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We investigated the effects of cubic and quartic anharmonicity on lattice dynamics and thermal transport
in highly anharmonic BaZrO3 crystal over a wide temperature range (300–2000 K) by combining the first-
principles-based self-consistent phonon theory and a unified theory of thermal transport including population
and coherence contributions. By considering the effects from bubble and loop diagrams, the contributions of
both three-phonon (3ph) and four-phonon (4ph) interaction processes to phonon scattering rates and energy
shifts were clarified. Anharmonic phonon renormalization is found to play a crucial role in determining the
finite-temperature phonon energies and lattice thermal conductivity κL in BaZrO3. Specifically, the lattice
anharmonicity induces significant low-frequency optical phonon hardening at elevated temperatures, which is
correlated with the U-shaped potential energy surfaces for these modes. The low-frequency optical phonon
hardening significantly suppresses phonon scattering rates by altering the phonon weighted phase space of both
3ph and 4ph interaction processes, thereby leading to significant enhancement in the κL and weaker temperature
dependence of κL ∼ T −0.75 than traditional harmonic treatments. Moreover, although the coherent thermal
transport channel is suppressed by anharmonic phonon renormalization, it is enhanced by the 4ph scattering
processes. The coherence contribution becomes nonnegligible at elevated temperatures and may contribute up to
17.38% of the total κL at 1500 K. In this paper, we highlight the strong influence of the lattice anharmonicity on
thermal conductivity in severely anharmonic systems and the importance of coherent thermal transport channel
at elevated temperatures.

DOI: 10.1103/PhysRevB.105.224303

I. INTRODUCTION

Ternary perovskite-type oxides, of the general chemical
formula ABO3, where A and B denote different metal ions, are
a large family of materials possessing cubic, rhombohedral,
orthorhombic, tetragonal, and monoclinic phases [1]. Among
them, barium zirconate (BaZrO3) is a perovskite oxide with
a cubic structure, as shown in Fig. 1(a). Recently, it has
drawn vast attention not only for fundamental research but
also for practical application due to its outstanding physical
properties, such as excellent thermal stability, high melt-
ing point, small thermal expansion coefficient, low dielectric
loss, and low thermal conductivity [2,3], which can benefit a
broad range of applications such as high-temperature crystal
growth [4], high-temperature fuel cells [5,6], safety engineer-
ing [7], and thermal barrier coatings for gas turbines [8,9]. In
many of these applications, the lattice thermal conductivity
κL of BaZrO3 plays a key role. Several theoretical studies
based on the classical molecular dynamics (MD) [10] or
first-principles approach [11] have been performed to predict

*ruiqiang.guo@iat.cn
†mebhuang@ust.hk

the κL of BaZrO3 but could not capture its weak tempera-
ture dependence [9,11,12]. Accurate prediction of the κL in
BaZrO3 remains a challenge. Specifically, the first-principles
studies based on harmonic approximation (HA) phonon the-
ory remarkably underestimated the phonon energy and κL in
BaZrO3 crystal at high temperatures [11]. Similar underes-
timation of κL within the HA framework is fairly common
for oxide and fluoride perovskites such as BaHfO3, SrTiO3,
KZnF3, and KMgF3 [13].

Going beyond the HA model, authors of recent studies
have investigated anharmonic effects as the possible origin of
the abovementioned discrepancy in some highly anharmonic
crystals [14–16], finding that lattice anharmonicity plays a
crucial role in quantifying the finite phonon linewidth and
thermal conductivity κL [17]. However, prediction of lat-
tice dynamics and phonon transport in materials of strong
anharmonicity persists as one of the longstanding chal-
lenges in condensed matter physics [17–20]. The conventional
Peierls-Boltzmann picture of phonon transport is valid for
well-defined phonon modes [21]; however, it was recently
found to fail in describing the thermal transport in highly
anharmonic crystals [14,22,23]. To overcome the shortcom-
ings of the Peierls-Boltzmann picture of phonon transport,
recently, the finite-temperature treatment of phonons induced
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FIG. 1. (a) A 2 × 2 × 2 supercell of BaZrO3 crystal, which features a sublattice formed by ZrO6 octahedra units together with Ba atoms.
The red dash lines depict a lattice unit cell and Ba, Zr, and O atoms are colored in red, green, and blue, respectively. (b) Calculated
temperature-dependent squared phonon frequency of R25 mode using the first-order self-consistent phonon (SCP) method (loop diagram)
with polarization mixing (PM) compared with that further including the bubble diagram based on nonperturbative method, respectively.
(c) Calculated temperature-dependent optical phonon frequencies at the � point in comparison with harmonic approximation (HA) results
and experimental values [52]. (d) Calculated harmonic phonon dispersion at T = 0 K in comparison with the anharmonic phonon dispersions
calculated at finite temperatures (300–1500 K). Atom-decomposed partial and total phonon densities of states at T = 0 (HA), 300, and
1500 K are shown on the right panel.

by lattice anharmonicity [17,18] and wavelike interbranch
tunneling of coherence arising from off-diagonal terms of
the heat flux operator [23] were proposed to explain ex-
perimental findings. Most efforts have been concentrated on
anomalous thermal transport, i.e., ultralow thermal conduc-
tivity in highly anharmonic compounds with large complex
unit cells [15,16,23]. However, simple crystals with strong

anharmonicity, such as many ternary perovskite-type oxides,
receive much less attention, [17,24–26] and a thorough and
fundamental understanding of thermal transport in these sim-
ple but highly anharmonic crystals is to be developed.

In this paper, we investigate the effects of both cu-
bic and quartic lattice anharmonicity on lattice dynamics
and thermal transport in crystalline BaZrO3 over a wide
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temperature range (300–2000 K) using first-principles-based
self-consistent phonon (SCP) calculations and a unified
theory of thermal transport incorporating the population and
coherence contributions. Here, a comprehensive treatment of
thermal transport theory with the inclusion of isotope-phonon,
three-phonon (3ph), and four-phonon (4ph) scatterings; an-
harmonic phonon renormalization from cubic and quartic
anharmonicity; and phonon and coherent thermal transport
channels is employed to predict the lattice thermal con-
ductivity κL in crystalline BaZrO3. We observe significant
phonon hardening of low-frequency optical modes with in-
creasing temperature due to the strong anharmonicity, which
can suppress the 3ph and 4ph weighted phase space (WPS).
The phonon hardening leads to significantly enhanced κL

with weak temperature dependence in crystalline BaZrO3.
Good agreements between the calculated and measured κL in
BaZrO3 over a wide temperature range can be achieved by
considering phonon frequency shifts from both the cubic and
quartic anharmonicities and higher-order phonon scattering
processes, highlighting the importance of cubic and quartic
anharmonicity in determining the lattice dynamics and ther-
mal transport in the simple anharmonic crystals, particularly
at elevated temperatures. Furthermore, the coherence contri-
bution ascribing from the off-diagonal terms of the heat flux
operators becomes nonnegligible and improves the predicted
results at high temperatures.

