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Unsupervised detection of decoupled subspaces: Many-body scars and beyond
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2ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology,

Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
3ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain

4Mark Kac Complex Systems Research Center, Uniwersytet Jagielloński, PL-30-348 Kraków, Poland
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Highly excited eigenstates of quantum many-body systems are typically featureless thermal states. Some
systems, however, possess a small number of special, low-entanglement eigenstates known as quantum scars. We
introduce a quantum-inspired machine-learning platform based on a quantum variational autoencoder (QVAE)
that detects families of scar states in spectra of many-body systems. Unlike a classical autoencoder, QVAE
performs a parametrized unitary operation, allowing us to compress a single eigenstate into a smaller number
of qubits. We demonstrate that the autoencoder trained on a scar state is able to detect the whole family of scar
states sharing common features with the input state. We identify families of quantum many-body scars in the
PXP model beyond the Z2 and Z3 families and find dynamically decoupled subspaces in the Hilbert space of
disordered, interacting spin-ladder model. The possibility of an automatic detection of subspaces of scar states
opens new pathways in studies of models with a weak breakdown of ergodicity and fragmented Hilbert spaces.
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I. INTRODUCTION

Recent progress in noisy, intermediate-scale quantum
(NISQ) computers [1–3] lead to a fast development of al-
gorithms suited for use on these machines [4] with the
purpose of achieving a quantum advantage in various areas:
physics, machine learning, quantum chemistry, and combina-
torial optimization. Of particular importance are variational
quantum algorithms [5], in which quantum circuits are ap-
plied to quantum states, whose parameters are optimized with
classical feedback loops. Physical applications include vari-
ational quantum eigensolvers [6–8], algorithms for ground-
state preparation [9], time-evolution simulations [10–12], or
quantum variational autoencoders (QVAE) [13–15]. The au-
toencoders encode the input data into a reduced representation
and then use it to reconstruct the data with the optimal fidelity.
As such, autoencoders are basic tools for data compression
in machine learning. In turn, the task of QVAE is to realize
the unitary transformation that transfers the input entangled
n-qubits state into a product state of k, relevant, entangled
qubits and n − k “trash” separable qubits [see Eq. (1) below].
QVAE have been realized experimentally in a photonic device
[16] and recently employed in investigation of quantum phase
transitions [17]. In this work we demonstrate the applicability
of QVAE in an analysis of properties of highly excited eigen-
states in quantum many-body systems.

According to eigenstate thermalization hypothesis (ETH)
[18–20], a small subsystem of an isolated, interacting quan-
tum many-body system is described by a thermal density
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matrix after a long-time evolution, irrespectively of the ini-
tial nonequilibrium state. However, some systems violate
this paradigm of quantum ergodicity and exhibit a long-
time behavior dependent on the initial state. Examples of
such nonergodic systems include integrable systems [21] and
many-body localized phases in the presence of quenched dis-
order [22–26]. Another mechanism of ergodicity breaking in
a form of persistent oscillations for particularly chosen initial
states has been discovered in the experiment with ultracold
Rydberg atoms [27]. This behavior arises due to the pres-
ence of few atypical, almost equally spaced eigenstates with
low entanglement entropy, the so-called quantum many-body
scars (QMBS) [28,29] that are embedded in the otherwise
thermal spectrum of a quantum many-body system. For initial
states with high overlap with a few QMBS, one observes long-
lived oscillations of observables, whereas for generic initial
conditions the system quickly approaches the thermal equi-
librium state. Several theories explaining the emergence of
QMBS were proposed starting long time ago with the notion
of “scars of symmetries” [30] (see also [31]): a spectrum gen-
erating algebra [32,33], Krylov restricted thermalization [34],
projector embedding [35], and the presence of symmetric,
coupled subspaces [36]. The QMBS occur in PXP model [37],
describing Rydberg atoms chain, but also in Affleck-Kennedy-
Lieb-Tasaki (AKLT) model [38,39], quantum local random
networks [40], frustrated magnetic lattices [41], lattice gauge
theories [42–44], optical lattices [45], or spin systems [46,47].

