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Cumulant methods for electron-phonon problems. I. Perturbative expansions

Paul J. Robinson ,* Ian S. Dunn ,* and David R. Reichman †

Department of Chemistry, Columbia University, New York, New York 10027, USA

(Received 21 March 2022; accepted 17 May 2022; published 7 June 2022)

In this work, we investigate the ability of the cumulant expansion (CE) to capture one-particle spectral
information in electron-phonon coupled systems at both zero and finite temperatures. In particular, we present a
comprehensive study of the second- and fourth-order CEs for the one-dimensional Holstein model as compared
with numerically exact methods. We investigate both finite sized systems as well as the approach to the
thermodynamic limit, drawing distinctions, and connections between the behavior of systems in and away from
the thermodynamic limit that enable a greater understanding of the ability of the CE to capture real-frequency
information across the full range of wave vectors. We find that for zero electronic momentum, the spectral
function is well described by the second-order CE at low and high temperatures. However, for nonzero electronic
momenta, the CE is only accurate at high temperature. We analyze the fourth-order cumulant and find that
while it improves the description of the short-time dynamics encoded in the one-particle Green’s function, it can
introduce divergences in the time domain as well as unphysical negative spectral weight in the spectral function.
When well-behaved, the fourth-order CE does provide notable accurate corrections to the second-order CE.
Finally, we use our results to comment on the use of the CE as a tool for calculating transport behavior in the
realistic ab initio modeling of materials.
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I. INTRODUCTION

The description of the dynamics of electrons interacting
with phonons is a cornerstone topic in condensed matter
physics due to its ubiquity and the importance of electron-
phonon interactions (EPIs) in determining the properties of
solids. Indeed, EPIs are crucial for understanding a wide
range of phenomena in solids, including superconductivity,
transport properties, and the vibronic satellite structure in
emission and absorption spectra, to name just a few [1–7]. Un-
fortunately, even for simplified canonical EPI models, such as
the Holstein, Fröhlich, and Su-Schrieffer-Heeger models that
were introduced many decades ago, exact dynamical solutions
are largely out of reach [8–11].

There is a plethora of methods for extracting accurate
properties of EPI models which may be useful under differ-
ent circumstances. Exact ground state and low-lying excited
state properties for the Holstein and other models are attain-
able through diagonalization in a variational Hilbert space
(VD) [12–14]. Focusing on the electron-phonon dynamics,
the one-particle Green’s function G(k, t ) has been exten-
sively studied at zero-temperature using exact diagonalization
[15–18], cluster perturbation theory [19,20], a variational ap-
proach [21], the momentum-averaged approximation [22,23],
and diagrammatic quantum Monte Carlo (DQMC) in conjunc-
tion with numerical analytic continuation [24].

The frontier of finite-temperature dynamical calculations
remains less well explored. The increased occupation of

*These authors contributed equally to this work.
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higher-lying phonon states at nonzero temperatures renders
Fock space methods harder to converge. Only recently has
the spectral function (A(k, ω) = −π−1ImG(k, ω)) been re-
ported at finite temperature for the Holstein model using VD
with the finite-temperature Lanczos method on 6- and 12-
site systems [25–27]. DQMC has provided the temperature
dependent mobilities for the Holstein and Fröhlich models;
however, as with spectral information this approach is re-
stricted by an ill-conditioned analytic continuation procedure
[4,28]. More recently, numerically exact dynamical methods
based on DMRG+VD [29], a generalized cluster expansion
[30], and the Hierarchical Equations of Motion (HEOM)
[31–39] approach have been introduced for real-time dynam-
ics in lattice models with EPIs.

For realistic ab initio modeling [40–47] of systems with
EPIs, many of the exact methods mentioned previously are
infeasible. Instead, perturbative approaches are usually em-
ployed. However, since each order of perturbation theory
exponentially increases the number of self-energy diagrams,
it is not practical or computationally efficient to directly
compute high-order diagrams in large, realistic systems, and
approximate resummations of higher-order terms become es-
sential. The cumulant expansion (CE) approach has been used
for this purpose for many years, and was recently combined
with density functional perturbation theory to calculate the
finite temperature photoemission spectra of MgO, LiF [43],
and TiO2 [42]. While the utility of the CE for the calculation
of G(k, t ) at finite temperature has been known for years, only
a few papers have systematically explored its validity [48–50].

Motivated by recent exact dynamical results in the finite-
temperature Holstein model [27], we systematically explore
the CE in this system as proposed by Dunn in the context of
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Fröhlich insulators [48]. A similar expansion was also used in
conjunction with the Matsubara formalism by Gunnarsson et
al for describing zero-temperature spectral properties of the
half-filled Holstein model [50]. In Sec. II, we introduce the
model, as well as the definition of G(k, t ), and the framework
of the CE. In Sec. III, we provide a detailed comparison of the
CE in the six-site Holstein model with exact VD results. This
comparison highlights a number of interesting features which
demand more detailed investigation. In Sec. III A, we discuss
errors of the CE that are associated with finite lattice size.
In Sec. III B, we demonstrate several useful and problematic
features of the fourth-order CE. In Sec. III C. we analyze the
short-time convergence of the CE as well as the limitations
of the CE in capturing fine spectral features and long-time
behavior. In Sec. III D, we will present results for the spectral
function of an infinite system. We conclude with a summary
of the main results and the implications of our findings for the
use of the CE in the ab initio modeling of materials.

II. MODEL AND PERTURBATIVE CUMULANT
EXPANSION

In this section, we provide background information needed
for the remainder of the paper. While all of the information
in this section is well-known, this information is useful for
setting notation and for providing a self-contained discussion
of the results that follow. Throughout this work we focus
only on a very specific model, namely the one-dimensional
Holstein model with Einstein phonons and periodic boundary
conditions [3,8,9]. We consider only the single particle case,
that is a single electron promoted into an otherwise empty
band. The model is defined by a system-bath Hamiltonian

H = He + Hp + V, (1)

where the kinetic energy term

He ≡ −t0
∑

n

(a†
nan+1 + a†

nan−1) =
∑

k

εka†
kak, (2)

εk = −2t0 cos k, (3)

describes the purely electronic system, and

Hp ≡ ω0

∑
n

b†
nbn = ω0

∑
k

b†
kbk, (4)

describes the bath. Lastly,

V ≡ gω0

∑
n

a†
nan(bn + b†

n)

= gω0√
N

∑
kq

a†
k+qak (bq + b†

−q ), (5)

accounts for the EPI, which is linear in the bath coordinates.
The Holstein model describes the deformation of a discrete
lattice [8,9], reflecting the decoupled nature of sites in a
molecular crystal by including only strictly local electron-
phonon coupling. In addition, the model further isolates the
effects of intermolecular relaxation by ignoring Peierls-like
coupling [11,51–53]. For an excellent review that discusses
the relation between the Holstein model and continuum mod-
els such as the Fröhlich model, see the work of Devreese and
Alexandrov [54].

A. One-particle Green function

We will focus on the calculation of the finite temperature
one-particle (causal1) Green’s function [3,55],

G(k, t ) ≡ −i�(t )
Tr[e−β(H−μN )ak (t )a†

k (0)]

Tr[e−β(H−μN )]
. (6)

This quantity is directly related to experimentally measurable
quasiparticle spectra as probed by, e.g., photoemission spec-
troscopy, and can be used to infer transport properties such as
charge mobilities in an approximate manner [3,46,47,56]. In
addition, the one-particle Green’s function provides a testbed
for the comparison of numerical methods ranging from the
approximate to the exact which may be applied to general
electron-phonon problems [24,28,57,58].