II. METHODOLOGY

In this paper, the density functional theory (DFT) cal-
culations [27] were performed using the Vienna Ab initio
Simulation Package (VASP) [28], where the projector aug-
mented wave [29] pseudopotentials were employed to treat
the Ba (5s25p66s2), Zr (4s24p65s24d2), and O (2s22p4) shells
as valence states. The Perdew-Burke-Ernzerhof (PBE) [30] of
the generalized gradient approximation [31] was employed
for the exchange-correlation functional in all DFT calcula-
tions. The PBE functional was selected here, as it could
accurately reproduce many lattice properties including the
lattice stability at low temperatures, while other functionals
such as local-density approximation failed [32]. The hybrid
functional, i.e., HSE and CX0p, may be more accurate [33],
but the high computational cost makes it almost prohibitive to
use to calculate thermal transport properties. A kinetic energy
cutoff value of 600 eV and 10 × 10 × 10 Monkhorst-Pack
κ-point grids were applied to the Brillouin zone integration
for structural optimization, with a tight convergence crite-
rion of 10−7 eV Å−1 for the Hellman-Feynman forces acting
on each atom, and 10−8 eV for the total energy. The opti-
mized lattice is of a Pm3̄m space group (No. 221) with a
lattice constant of a = 4.235 Å, in good agreement with the
experimental values (a = 4.193 Å) [32] for BaZrO3 single
crystal. The nonanalytic part of the dynamical matrix was
considered in all the following calculations. The Born effec-
tive charges Z and the dielectric tensor ε of BaZrO3 were
calculated using the density functional perturbation theory
[34], and the obtained values [ε∞ = 4.843, Z∗(Ba) = 2.742,

Z∗(Zr) = 6.146, Z∗(O)⊥ = −4.896, and Z∗(O)II = −1.997]
agree well with the previous computational results [35].

After the structural optimization, the finite displacement
approach [36] was applied to obtain the harmonic interatomic
force constants (IFCs) of a 3 × 3 × 3 supercell containing
135 atoms, where the κ-point grids for the Brillouin zone
integration were changed to 3 × 3 × 3 to be commensurate
with the supercell dimensions. In addition, 2 × 2 × 2 super-
cells containing 40 atoms were used for mapping out the
potential energy surfaces (PESs) with 5 × 5 × 5 κ-point grids
and 600 eV cutoff energies. Instead of using the conventional
finite-displacement approach [36] to obtain the higher-order
IFCs, we employed the compressive sensing lattice dynam-
ics method, which applies the compressive technique [37] to
collect the physically important terms in anharmonic IFCs
based on the limited precise displacement-force datasets [17].
To generate the physically relevant atomic displacements,
ab initio MD (AIMD) simulations were performed for a 3 ×
3 × 3 supercell system at 500 K with a 2 × 2 × 2 Monkhorst-
Pack κ-point grid, and a convergence criterion of electronic
self-consistent field cycles of 10−5 eV was used to accelerate
the structural sampling. The AIMD simulations were con-
ducted for 3000 time steps in the NVT ensemble using a
Nosé-Hoover thermostat and a 2 fs time step. We then sampled
100 atomic structures that were equally spaced in time by
skipping the first 500 steps from the trajectories. We further
displaced all the atoms for all the samples by 0.1 Å in random
directions to decrease cross-correlations between the sampled
configurations. To prepare the displacement-force datasets,
we performed precise static DFT calculations with 3 × 3 × 3
κ-point grids and the total energy convergence criterion of
10−8 eV for the 100 configurations obtained. Finally, based on
the datasets comprising displacements and forces of the 100
quasirandom configurations, the anharmonic IFCs were fitted
using the least absolute shrinkage and selection operator tech-
nique [38]. We extracted the anharmonic IFCs up to the fourth
order and kept all the harmonic IFCs within the 3 × 3 × 3
supercell. Cutoff radii of 6.35 and 4.23 Å were adopted to
obtain the cubic and quartic IFCs, respectively.

The SCP calculations [17,18] at finite temperatures were
performed to obtain the anharmonic phonon frequencies
and eigenvectors using the extracted 0 K harmonic and
anharmonic IFCs. The temperature-dependent anharmonic
frequencies �q j (T ) and polarization vectors εq j (T ) were ob-
tained by diagonalizing the following matrix Vq defined as
[15,17]

Vq j j′ = ω2
q jδ j j′ + 1

2

∑
q′

�(q j; − q j′;q′; − q′)〈Q∗
q′Qq′ 〉, (1)

〈Q∗
q′Qq′ 〉 =

[
h̄

2�q′

]
[1 + 2n(�q′ )]. (2)

Here, ωq j is the harmonic phonon frequency associated
with the wave vector q and phonon branch j. Also, 〈Q∗

q′Qq′ 〉
is the mean squared displacement (MSD) of the normal co-
ordinate Q. Here, the q in the expression is the shorthand
notation for a composite index of the wave vector and phonon
branch (q, j) and satisfying q = (q, j) and −q = (−q, j).
Further, �(q j; q j′; q′; −q′) is the reciprocal representation of
fourth-order IFCs, and n(ω) = 1/[exp(h̄ω/kBT ) − 1] is the
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Bose-Einstein distribution (kB is the Boltzmann constant, and
h̄ is the reduced Planck constant).

We also considered the off-diagonal components of the
self-energy to allow for polarization mixing (PM), which we
found to be important for the BaZrO3 system, particularly at
the �-symmetry point in the Brillouin zone [see Figs. S2(a)
and S2(b) in the Supplemental Material (SM) [39] (see also
Refs. [40–42] therein)]. If we neglected the off-diagonal el-
ements, the SCP equation can be reduced to the following
diagonal form:

�2
q = ω2

q + 2�qIq, (3)

Iq = 1

2

∑
q′

h̄�(q; −q; q′; −q′)
4�q�q′

[1 + 2n(�q′ )]. (4)

In this study, the q mesh of the SCP calculations was set
to 3 × 3 × 3, and the inner q′ was set to 9 × 9 × 9 to achieve
convergence of anharmonic phonon frequencies.

To this end, the anharmonic phonon renormalization only
considers the loop diagram ascribing from the quartic IFCs,
namely, the first-order SCP calculations. However, phonon
frequency shifts induced by the cubic anharmonicity (the
cubic IFCs) may not be negligible [16,19]. The frequency
shifts due to the bubble diagram were found to be negative
and contributed to resolving the overestimation in phonon
hardening from the quartic anharmonicity. Meanwhile, we
also carefully examined the tadpole diagram calculated by
the cubic IFCs, and it is negligible. Instead of employing a
perturbative manner [43], on top of the first-order SCP cal-
culations, additional negative frequency shifts resulting from
the bubble self-energy were estimated within quasiparticle
approximation using the following self-consistent equation
[19]:

�2
q,B = �2

q − 2�qRe
B∑
q

(�q), (5)

B∑
q

(�q) = 1

2h̄2

∑
q1,q2,s=±1

|V3(−q;q1;q2)|2

×
[

(n1 + n2+1)

s�c + �q1 + �q2

− n1 − n2

s�c + �q1 − �q2

]
.

