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Quantum transport in quasiperiodic lattice systems in the presence of Büttiker probes
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Quasiperiodic lattice systems offer diverse transport properties. In this paper, we investigate environment-
induced effects on the transport properties for quasiperiodic systems, namely the one-dimensional Aubry-André-
Harper (AAH) lattice chain and its generalized version (GAAH), by considering the Büttiker probe approach.
We first consider a voltage-probe situation and study the electrical conductance properties in the linear-response
regime. At zero temperature, we observe an enhancement in conductance for small probe coupling strength
γ with a power-law scaling γ 4 at all the no-transport regimes, located both inside and outside of the band of
the original system. For large probe coupling strengths, the conductance at all Fermi energies is the same and
decays as a power law with scaling 1/γ 4. This particular scaling survives even in the finite-temperature limit.
Interestingly, this scaling result is different from the one recently predicted following the local Lindblad master
equation approach. The transport eventually becomes diffusive for all energy ranges and in all regimes of the
original model for a sufficiently strong coupling with the probes. We further extend our study and consider
voltage-temperature probes to analyze the thermoelectric performance of the chain in terms of the figure of
merit. We also demonstrate the validity of two recently obtained bounds on thermoelectric efficiency which are
tighter than the seminal Carnot bound, in the presence of voltage-temperature probes.
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I. INTRODUCTION

Quasiperiodic lattice systems reside between a completely
disordered system and a periodically ordered system. Such
systems can offer a lot of interesting and intriguing transport
properties even in low dimensions [1–7]. Recent remarkable
experimental realizations of quasiperiodic systems in various
cold atom platforms [8–16] have triggered intense theoretical
research activities to understand the underlying dynamical and
steady-state transport properties. Moreover, some new studies
in this context have further revealed the potential for realizing
highly efficient quantum devices such as quantum rectifiers
and thermoelectric engines by carefully exploiting the exotic
transport properties [17–20].

The popular quasiperiodic lattice systems, namely, the
Aubry-André-Harper (AAH), its generalized version GAAH
model, and the Fibonacci model [5,21], have been studied
extensively in the context of boundary driven dissipative quan-
tum transport [22–29]. Further studies have started to emerge
to understand the environment-induced effects on transport
[30–39] in such systems. Very recently, following the local
Lindblad master equation formalism, the steady-state trans-
port properties due to dephasing noise were analyzed for AAH
and Fibonacci models [34]. Following a similar approach,
the effect of dephasing noise on transport was studied in the
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presence of a mobility edge [35]. Apart from this approach,
another popular way to incorporate environment effects is the
Büttiker probe technique. Such a technique is used extensively
to understand effective many-body transport properties in se-
tups such as molecular junctions [40–47], quantum dots [48],
lattice models of oscillators, spins, fermions, excitons [37,49–
51], etc. Very recently the authors in Ref. [36] extended
the Büttiker probe approach to analyze the thermoelectric
transport properties in Fibonacci-type quasiperiodic models
[52–55] and pointed out that environment-induced processes
can lead to a better thermoelectric performance in certain
regimes of transport. However, a clear understanding of the
transport and thermoelectric properties for other types of
quasiperiodic systems such as the AAH and the GAAH model
(quasiperiodic systems with a single-particle mobility edge)
following the Büttiker probe approach is still missing.

In this paper, we therefore analyze how the transport prop-
erties in AAH and GAAH lattice models get modified in the
presence of Büttiker probes. We implement both the voltage-
probe and voltage-temperature probe techniques and explore
electrical conductance and thermoelectric heat-to-work con-
version properties in the linear-response regime. We point
out the consequences for the conductance in both zero- and
finite-temperature limits. We observe that in the presence
of both the voltage and the voltage-temperature probes, the
linear transport coefficients, namely the electrical and the
thermal conductances, display a universal power-law decay
with the probe coupling strength in the strong probe coupling
regime. We provide a rigorous analytical proof for this re-
sult. Importantly, this universal behavior is different from the
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behavior predicted following the local Lindblad master equa-
tion formalism, thus pinpointing crucial differences between
the two approaches in mimicking the underlying many-body
scattering processes. Furthermore, in the zero-temperature
voltage-probe case, we observe environment-assisted trans-
port for all the exponentially decaying regimes with a
particular power-law scaling with probe strength. For the ther-
moelectric setup, we further assess and compare the recently
obtained tighter bounds on efficiency following the thermo-
dynamic uncertainty relations [56] and the bound obtained in
Ref. [57].