The aim of this work is to provide a scheme to detect fam-
ilies of QMBS based on QVAE. A family of QMBS is formed
by eigenstates which (a) have an increased overlap with some
“parent” state, (b) are characterized by a sub-volume-law en-
tanglement entropy. The property (a) enables our algorithm
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to implicitly extract the features of the parent state from a
single eigenstate in the training and encode them in QVAE.
The probability that training succeeds is enhanced by the
property (b). The performance of the trained autoencoder on
other eigenstates serves as a measure of similarity between
the eigenstates. The other representatives of the family of
QMBS are found as eigenstates for which the performance
of QVAE is significantly better than the typical behavior. In
the following, we first describe details of the scheme. Then
we apply it to detect the Z2 family and to discover different
families of QMBS in the PXP model [28,37] and to identify
subspaces of decoupled eigenstates in the spin ladder of [46].

II. QUANTUM VARIATIONAL AUTOENCODER

The QVAE aims to compress the n-qubit input state |ψ〉
into a k-qubit state |φ〉 (where k < n), i.e., to perform a unitary
transformation U (θ) parametrized by the circuit parameters θ,

|ψ〉 → U (θ)|ψ〉 = |φ〉 ⊗ |0〉⊗(n−k), (1)

where the last n − k ≡ Ntrash qubits are called “trash” qubits.
The QVAE circuit starts with randomly initialized parameters
θ which are variationally adjusted (here, using simultaneous
perturbation stochastic approximation optimizer [48–51]) to
“optimal” value θ = θ∗ satisfying Eq. (1) for a given set of
input states {|ψi〉}. At each optimization step, the unitary
U (θ) is applied on {|ψi〉} and the trash qubits are measured
giving either “0” or “1.” The total number of 1 defines the
cost function that the optimizer tries to minimize in the next
parameter update. (Cost function is the Hamming distance
between the measured bit string of 1 and 0 on all trash qubits
and the desired |0〉⊗(n−k) trash qubit configuration.) Unlike for
classical autoencoders, training a unitary encoder U (θ) auto-
matically provides the decoder U †(θ) that can be applied to
the compressed state |φ〉 ⊗ |0〉⊗(n−k) to reconstruct the input
state |ψ〉. The cost function fulfills the requirement of locality
on the trash qubits which is critical for circumventing the
“barren plateaus” of the cost landscape and trainability of the
model (see [52,53] for further details).

The architecture of the quantum circuit has to be express-
ible (i.e., able to encode a large class of quantum states with
a few trainable parameters θ) and to possess a large entan-
gling capability to transfer the entanglement of the whole
system out of the trash qubits [54]. Building on the previous
results [52,54] we choose alternating layered ansatz consisting
of layers with single-qubit rotations around the y axis by
an angle θ ∈ [0, 2π ], Ry(θ ) = exp(−iσyθ/2), and two-qubit
controlled-Z (CZ) gates that apply a σz operator on one of the
qubits if the other one is in the state |1〉 and act as an identity
if the other qubit is in the state |0〉. Each of L layers of QVAE
consists of Ry(θ ) rotations of all qubits and CZ entangling
operations between the neighboring qubits, with the pairs of
entangled qubits alternating from layer to layer following a
checkerboard pattern (see [55]).

In our scheme, as an input state |ψ〉 to train QVAE we
take a single scar state that belongs to a given family of
QMBS in a considered many-body system. To identify the
other scars from the same family, we evaluate the performance
of QVAE on eigenstates from the spectrum of the model.
The numerical complexity of the procedure is thus O(D) times

the number of iterations for QVAE training and O(D2) for the
comparison of eigenstates where D is the dimension of the
Hilbert space. This is lower than the exact diagonalization cost
O(D3) required for generation of the input data.