(6)

Here,
∑B

q (�q) is the phonon frequency-dependent bub-
ble self-energy, �c = �q + i0+, with 0+ being a positive
infinitesimal, B denotes bubble diagram, and V3 is the 3ph
interaction strength [17,43]. In this paper, the IFC estimations
and SCP calculations were performed by using the ALAMODE

package [17,44].
We next introduce the equations of thermodynamics and

lattice thermal conductivity κL considering the effect of the
cubic and quartic lattice anharmonicities. These equations are
identical to those commonly used in the thermal conductivity
calculations except that harmonic phonon frequencies and
eigenvectors are substituted by anharmonically renormalized
frequencies and eigenvectors obtained by the SCP calcula-
tions, respectively. Based on the obtained harmonic (both the
original and renormalized second-order force constants) and

anharmonic IFCs, i.e., third- and fourth-order IFCs, the lat-
tice thermal conductivity κL can be calculated by solving the
Peierls-Boltzmann transport equation (PBTE). The linearized
PBTE can be written as [45,46]

Fq = τ 0
q (vq + 
q), (7)

where τ 0
q denotes the phonon relaxation time of mode q within

single-mode relaxation time approximation (SMRTA), vq de-
notes the intraband phonon group velocity corresponding to
mode q, and 
q represents a correction term denoting the
phonon population deviation from the SMRTA scheme. The
detailed form of 
q including 3ph, 4ph, and isotope-phonon
scattering terms can be expressed as


λ = 1

N0

(+)∑
q′q′′

�
(+)
qq′q′′ (ξqq′′Fq′′ − ξqq′Fq′ )

+ 1

N0

−∑
q′q′′

1

2
�

(−)
qq′q′′ (ξqq′′Fq′′ + ξqq′Fq′ )

+ 1

N0

(++)∑
q′q′′q′′′

1

2
�

(++)
qq′q′′q′′′ (ξqq′′′Fq′′′ − ξqq′Fq′ − ξqq′′Fq′′ )

× 1

N0

(+−)∑
q′q′′q′′′

1

2
�

(+−)
qq′q′′q′′′ (ξqq′′′Fq′′′ − ξqq′Fq′ + ξqq′′Fq′′ )

× 1

N0

(−−)∑
q′q′′q′′′

1

6
�

(−−)
qq′q′′q′′′ (ξqq′′′Fq′′′ + ξqq′Fq′ + ξqq′′Fq′′ )

+ 1

N0

(iso)∑
q′

�
(iso)
qq′ ξqq′Fq′ , (8)

and using Matthiessen’s rule, the phonon relaxation time τ 0
q

can be expressed as

1

τ 0
q

= 1

N0

[
(+)∑
q′q′′

�
(+)
qq′q′′ +

(−)∑
q′q′′

1

2
�

(−)
qq′q′′

]
+ 1

N0

(iso)∑
q′

�
(iso)
qq′

+ 1

N0

[
(++)∑

q′q′′q′′′

1

2
�

(++)
qq′q′′q′′′ +

(+−)∑
q′q′′q′′′

1

2
�

(+−)
qq′q′′q′′′

+
(−−)∑

q′q′′q′′′

1

6
�

(−−)
qq′q′′q′′′

]
, (9)

where the shorthand notation ξqq′ = ωq′/ωq, N0 represents the
total number of sampled phonon wave vectors in the first Bril-
louin zone, the superscripts (+−) or (++,+−,−−) denote the
3ph and 4ph scattering processes, i.e., q′′ = q ± q′ + Q and
q′′′ = q ± q′ ± q′′ + Q, respectively, where Q is a reciprocal-
lattice vector, and 3ph and 4ph scattering rates � in Eqs. (8)
and (9) take the form of

�
(±)
qq′q′′ = h̄π

4

{
nq′ − nq′′

nq′ + nq′′ + 1

}
ωqωq′ωq′′

|V (±)
qq′q′′ |2δ(ωq ± ωq′ − ωq′′ ),

(10)
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�
(
+++−−−

)

qq′q′′q′′′ = h̄2π

8N0

⎧⎨
⎩

(1 + nq′ )(1 + nq′′ )nλ′′′

(1 + nq′ )nq′′nq′′′

nq′nq′′nq′′′

⎫⎬
⎭

nq

× ∣∣V (
+++−−−

)

qq′q′′q′′′
∣∣2

δ

⎛
⎝ωq

⎡
⎣+

+
−

⎤
⎦ωq′

⎡
⎣+

−
−

⎤
⎦ωq′′ − ωq′′′

⎞
⎠

ωqωq′ωq′′ωq′′′
,

(11)

where Vqq′q′′ and Vqq′q′′q′′′ denote the 3ph and 4ph scattering
matrix elements, respectively [47]. Using the determined Fq

by solving Eq. (7) iteratively, the phonon tensor-dependent
thermal conductivity κL can be obtained as

κ
αβ

L = h̄2

kBT 2V N0

∑
q

nq(nq + 1)(h̄ωq)2υα
q Fβ

q , (12)

where T is the temperature, V is the unit-cell volume, and
υ is the phonon group velocity. Within the SMRTA scheme,
Eq. (12) can be expressed as κ

αβ

L = (1/V N0)
∑

q cqυ
α
q υβ

q τ 0
q

with the phonon mode-specific heat cq. Note that the iterative
scheme to PBTE is only applied for 3ph scattering processes
in this paper, while the 4ph scattering processes are treated at
the SMRTA level considering the exceptionally large memory
demands [47].

Conventionally, the Peierls-Boltzmann transport theory ne-
glects the coherence terms, i.e., off-diagonal terms of the heat
flux operators, which is valid when the phonon interbranch
spacings are much larger than the linewidths [23,48]. How-
ever, when the phonon mean free path (MFP) approaches the
interatomic spacing, the off-diagonal contributions become
nonnegligible and can be calculated by a unified theory of
thermal transport. The resulting formula for κL within the
SMRTA is given as follows [23]:

κ
P/C
L = h̄2

kBT 2V N0

∑
q

∑
j, j′

ωq j + ωq j′

2
υq j j′ ⊗ υq j′ j

× ωq jnq j (nq j + 1) + ωq j′nq j′ (nq j′ + 1)

4(ωq j − ωq j′ )2 + (�q j + �q j′ )2 (�q j + �q j′ ),

(13)

where the superscripts P and C represent the propagation and
coherence contributions, respectively. Here, �q j represents
the scattering rates including isotope-phonon, 3ph, and 4ph
scattering processes. The interbranch generalization of group
velocity is given as [49]

υq j′ j =
〈eq j | ∂D(q)

∂q |eq j′ 〉
2
√

ωq jωq j′
, (14)

where D(q) is the dynamical matrix, and eq j is the polarization
vector. The phonon band diagonal term ( j = j′) corresponds
to Peierls’s contribution (population contribution; κP

L) and the
off-diagonal terms ( j �= j′) give the coherence contribution
(κc

L), and their summation gives the total lattice thermal con-
ductivity κL = κP

L + κC
L . In this paper, the q mesh of the PBTE

for 3ph scattering processes was set to 14 × 14 × 14, which
gives well-converged results for the cubic BaZrO3 system
[17]. Considering the huge computational cost, a q mesh of
12 × 12 × 12 with a scalebroad parameter of 0.06 was used
for 4ph scattering processes to solve the PBTE. Thermal
transport calculations including phonon and coherent thermal
transport channels were performed by using the SHENGBTE

and FOURPHONON packages [47,50].