We organize the paper as follows: In Sec. II, we introduce
the AAH and the GAAH lattice models and then briefly de-
scribe the theoretical aspects of the Büttiker probe approach
and how to obtain charge conductance in the linear-response
regime. In Sec. III, we present the numerical results both in
the zero- and finite-temperature limit. In Sec. IV, we extend
our study to voltage-temperature probes and study the ther-
moelectric performance for the AAH chain and furthermore
assess the recently obtained tighter bounds on efficiency by
expressing these bounds in terms of the Onsager’s trans-
port coefficients. Finally, in Sec. V, we provide a summary
highlighting our key findings. In the Appendix, we present
a rigorous derivation and show the emergence of diffusive
behavior for conductance as well as its scaling with the probe
coupling strength in the strong probe coupling limit.

II. MODEL AND THEORY

A. Model Hamiltonian

We consider an out-of-equilibrium one-dimensional
quasiperiodic lattice chain that is connected at its two
ends to two thermochemical reservoirs. These reservoirs
are always maintained at fixed chemical potentials and
temperatures. Since we are interested in investigating the
environment-induced effects on the central quasiperiodic
lattice chain, we connect uniform and independent local
reservoirs, i.e., Büttiker probes, to each lattice site. The
Hamiltonian for the entire setup is then given as

H = HS + HB + HSB + HP + HPS, (1)

where HS represents a quasiperiodic chain with a Hamiltonian

HS =
∑

i

εic
†
i ci + t

∑
i

(c†
i+1ci + c†

i ci+1). (2)

Here, c†
i (ci) is the creation (annihilation) operator for

the electron at the i th site. Here, we consider only the
nearest-neighbor hopping with hopping amplitude t . The
site-dependent on-site potential εi mimics a quasiperiodic
potential which for the generalized Aubry-André-Harper
(GAAH) model is given as

εi = 2λ cos[2πbi + �]

1 + α cos[2πbi + �]
, (3)

where λ represents the strength of the potential, b is an
irrational number which makes the potential quasiperiodic,
and � is the phase factor that generates different configura-
tions of the quasiperiodic potential. For, α = 0, this model
reduces to the AAH model [1,2]. For the AAH model, all the

single-particle eigenstates are delocalized for λ < 1 and ex-
ponentially localized for λ > 1 [1] and at λ = 1 all the states
are critical, i.e., neither localized nor delocalized. As a re-
sult, the particle transport goes from ballistic to exponentially
suppressed as the value of λ is tuned from the delocalized to
localized regime and at the critical point the transport shows
anomalous behavior with subdiffusive scaling of the transport
coefficient with the system size [23,24].

For nonzero α, i.e., for the GAAH model, the system
possesses a single-particle mobility edge which can be ob-
tained analytically, E = 2 sgn(λ)(1 − |λ|)/α [4], where E
corresponds to a single-particle energy eigenvalue. In this
case, all the single-particle eigenstates with energy less than
E are extended/delocalized while those states with energy
higher than E are localized. Hence, when E falls within the
spectrum, it is a mobility edge.

In Eq. (1), HB = HL + HR represents the Hamiltonian for
the left and the right reservoirs. For this study, we model these
reservoirs as a one-dimensional (1D) tight-binding ordered
semi-infinite chain with Hamiltonian,

HL = ε0

∑
k

a†
kak + t0

∑
k

a†
k+1ak + H.c., (4)

HR = ε0

∑
k

b†
kbk + t0

∑
i

b†
k+1bk + H.c., (5)

with ak and bk corresponding to the annihilation operators
of the k th sites for left and right baths, respectively. For
simplicity, we choose the same on-site (ε0) and the same hop-
ping parameter (t0) for both baths. The term HSB = HSL + HSR

represents the coupling between the system and the baths and
is responsible for the charge transfer across the system. It is
specified by

HSL = γLa†
1c1 + H.c., (6)

HSR = γRb†
1cN + H.c., (7)

where the left (right) bath is coupled to the first (N th) site of
the quasiperiodic lattice chain with coupling strength γL (γR).