As mentioned above, we study an insulator where the
chemical potential μ satisfies μ � −2|t0| and there is a single
electron placed in the conduction band [48]. When this is
the case, it is simple to demonstrate that the trace over the
many-electron Fock space in Eq. (6) can be exactly replaced
by a trace over zero-electron states and noninteracting phonon
states weighted by the canonical density operator for an un-
coupled phonon bath [3,48], namely,

G(k, t ) = −i�(t )
Tr[e−βHpak (t )a†

k (0)]

Tr[e−βHp]
,

≡ −i�(t )〈ak (t )a†
k (0)〉. (7)

As will be useful in the next section, we also define the
quantity

�(k, t ) ≡ log
G(k, t )

G0(k, t )
, (8)

where

G0(k, t ) = −i�(t )〈eiHet ake−iHet a†
k〉. (9)

Finally, most comparisons with exact calculations will be
made via consideration of the spectral function, defined as

Ak (ω) = − 1

π
Im

[∫ ∞

−∞
dteiωtG(k, t ) exp(−γ t )

]
, (10)

which most closely connects the one-particle Green’s function
to angle resolved photoemission experiments [3]. Here, γ is
a broadening parameter which is used to enable comparison
with VD calculations, serves to dampen recurrences for cal-
culations with a small number of sites, and which may be
considered as an effective “experimental” resolution for the
spectral function itself.

B. Cumulant expansion for G(k, t )

Various perturbative approaches have been developed for
the explicit calculation of Green’s functions such as G(k, t ).
The standard approach, which we shall not follow here, fol-
lows the now well-established rules of quantum field theory
[3,55]. Instead, we will follow the “linked-cluster” or cu-
mulant approach perhaps first used in the form we employ

1In the model studied here with a single electron, this is equivalent
to the retarded Green’s function.
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by Brout and Englert [59,60] and applied to polaron models
originally by Mahan, Dunn, and others [48,49].

First, consider the difference between expansions of
the moment generating function (MGF) and the cumulant
generating function (CGF). For a (classical) Gaussian random
variable X , an expansion of the MGF truncated at second-
order will only approximately describe the MGF,

〈e−igX 〉 = 1 − ig〈X 〉 − g2

2
〈X 2〉 + O(g3). (11)

However, the CGF in this case is exactly described by a
second-order expansion,

log〈e−igX 〉 = −ig〈X 〉 − g2

2
(〈X 2〉 − 〈X 〉2). (12)

By taking the logarithm of the Gaussian MGF before expand-
ing, one effectively resums an infinite number higher-order
terms in the MGF. The inclusion of even approximate terms
of higher-order in the perturbation expansion leads one to
expect that a cumulant method can be accurate, especially if
the expanded quantity is “nearly Gaussian” in the sense of
having small cumulants of order higher than second.

The CE is readily adaptable for perturbative calculation
of both thermodynamics and quantum dynamics, where, like
the MGF, both the Boltzmann factor and the propagator are
exponential functions to be averaged, albeit in time-ordered
form [61]. Analogous to a MGF, the one-particle Green’s
function

G(k, t ) = G0(k, t )
〈
e
−i

∫ t
0 dτV̂ (τ )

T

〉
k, (13)

G0(k, t ) = −i�(t )e−iεkt , (14)

can also be calculated approximately via a perturbative cal-

culation of 〈e−i
∫ t

0 dτV̂ (τ )
T 〉k in powers of a coupling constant.

Here, the k subscript denotes the average over all one-electron
states with electronic momentum k, the T subscript denotes
time ordering, and the hat designates V̂ (τ ) as an operator in
the interaction picture.

The Mth-order CE (linked-cluster) for G(k, t ) is given by

GM(k, t ) = G0(k, t ) exp [�M(k, t )], (15)

and likewise AM(k, ω) is calculated via the Fourier transform
of GM(k, t ). Here, �M(k, t ) is the sum of the cumulants Cμ

up to order M. The procedure for constructing the cumulants
Cμ(k, t ) from the moments Mμ(k, t ) is well-known [3]. For
models of the form given in Eqs. (1)–(5), the first few cumu-
lants (up to the fourth-order cumulant) are explicitly given by

C1 = 0, (16)

C2 = eiεkt M2, (17)

C3 = 0, (18)

C4 = eiεkt M4 − 1
2C2

2 , (19)

where

Mμ(k, t ) = (−i)μ

μ!

∫ t

0
dt1· · ·

∫ t

0
dtμ

× 〈T {âk (t )V̂ (t1) . . . V̂ (tμ)â†
k (0)}〉. (20)

Here T {. . . } is the time-ordering operator which places later
times to the left.

Calculation of the second-order and fourth-order CE for
the Holstein model requires computing M2 and M4. These
moments depend on εk and the form of the EPI vertex, which
is a momentum-independent constant for the Holstein model.
Expressions for M2 and M4 where we evaluate the time in-
tegrals and leave the momentum sums explicit are given in
Appendix A.

C. Convergence of cumulant expansion

Let us now examine some aspects of the convergence of
the CE for the Holstein model as a function of temperature
and EPI coupling strength. Following the definition of the CE
in Eq. (15), a sufficient condition for the break down of the
expansion occurs when successive higher-order cumulants Cμ

are not relatively small. Therefore we examine the magnitude
Cμ.

For T → 0, the phonon occupation numbers N0 vanish,
such that we may order the terms in Appendix A as functions
of the coupling strength for the finite, even cumulants

C2n ∼ g2n. (21)

The high-temperature limit is slightly more subtle. Before
performing the time integrations in Eq. (20), contracting the
phonon operators yields

C2n ∼ g2n
n∏

i=1

[
coth

(
βω0

2

)
cos (ω0τi ) − i sin (ω0τi )

]
. (22)

Taking the high-temperature limit,

C2n ∼ g2n
n∏

i=1

2

βω0
cos (ω0τi ) ∼

(
2g2

βω0

)n

. (23)

Thus we see from these two limits that the CE in the time do-
main breaks down for large T and g such that, schematically,
the expansion is governed by

∼ max

[
g2,

2g2

βω0

]
. (24)

According to Dunn [48], the CE should also give a reason-
able description of A(k, ω) at high enough temperatures and
strong enough coupling such that (N0 = 1

eβω0 −1 )

gN0 � 1 (25)

and/or

g(N0 + 1) � 2, (26)

which supersedes the condition for convergence given above.
In this regime the long time behavior of G(k, t ) is quickly
damped and A(k, ω) is broadened to such a degree to as to
wash out all sharp spectral features. We shall see evidence of
these behaviors in the following sections.