III. RESULTS AND DISCUSSION

A. Lattice dynamics

Lattice anharmonicity ascribing from the cubic and quartic
IFCs determines the reliable modeling of lattice dynamics.
We first investigated the impact of lattice anharmonicity on
phonon dispersions in cubic BaZrO3 crystal [see Fig. 1(a)].
The calculated phonon dispersions with different levels of
theory (HA and SCP calculations) are shown in Fig. 1(d).
Correspondingly, the temperature-dependent bond strengths
(calculated by the second-order IFCs) renormalized by lattice
anharmonicity are plotted in Figs. S1(a)–S1(f) in the SM [39],
which shows that the self-interaction strengths of all atoms
and the nearest-neighbor bond strengths of Zr-O and O-O in-
crease with increasing temperature, while other bonds become
softer. As expected, the HA phonon dispersions do not exhibit
imaginary frequencies in the whole Brillouin zone, indicating
the dynamical stability at 0 K for cubic crystalline BaZrO3,
in agreement with the experimental observation [32]. As the
temperature increases, continuous phonon hardening happens,
evident for low-frequency optical phonon modes (<6 THz) at
the �-(0.0,0.0,0.0), M-(0.5,0.5,0.0), and R- (0.5,0.5,0.5) high-
symmetry points. Such phonon hardening of optical modes
has been experimentally observed in crystalline BaZrO3 and
its analogs [25,26,51]. This phenomenon is unusual, as most
materials show phonon softening at higher temperatures due
to weaker bonding strengths.

The low-frequency optical modes at �, M, and R points
are identified to be the ferroelectric (�15) mode and in-phase
and out-of-phase antiferroelectric distortive (AFD; M3 and
R25) modes, which are associated with atomic antiparalleled
motions in the unit cell and in-phase and out-of-phase tilts
of ZrO6 octahedra, respectively. Figure 1(d) also shows the
atom-decomposed partial and total phonon density of states
(DOS), indicating that acoustic phonon modes are mainly
contributed by the vibrations of Ba atoms (giving rise to a
sharp DOS peak centered at ∼2.4 THz), while the optical
modes are dominated by O and Zr atoms. These features are
also clearly reflected by the atomic participation ratio of all
atoms projected onto the phonon dispersions, as presented in
Figs. S3(a)–S3(c) in the SM [39].

Compared with the notable phonon hardening of low-
frequency optical modes, the acoustic phonon modes (largely
contributed by the Ba vibrations) become only slightly harder,
and the intermediate-frequency optical modes (dominated
by Zr atoms) undergo negligible hardening with increas-
ing temperature, as depicted in Figs. 1(d) and S3(a)–S3(c)
in the SM [39]. In contrast, most high-frequency optical
modes (between 10 and 15 THz) with the majority con-
tribution from O atoms become softer with the increasing
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temperature, which is consistent with the experimental ob-
servations [see the transverse optical (TO) mode (Axe) in
Fig. 1(c)] [52,53]. It is worth noting that both the cubic and
quartic IFCs are important for reproducing accurate disper-
sions for this strongly anharmonic material. Only considering
the quartic IFCs tends to overestimate phonon frequency
[16,19] due to the neglection of the negative phonon frequency
shifts caused by bubble self-energy (the cubic IFCs), fail-
ing at producing the phonon softening in the high-frequency
modes within 10–15 THz at finite temperatures (see Figs.
S2(a) and S2(b) in the SM [39]) [19]. To illustrate it, we
calculated the squared phonon frequency of the R25 mode as
a function of temperature using different methods, i.e., the
first-order SCP calculations with polarization mixing (PM)
and that with the bubble diagram further included, as shown
in Fig. 1(b). Indeed, Fig. 1(b) shows that the anharmonic
phonon renormalization incorporating the bubble diagram sig-
nificantly suppresses the phonon frequency compared with
the first-order SCP calculations with PM as temperature in-
creases. Compared with the experimental results by Perrichon
et al. [33], we predict a relatively stronger temperature depen-
dence of the frequency of the R25 mode. A detailed discussion
about this discrepancy is provided in the SM (see Fig. S4
and the corresponding discussion) [39]. Nevertheless, the
anharmonic phonon renormalization considering bubble self-
energy correction accurately reproduces the phonon softening
in the high-frequency optical modes (between 10 and 15 THz
at the � point) with increasing temperature [see Fig. 1(d)],
in line with the experimental observation [52,53]. The pre-
dicted phonon softening ascribes to the results of competition
between the phonon hardening from the loop diagram (the
quartic anharmonicity) and phonon softening from the bub-
ble diagram (the cubic anharmonicity). However, both the
first-order SCP calculations (with/without PM) fail to produce
the experimentally observed phonon softening, as reported
in Figs. S2(a) and S2(b) in the SM [39], highlighting the
necessity of considering the bubble self-energy correction in
anharmonic phonon renormalization for BaZrO3. Here, we
need to emphasize that all the frequency shifts induced by
bubble and loop diagrams were estimated using the nonper-
turbative manner, i.e., the SCP method, in this paper. This is
because the frequency shifts of low-frequency optical modes
are comparable with their frequencies with increasing tem-
perature, e.g., the R25 mode, which results in the invalidity
of perturbative manner [43]. The frequency shifts of the
R25 mode calculated by the perturbative and nonperturbative
methods are presented in Fig. S5 in the SM [39], respectively;
indeed, the large difference in frequency shift exhibits be-
tween the perturbative and nonperturbative methods. To verify
our calculation, we compare the calculated optical phonon fre-
quencies and experimental values [52] at finite temperatures,
in Fig. 1(c), observing good agreement between them and
clearly illustrating the phonon hardening of low-frequency
optical modes [TO1(Last) and TO2(Slater)] and softening of
high-frequency modes [TO(Axe)]. In contrast, the conven-
tional HA method cannot capture these temperature-induced
frequency shifts.

To understand the phonon-hardening-induced-by-temper-
ature effect, we calculated the PESs of the lowest optical TO1
(�15) and in-phase (M3) and out-of-phase tilting modes (R25)

by displacing atoms by μk = M1/2
κ eq,kη, where Mk , eq,κ , and

η are the atomic mass of atom κ , eigenvector of atom κ at the
q point, and the amplitude of the normal mode coordinate,
respectively, as shown in Figs. 2(a)–2(c). All the PESs of
these low-frequency optical modes show the presence of a
relatively deep energy well with a flat bottom. The U-shaped
PESs remarkably deviate from the HA (second-order fitting)
[see Figs. 2(a)–2(c)] when atomic collective motions are in
large magnitude at elevated temperatures. Indeed, the O atoms
exhibit large mean squared atomic displacements at elevated
temperatures [see Fig. 2(d)]. The U-shaped PESs of those
optical modes can be approximated by a fourth-order poly-
nomial [54] [solid blue lines in Figs. 2(a)–2(c)], indicating
strong quartic anharmonicity at high temperatures. Therefore,
the phonon hardening in crystalline BaZrO3 stems from the
lattice anharmonicity-induced phonon renormalization. More-
over, a close inspection further reveals that �15, M3, and R25

modes have a majority contribution from the Zr-O bonds, of
which the nearest-neighbor second-order IFCs are enhanced
significantly (see Fig. S1(e) in the SM [39]).