As mentioned before, the dephasing and dissipation effects
within the central lattice chain can be modeled phenomeno-
logically by connecting local reservoirs (probes) at each
lattice site. As is done for the left and the right reservoirs, for
this study, we model each probe also as a 1D tight-binding
ordered semi-infinite chain. The total Hamiltonian for the
probes is given as HP = ∑N

i=1 Hi
P with each probe Hamilto-

nian given by

Hi
P =

∑
j

[ε0d†
i jdi j + t0d†

i j+1di j + H.c.]. (8)

Correspondingly, the coupling Hamiltonian between the i th
probe and the central system is given as

Hi
PS = γ c†

i di1 + H.c., (9)

where the first site of each probe is coupled to the i th site of
the central system with coupling strength γ , which is chosen
to be the same for all the probes (see Fig. 1).
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FIG. 1. Schematic of a one-dimensional lattice chain where the
first and the last sites of the chain are connected to the left and the
right reservoirs, respectively, These reservoirs have different chemi-
cal potentials that induce current in the chain. In addition, each lattice
site is attached to a local reservoir which we refer to here as the
Büttiker probe. The probes, left and right reservoirs, are all modeled
as 1D ordered semi-infinite tight-binding chains.

B. Theory

We employ the nonequilibrium Green’s function (NEGF)
approach [58–63] to investigate end-to-end transport through
the central quasiperiodic chain. In the presence of the two
baths at the ends and the Büttiker probes, one can obtain the
retarded Green’s function for the central system as

Gr (ε) =
[
εI − HC − �r

L(ε) − �r
R(ε) −

N∑
i=1

�r
P,i(ε)

]−1

,

(10)

where I is the N × N identity matrix with N being the number
of lattice sites of the central system and is also equal to the
total number of probes attached to the central lattice. HC rep-
resents the N × N single-particle Hamiltonian corresponding
to HS . �r

α (ε), α = L, R, P, is the self-energy associated with
the α th bath. Note that the effects of the baths, including the
probes, are additive in the self-energy. Since we have chosen
the baths and the Büttiker probes as semi-infinite ordered
tight-binding chains, the self-energies in this case can be ob-
tained analytically and given by [64]

�r
α (ε) = γ 2

α

2 t2
0

[
ε − i

√
4t2

0 − ε2
]
, α = L, R, P. (11)

where ε0 = 0, and γP = γ . Before we proceed further, let us
fix some notations. We identify the index n with the probe
terminals, ν to identify the left and the right reservoirs, and
use index α to count all the leads. Since the entire setup
is fully quadratic, the average charge current in the steady
state flowing out of the ν th reservoir is given by the famous
Landauer-Büttiker formula [61]

Iν = e

2π

∑
α

∫ ∞

−∞
dε Tνα (ε)[ fν (ε) − fα (ε)], ν = L, R.

(12)

Here, fα (ε) = (1 + eβ(ε−μα ) )−1 is the Fermi distribution func-
tion of the α th terminal with inverse temperature β and

chemical potential μα . Tνα (ε) is the transmission probability
for an electron to flow from the ν th terminal to the α th
terminal through the quasiperiodic system. The transmission
probabilities can be computed using the Green’s function
of the central system and the self-energy of the baths and
expressed as

Tνα (ε) = Tr[�ν (ε)Gr (ε)�α (ε)Ga(ε)], (13)

where Ga(ε) = [Ga(ε)]† is the advanced Green’s function and
�α (ε) = −2 Im[�r

α (ε)].
One can similarly compute the charge current flowing out

of the n th probe which is also given by the Landauer-Büttiker
formula

In = e

2π

∑
α

∫ ∞

−∞
dε Tnα (ε)[ fn(ε) − fα (ε)], n = 1, 2, . . . , N.

(14)

In what follows, we first analyze the effect on end-to-end
conductance properties by considering the local reservoirs as
voltage probes and thus set the net charge current flowing
out of each probe to zero, i.e., In = 0 for n = 1, 2, . . . , N in
Eq. (14). Imposing this constraint for each probe allows one
to simulate both elastic dephasing and inelastic dissipative
processes in the central lattice chain. In Sec. IV, we further
extend the above study by considering the local reservoirs as
voltage-temperature probes and demand vanishing charge and
heat currents from each probe which then allow us to simulate
inelastic but nondissipative scattering processes. Under this
generic probe setting, we study the thermoelectric heat-to-
work conversion properties and the recently obtained tighter
bounds on thermoelectric efficiency.