III. RESULTS

Recently, Bonča et al. published the first exact temperature-
dependent spectral function for the single-particle Holstein
model using VD [27]. Since the VD and finite temperature
Lanczos methods are well detailed in the literature, we do not
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FIG. 1. Spectral functions A(ω) for the six-site Holstein model calculated via the second-order CE (blue solid line), fourth-order CE (pink
dashed line), and VD (thin black line and gold shading). Model parameters: ω0 = t0 = g = 1. We use γ = 0.05. VD results are the same as
those presented in Bona et al. [27]. (a) k = 0 for a range of temperatures. The fourth-order CE is only presented for the two highest temperatures
because it is divergent at lower temperatures. Both orders of the CE capture the most prominent structures of the VD result (from Ref. [27]
Fig. 1(a)). (b) k = 0 at only T = ω0. When the fourth-order CE is convergent it slightly corrects the quasiparticle energy and adds additional
structure to the peak which better approximates the VD result (from Ref. [27] Fig. 5(a)). (c) k = π for a range of temperatures. The VD result
demonstrates that there is significant structure in the spectral function and a quasiparticle peak at ∼ − 1.5ω0 (dotted black line) while the
second- and fourth-order CE only broadly model the structured features in the spectral function. In the fourth-order CE there is an addition
peak centered around −ω0. (d) Heat maps for second-order CE (left) and VD (right, from Ref. [27] Fig. 2(a)) at all momenta for ω0 = t0 = 1,
T = 0.1 and g2 = 2. Note how in the CE the extra bright peaks at k = 0 disperse into a series of shifted peaks which eventually coalesce into
the incoherent polaron peak at k = ±π . In contrast, the VD bands extend all the way from k = 0 to k = ±π .

review them here [12–14,25–27]. Due to the expense of the
approach, the finite-temperature calculations of Bonča et al.
were limited to small system sizes of 6 and 12 sites. It should
be noted that at the level of heat maps of the k-dependent
spectral function, the 6 and 12 site results differ by only a
small amount. On closer inspection, small finite size effects
are apparent, as will be discussed below. Recently, new tech-
niques have been developed that are capable of providing
exact finite temperature spectra in the single-particle polaron
models for larger systems [29]. However, comprehensive re-
sults for larger lattices in the Holstein model have not yet been
published, and thus we compare only to the work of Ref. [27].

To judge the accuracy of the CE and compare its per-
formance to the exact results of Bonča et al. [27], we now
consider the CE approximation for spectral functions for a
six-site Holstein model at the band bottom (k = 0) and the
band edge (k = π ). We restrict the comparison to the interme-
diate coupling regime where g = t0 = ω0. In Fig. 1, we plot
the k = 0 and k = π second- and fourth-order CE spectral
functions along with data from Ref. [27]. For both mo-

menta, the second-order CE captures the broad structure of the
spectral function reasonably well, and for k = 0 the results
are quantitatively accurate at both T = 0 and at high tempera-
tures T � ω0. In particular, the second-order CE captures the
quasiparticle peak and the first vibronic satellite peak at T = 0
in excellent agreement with VD. At higher temperatures, the
central features of these peaks are well captured, however the
fine structure superposed on the quasiparticle peak exhibited
by the exact VD spectra is absent in the CE spectra. We will
see below that this fine structure is a consequence of the small
lattice size, and thus the CE approximation does not properly
capture this type of finite lattice effect.

At the band edge (k = π ), the results produced by the
second-order CE are not as encouraging, as illustrated in
in Fig. 1(c). The VD data have two important features: a
quasiparticle peak at low energy (∼ − 1.5ω0), and a broad
vibronic wing with a split peak structure centered around 2ω0.
The second-order CE misses the peak structure of the exact
spectral function entirely, and instead can be described as a
single broad peak centered near the average value of the peak
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intensity found in the exact VD result. Again, as temperature
increases and the features of the spectral function broaden, the
CE result becomes more and more accurate, reflecting the fact
that the CE properly accounts for the spectral bandwidth even
for k = π . The fact that the CE is accurate away from k = 0
for temperatures T � ω0 has important practical implications
for the use of the CE to study transport phenomena, a topic we
will return to before concluding.

The difference in accuracy of the CE between the k = 0
and the k = π cases is seen generally across the full range of
wave vectors. More specifically, we find that the k = 0 case
is the only case for which the CE is in quantitative agreement
with exact VD results for low temperatures. A full comparison
of the exact and approximate CE spectral functions across the
entire band can be found in Fig. 1(d). Here, several features
are notable. The fact that for k = 0 the CE predicts a promi-
nent series of small peaks beyond the first satellite spaced
by ω0, in reasonable agreement with the exact VD results, is
actually the result of an incorrect intensity crossing structure
which renders the satellite behavior for all k 
= 0 inaccurate.
As we will discuss below, this behavior is the result of the
manner in which the CE approximates higher-order multi-
phonon scattering terms. Note as well that for k 
= 0 there is
fine structure in the high-intensity band. This behavior is a
finite size effect of the CE which vanishes when the number
of lattice sites tends to infinity, as we will discuss later in this
work. Such finite size effects are distinct from the true finite
sized behavior exhibited in the VD results discussed above,
and do not reflect the correct formation of structure exhibited
in the satellite region of the exact spectra.

We next turn to a discussion of the corrections to the
second-order CE provided by the fourth-order CE. In general,
when the fourth-order CE is well-defined for the parameter
regime of the Holstein model studied here, it only subtly
alters the behavior found from the second CE. In Fig. 1(b),
we provide a close-up of the k = 0, T = ω0 case found in
Fig. 1(a). It can be observed that in general the fourth-order
CE indeed redistributes spectral weight correctly, with the
exception of a small region of negative spectral weight for
ω > 0. The fact that the fourth-order CE does not guarantee
positivity of the spectra has been discussed in several previous
works [50,62,63]. Gunnarsson et al. attribute this problem to
the particular analytical form of the terms retained at fourth-
order in the CE. More problematic is the fact that for some
parameter regimes the fourth-order CE is not well defined
due to unbounded growth in the time domain of some of the
terms in the expansion [50]. We will see below that these
terms take a similar form to those pointed out as contributing
to negative spectral weight by Gunnarsson et al. Thus these
two issues appear to be connected. In Fig. 1(a), fourth-order
CE results are not shown for k = 0 and T � 0.6ω0 due to the
divergence in the time domain of the fourth cumulant. In the
next three sections, we will investigate more deeply several of
the features exposed here for the finite-sized Holstein chain
before turning to the CE in the thermodynamic limit.

A. Finite size effects

In the discussion of results for the six-site lattice presented
above, we mentioned several aspects of both the exact VD

results as well as the results of the CE that warrant further dis-
cussion. In this section, we focus on one such feature, namely
the role played by the small lattice size, and the implications
for the failure of the CE to capture these effects. In particular,
we focus now on the small ripples that appear in the main
quasiparticle region of the VD spectra for a six-site system
in the regime 0.1ω0 � T � 0.6ω0. We explicitly demonstrate
that these features are due to the small lattice size, and thus
the failure of the CE to capture this type of finite size effect is
not relevant in the thermodynamic limit. Indeed, the expected
change in the spectral function in transitioning from small
finite size systems to the N → ∞ limit plotted in the manner
of Fig. 1(e) will largely appear confined to smoothing the
intensity modulation of the most prominent spectral features.

To shed light on the type of finite size effects expected to
arise in small lattice systems, and to reveal why these effects
show up prominently only at low to intermediate values of the
temperature, we turn to exact diagonalization for finite sized
systems in the one-phonon sector. This approach is outlined
in Appendix C. Due to the strong restriction on the phonon
excitations allowed, we do not aim for quantitative results and
merely expose the qualitative nature of the spectral features
associated with the quasiparticle peak as the system is tuned
from finite to infinite lattice size.