We then examined the effect of phonon hardening on
lattice thermodynamic properties, including MSDs, phonon
intraband group velocity, and phonon specific heat [see
Figs. 2(d)–2(f)]. The O atoms possess the largest MSD com-
pared with the other two elements [see Fig. 2(d)], consistent
with the experimental observations [33]. The MSD by the HA
is often overestimated, while the anharmonic phonons further
suppress the MSD of all the atoms, thereby producing better
agreement with experimental results. Specifically, the MSD
of the atom O11 calculated by the SCP method agrees quite
well with the experimental values at T = 300 K [33] [see inset
in Fig. 2(d)]. This observation in MSD manifests the signifi-
cance of accurate treatment of lattice anharmonicity in lattice
dynamics modeling. In contrast, the SCP and HA methods
produce indistinguishable results for the phonon specific heat
[see Fig. 2(e)], which reasonably agree with the experimental
results [9,56]. Meanwhile, the phonon mode group velocities
decrease slightly within the frequency range of 1–4 THz with
increasing temperature, as shown in Fig. 2(f). This is because
the anharmonic phonon renormalization flattens the optical
phonon branches in the corresponding frequency region [see
Fig. 1(d)].

B. Lattice thermal conductivity

We next investigate the effect of lattice anharmonicity-
induced anharmonic phonon renormalization on the lattice
thermal conductivity κL in crystalline BaZrO3. The κL was
calculated within different levels of thermal transport the-
ory, namely, the HA/SCP+3/3,4ph and HA/SCP+3,4ph+OD
models, as presented in Fig. 3(a). In the particlelike phonon
picture, Peierls’ lattice thermal conductivity κP

L was calcu-
lated by the PBTE [21]. The lattice thermal conductivities
κP

L obtained from the lowest level of thermal transport theory,
namely, the HA+3ph model, are 5.93 and 1.24 Wm−1 K−1 at
300 and 1500 K, respectively [see Fig. 3(a)]. As highlighted
in the previous section, anharmonic phonon renormalization
plays a crucial role in accurately predicting finite-temperature
phonon energies. Hence, we improve the HA+3ph model
to a more accurate model, i.e., the SCP+3ph model, by
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FIG. 2. (a) Calculated potential energy surface (PES) of the lowest optical phonon mode (TO1, �15) at the � point. (b) PES of the in-phase
tilting mode (M3) at the M point. (c) PES of the out-of-phase tilting mode (R25) at the R point. (d) Calculated mean squared displacements
(MSDs) as a function of temperature. The dashed and solid lines correspond to the results obtained by harmonic approximation (HA) and
self-consistent phonon (SCP) calculations, respectively. Inset: Calculated MSDs in comparison with those observed in experiments [33].
The atomic MSD is a tensor-dependent variable [55], and 1 and 3 denote the Cartesian coordinates x and z, respectively. (e) Calculated
mode-specific heat with SCP calculation as a function of temperature in comparison with experimental results [9,56] and those from HA
calculations. (f) Calculated anharmonic phonon group velocities at T = 300 and 1500 K in comparison with those from the HA calculation at
T = 0 K.

considering phonon frequency shifts. Figure 3(a) shows that
the effects of anharmonic phonon renormalization on κP

L
are quite significant, and the corresponding calculated κP

L
has values of 8.31 and 2.64 Wm−1 K−1 at 300 and 1500
K, respectively. Similarly, a significant enhancement in κP

L
calculated using the SCP+3ph model were observed over
the entire temperature range (300–2000 K) compared with
those predicted by the HA+3ph model. This reveals that the

anharmonic phonon renormalization from the cubic and quar-
tic anharmonicities indeed plays a critical role in enhancing
phonon thermal transport at the lowest perturbation theory
level, i.e., considering only the 3ph scattering processes.
However, it is worthwhile mentioning here that the quartic
anharmonicity not only induces large phonon frequency shifts
but also brings about strong 4ph scatterings. With further
including additional 4ph scatterings, Fig. 3(a) shows that κP

L
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FIG. 3. (a) Calculated temperature-dependent lattice thermal conductivity κL based on different levels of thermal transport theory including
the harmonic approximation (HA)/self-consistent phonon (SCP)+3/3,4ph, HA/SCP+3,4ph+OD models. (b) Calculated thermal conductivity
κL using the HA+3,4ph and HA/SCP+3,4ph+OD models compared with the experimental results [9,11,12]. (c) Calculated cumulative phonon
thermal conductivity as a function of phonon mean free path within the HA/SCP+3ph models at T = 300 and 1500 K, respectively. (d) The
same as (c) but within the HA/SCP+3,4ph models.

calculated with HA/SCP+3,4ph relative to HA/SCP+3ph
models decreased by 27.84/20.78 and 59.00/38.85% at 300
and 1500 K, respectively. Interestingly, considering anhar-
monic phonon renormalization dramatically suppresses the
effect of 4ph scattering processes on thermal transport in
BaZrO3. In addition, the anharmonic phonon renormalization
and 4ph scattering processes induced by quartic anharmonic-
ity have the opposite effect on thermal transport. Therefore,
compared with κP

L computed using the HA+3ph model, the
enhancement in κP

L is the outcome of the competition between
the phonon hardening and 4ph scattering induced by the quar-
tic anharmonicity.

We continue to examine the frequency-dependent MFPs at
300 and 1500 K, respectively, as shown in Figs. S6(a)–S6(d)
in the SM [39]. For all the HA/SCP+3/3,4ph calculations,
many phonon modes possess MFPs close to or lower than
the minimum interatomic distances at 1500 K, despite the
anharmonic phonon renormalization increases the phonon
MFPs, indicating the necessity of considering coherence con-
tributions at elevated temperatures. To evaluate the effect of
coherence contributions on thermal transport in BaZrO3, we
next move up the theory level to the HA/SCP+3,4ph+OD
models which consider phonon and coherence contribu-
tions from both the cubic and quartic anharmonicity [see
Fig. 3(a)]. The main findings in thermal transport com-
puted with the HA/SCP+3,4ph+OD models are as follows:
(i) Additional off-diagonal terms of the heat flux operators
calculated by the cubic and quartic anharmonicity enhance
thermal transport over the entire temperature range, partic-
ularly at high temperatures, e.g., at 1500 K. (ii) Further
including 4ph scattering makes the coherence contribution
more important, even changing the microscopic mechanism of
thermal transport (coherence contribution dominates heat con-
duction) at extremely high temperatures, e.g., 2000 K, based

on the HA+3,4ph+OD model [see Fig. 3(a) and later analysis
of Fig. 6(a)]. (iii) Compared with the coherence contribution,
the anharmonic phonon renormalization plays a dominant role
in enhancing κL in crystalline BaZrO3. (iv) Finally, 4ph scat-
tering significantly suppresses the phonon transport, whereas
κL calculated using the highest level of thermal transport the-
ory in this paper, namely, the SCP+3,4ph+OD model, is still
larger than that predicted by the HA+3ph model. This high-
lights the critical role of anharmonic phonon renormalization
in enhancing the total κL.