C. Voltage-probe technique in linear-response regime

In this section, we first focus on the voltage-probe tech-
nique by considering the temperature of the end reservoirs and
the probes to be the same. The different chemical potentials of
the two end reservoirs drive a steady-state current in the chain.
We impose the zero charge current condition from each probe
which in turn fixes the local chemical potential of each probe.
We concentrate on the linear-response regime and expand the
Fermi-distribution function around the equilibrium chemical
potential εF and inverse temperature β as

fK (ε) = feq(ε) − ∂ feq(ε)

∂ε
(μK − εF ). (15)

The derivative of the Fermi function is also evaluated at εF .
Now putting Eq. (15) in Eq. (14), for each n and setting In =
0, n = 1, 2, . . . , N , we receive a set of N linear equations for
the chemical potential of each probe n of the form

μn = μR +
N∑

j=1

[
W−1

n j

∫ ∞

−∞
T jL(ε)

(
−∂ feq (ε)

∂ε

)
dε

]

× (μL − μR),∀ n = 1, 2, . . . , N. (16)

Here, W is an N × N matrix given as
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(a) (b) (c)

FIG. 2. Plots for zero-temperature conductance in the absence and presence of Büttiker voltage probes for the AAH model in three different
transport regimes. In the coherent regime (absence of probes), the AAH model displays delocalized (λ < 1), critical (λ = 1), and localized
(λ > 1) phases depending on the strength λ. Here, we display the effect of voltage probes on transport. The vertical dotted lines represent the
band edges of the AAH model. Here, the system size is taken as N = 200.

W =

⎛
⎜⎜⎜⎝

∑
α �=1

∫ ∞
−∞ T1α (ε)

(− ∂ feq (ε)
∂ε

)
dε − ∫ ∞

−∞ T12(ε)
(− ∂ feq (ε

∂ε

)
dε − ∫ ∞

−∞ T13(ε)
(− ∂ feq (ε)

∂ε

)
dε · · ·

− ∫ ∞
−∞ T21(ε)

(− ∂ feq (ε)
∂ε

)
dε

∑
α �=2

∫ ∞
−∞ T2α (ε)

(− ∂ feq (ε)
∂ε

)
dε − ∫ ∞

−∞ T23(ε)
(− ∂ feq (ε)

∂ε

)
dε · · ·

− ∫ ∞
−∞ T31(ε)

(− ∂ feq (ω)
∂ε

)
dω − ∫ ∞

−∞ T32(ε)
(− ∂ feq (ε)

∂ε

)
dε

∑
α �=3

∫ ∞
−∞ T3α (ε)

(− ∂ feq (ε)
∂ε

)
dε · · ·

· · · . . . · · · · · ·

⎞
⎟⎟⎟⎠.

Given the local chemical potentials μn in Eq. (16), we
can compute the electrical conductance G for this setup as,
G = IR/�V with �V = (μR − μL )/e being the applied bias
voltage,

G =G0

∫ ∞

−∞
dε

(
−∂ feq (ε)

∂ε

)[
TRL(ε)

+
∫ ∞

−∞
dε′ ∑

n j

TRn(ε)W−1
n j T jL(ε′)

(
−∂ feq (ε′)

∂ε′

)]
,

(17)

where G0 = e2/2π h̄ is the universal quantum electrical con-
ductance. The second term in the above expression reflects the
change in the conductance due to the probes by mimicking
incoherent scattering processes. In the zero-temperature limit
(β → ∞) [49], the above equation simplifies drastically as
∂ feq (ε)

∂ε
= −δ(ε − εF ), and the conductance can be expressed

simply in terms of an effective transmission function G =
G0 Teff (εF ), where

Teff (εF ) = TRL(εF ) +
∑

n j

TRn(εF )W−1
n j,0 T jL(εF ). (18)

In the above equation, Wn j,0 denotes the matrix elements
of W computed in the zero-temperature limit. Interestingly,
for β → ∞, the local probes are exactly equivalent to the
dephasing probes as the zero-particle current condition from
Eq. (14) is now satisfied for each energy.

III. RESULTS: VOLTAGE PROBE

We now present the numerical results for conductance at
both zero and finite temperatures. Since the zero-temperature

calculation does not require any numerical integration to be
performed, one can therefore simulate large system sizes.
Here, we report results up to N = 1597. Unless otherwise
stated, for all the numerical calculations we set ε0 = 0, t0 =
3, t = 1, γL = γR = 1. Note that, to reduce the number of
parameters in the problem, we have chosen a spatially uni-
form situation for the probes by setting γn = γ for all n =
1, 2, . . . , N . We also stress that in the following discussions
by coherent transport we imply transport through a quasiperi-
odic lattice in the absence of the probes (γn = 0).