In Fig. 2, we show the behavior of the spectral function
and the real-time behavior of the one-particle Green’s func-
tion for k = 0 for a weakly coupled electron-phonon system
(g = 0.25) with parameters ω0 = t0 = T = 1. The behavior
of the Green’s function in the time domain reveals the ex-
istence of higher frequency beating behavior superposed on
lower frequency oscillations. The high-frequency behavior is
related to recurrences due to transitions associated with the
discreteness of the spectrum in the small N limit. Such behav-
ior will manifest most strongly at intermediate temperatures,
where thermally-populated low-lying states can participate
in producing the observed beating behavior but where the
temperature is not so high that damping effects dominate the
decay of the Green’s function. We note that already by N = 20
the erratic high-frequency behavior vanishes, although finite
size effects are still present. In the frequency domain, spectral
functions of finite size systems with N � 12 exhibit small
secondary peaks similar to the behavior exhibited in Fig. 1(a).

The finite size behavior and the inability of the CE to
capture it is similar to that seen in purely electronic systems.
In particular, McClain et al. have studied the spectral function
of the electron gas with coupled-cluster and cumulant-based
techniques in finite sized systems [64]. Here the CE also
shows a relative inability to reproduce structure associated
with the discrete nature of finite sized systems. We emphasize
that the structure of the spectral function seen in small systems
in the Holstein model discussed in this section are distinct
from larger scale features for k 
= 0 such as that seen in
Fig. 1(c) which are also absent in low-order CE calculations.
The more important failure to reproduce these larger scale
features is expected to persist in the N → ∞ limit.

B. Divergences in the fourth-order CE

Figure 1(b) illustrates that, aside from the unphysical ap-
pearance of regions with a (small) negative spectral weight
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FIG. 2. One-phonon exact diagonalization approximation results
of Holstein model at increasing system sizes. ω0 = t0 = T = 1; g =
0.25. (a) Spectral function as a function of system size demonstrates
disappearing fine structure. (b) Magnitude of the Green’s function
in time as a function of system size demonstrates disappearance of
sharp beats.

for ω � 1.1ω0 (not shown), the fourth-order CE improves
upon the second-order CE for the spectral function at k = 0
at higher temperatures. However, as mentioned above and
demonstrated in Fig. 3, for the same k value at low temper-
atures, the fourth-order CE is divergent at longer times, and
thus truncated higher-order CEs cannot always be used to
systematically improve upon low-order results. Here we focus
on the factors which can shift the fourth-order CE between
well-behaved and divergent at long times to better understand
where corrections to the second-order CE are applicable. We
will demonstrate that in the Holstein model, the divergence
of the fourth-order CE depends intimately on the wave vec-
tor, system size and temperature under consideration, and is
closely connected to the issue of negative spectral weight first
pointed out for this model by Gunnarsson et al. [50]

The CE is an exponential function of the quantity �(k, t )
defined in Sec. II B for which physical results require
�[�(k, t )] � 0 for all times. In addition, at finite temper-
atures, the requirement lim

t→∞ �[�(k, t )] → −∞ must hold,
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FIG. 3. Breakdown of the time dependence of (a) �4(0, t ) and its
dependence on (b) C2(0, t ) and (c) C4(0, t ), highlighting the temper-
ature driven transition from divergent to nondivergent G(0, t ). Here,
ω0 = t0 = 1, g = 0.25, k = 0, N = 6, and T = [0, 1.4]. �4(0, t )
transitions from divergent to nondivergent between T = 0.7 and
0.75, and because C2(0, t ) does not predict a divergent G(0, t ) for
any temperature, the transition from divergence or nondivergence is
dictated by the transition in C4(0, t ).

reflecting the finite lifetime of quasiparticles. It is easily
checked, and is demonstrated in Fig. 3(b), that the second-
order CE always satisfies these requirements. In particular,
−g2t2(2N0 + 1) � �[�2(k, t )] � 0, and thus the second-
order CE never diverges.

With these considerations in hand, we focus on the fourth-
order CE, characterizing the divergence of the fourth-order
term �4(k, t ) by the quantity t�[�4]>0, which marks the ear-
liest time where �[�4] > 0. In Table I, we compile t�[�4]>0

for the Holstein model with the same parameters as found
in Fig. 1 for the spectral function at k = 0 as a function of
temperature and the number of lattice sites. Several aspects
of the data are worthy of note. We focus first on the fact
that as T approaches a temperature between T = 0.72 and
0.73, the divergence is abruptly pushed from a finite time
to infinite time for all practical purposes. This behavior of
�4(k, t ) and its dependence on C4(k, t ) is demonstrated in
Figs. 3(a) and 3(c) and is consistent with the results plotted
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TABLE I. t�[�4]>0 for varying system sizes, coupling strengths
and temperatures. Increasing the system size or decreasing the cou-
pling can push the onset of the divergence to longer times. Raising
the temperature past some transition temperature fully removes the
divergence. Model parameters: t0 = ω0 = 1 and k = 0.

N g T/ω0 ω0t�[�4]>0

6 1.00 0.40 7.3
6 1.00 0.60 10.7
6 1.00 0.70 23.2
6 1.00 0.72 80.0
6 1.00 0.73 >104

6 0.75 0.00 7.3
6 0.50 0.00 10.7
6 0.25 0.00 20.2
6 0.10 0.00 51.6
6 1.00 0.00 7.1
12 1.00 0.00 10.2
50 1.00 0.00 24.9
100 1.00 0.00 49.0
150 1.00 0.00 73.3

in Fig. 1(a), where only the cases T = 1.0ω0 and T = 1.4ω0

have nondivergent fourth-order CE results.
The root of this abrupt behavioral change in the long-time

limit of �4(k, t ) becomes manifest upon examining the ana-
lytical forms of the individual cumulant terms. Details may
be found in Appendix A. Direct examination of �4(k, t ) at
zero temperature reveals terms of the form teiαt where α is
some real number. Care must be taken with the evaluation
of C4(k, t ), as it contains many apparent singularities which
are actually well-defined when appropriate limits are taken.
Depending on the particular limit and the values of t0 and
ω0, C4(k, t ) contains real-valued terms which may diverge
linearly, quadratically, or quartically in time. Some of the
seemingly divergent terms of order t2 in M4(k, t ) are exactly
canceled by the transformation from moments to cumulants in
Eq. (19).

Here, we present the leading-order contributions to the
fourth cumulant for N = 6, t0 = ω0, T = 0 and k = 0,

�4(0, t ) = −g4t2(2e−5itω0 + 25e−2itω0 )

1800ω2
0

+ o(t2). (27)

Since the exponential functions in Eq. (27) contain no real
damping, �4(0, t ) diverges quadratically in time. The enve-
lope growth rapidly becomes the only significant term in the
expansion. This is illustrated in Fig. 4(a) where the case of
g = ω0 = 1 is explicitly shown, and �[�(0, t )] indeed grows
along the upper and lower bounds of Eq. (27). Although the
case presented here is quadratically divergent, this is specific
to t0 = ω0. A more general version of Eq. (27) contains only
linear divergences (albeit many of them), while the proper
evaluation of the limit t0 → ω0 introduces quadratically grow-
ing terms. It is worth noting that terms of this general form
were also found by Gunnarsson et al. in their zero-temperature
CE study of similar polaron models [50]. These authors deter-
mined that such terms give rise problematic negative spectral
weight, however, they did not report a divergent behavior in
G(k, t ). We will return to the issue of negative spectral weight
below.