To verify the validity of the highest level of thermal trans-
port theory in this paper, namely, the SCP+3,4ph+OD model,
in predicting thermal transport in crystalline BaZrO3, we com-
pared κL computed by HA+3,4ph and HA/SCP+3,4ph+OD
models with those obtained from experiments [9,11,12]. As
shown in Fig. 3(b), the predicted κP

L by the HA+3,4ph model
of BaZrO3 is ∼25.64–82.03% lower than the experimental
results from Liu et al. [11] and Yamanaka et al. [12] from
300 to 1500 K. The predicted κL by the HA+3,4ph+OD
model are also significantly lower than the measured κL from
Vassen et al. [9]. This reveals the invalidity of the con-
ventional HA method in modeling phonon thermal transport
in BaZrO3 due to its strong anharmonicity. Further includ-
ing anharmonic phonon renormalization induced by cubic
and quartic anharmonicities, namely, the SCP+3,4ph+OD
model, significantly improves the agreement between the pre-
dicted κL and experimental values over a wide temperature
range [9,11,12] [see Fig. 3(b)]. This highlights the importance
of proper treatment of anharmonic phonon renormalization
in modeling simple but highly anharmonic crystals. How-
ever, the discrepancies between the measured and predicted
κL using the SCP+3,4ph+OD model are still observed at
high temperatures in Fig. 3(b), which may be attributed to
the following reasons: (i) contribution of electronic thermal
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conductivity at high temperatures; (ii) lack of high-order
terms of the heat flux operators, namely, the anharmonic
contributions of the heat flux operators, which may have an
important contribution to the total κL at high temperatures
[57]; and (iii) thermal radiation heat loss during the measure-
ment at elevated temperatures. Although the SCP+3,4ph+OD
model does not accurately reproduce the experimental κL over
the entire temperature range, it reveals the importance of
proper treatment of lattice anharmonicity and coherent ther-
mal transport channel in predicting κL for highly anharmonic
materials.

We next proceed to examine the effect of anharmonic
phonon renormalization and high-order phonon scattering
process on the temperature dependence of lattice thermal
conductivity κL. As expected, the predicted Peierls’ thermal
conductivity κP

L considering only the 3ph scattering process
and using 0 K second-order force constants, i.e., obtained
by the HA+3ph model, follows temperature dependence of
κL ∼ T −1 [see Fig. 3(a)]. The additional 4ph scattering ef-
fect (HA+3,4ph model) not only significantly suppresses κP

L
but also drastically changes the temperature dependence of
thermal conductivity to T −1.3, which shows a strong tem-
perature dependence and is consistent with the observations
from Feng et al. [58] (note that, to compare with the exper-
iments, we only do the first-order fitting to the temperature
dependence of thermal conductivity, although Feng et al.
[58] proposed a second-order fitting for the temperature de-
pendence of κL when further considering 4ph scatterings. In
general, further considering 4ph scatterings results in stronger
temperature dependence of the κL than that calculated by
the lowest perturbation theory). Further considering anhar-
monic phonon renormalization and coherence contributions
results in the weaker temperature dependence of T −0.75, which
explains the experimental weak temperature dependence of
κL [see Fig. 3(b)]. This highlights again that the anhar-
monic phonon renormalization plays a determining role in
reproducing the magnitude of the experimental κL and its
temperature-dependence relation in ternary perovskite-type
oxides, e.g., BaZrO3.

To this end, we start to analyze the phonon propagation
and coherence channels individually due to their different
mechanisms of thermal transport. We calculated the cumula-
tive κP

L as a function of the MFP at 300 and 1500 K using
the HA/SCP+3/3,4ph models, respectively, as presented in
Figs. 3(c) and 3(d). The thermal conductivity calculated by
the HA/SCP+3/3,4ph models is almost saturated when the
MFP is >200 nm at both temperatures. The MFPs correspond-
ing to 50% thermal conductivity accumulation based on the
SCP+3ph(SCP+3,4ph) models are 7(4.4) and 2.3(1.6) nm at
300 and 1500 K, respectively. This suggests that the thermal
transport in BaZrO3 is dominated by the short-MFP phonons,
indicating strong anharmonic phonon scattering in crystalline
BaZrO3. The short MFPs rationalize the weak size effects
of thermal conductivity for BaZrO3. When the HA+3/3,4ph
models were used, the calculated cumulative κP

L curves signif-
icantly shift to the left side, especially at 1500 K.

To gain insight into the microscopic mechanisms of
phonon thermal transport in crystalline BaZrO3, we calcu-
lated the cumulative κP

L and spectral κP
L (ω) based on the

HA/SCP+3/3,4ph models at 300 and 1500 K, respectively,

as presented in Figs. 4(a) and 4(b). Here, κP
L is mainly con-

tributed by the phonon modes with a frequency <10 THz. The
contributions to κP

L from acoustic modes based on all the the-
oretical models are � 50% over the temperature range from
300 to 1500 K [see Figs. 4(c) and 4(d)], indicating that the
optical modes dominate heat conduction in BaZrO3. Similar
behavior is also observed in the same family of perovskite
oxide SrTiO3 [17]. Specifically, the lowest TO1 branches con-
tribute ∼10% of the total κP

L at different temperatures with
the HA/SCP+3/3,4ph models due to its dispersive phonon
branch [see Figs. 1(d), 4(c), and 4(d)]. Also, the relative
thermal conductivity contributions from acoustic modes are
enhanced due to the reduced coupling between acoustic and
optical phonons induced by the anharmonic phonon renormal-
ization [see Figs. 4(c) and 4(d)]. Our subsequent analysis will
show that the contribution to the total κP

L from acoustic modes
is strongly suppressed because of its strong coupling with the
low-frequency optical phonons. In addition, with additional
4ph scatterings, the relative κP

L contributions from acoustic
modes calculated with SCP+3,4ph relative to the SCP+3ph
model are also enhanced. This can be attributed to the low-
optical phonon hardening and the large 4ph scattering rates
existing in the low-frequency optical phonon region, resulting
in the enhancement and suppression in κP

L contributed from
the acoustic and optical modes, respectively [see Figs. 4(e)
and 4(f)].

Again, the anharmonic phonon renormalization signifi-
cantly enhances the thermal transport calculated using the
SCP+3/3,4ph models at 300 and 1500 K, respectively, and
the enhancement in κP

L is more obvious by further includ-
ing the 4ph scattering processes [see Figs. 4(a) and 4(b)].
We next explore the origin of the enhancements in κP

L , as
presented in Figs. 4(a) and 4(b); the enhancement in κP

L calcu-
lated by the SCP+3/3,4ph models at both 300 and 1500 K
mainly comes from the phonon modes <6 THz. Specifi-
cally, the overall relative enhancement in κP

L computed by the
SCP+3/3,4ph models sees an increase, percentagewise, from
40.15/53.86% at 300 K to 111.90/216.08% at 1500 K. Com-
pared with optical modes, acoustic modes contribute more to
the relative enhancement in κP

L considering the 4ph process,
specifically, 29.25 and 127.85% increase at 300 and 1500 K,
respectively. However, considering only the 3ph process, the
acoustic and optical modes play an equal role in enhancing
κP

L [see Figs. 4(a)–4(d)]. This highlights the importance of
the 4ph scattering process in accurately describing thermal
transport in cubic perovskite BaZrO3 and reveals that the
renormalized acoustic modes dominate the enhancements in
computed κP

L , although the optical modes dominate the heat
conduction.