In Fig. 2 we first display the effects of voltage probes
in three different transport regimes of the AAH model cor-
responding to three different λ values: ballistic [λ = 0.5,
Fig. 2(a)], critical [λ = 1.0, Fig. 2(b)], and localized [λ = 1.2,
Fig. 2(c)] at zero temperature. In the absence of probes, in
all three regimes of the AAH model, there are energy values
located within and outside the band of the lattice system (the
vertical dotted lines in Fig. 2 represent the band edges of the
central lattice chain), at which no significant transport takes
place due to the absence of bare energy states of the central
system. However, once the voltage probes are attached, the
transport properties in all the regimes change significantly. In
particular, in the presence of probes, finite transport is induced
for all Fermi energies that corresponds to no transport in the
coherent case. Moreover, we observe that for these particular
energies, the value of conductance increases with increasing
system-probe coupling γ . In contrast, for the energy values for
which significant transport is already present in the coherent
limit, the conductance displays nonmonotonic behavior with
increasing γ . Note that, in the localized regime [Fig. 2(c)],
as there is essentially no transport for any εF in the coherent
limit, attaching probes always induces finite conductance for
all Fermi energies.
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Plots for zero-temperature conductance as a function of system-probe coupling strength γ in different transport regimes of the
AAH model at different Fermi energies. Here, the system size is taken as N = 200.

To establish this behavior more explicitly, we choose
different εF ’s corresponding to no-transport and transport
cases in the coherent limit, and plot in Figs. 3(a)–3(c) the
zero-temperature conductance as a function of the coupling
strength γ . As mentioned before, for no-transport energies,
the conductance increases with γ but interestingly as a power
law with scaling γ 4 up to a critical value γc ∼ t, γL, γR. In
contrast, no particular scaling is observed for the transport
energies where attaching probes may increase or decrease the
value of conductance. Note that, for the critical λ [Fig. 3(b)],
as the eigenstates of the bare system are not completely de-
localized, an increase in conductance is observed even for
Fermi energies that corresponds to finite transport. Beyond
the critical value of the probe coupling, i.e., γc > t, γL, γR,
the conductance becomes independent of λ and is equal for all
εF ’s and more importantly decays as a power law 1/γ 4. Note
that this scaling result is different than the one recently pred-
icated following the local Lindblad master equation approach
where the analysis was carried out in the infinite-temperature
limit with scaling given as 1/γ 2 [34]. In Figs. 3(d)–3(f) we ex-
tend these results to the finite-temperature limit. We observed
that, at high temperature T = 200, the conductance value is
the same for all Fermi energies, implying a flat transmission
spectrum with εF . Below γc, the contributions to conductance
come from all energies that reside within the energy window
of width kBT around εF and as a result no particular scaling
with γ is observed. However, interestingly, for large γ the
conductance scaling remains the same as the zero-temperature
case. In the Appendix, we provide a detailed proof of this
universal scaling for conductance in the strong γ limit.

We next present the scaling of the conductance with the
system size N . In Figs. 4(a)–4(c), we display the crossover
from various transport regimes in the coherent limit to a diffu-

(a) (d)

(e)

(f)

(b)

(c)

FIG. 4. (a)–(c) show the crossover to the diffusive transport
regime from the ballistic (λ = 0.5), subdiffusive (λ = 1.0), and ex-
ponentially localized (λ = 1.2) phases, respectively, in the presence
of voltage probes at zero temperature. The solid lines represent
diffusive 1/N scaling. (d)–(f) show the corresponding chemical po-
tential profiles. The linear chemical potential profile ensures that the
transport is diffusive. We show results for two different γ values.
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(a)
(b)

FIG. 5. Crossover from subdiffusive behavior to diffusive behav-
ior for γ = 0.2 at the critical point (λ = 1) of the AAH model at
zero temperature. Depending on the chosen system size one can see
a crossover to N−1 from different subdiffusive scalings. In (a), the
chosen system sizes do not correspond to Fibonacci numbers, and in
(b), the system sizes correspond to Fibonacci numbers.

sive limit G ∼ N−1. We note that for a finite system size, with
sufficiently strong incoherent effects induced by the probes,
the transport eventually becomes diffusive for all λ values.
For weak γ , the conductance however displays a crossover
from the coherent limit scaling to a diffusive scaling and the
corresponding crossover length varies strongly depending on
whether the transport is ballistic, subdiffusive, or localized in
the coherent regime. As an example, for the same γ value
(γ = 0.3) in the localized case [Fig. 4(c)], the crossover takes
place at a small system size N ∼ 30 compared to the ballistic
case N ∼ 200. This fact corroborates with the predictions in
Ref. [34]. For a fixed λ, with increasing γ , the crossover
length shrinks and a diffusive scaling sets in. In Figs. 4(d)–
4(f), we display the corresponding chemical potential profile
in the lattice chain which shows a clear linear behavior in the
presence of probes, indicating a diffusive transport.