III. SCARS IN THE PXP MODEL

The PXP Hamiltonian reads

Ĥ =
∑

i

P̂i−1σ
x
i P̂i+1 (2)

with periodic boundary conditions, where the projectors
P̂i = (1 − σ z

i )/2 ensure that neighboring spin-up states are
separated at least by one lattice site, hence implementing
the Rydberg blockade phenomenon [56] as a constraint on
the Hilbert space. Certain specific initial states like Z2 =
|0101 . . . 〉, Z3 = |001001 . . . 〉 and product states that contain
domain walls between Z2 and Z3 configurations give rise
to persistent long-time oscillations of the local observables
and the revivals of the wave function, while other states like
|Z0〉 = |0000 . . . 〉 and |Z4〉 = |00010001 . . . 〉 show fast re-
laxation without revivals. The presence of families of Z2 and
Z3 quantum scars gives rise to this behavior [57–65]. Some of
the scarred states in the PXP model were constructed exactly
as matrix product state (MPS) with a finite bond dimension
[66], from which the family of Z2 scars was generated as
quasiparticle excitations.

Input data to QVAE correspond to the eigenstates of the
PXP model obtained through exact diagonalization for the
system size N = 24 in the inversion-symmetric and zero-
momentum sector with the Hilbert space dimension D =
2359 (D � 2L due to constraints and periodic boundary con-
ditions). Local constraints of the PXP model allow to reduce
the computational cost of the procedure by considering only
the projection of QVAE onto the constrained subspace of
Hilbert space. To that end, it suffices to substitute Ry(θ ) →
R̃y(θ ), CZi → Ei in the circuit, with R̃y(θ ) rotating qubit i only
if qubits i − 1, i + 1 are in the |0〉 state (identity otherwise),
and Ei acting on four qubits i − 1, . . . , i + 2, performing the
entangling operation of qubits i and i + 1 if qubits i − 1, i + 2
are in the state |0〉 (identity otherwise). Exact matrix forms
of these operators are given in [55]. This version of the
QVAE will be referred to as the CQVAE. We should note
that the translational and inversion symmetries of the original
Hamiltonian are not exploited in the CQVAE because these
symmetries are manifestly broken by the considered few-qubit
gates. Thus, for N = 24, the CQVAE still acts on 2359 eigen-
states but each of them is expressed in a 103 682-dimensional
Hilbert space.

We select a Z2 scar at energy E ≈ −2.67 as the training
input state |χ0〉. This state has a significant overlap with the
Z2 configuration, i.e., |〈χ0|Z2〉|2 = 0.15 (cf. with a value
expected in the high-temperature thermal ensemble 1/D ≈
0.0004). Figure 1(a) shows performance of a trained autoen-
coder on eigenstates from the PXP Hamiltonian spectrum.
Indeed, we see that the Z2 scars are characterized by a signifi-
cant drop in the CQVAE cost. Plots of CQVAE reconstruction
fidelity (not shown) also reveal high-fidelity peaks on Z2

scars. In this way, the family of Z2 scars can be identified in
an automatic way. Interestingly, the Z3 family has the largest

224205-2



UNSUPERVISED DETECTION OF DECOUPLED … PHYSICAL REVIEW B 105, 224205 (2022)

FIG. 1. (a) Performance of the CQVAE with Ntrash = 8 and L =
7 trained on the strongest Z2 scar of the PXP model with N = 24
close to the middle of the spectrum, applied to all eigenstates. Best
performance is observed in the eigenstates from the Z2 scars family
that have an increased overlap with the |Z2〉 state, as presented in (b).
Lines serve as a guide to the eye. Error bars come from averaging
over 32 independent trainings.

cost even though it has low entanglement entropy showing
that CQVAE learned to distinguish the real-space patterns Z3

scar states from the dominant configurations of Z2 family [see
Fig. 1(b)]. Interestingly, at smaller system sizes, e.g., N = 12,
we can recover the “parent” state |χ〉 ≈ |Z2〉 for the family by
optimizing the input of the trained CQVAE to minimize cost
(see [55] for details).