According to the kinetic theory, the changes in specific
heat induced by lattice anharmonicity are negligible, and the
phonon group velocities show a slight decrease within 1–4
THz [see Figs. 2(e) and 2(f)], the enhancement in κP

L is there-
fore attributed to the suppression in 3ph and 4ph scattering
rates by the anharmonic phonon renormalization. Indeed, the
comparison of the phonon scattering rates calculated by the
HA+3/4ph and SCP+3/4ph models in Figs. 4(e), 4(f), S7(a),
and S7(b) in the SM [39], shows a reduction in 3ph and
4ph scattering rates of those phonon modes lying <6 THz,
evident for the 4ph scattering process and at 1500 K, in line
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FIG. 4. Comparison between the harmonic approximation (HA)+3/3,4ph and self-consistent phonon (SCP)+3/3,4ph models. (a) Spectral
and cumulative lattice thermal conductivities at T = 300 K. (b) The same as (a) but T = 1500 K. (c) Thermal conductivity contributions from
the total acoustic, optical, and the lowest TO1 branches calculated using the HA/SCP+3ph models, respectively. (d) The same as (c) but
using the HA/SCP+3,4ph models. (e) Calculated three- and four-phonon scattering rates using the harmonic and anharmonic frequencies and
eigenvectors at T = 300 K, respectively. (f) The same as (e) but T = 1500 K. The dash yellow line assumes the scattering rate to be twice the
phonon frequency to estimate minimum κL [59], and the phonons are well-defined when their scattering rates are below this line.

with the enhancement in the spectral κP
L (ω) in Figs. 4(a) and

4(b). Moreover, the anharmonic phonon renormalization not
only reduces the 3ph and 4ph scattering rates but also drags
most of the ill-defined phonons back to become well-defined,
especially for 4ph scatterings and at high temperatures, e.g.,
1500 K (phonon scattering rates lower than Cahill’s limit [59])
[see Figs. 4(e) and 4(f)]. This contributes to restoring the va-
lidity of particlelike phonon pictures by promoting the phonon
MFPs [14]. More specifically, we found that both the 3ph
and 4ph scattering rates within a low-frequency regime, i.e.,

∼2 and 4 THz for 3ph and 4ph scattering processes, respec-
tively, exhibit a peculiar feature in Figs. 4(e) and 4(f), i.e., the
phonon modes split into two separated portions. The phonon
scattering rates in one part increase with increasing frequency,
whereas those in the other part show an opposite trend. In the
above landscape, the former part is contributed by the acoustic
modes, and it follows the frequency dependence of �

3ph
q ∼ ω2

and �
4ph
q ∼ ωξ , where ξ > 2, a typical feature of acoustic

phonon modes for 3ph [44] and 4ph processes [58]. The latter
derives from the phonons near the R25 modes, indicating the

224303-10



ANHARMONICITY-INDUCED PHONON HARDENING AND … PHYSICAL REVIEW B 105, 224303 (2022)

FIG. 5. (a) Calculated energy- and momentum-conserving
phonon weighted phase space (WPS) using the harmonic approxima-
tion (HA)/self-consistent phonon (SCP)+3ph and HA/SCP+3,4ph
models at T = 300 K, respectively, the superscripts (+, −; ++,
+−, −−) of the WPS W denote the scattering processes, namely,
the absorption (q + q′ → q′′) and emission (q → q′ + q′′) pro-
cesses for three-phonon scattering processes and the recombination
(q + q′ + q′′ → q′′′), redistribution (q + q′ → q′′ + q′′′), and split-
ting (q → q′ + q′′ + q′′′) processes for four-phonon scattering pro-
cesses. (b) The same as (a) but at T = 1500 K.

strong anharmonicity of the AFD mode, e.g., the R25 modes,
as also observed in another perovskite SrTiO3 [17]. Particu-
larly, the phonon scattering rates of phonon modes around the
R point are close to or larger than Cahill’s limit within the
HA theory; however, the anharmonic phonon renormalization
significantly suppresses them and makes them well-defined at
high temperatures [see Figs. 4(e) and 4(f)]. This phenomenon
highlights the importance of proper treatment of strong anhar-
monic modes in the accurate prediction of κP

L in crystalline
BaZrO3 at elevated temperatures.

The magnitude of the 3ph and 4ph scattering rates is ap-
proximately proportional to the phonon WPS and the square
of the scattering matrix elements (SSMEs) [47,50]. To shed
light on the microscopic origin of the reduction in the 3ph
and 4ph scattering rates, we calculated the WPS with the
HA/SCP+3/3,4ph models at 300 and 1500 K, respectively,
as shown in Figs. 5(a) and 5(b). Within the phonon frequency
range of 0–2 THz, the reduction in the 3ph absorption pro-
cesses W + dominates over the change of the total 3ph WPS
induced by anharmonic phonon renormalization. By com-
paring the change in the 3ph scattering rates and the WPS,

the suppression in the WPS induced by anharmonic phonon
renormalization is sufficient to explain the reduction in 3ph
scattering rates in the same frequency range, particularly for
phonons near the R25 mode [see Figs. 4(e), 4(f), 5(a), and
5(b)]. Therefore, we attribute the reduction in phonon scat-
tering rates to the reduced coupling between the acoustic and
optical phonons within the frequency range of 0–2 THz. In
addition, the suppression in the WPS of the 3ph emission
processes W − was also observed in the phonon frequency
range of 2–6 THz, weakening the strong coupling between
the transverse acoustic (TA)/longitudinal acoustic (LA) and
TO phonons, e.g., phonons near the �15 mode [60]. This
results in the reduction in 3ph scattering rates and enhances
the spectral κP

L (ω) in the corresponding frequency interval. To
reveal the role of the WPS in suppressing phonon scattering
rates, we further quantitatively examined the SSMEs in two
specific phonon modes, namely, the TA and R25 modes, using
the harmonic and anharmonic phonon eigenvectors (see Figs.
S8(a) and S8(b) in the SM [39]). As expected, we observed the
negligible change in the SSMEs for both TA and R25 modes
with increasing temperature, revealing that the reduction in
WPS is responsible for the suppression in 3ph scattering rates
and the enhancement in the spectral κP

L (ω).
We move on to unveil the origin of the reduction in the

4ph scattering rates induced by anharmonic phonon renor-
malization. As presented in Figs. 5(a) and 5(b), we observed
the evident reduction of the 4ph redistribution process W +−
and splitting process W −− in the frequency ranges of 0–6
THz and 5–10 THz, respectively, when the phonons are anhar-
monically renormalized at finite temperatures. The magnitude
of the reduction in 4ph WPS is consistent with the suppres-
sion of 4ph scattering rates induced by the anharmonically
renormalized phonons in the same frequency range [see Figs.
4(e), 4(f), 5(a), and 5(b)]. Additionally, the 4ph SSMEs are
of a minor effect on the change in phonon scattering rates
because the phonon frequency shifts (∇ω) are not involved
in the calculated SSMEs [47,50], which is verified for the
3ph scattering processes (see Figs. S8(a) and S8(b) in the SM
[39]). Interestingly, the corresponding shifts in both the 3ph
and 4ph WPSs are mainly contributed by strongly anharmonic
low-frequency optical modes, i.e., the phonons in the vicinity
of the �15, M3, and R25 modes due to their large phonon fre-
quency increase, as indicated by the similar pace of the WPS
shift and the phonon hardening [see Figs. 1(d), 5(a), and 5(b)].
Overall, the low-frequency optical phonon hardening, namely,
the phonon frequency shifts near the �15, R25, and M3 modes,
significantly suppresses the 3ph and 4ph WPSs. The phonons
with a frequency <6 THz, which are the major heat carriers,
coexist with large 3ph and 4ph WPSs giving rise to the cou-
pling between the acoustic and optical modes. The phonon
renormalization dramatically weakens the coupling between
the acoustic and optical modes in the low-frequency region
and enhances the relative contribution of κP

L from acoustic
phonons [see Figs. 4(c) and 4(d)].