Inspection of Eq. (27) also makes clear why decreasing
the value of the electron-phonon coupling delays the onset
of the divergence, as seen in Table I. The divergent portion
of the fourth-order cumulant is scaled by g4, so it is quite
expected that smaller g decreases the time scale of divergence.
This is demonstrated in Table I with the example of a six site
system where decreasing the value of g indeed increases the
divergence time.

In a similar vein, we can examine the terms in �4(π, t )
and �4(2π/3, t ) to understand why, for N = 6 and ω0 = t0,
the fourth-order CE is nondivergent at zero temperature. The
case of k = 2π

3 is very similar in form to k = 0 but critically
contains an extra constant in the expression for the leading
term, namely,

�4

(
2π

3
, t

)
= −g4t2(4eitω0 + e−2itω + 6)

96ω2
0

+ o(t2). (28)
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FIG. 4. The fourth-order CE numerical results (dashed red) for N = 6 at g = ω0 = t0 = 1 and T = 0 compared with the leading order
envelope functions (solid black) at (a) k = 0, (b) 2π/3, and (c) π . The functional form of the envelope is given in each figure and describes
the general shape of the numerical results. A discussion of the origin of these envelope functions is found in the main text and Appendix A.
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Because of the −6t2g4/96ω2
0 term in Eq. (28), �[�4(2π/3, t )]

tends towards negative infinity quadratically, which corre-
sponds to a strongly damped G(2π/3, t ). This is shown in
Fig. 4(b) for the case of g = ω0 = t0 = 1. As in the case of
k = 0, the avoidance of an unphysical divergence is specific to
the choice that t0 = ω0, so it merely serves as a demonstration
of one way in which the terms in the fourth-order CE conspire
to avoid divergences issues for a specific set of parameters at
a specific wave vector.

While these examples demonstrate how terms quadratic in
time in the expansion of �4(k, t ) can lead to a convergent
or divergent approximation to G(k, t ), leading terms of even
higher-order in time are possible. An example of this occurs
at k = π , where in Fig. 1(c) we observe that the fourth-order
CE is always well behaved. Once again taking N = 6, ω0 = t0
and T = 0, we can show that the leading-order divergence for
k = π is

�4(π, t ) = −g4t4

108
+ o(t4). (29)

Unlike the behavior expressed by Eq. (27), the leading-order
divergence of �4(π, t ) is not oscillatory; rather, it is strictly
negative and quartic, rendering irrelevant any oscillating and
increasing terms of slower growth. This qualitative difference
in behavior between the k = 0 and k = π cases ensures a
nondivergent Green’s function at the band edge even at low
temperatures.

The divergent terms discussed above are related to the
double pole structure described by Gunnarsson et al. [50]
Analyzing the behavior of the fourth cumulant in the short-
time limit, a function of the form exp(αt ne−zt + . . . ) can be
linearized to give 1 + αt ne−zt + . . . . Here, α is a complex
coefficient, n is a positive integer, and z is purely imaginary.
The Fourier transform of a function of this form will be
proportional to the nth derivative of a delta function centered
at z, and this feature will be present in the spectra even if
the overall CE is convergent. While this argument is approx-
imate, as it relies on the short-time dynamics, it nonetheless
makes clear the connection between negative spectral weight
and the potential for divergent behavior in the fourth- (and
presumably higher)-order CE. Since the CE to all orders is
exact, the cancellation of these problematic terms at high-
orders must occur, albeit clearly in a complicated manner
which likely obviates the possibility of removing such terms
in lower-order versions of the expansion in a reliable way.
In most applications we are interested in the N → ∞ limit,
and here, as shown in Sec. III D, we note that for some
wave-vectors divergences are suppressed with increased sys-
tem size. As empirically demonstrated in Table I for k = 0,
the onset time of the divergence grows linearly with the
system size. To understand this behavior, we again consider
which terms are present in the summation of the expressions
for the fourth-order cumulant. As the system size increases,
the number of terms in the momentum sums over q1 and
q2 grows as N2, while the weight of each individual term
decreases in magnitude as N−2. Singularities in �4(k, t ) that
produce quadratic growth in time only occur when specific
energetic conditions are met. A few examples of these con-
ditions are εk+q1 − εk + ω0 = 0, εk+q1 − εk+q1+q2 + ω0 = 0,
and εk+q1+q2 − εk + 2ω0 = 0. Crucially, these conditions exist

only on one-dimensional lines in the space of q1 and q2. Thus
the ratio of the nonsingular evaluations to the total number of
evaluations falls of at least as 1/N , as we observe numerically.
In particular, for k = 0 the nonsingular term occurs in 61.1%
of evaluations of the momentum sum for N = 6, 99.7% of
the evaluations for N = 600, and 99.8% of the evaluations for
N = 1200. Thus, for very large system sizes, we can drop all
of the singular cases of q1 and q2 by recognizing that the ratio
of singular cases to nonsingular disappears as ∼1/N . The true
thermodynamic limit of C4(k, t ) corresponds to a principle
value integral over momentum space with real terms at most
linearly divergent in t .

While the preceding argument justifies why the nonlinear
in time divergences present in small systems disappear as
N → ∞ for k = 0, it does not explain why linear time di-
vergences do not appear. We now heuristically argue that a
distinct type of behavior suppresses divergent growth in time
as N → ∞ for some wave vectors.

With the remaining linear terms proportional to teiαt where
α ∈ �, the momentum sum in the fourth-order cumulant be-
comes one of many oscillating exponential functions, each
with weight N−2. As the frequencies in the exponential be-
come continuously distributed, interference of the many out
of phase components can delay the onset of divergence to
arbitrarily long times. It must be noted that this cancellation
depends on specific properties of the unperturbed energy dis-
persion which are not trivially satisfied at all k. Nonetheless,
we find numerically that as N tends towards an infinite number
of sites for both k = 0 and k = π , the first constructive beat
is pushed to t = ∞, hence the results in Sec. III D are well-
behaved at all temperatures for those values of k unlike for the
case N = 6. We have not been able to uncover a deeper analyt-
ical argument for this behavior, and must appeal to numerical
heuristics, which are presented in detail in Sec. III D.

Since the infinite-order CE provides an exact representa-
tion of the dynamics, it must be true that even higher-order
cumulant terms eventually conspire to remove the divergent
terms at lower-orders. However, because Cn(k, t ) ∝ gn, we
know that the higher-order terms can not directly cancel
the lower-order divergences, and instead must form the se-
ries representation of a well-behaved exact �(k, t ). There
are a number of approaches one could attempt to remove
these divergences, but all presume some knowledge of the
higher-order terms in the CE. For an approximate means of
resumming higher-order cumulants, we refer the reader to
the self-consistent cumulant approximation in the companion
paper [67].