It is important to note that, in the critical regime of the
coherent AAH model (γ = 0), the conductance can display
different subdiffusive scalings depending on the choice of the
system size [23,26]. For example, at λ = 1 (critical regime),
if the system size is considered as a Fibonacci number (we
have considered here b as the ratio of two Fibonacci numbers),
a subdiffusive scaling N−1.26 is observed whereas for the
case of non-Fibonacci numbers a subdiffusive scaling N−1.4

FIG. 7. Plot for electrical conductivity σ = limN→∞ NG in the
diffusive regime as a function of quasiperiodic lattice strength λ for
different values of γ .

is observed. It is interesting to see that, in the presence of
probes, for both cases, a crossover from a subdiffusive to
diffusive regime is observed, as shown in Fig. 5. Furthermore,
we observe that for all λ, interestingly, the crossover length
from coherent to diffusive transport is independent of the
temperature, as displayed in Fig. 6.

Since the transport eventually becomes diffusive in the
presence of probes, in the diffusive regime we define the
electrical conductivity σ = limN→∞ σ (N ) with σ (N ) = NG
being the finite-size conductivity. In Fig. 7, we display σ as a
function of λ, the strength of the quasiperiodic potential. The
conductivity σ strongly depends on λ with the value mono-
tonically decreasing with increasing λ. This implies that even
though the system is in the diffusive regime, the conductivity
is still larger in the λ < 1 regime in comparison to the λ > 1
regime. However, for large γ , the quasiperiodic nature of the
lattice is smeared out by the probe coupling and conductivity
becomes essentially insensitive to the value of λ.

We next briefly discuss the results for the generalized
AAH, i.e., the GAAH model [see Eq. (3)]. In this case, we
observe similar trends in conductance to the one observed for
the AAH model. As was done in Fig. 2, in Fig. 8 we plot G
as a function of εF in the presence of a mobility edge. For
the chosen parameters in our simulations, all the states above

(a) (b)

(c)

FIG. 6. (a)–(c) show the crossover to the diffusive regime at finite temperatures for probe coupling strength γ = 0.3. The solid lines
represent diffusive 1/N scaling. The vertical dotted lines represent the system size after which the diffusive transport sets further, indicating a
temperature-independent system-size crossover.

224204-6



QUANTUM TRANSPORT IN QUASIPERIODIC LATTICE … PHYSICAL REVIEW B 105, 224204 (2022)

(a)

(c) (d)

(b)

FIG. 8. Results for the GAAH model: (a) displays the effect
of probes on transport. The dotted vertical lines at the two ends
represent the band edges and the vertical line in the middle repre-
sents the mobility edge. (b) displays conductance as a function of γ

for different Fermi energies. (c) and (d) show the crossover to the
diffusive regime from both no-transport and transport regimes in the
presence of probes.

(below) the mobility edge are localized (delocalized). As can
be seen in Fig. 8(b), in all the no-transport regimes, due to the
coupling with probes, there is an enhancement of G up to a
critical γc ∼ t, γL, γR with conductance increasing as γ 4 and
thus displaying universality. Furthermore, beyond γc, similar
to the AAH case, the G decreases as 1/γ 4. In Figs. 8(c) and
8(d), we show that for this model also, the transport eventually
becomes diffusive at all regimes.

IV. RESULTS: VOLTAGE-TEMPERATURE PROBE
TECHNIQUE AND THERMOELECTRIC PERFORMANCE

In this section we extend our study to the voltage-
temperature probe that enables us to investigate thermoelectric
properties. In this case, the left and right reservoirs are kept at
fixed chemical potentials (μL, μR) and temperatures (TL, TR).
Next, we impose the voltage-temperature probe conditions of
zero particle and heat currents flowing out of each probe and
thereby determine the chemical potential and temperature of
each probe. Thus, we set

In = e

h̄

∑
α

∫ ∞

−∞
dεTnα (ε)[ fn(ε) − fα (ε)] = 0,

Qn = 1

h̄

∑
α

∫ ∞

−∞
dε(ε − μn)Tnα (ε)[ fn(ε) − fα (ε)] = 0,

n = 1, 2, . . . , N (19)