Finally, we move on to analyze the coherent thermal trans-
port channel resulting from the off-diagonal terms of the heat
flux operators (wavelike interbranch tunneling of coherence),
which is related to the lattice anharmonicity (phonon broaden-
ing) and phonon interbranch spacings [48,49,61]. Considering
both the 3ph and 4ph scatterings, Fig. 6(a) shows that the
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FIG. 6. (a) Temperature-dependent thermal conductivity of the interbranch coherence contribution κC
L calculated using the harmonic ap-

proximation (HA) and self-consistent phonon (SCP) frequencies and eigenvectors with/without considering four-phonon scattering processes,
respectively. (b). The spectral and cumulative coherent thermal conductivity with SCP+3,4ph calculation at T = 300 and 1500 K, respectively.
The contribution of phonon mode j in coherence couplings between two phonon modes (q, j) and (q, j′) is calculated by cq j/(cq j + cq j′ ),
where cq j is the phonon mode-specific heat. (c) Two-dimensional modal κC

L (ω1, ω2) of the contribution to the thermal conductivity of
interbranch coherent terms calculated using anharmonic phonon frequencies and eigenvectors and considering both the three- and four-phonon
scattering processes at T = 300 K. The diagonal data points (ω1 = ω2) correspond to phonon degenerate eigenstates. (d) The same as (c) but
T = 1500 K.

coherence contributions calculated by anharmonic phonon
frequencies and eigenvectors contribute 2.68% to the total
thermal conductivity κL of BaZrO3 at 300 K. This small
contribution can be attributed to its relatively sparse phonon
branches despite the strong anharmonicity. As the temperature
increases, the contribution of the coherence term becomes
larger, e.g., 17.38% at 1500 K. Therefore, the coherent terms
become nonnegligible at high temperatures and reduce the
discrepancy between the predicted and measured results at
elevated temperatures.

To better understand the impact of lattice anharmonicity
including third and fourth orders on the coherent thermal
transport channel, we further compare the coherence contribu-
tions obtained by the HA/SCP+3/3,4ph models, respectively.
Figure 6(a) shows that the anharmonically renormalized
phonons suppress the coherence contributions, which results
from the reduction in the 3ph and 4ph scattering rates [see
Figs. 4(e) and 4(f)]. In contrast, further considering 4ph scat-
tering processes enhances the coherence contributions due to
the enhancement in phonon broadening (phonon scattering
rates). To get deep insight into the microscopic mechanism
of the coherent thermal transport channel, we calculated the

spectral contribution to the coherent thermal conductivity
κC

L (ω) using the SCP+3,4ph model, as plotted in Fig. 6(b).
Figure 6(b) shows that the phonon modes within 4–10 THz
contribute most to the coherent terms due to relatively dense
phonon branches in this region. In addition, it also reveals
that almost all the low-frequency modes <7 THz are ex-
cited at 300 K. Figure 6(c) shows that the couplings between
the phonon quasidegenerate states (ω1

∼= ω2) mainly con-
tribute to the coherent terms at 300 K. However, in addition
to the quasidegenerate state contributions, the couplings be-
tween phonon modes with very different frequencies, e.g., 6/8
THz, 10/12 THz, and 14/21 THz, account for a noticeable
contribution at 1500 K due to stronger anharmonicity of high-
frequency phonon modes and high-frequency-phonon-mode
excitation at high temperatures [see Figs. 6(b) and 6(d)]. We
note that the coherence contributions of simple crystalline
BaZrO3 do not dominate the total thermal conductivity like
complex compounds CsPbBr3 [23] and Cu12Sb4S [16], but it
becomes more and more important at high temperatures in this
highly anharmonic material.

To this end, using the highest level of thermal transport
theory in this paper, i.e., the SCP+3,4ph+OD model, our
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current theoretical results successfully uncover the micro-
scopic mechanisms of thermal transport in cubic perovskite
BaZrO3 over a wide range of temperatures. However, the
current κL may be improved by further considering the follow-
ing factors: (i) thermal expansion with increasing temperature
and (ii) adding up the anharmonic contributions of heat flux
operators.

IV. CONCLUSIONS

In summary, we have performed ab initio calculations to
investigate the lattice dynamics and microscopic mechanisms
of thermal transport in crystalline BaZrO3 by considering
the anharmonic phonon renormalization induced by both the
cubic and quartic anharmonicities, 3ph and 4ph scattering
processes, and coherent thermal transport channel. In this pa-
per, all the phonon frequency shifts induced by bubble (cubic
anharmonicity) and loop diagrams (quartic anharmonicity)
were evaluated in a nonperturbative manner (SCP) instead of
a perturbative manner due to the large phonon hardening of
low-frequency optical modes. Our results show that the low-
frequency optical modes corresponding to weak antiparalleled
motions between oxygen ions and cations (Ba and Zr) and
ZrO6 octahedra tilting exhibit strong anharmonicity due to
the associated large MSD of O atoms and deep-flat U-shaped
PESs. Anharmonic phonon renormalization results in notable
phonon hardening of strongly anharmonic low-frequency op-
tical phonons and phonon softening in the high-frequency
regime stemming from the competition between the phonon
hardening from the quartic anharmonicity and phonon soft-
ening from the cubic anharmonicity. The anharmonic phonon
renormalization remarkably increases the predicted values of
thermal conductivity κL relative to the conventional HA. This
enhancement is mainly due to the phonon hardening of low-

frequency phonons, which drastically reduces the 3ph and 4ph
scattering rates by suppressing the phonon WPS of the low-
frequency phonon modes. The optical modes dominate the
thermal transport of crystalline BaZrO3 over a wide range of
temperature, whereas the acoustic modes play an essential role
in enhancing the total κL. Moreover, the strongly anharmonic
low-frequency optical modes exhibit strong coupling with the
acoustic phonons, leading to the low κL in crystalline BaZrO3.
The coherence contributions to the total thermal conductiv-
ity κL are negligible at low temperatures due to the sparse
phonon branches in the simple cubic structure of BaZrO3;
however, they become nonnegligible at elevated temperatures
due to large 3ph and 4ph scattering rates and high-frequency
phonon excitation. These findings highlight the importance
of proper treatment of lattice anharmonicity, i.e., cubic and
quartic anharmonicity, in precisely modeling lattice dynamics
and thermal transport in materials with strong anharmonicity.
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