C. Convergence to exact result: short-time analysis

The results in the previous section illustrate that the use
of the fourth-order CE can improve agreement with exact
benchmarks [Fig. 1(b)] but can also lead to unphysical re-
sults associated with instabilities and negative spectral weight.
While carrying out the CE to infinite-orders yields exact
results, it is clear that the manner in which convergence
occurs is complicated. Here, we focus on the time domain,
explicitly illustrating how higher-order expansions always
systematically improve the accuracy of the short-time behav-
ior. To carry out this comparison, we employ the numerically
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FIG. 5. (a) Comparison of A4(0, ω) (blue solid line), A4(0, ω)
(pink dashed line) and A∞/HEOM(0, ω) (thin black line and gold fill)
for T = 1.0ω0. (b) Comparison of the real parts of G2(0, t ) and
G4(0, t ) with G∞(0, t ) for T = 1.0ω0. (c) Comparison of �2(0, t )
and �4(0, t ) with �∞(0, t ) for T = 0.0ω0. Model parameters: N =
6; k = 0; ω0 = t0 = 1, g = 0.25, γ = 0.04 (spectral function only).
HEOM calculations are performed using modified versions of PHI

[65] and PYRHO [66].

exact “hierarchical equations of motion” (HEOM) method
[31–38]. This approach provides rapid convergence to the
exact result for models such as the spin-boson model. For the
one-dimensional Holstein model, exact convergence for finite
times is attainable for weak-to-moderate coupling strengths
in moderately-sized chains [38]. Since this method may be
unfamiliar to some readers, a brief description is provided in
Appendix B.

We first work at weak coupling (ω0 = t0 = 1, g = 0.25)
and high temperatures (T = 1.0) where we can easily con-
verge the exact HEOM results for times sufficient to provide
the full spectral function with minimal artificial damping. In
Fig. 5(a), we show results for N = 6 and k = 0 which are
consistent with the behavior found in Fig. 1. In particular, the
fourth-order CE improves subtly on the second-order result,
bringing the theory into quantitative agreement with exact
spectral function, with the exception of very small secondary
peak structure visible at ω ∼ −2 and ω ∼ 0. As expected
from the discussion in Sec. II A, this behavior is due to finite

TABLE II. tM at two EPI strengths and temperatures. In all
cases, raising either the temperature or the coupling decreases tM
and t2 < t4, indicating that the fourth-order CE improves upon the
second-order CE at short times. Model parameters: N = 6; ω0 =
t0 = 1. HEOM calculations were performed using modified versions
of PHI [65] and PYRHO [66].

g T/ω0 t2ω0 t4ω0

0.25 0.0 2.90 8.70
0.25 1.0 1.35 5.55
1.0 0.0 0.50 0.85
1.0 1.0 0.35 0.65

size recurrences which are expected to vanish as N → ∞.
Figure 5(b) illustrates the behavior underlying the spectral
function in the frequency domain. In particular, a large vis-
ible recurrence starting at ω0t ∼ 20, which is missed by the
second- and fourth-order CEs, can be observed.

On the scale of Fig. 5(b), it is nearly impossible to parse
what the fourth-order CE provides over the second-order
CE to improve the distribution of spectral weight as seen
in Fig. 5(a). However, by focusing on the function �(k, t )
directly, one clearly observes the systematic improvement
provided by the fourth-order CE over the second-order CE.
In Table II, we consider two temperatures and two coupling
strengths, along with the time, tM, after which |GM(t ) −
G∞(t )| > 5 × 10−4, where M is the order of the CE, and
G∞ is given by the exact HEOM result. This improvement in
short-time behavior is manifest in Fig. 5(c), which illustrates
the improved description of �(0, ω) for parameters such that
the long-time limit of the fourth-order CE is divergent. In
particular, in all cases, t4 > t2 indicating that the fourth-order
CE improves upon second-order CE. Clearly, the long-time
pathological behavior of the fourth-order CE does not corrupt
the increase in accuracy of the short-time behavior of the
cumulant generating function.

The above discussion suggests that convergence of the CE
occurs in the time domain such that the short-time behavior
can be systematically converged for longer and longer times,
while concomitantly longer-time anomalies in �(k, t ) must
resum into functions which behave in a nonsingular manner. It
is difficult to guess the form taken by such functions from just
the first two terms in the expansion. In this sense, the fourth-
order CE does not appear to be generically useful. In the
companion paper, we will present a self-consistent cumulant
scheme that, while still suffering from some of the ill-effects
introduced by the fourth-order CE, does provide access to
nonperturbative behavior that appears to be completely out of
reach of low-order CEs [67].

D. Thermodynamic limit

Inspired by the possible suppression of physical fine
structure and the elimination of poorly behaved spurious os-
cillations in the infinite-system limit, we now continue in the
spirit of Dunn’s continuum calculation on the Fröhlich model
[48] to treat the finite-temperature infinite Holstein model in
the thermodynamic limit using the CE.
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FIG. 6. Heat maps of A2(k, ω) for N = 600 (left), and
A∞/VD(k, ω) for N = 6 (right, from Ref. [27] Fig. 2) for several
temperatures. Note that for the CE there is a sharp transition at
around π/3 from a clear quasiparticle peak to a incoherent spectrum.
Additionally, note that compared to the VD results that the band
curvature is qualitatively incorrect for the vibronic peaks at small
k. Model parameters: ω0 = t0 = 1, g2 = 2, and γ = 0.05.

We start by investigating the finite-k behavior of A2(k, ω)
and A4(k, ω) in Fig. 6, where An(k, ω) denotes the nth-order
CE approximation. Here, N = 600 for the CE calculations
while N = 6 for the VD results. We expect that on the scale
of these plots, finite size effects in the VD results are small
as discussed in Ref. [27]. Note, however, the large changes
that appear within A2(k, ω) as N is increased. While A2(0, ω)
is accurate compared to the exact result, even near k = 0
the curvature of the bands that represent satellite peaks are
described in a qualitatively incorrect manner. Further, while
the finite size effects described in Sec. III A do vanish after an
abrupt change of behavior which occurs at εk = ω0, they are
replaced with a single incoherent band centered on εk . Thus
the prominent satellite structure for k > ω0 in the exact results
is completely absent in A2(k, ω).

The fourth-order CE (not plotted in Fig. 6) produces an
A(k, ω) broadly similar to that of the second-order CE for
all k which produce nondivergent fourth-order results in our
approximation of the thermodynamic limit (N = 600). How-
ever, A4(k, ω) does produce some notable differences from
A2(k, ω). The fourth-order CE correctly predicts positive cur-
vature of the satellite peaks at low temperatures near k =
0, marking an improvement over the second-order cumulant

result. Along with this improvement, one obvious feature that
emerges is small regions of negative spectral weight. The
appearance of negative spectral weight, discussed previously
by Gunnarsson et al. [50] and in the previous section, has also
been noted in other studies [62,63]. Though only present in
high-energy regions of the spectrum near k = 0, the negative
spectral weight in A4(k, ω) appears at much lower energies,
approximately at the location of VD quasiparticle energy, for
k = π . Finally, there are large regions of k space for which
divergent behavior occurs. It is possible that these regions
become well-behaved for even larger system sizes, however,
we have no evidence that the fourth-order CE is globally well
behaved for N = ∞.