Once again, we focus on the linear-response regime and obtain
μn and Tn for the probes in terms of μL, μR, TL, and TR.
Finally, we can write the particle (IR) and heat currents (QR)

flowing out from the right bath as

〈IR〉 = G �V + G S �T,

〈QR〉 = G ��V + (K + G S �)�T, (20)

where G is the electrical conductance, K is the thermal con-
ductance, S is the Seebeck coefficient, and � is the Peltier
coefficient. Here, �V = (μR − μL )/e and �T = TR − TL.
All of the above transport coefficients depend on the average
temperature T = (TL + TR)/2 and average chemical potential
εF = (μL + μR)/2. In the presence of the probes, we nu-
merically verified the Onsager’s reciprocity relation, given by
� = T S. Note that in order to compute G, �, S, and K in
the presence of voltage-temperature probes, we first consider
�T = 0 and extract the transport coefficients G and � and
next consider �V = 0 to extract the other two coefficients S
and K . Now in order to realize a thermoelectric engine, we set
μL > μR and TR > TL and demand 〈IR〉 > 0 and 〈QR〉 > 0,
i.e., heat absorbed from the hot right bath induces particle
current against the chemical potential difference. The aver-
age power output is then given as 〈P〉 = −�V 〈IR〉, and as
a result, the average thermoelectric efficiency of the engine
is given by 〈η〉 = 〈P〉

〈QR〉 . In the linear-response regime, the
maximum thermoelectric efficiency 〈η〉max is characterized by
a single dimensionless quantity, the thermoelectric figure of
merit ZT = GS2

K T , and is given as

〈η〉max = ηC

√
ZT + 1 − 1√
ZT + 1 + 1

, (21)

where ηC = �T/T is the Carnot efficiency in the linear-
response regime. In Figs. 9(a)–9(f), we display the behavior
of various transport coefficients and ZT for the AAH model
as a function of γ , for different values of λ. As the electri-
cal conductance G, the thermal conductance K also shows a
similar scaling 1/γ 4 at strong probe coupling in all regimes.
The Seebeck coefficient, however, does not display any such
scaling. Starting in the λ < 1 regime, the values for both G and
K are always lower than that in the coherent limit, whereas
probe-induced enhancement can be seen in both λ = 1 and
λ > 1 regimes [Figs. 9(c)–9(e)]. As a result, ZT decays with
increasing γ in the λ < 1 regime but in the other two regimes
an enhancement in the ZT value, compared to the coherent
limit, is seen for some values of γ . Note that the overall
value of ZT , however, always remains higher for λ < 1 in
comparison to the other two regimes. For large γ , all three
regimes converge to the same ZT value.

We next move on to analyze two recently obtained uni-
versal bounds [56,57] for the mean efficiency in the context
of our thermoelectric engines. Interestingly, these universal
bounds are found to be tighter than the seminal Carnot bound
and are written in terms of the current fluctuations. One of the
bounds emerges from the recently discovered thermodynamic
uncertainty relations (TURs) [57,65,66] which are trade-off
relations between power, efficiency, and power fluctuation.
In the context of a thermoelectric engine, operating in the
linear-response regime, following the TURs we obtain the
bound on mean efficiency as

〈η〉 � μL − μR

eT

1

S
� ηc. (22)
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(a)

(b)

(c)

(d) (f)

(e)

FIG. 9. (a)–(f) display the various transport coefficients and the ZT for the AAH model as a function of probe coupling strength γ in
the presence of voltage-temperature probes. The horizontal lines in (a)–(d) represent the values of transport coefficients in the coherent limit
(γ = 0).

Note that the Seebeck coefficient S is always positive in the
engine regime.

Very recently, another tighter bound on the engine’s effi-
ciency was obtained in Refs. [56,67] by identifying the input
and output currents and imposing conditions on the direction
of these currents such that the thermoelectric setup operates
as an engine. Following this bound, we receive

〈η〉 � μL − μR

eT

1

S

√
ZT

ZT + 1
� ηc. (23)

Since ZT > 0, we arrive at an important conclusion that
the bound predicted by Eq. (23) is always tighter than the
one given in Eq. (22). In Fig. 10 we assess the bounds in
Eq. (23) for the AAH model in the presence of the probes

(a) (b)

FIG. 10. Plots for (a) tighter bound on mean efficiency, i.e., 〈η〉 −
ηB, and (b) the bound ηB − ηC as functions of γ for different values
of λ. The parameters are N = 34, T = 1, �T = 0.2, μ = −1.75,
μR − μL = −0.001.

as a function of γ and for different λ values. Denoting ηB =
μL−μR

eT
1
S

√
ZT

ZT +1 , we observe that 〈η〉 − ηB and ηB − ηC are

always negative in the parameter regimes considered here.
Thus, we find that the bounds in Eqs. (22) and (23), obtained
in the linear-response regime, are valid even in the presence
of the probes.