The next step is to find other scarred families. We
select eigenstates with a low entanglement entropy S =
−TrρA ln ρA< 2.7, where ρA is the reduced density matrix of
the half of the spin chain, train the CQVAE on each of them,
and calculate the cost on other eigenstates. Pairs of eigenstates
that have a low cost when training on both of them are re-
garded as belonging to the same scar family. This property
is transitive, i.e., if eigenstates |E1〉, |E2〉 have a small cost
and |E2〉, |E3〉 as well, then a set |E1〉, |E2〉, |E3〉 is regarded
as one family. Figure 2 shows five families discovered by
the CQVAE in the PXP model for N = 24, with an example
of the training results on one representative of the family
No. 1 [Fig. 2(a)]. The eigenstates from the family No. 1 are
characterized by increased overlaps with several Fock states,
the example of |i1〉 = |101010010010100100100100〉 state is
shown in Fig. 2(b). Other Fock states with high overlaps with
the family No. 1 contain a mixture of the same number of
rearranged three Z2 and six Z3 patterns. The same holds true
for families No. 2–No.5 of scar states found for N = 24. Pat-
terns with a larger period can be found, e.g., family No. 2 has
increased overlaps with four Z3 and three Z4 configurations.
In that way, our QVAE-based scheme allows to explain the
presence and identify relations between eigenstates with low
entanglement entropy of the PXP model [see Fig. 2(c)]. Since
the families of scar states do not have a single simple represen-
tative Fock state, their classification, especially in system-size
independent manner is more involved; in [55] we show the
details of the families for N = 24.

FIG. 2. (a) CQVAE cost of eigenstates of the PXP model, N =
24, reveals a scar “family No. 1” upon training on one of its rep-
resentatives. Similar plots for other scarred families found by the
algorithm are given in [55]. (b) Overlaps of the eigenstates with state
|i1〉. (c) Entanglement entropy vs energy.

IV. DISORDERED SPIN LADDER

Consider a spin ladder with Hamiltonian

H = H‖ + H⊥ = 1

4

L−1∑

k=1

h‖
k,k+1 + 1

4

L∑

k=1

h⊥
k , (3a)

where

h‖
k,k+1 = σ x

k σ x
k+1 + σ

y
k σ

y
k+1 + τ x

k τ x
k+1 + τ

y
k τ

y
k+1,

h⊥
k = J

(
σ x

k τ x
k + σ

y
k τ

y
k

) + 
k σ z
k τ z

k + hk
(
σ z

k + τ z
k

)
. (3b)

k = 1, . . . , N labels the rungs of the ladder, and spins on
the left and right legs of the ladder are represented by
Pauli matrices σα

k and τα
k (α = x, y, z), respectively. Values

of hk are drawn from a uniform distribution in the inter-
val [−h, h], and we set J = 1, h = 0.1, 
k = 1. The model
has a U(1) symmetry associated with the total magnetiza-
tion Z = ∑N

k=1(σ z
k + τ z

k ) and a Z2 symmetry associated with
the exchange of the ladder legs σα

k ↔ τα
k . Even though this

model has signatures of quantum ergodicity (e.g., energy-
level spacings follow the Wigner-Dyson distribution), one can
analytically construct exact invariant subspaces of the Hamil-
tonian (3) that are not related to any local conserved quantity
as shown in [46]. It is first noticed that the eigenstates of h⊥

k

on a single rung are |S〉 = (|01〉 − |10〉)/
√

2 (“singlet”), |T 〉 =
(|01〉 + |10〉)/

√
2 (“triplet”), |D〉 = |00〉 (“doublon”), |H〉 = |11〉

(“holon”), where the first (second) row of the vector corre-
sponds to the left (right) leg of the ladder. Product of such
states is an eigenstate of the total leg Hamiltonian H⊥. By
examining the action of the remaining H‖ on the two-rung
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FIG. 3. Cost function of QVAE trained on an eigenstate from the
one-holon subspace of the spin-ladder model with N = 8 (16 spins
in total), evaluated on the eigenstates from Z = 1 symmetry sector.
Color bar denotes the bipartite entanglement entropy for 4 rungs.
Results averaged over 56 independent trainings of the QVAE with
Ntrash = 5 and L = 10.

