 1

ih̄�

∑
K′,u

[�KK′

∫
�

dr′F (r′, (K + K′)/2, t0)ei[(K−K′ )·r′+u·(r−r′ )]e
i
h̄

∫ t0
t [ε(k′+u/2)−ε(k−u/2)]dτ

− �∗
KK′

∫
�

dr′F (r′, (K + K′)/2, t0)e−i[(K−K′ )·r′−u·(r−r′ )]e− i
h̄

∫ t0
t [ε(k′−u/2)−ε(k+u/2)]dτ ]. (A4)

Although 〈C1〉 in Eq. (A4) is generally nonvanishing, it is formidable to evaluate. Results can be simplified by considering the
limit of parabolic energy dispersion as was treated in Eqs. (35) to (36b). Then we find that

1

h̄

∫ t0

t
[ε[k′(τ ) ± u/2] − ε[k(τ ) ∓ u/2]]dτ ≈ 1

h̄

∫ t0

t
[ε[k′(τ )] − ε[k(τ )]]dτ ± r̄(k, k′; t, t0) · u, (A5)

where r̄ is given in Eq. (36b). Using Eq. (A5) in Eq. (A4) and performing the sum over u and
∫
�

dr′, Eq. (A4) results in

〈C1〉 = 1

ih̄

∑
K′

F [r + r̄, (K + K′)/2, t0]{�KK′ei(K−K′ )·(r+r̄)e− i
h̄

∫ t
t0

{ε[k′(τ )]−ε[k(τ )]}dτ − �∗
KK′e−i(K−K′ )·(r+r̄)e

i
h̄

∫ t
t0

{ε[k′(τ )]−ε[k(τ )]}dτ }.

(A6)

Thus, for the binary alloy, we obtain an ensemble averaged C1(r, K, t ) that depends explicitly on �KK′ and the initial value of
the Wigner distribution function. Finally, since F [r + r̄, (K + K′)/2, t0] is real due to the Hermiticity of �̂ [see Eq. (8)], Eq. (A6)
can be expressed in a final compact form as

〈C1(r, K, t )〉 = 2

h̄

∑
K′

F [r + r̄, (K + K′)/2, t0]Im{�KK′ei(K−K′ )·(r+r̄)e
i
h̄

∫ t
t0

{ε[k(τ )]−ε[k′(τ )]}dτ }. (A7)

Equation (A7) can easily be expressed in terms of gauge invariant variable W (r, k, t ) through the use of Eqs. (31a) and (31b).
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APPENDIX B: STATISTICAL ENSEMBLE AVERAGE

We consider as an example in an ensemble average over
the random variable in Eq. (24a) the sum

SA =
NA∑
ra

eiα·ra . (B1a)

In an ensemble average over ra, we let the ensemble average
be represented as

〈SA〉 =
〈

NA∑
ra

eiα·ra

〉

=
∫

dra1 dra2 . . . draNA
ρ
(
ra1 , ra2 , . . . , raNA

)
× [eiα1·ra1 + eiα2·ra2 + . . . + eiαNA ·raNA ]. (B1b)

Here, for a binomial distribution in the large N limit,
ρ(ra1 , ra2 , . . . , raN

) is given by a Gaussian distribution, which,
furthermore, can be expressed as a simple product of separate
Gaussian distribution functions, that is, ρ(ra1 , ra2 , . . . , raN

) =
ρ(ra1 )ρ(ra2 ) . . . ρ(raN ). Thus, for a series of random variables
rai , the integral of Eq. (B1b) can be expressed as NA identical

integrals

〈SA〉 = NA

∫
draeiαa·raρ(ra),

where αa is a given momentum transfer vector and ρ(ra) is a
normalized, radially dependent Gaussian distribution function
given by

ρ(ra) =
(

βA

π

)3/2

e−βAr2
a ; (B2a)

here

βA = 3

2〈r2〉NA
, (B2b)

where 〈r2〉 = N−1
A

∑NA
i=1 r2

i , the mean-square displacement re-
sulting from the sum of displacements ri in a random walk,
with each displacement allowing for a random direction. The
probability distribution function of Eq. (B2a) is a natural
consequence of the application of stochastic methods to the
problem of binomical distributions and random walks, and is
thoroughly discussed in the seminal paper of Chandrasekhar
[8] and others [9]. As such, in the large NA,B limit, Eq. (B2a)
reflects the well-known central limit theorem [10].
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dre−iK′ ·rĤ ′eiK·r[1 − iq · r − 1
2 (q · r)2 + . . .] = H ′

K′,K −
q · ∇KH ′

K′,K + O(q2) ≈ H ′
K′,K for q negligibly small.

[12] P. J. Price, IBM J. Res. Dev. 10, 395 (1966).
[13] J. B. Krieger and G. J. Iafrate, Phys. Rev. B 35, 9644 (1987)

(see also Refs. [5–7] therein).
[14] G. J. Iafrate, J. B. Krieger, V. B. Pevzner, and K. Hess, Solid-

State Electron. 32, 1119 (1989).
[15] J. M. Ziman, Principles of the Theory of Solids, 2nd ed.,

(Cambridge University Press, Cambridge, England, 1972),
pp. 39–40.

[16] H. Kroemer, RCA Rev. 18, 332 (1957).
[17] T. Gora and F. Williams, Phys. Rev. 177, 1179 (1969).
[18] G. H. Wannier, Phys. Rev. 52, 191 (1937); J. C. Slater, ibid. 76,

1592 (1949).
[19] J. M. Ziman, Electrons and Phonons: The Theory of Trans-

port Phenomena in Solids (Claredon, Oxford, 1960), pp. 92–
96.

[20] J. C. Slater, Quantum Theory of Molecules and Solids, Vol.
3: Insulators, Semiconductors, and Metals (McGraw Hill, New
York, 1967), pp. 286–291.

[21] I. B. Levinson, Sov. Phys. JETP 30, 362 (1970) [Zh. Eksp. Teor.
Fiz. 57, 660 (1969)].

224308-10

https://doi.org/10.1002/andp.19314010507
https://doi.org/10.1103/PhysRev.97.587
https://doi.org/10.1063/1.5046663
https://doi.org/10.1103/PhysRevB.72.195201
https://doi.org/10.1103/PhysRevB.96.144303
https://doi.org/10.1002/pssb.201900660
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1147/rd.105.0395
https://doi.org/10.1103/PhysRevB.35.9644
https://doi.org/10.1016/0038-1101(89)90200-1
https://doi.org/10.1103/PhysRev.177.1179
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.76.1592