In Fig. 7, we closely examine the temperature depen-
dence of A2(k, ω) and A4(k, ω) at k = 0 and k = π . At
low temperatures, the k = 0 CE appears nearly converged,
with A2(0, ω) and A4(0, ω) showing nearly identical behavior
around the quasiparticle peak. On the other hand, at k = π ,
the low-temperature fourth-order CE does not appear con-
verged with respect to the second-order CE, and A2(π,ω)
deviates notably from A4(π,ω) for ω > 0. This distinction
in performance at k = 0 and k 
= 0 is consistent with the
overall comparison of An(k, ω) with results from VD. In the
companion paper, we will discuss how A(k, ω) for k 
= 0 can
be more accurately calculated from a self-consistent cumulant
approach [67].

For the k = 0 case, the apparent convergence of the CE
for some temperatures warrants more consideration, and thus
we devote the remainder of this section to a more detailed
discussion of this case. The second- and fourth-order CE
results match best for high and low T . The low-T convergence
of the main spectral features is supported by the analysis
in Sec. II C, which shows how the CE in the time-domain
G(0, t ) breaks down only at high T , where the phonon occu-
pation numbers N0 contribute to a growth in the magnitude
of higher-order cumulants. Meanwhile, for very high tem-
peratures, Dunn’s argument that the long time behavior of
G2(0, t ) and G4(0, t ) may markedly differ with differences
hidden by rapid damping such that the resulting extremely
broad spectral functions may appear converged, is borne
out [48]. This extreme damping is seen for T = 1.4 high-
lighted in Fig. 7(c), where although the centroids of the
main second- and fourth-order CE peaks are displaced, the
broadening makes the high-T results appear converged. Such
misleading convergence behavior was also seen for the six-
site system in Sec. III C. At intermediate temperatures such
as T = 0.6, apparently neither the low-temperature real-time
convergence illustrated in Sec. II C, nor the high-temperature
damping behavior discussed above is operative, such that the
CE results shown in Fig. 7 display a lack of convergence
for intermediate temperatures, where the second-order CE
polaron peak is considerably shifted from the fourth-order
CE polaron peak. The shift of the polaron peak to lower
energies exhibited by A2(0, ω) seems to be an artificial feature
that is corrected in A4(0, ω) where the center of the polaron
peak appears fixed in location with respect to temperature.
The origin of the distinction between A2(0, ω) and A4(0, ω)
is subtle. An important approximation that distinguishes
the second-order and fourth-order CEs is the second-order
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FIG. 7. Spectral functions from the second-order CE (solid blue line) and the fourth-order CE (dashed pink line) for N = 600 Holstein
model for a range of temperatures. (a) Results for the band bottom (k = 0) for T = [0.1, 1.4]. At low temperatures, the fourth-order CE
slightly lowers the quasiparticle energy while also inserting regions of negative spectral weight at high frequencies. (b) k = 0, T = 0.1 spectral
functions enlarged to emphasize the negative spectral weight predicted by the fourth-order cumulant. (c) k = 0 and T = 1.4 spectral functions
enlarged to emphasize the shift in peak location between the second- and fourth-order CE. (d) Results for the band edge (k = π ) for T =
[0.1, 1.4]. The fourth-order CE prediction lowers the energy of the main peak predicted by the second-order CE, and additionally adds a
broad weak intensity peak at −ω0. Both orders of the CE broaden similarly with increasing temperature. (e) k = π, T = 0.1 spectral functions
enlarged to emphasize the added peak and the region of negative spectral weight predicted by the fourth-order CE compared to the second-order
CE. Model parameters: ω0 = t0 = g = 1 and γ = 0.05 (k = 0 only).

assumption [48]

ε(k + q1 + q2) ≈ ε(k + q1) + ε(k + q2) − ε(k). (30)

This approximation implies that the second-order CE overes-
timates the energy of multiphonon processes, for example the
consecutive emission of two phonons with q1 = q2 = π . This
is likely the origin of the unphysical shift in A2(0, ω).

IV. CONCLUSION

In this paper, we have presented a comprehensive study of
the behavior and properties of the CE method for one paradig-
matic model of an electron interacting with phonons, namely
the one-dimensional Holstein model. The motivation for this
choice is the fact that it is in this case where the most extensive
numerically exact results are available for comparison. Some
of the conclusions we draw may be generic and connect to
other polaron models, but future work is necessary before such
a conclusion can be drawn.

Although of great interest for applications to realistic sys-
tems, the CE in higher dimensional systems is not directly
explored in this work. The formalism for the CE presented
here is dimensionality agnostic, so we expect that many of
our conclusions should hold in higher dimensions.

Within the confines of the second-order CE, we find that
the spectral function is rather well described for up to inter-
mediate coupling strengths at both low and high (T > ω0)
temperatures for k = 0 but is quantitatively accurate for other
wave vectors in the high-temperature regime only. Finite lat-
tice effects are present in the numerically exact simulations
which are not captured by low-order CE methods. These
features are small, and are not expected to be present in the
infinite lattice limit. The correct placement of satellite peaks
for k = 0 is revealed in the structure of the second-order
CE in part to be the result of a spurious intensity crossing
structure. In the infinite size limit, this structure is converted
into a satellite region which exists only for wave vectors such
that (εk + 2t0 − ω0) < 0 with negative band curvature for the
higher order satellites. The effect of other models and param-
eters on the size of this region is a topic of future study. Both
the sharp change of behavior at εk + 2t0 = ω0 and the sign of
the curvature contrast with the exact finite lattice results which
are expected to semiquantitatively describe the infinite lattice
behavior.

We have also explored the properties of the fourth-order
CE. At fourth order, we find that the short-time real-time
evolution of the Green’s function is always systematically
improved, while the long-time behavior may become patho-
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logical depending on the parameters of the model and
the wave vector in question. When the fourth-order CE is
well-behaved, improved spectral features are noted even at
relatively low frequencies. We have explored the origins of
the ill-behaved fourth-order CE. The general structure of the
problematic terms take the algebraic form noted by Gunnars-
son et al. to also give rise to negative spectral weight [50].
In addition, classifying the divergent contributions for fixed
lattice size N, we illustrate the subtle balance of terms that
conspire to render the fourth-order CE either useful in cor-
recting the second-order CE or pathological. We note that in
general the fourth-order CE does not generally appear capable
of producing stable and sizable corrections to the second-
order CE, even for intermediate electron-phonon coupling
values. In the companion paper, we formulate and study a self-
consistent version of the CE which is capable of accurately
capturing features beyond that of the low-order CE [67].