states |{ST, SH, T H, HH . . . }〉 one shows that H‖ annihi-
lates configurations ST, T S, HH, DD, and moves H (or D)
around if S or T are its neighbors. It follows that configu-
rations |ST ST ST . . . 〉 and |T ST ST S . . . 〉 are annihilated by
H‖ (they are a “vacuum background”). Upon inserting a given
number of only holons (or doublons) between them, e.g.,
|ST SHjT SHkT S . . . 〉, one constructs an invariant subspace
with a given number of the four letters that are conserved
under the action of the total Hamiltonian H . Dimension of
such a subspace after r insertions of doublons (or holons) is(N

r

)
.
Construction of invariant subspaces in this model required

an involved theoretical insight [46]. Here, by employing the
QVAE we can detect their presence in an automatic way. Let
us restrict only to the Z = 1 symmetry sector of the Hamil-
tonian (3) with N = 8 rungs and a single disorder realization.
We encode the ladder state onto the spatially one-dimensional
quantum circuit, by mapping the left (right) leg of the ladder to
odd (even) sites of the circuit. In this manner, the neighboring
spins of the ladder are mapped to sites of the circuit that
are close to each other. Training of the QVAE on a generic
eigenstate and application to all others gives a featureless
QVAE cost. However, if we train on an eigenstate from the
invariant subspace represented by state |ST ST HST S〉 with
1 holon H , 4 singlets S, and 3 triplets T , we get a signifi-
cantly lower error on all 8 eigenstates that span this subspace
(see Fig. 3). The QVAE cost on the other invariant subspace
|T ST SHT ST 〉 with a different number of singlets and triplets
[but an identical entanglement entropy (notice the color scale
in Fig. 3)] is comparable to the QVAE cost on generic, highly
entangled, eigenstates. Similarly, a QVAE trained on an eigen-
state from the subspace |T ST SHT ST 〉 yields small costs on
eigenstates from this subspace whereas the cost on eigenstates
from |ST ST HST S〉 is substantial (plot not shown). This is
in a full analogy with results for PXP model and demon-
strates how QVAE identifies and distinguishes families of scar
states.

V. CONCLUSION

We proposed a scheme based on QVAE that allows to iden-
tify families of nonergodic eigenstates of quantum many-body
systems. We validated our scheme on the Z2 family of scar
states of the PXP model. Then, our scheme was employed to
demonstrate presence of families of scar states in spectrum of
PXP model beyond the Z2 and Z3 families. To confirm the
generality of our approach, we used it to identify the family
of scar states in the disordered spin ladder (3) as well as in a
PXP-like model with a three-body blockade [55]. The use of
QVAE is crucial in our scheme. QVAE learns from a single,
high-dimensional measurement point (a single eigenstate), in
contrast to classical autoencoders that require a larger set of
training data. The flow of the entanglement entropy through
the layers of the autoencoder has a physical meaning and
results in a compression of the quantum state. By respecting
the laws of quantum mechanics, QVAE becomes a versatile
tool in studying eigenstates of many-body systems allowing,
for instance, for a direct implementation of the local con-
straints of PXP model on the QVAE. Finally, we also point
out that having the eigenstates one can try to identify scarred
states by calculating the inverse participation ratio (IPR)
with a negligible numerical cost instead of costly entangle-
ment entropy. Moreover, instead of exact diagonalization used
here, one may use an approximate algorithm, e.g., DMRG-X
[67], to obtain a subset of eigenstates serving as an input
to QVAE.

While all calculations performed here used classical ma-
chine, hardware implementation of QVAE on a physical
quantum computer seems straightforward [17]. Although
preparation of ground states of selected Hamiltonians is pos-
sible by the variational quantum eigensolvers, algorithms that
provide excited states are more involved [4]. Hence, the prepa-
ration of the input states is the most challenging step of our
scheme that is feasible only for limited system sizes. However,
to navigate through the exponentially large Hilbert space one
can use a prior knowledge about the scar states (e.g., their en-
ergy) which may extend the interval of system sizes accessible
on current quantum hardware.
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