Lastly, we comment on the recent use of the CE for the
study of transport behavior in real materials. Specifically,
Bernardi et al. have used the second-order CE, in conjunction
with the “bubble” approximation to the current-current corre-
lation function, to compute mobilities in both SrTiO3 and in
organic crystals. This approach has the advantage of capturing
incoherent relaxation channels which are not described in the
simplest semi-classical theories based on the Boltzmann equa-
tion. While we cannot comment on the accuracy of the CE for
systems like SrTiO3 for which the Fröhlich model is most ap-
propriate, nor can we comment on models with sizable Peierls
coupling such as organic crystals, our results do suggest that
the second-order CE should reasonably accurately model the
full wave vector dependent one-particle spectral function for
the situation T � ω0, while likely becoming significantly less
accurate for all but k ∼ 0 at lower temperatures. This of course
does not imply that the independent bubble approximation is
itself accurate. Further work will be devoted to testing this
approach in model systems where a controlled assessment of
the various approximations is possible.
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APPENDIX A: MOMENTS FOR THE HOLSTEIN MODEL

Plugging in the specific form of the Holstein interaction,
performing the time integrals, and removing several of the
internal momentum sums via conservation of momentum, we
find the second moment is given by

M2(k, t ) = −g2

N
e−iεkt

∑
q

[(N0 + 1)A−
q + N0A+

q ], (A1)

A±
q ≡ ±it (ω0 ± (εk − εq)) − e±it (ω0±(εk−εq )) + 1

(ω0 ± (εk − εq))2 , (A2)

and the fourth moment is given by

M4(k, t ) = g4

N2
e−iεkt

∑
q1,q2

[
(N0 + 1)2T1( f +

1 , f +
2 ; t )

+ N0(N0 + 1)T1( f −
1 , f +

2 ; t )

+ N0(N0 + 1)T1( f +
1 , f −

2 ; t )

+ N2
0 T1( f −

1 , f −
2 ; t )

+ (N0 + 1)2T2( f +
1 , f +

2 , f (q1 + q2, 0, 2ω0); t )

+ N0(N0 + 1)T2( f −
1 , f +

2 , f (q1 + q2, 0, 0); t )

+ N0(N0 + 1)T2( f +
1 , f −

2 , f (q1 + q2, 0, 0); t )

+ N2
0 T2( f −

1 , f −
2 , f (q1 + q2, 0,−2ω0); t )

+ (N0 + 1)2T3( f +
1 , f (q1 + q2, 0, 2ω0); t )

+ N0(N0 + 1)T3( f −
1 , f (q1 + q2, 0, 0); t )

+ N0(N0 + 1)T3( f +
1 , f (q1 + q2, 0, 0); t )

+ N2
0 T3( f −

1 , f (q1 + q2, 0,−2ω0); t )
]
, (A3)

where

T1(a, b; t ) = 1

b

[
a t2

2 − t − h(a, t )

a2

+ 1

b

(
h(a, t ) − h(b, t )

a − b
− t + h(a, t )

a

)]
, (A4)

T2(a, b, c; t )

= 1

b

[
1

c

(
t + h(a, t )

a
− h(a, t ) − h(c, t )

a − c

)

− 1

c − b

(
h(a, t ) − h(b, t )

a − b
− h(a, t )

−h(c, t )
a − c

)]
, (A5)

T3(a, b; t ) = 1

a

[
1

b

(
t + h(a, t )

a
− h(a, t ) − h(b, t )

a − b

)

+ 1

b − a

(
e−at t + h(a, t )

a

+h(a, t ) − h(b, t )

a − b

)]
, (A6)

f (a, b, c) = i(εk+a − εk+b + c), (A7)

f ±
i = f (qi, 0,±ω0), (A8)

h(x, t ) = e−xt − 1

x
. (A9)

For both M2 and M4, singular terms within the momentum
sums are evaluated in a limiting sense using L’Hopital’s rule.

APPENDIX B: HIERARCHICAL EQUATIONS OF MOTION

For an exact benchmark of G(k, t ), we will use the
hierarchical equations of motion (HEOM) approach. First
popularized for solving vibronic models with continuous bath
spectral densities [31–35], HEOM has recently been adapted
to solve discrete bath models such as the Holstein and SSH
models [36–38]. While we have recently shown that the
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finite truncation of HEOM can lead to long-time instability
in such models, [38] for the present application the converged
short and intermediate time behavior is sufficient to provide
benchmarks for G(t ) and A(ω). Two recent versions of HEOM
have provided practical routes to circumventing instabilities
[39,68].

To compute G(k, t ) with HEOM, we rewrite

G(k, t ) = − i�(t )TrS[akTrB[e−iHt

× (e−βHb ⊗ a†
kρvac)eiHt ]], (B1)

where

ρvac = |0〉〈0| =

⎡
⎢⎢⎣

1 0 . . . 0
0 0 . . . 0
...

...
. . . 0

0 0 0 0

⎤
⎥⎥⎦ (B2)

is the pure-state electronic density matrix representing the
zero-electron vacuum, written in a basis of zero-electron and
one-electron states. The S and B subscripts denote partial
traces over the electron and phonon subspaces, respectively.
One-electron states are described in the site basis. In this basis,

a†
k = 1√

N

⎡
⎢⎢⎣

0 0 . . . 0
e−ik 0 . . . 0
...

...
. . . 0

e−ik(N−1) 0 0 0

⎤
⎥⎥⎦, (B3)

ak = 1√
N

⎡
⎢⎢⎣

0 eik . . . eik(N−1)

0 0 . . . 0
...

...
. . . 0

0 0 0 0

⎤
⎥⎥⎦. (B4)

Thus, to calculate G(k, t ), we initialize a hierarchy of auxiliary
density matrices, each of dimension (N + 1) × (N + 1). All
matrices ρm1±,...,mN± (t = 0) are set to zero except for

ρ0,...,0(t = 0) = a†
kρvac. (B5)

Then, we propagate in time using the discrete-bath HEOM
[36–38]

d

dt
ρm1±,...,mN± (t ) = − iLρm1±,...,mN± (t )

− i
N∑

n=1

ω0(mn− − mn+)ρm1±,...,mN± (t )

+
N∑

n=1

[�n(ρm1±,...,mn++1,...,mN± (t )

+ ρm1±,...,mn−+1,...,mN± (t ))

+ mn+�n+ρm1±,...,mn+−1,...,mN± (t )

+ mn−�n−ρm1±,...,mn−−1,...,mN± (t )], (B6)

where

L = [Ĥe, . . . ], (B7)

�n = [V̂n, . . . ], (B8)

V̂n = a†
nan, (B9)

and

�n± = − (gω0)2

2

(
[V̂n, . . . ] coth

(
βω0

2

)
∓ {V̂n, . . . }

)
.

(B10)

Finally, we compute the Green’s function as

G(k, t ) = −i�(t )Tr[akρ0,...,0(t )]. (B11)

Converging with respect to the hierarchy depth L, we obtain
the exact G(k, t ) for the Holstein model.

APPENDIX C: K-PHONON APPROXIMATION

For analyzing finite-size effects in an inexpensive, ap-
proximate way, we will also compute G(k, t ) via numerical
diagonalization of the Hamiltonian within a truncated basis.
Toward this end we introduce the momentum-space basis kets

|ν0, . . . , νN 〉0 (C1)

and

|k, ν0, . . . , νN 〉1, (C2)

which represent states with zero and one electron, re-
spectively. The electronic quantum number k indicates the
momentum of the electron. The vibrational quantum numbers
νi denote the number of vibrational quanta in each normal
mode, such that

b†
q|0, . . . , νq, . . . , 0〉0

= √
νq + 1|0, . . . , νq + 1, . . . , 0〉0, (C3)

b†
q|k, 0, . . . , νq, . . . , 0〉1

= √
νq + 1|k, 0, . . . , νq + 1, . . . , 0〉1. (C4)

We work within a truncated K phonon basis such that

N∑
q=1

νq � K. (C5)

Using this basis to represent the Hamiltonian, we can
then compute the matrix exponential necessary to determine
G(k, t ) by numerically diagonalizing the Hamiltonian. We
will refer to this approach as the “K-phonon approximation.”
In the text, only K = 1 results are shown.
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