V. SUMMARY

In summary, we have investigated the transport properties
in quasiperiodic systems following the Büttiker probe ap-
proach by implementing both voltage and voltage-temperature
probe conditions. Within the voltage-probe framework, in the
strong probe coupling limit, we observed a power-law decay
of electrical conductance with the probe coupling strength.
This behavior is in fact independent of the Fermi energy, the
nature of the on-site potential, and the temperature. Moreover,
within the voltage-temperature probe scheme, in addition to
the electrical conductance, the thermal conductance also dis-
plays the same power-law decay with the probe coupling. In
this sense, the power-law decay of transport coefficients is
universal. Importantly, this power-law scaling observed here
turns out to be different from what was reported in a recent
work following the local Lindblad master equation approach
[34]. This further pinpoints that the two different approaches,
namely NEGF and the local Lindblad master equation, effec-
tively mimic different underlying scattering processes. In the
presence of a voltage probe we also observed that the con-
ductance of all the exponentially decaying regimes (namely
the localized regimes of the AAH model, above the mobil-
ity edge of the GAAH model, outside the band edges of
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the central lattice system, and the band-gap regimes) ini-
tially gets enhanced with a particular power-law scaling with
the probe coupling strength at zero temperature. Thus, we
have reported here the environment-assisted transport with
a particular scaling for the “no-transport” regimes at zero
temperature. With finite-temperature and voltage-temperature
probes, no particular scaling is observed in the no-transport
regimes. For sufficiently strong coupling, the transport even-
tually becomes diffusive in all regimes of the original model.
However, with finite but small probe coupling, a crossover
from coherent transport to diffusive transport can be observed.
Such a crossover length is insensitive to the temperature
but depends crucially on the transport regime of the origi-
nal model. We also investigated the thermoelectric properties
by incorporating voltage-temperature probes and further as-
sessed, in the presence of probes, the validity of two recently
obtained tighter bounds on efficiency, and also showed that
the bound predicted from the TUR is always looser than the
other bound.
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APPENDIX: PROOF OF THE UNIVERSAL POWER-LAW
DECAY 1

Nγ4 FOR THE CONDUCTANCE G
IN THE STRONG γ LIMIT

In this Appendix we provide a rigorous proof for the uni-
versal power-law decay of the conductance with the system
size and the probe coupling strength γ in the strong probe
coupling limit and at zero temperature. We show that in this
limit, the conductance takes the form G ∼ 1

Nγ 4 , which further
indicates a diffusive behavior, as expected in the strong probe
coupling limit. Now in order to arrive at this result, we need to
compute the effective transmission, as given in Eq. (18). We
therefore first compute the retarded Green’s function compo-
nents in the strong γ limit followed by the calculation of the
W matrix.

1. Analytical calculation of the retarded Green’s
function Gr

i j in the strong γ limit

In general, for any nearest-neighbor tight-binding lattice
with on-site energy εi and hopping strength t , we can write

down the the retarded Green’s function Gr as

Gr = M−1 = 1

t

⎛
⎜⎜⎜⎝

a11 1 0 0 · · ·
1 a22 1 0 · · ·
0 1 a33 1 · · ·
· · · · · · · · · · · ·
0 0 0 1 aNN

⎞
⎟⎟⎟⎠

−1

.

Note that the first and the last site of the lattice are coupled
to the left and the right reservoir, respectively, and also to
the probes, whereas all other sites are only connected to the
probes. As a result, we can write down the matrix elements as

a11 = 1

t

[
ε − ε1 −

(
γ 2

L + γ 2
P

)
2t2

0

[
ε − i

√
4t2

0 − ε2
]]

,

a2i = 1

t

[
ε − εi − γ 2

P

2t2
0

[
ε − i

√
4t2

0 − ε2
]]

, i = 2, . . . , N−1,

aNN = 1

t

[
ε − εN −

(
γ 2

R + γ 2
P

)
2t2

0

[
ε − i

√
4t2

0 − ε2
]]

, (A1)

where we used the self-energy expression �r
α (ε) = γ 2

α

2 t2
0
[ε −

i
√

4t2
0 − ε2 ], α = L, R, P. Now, as done in our numerics, we

assume a homogeneous probe coupling strength, i.e., γP = γ .
In the limit of strong coupling γ � t0, εi, ε, γL, γR, all the di-
agonal elements of the above matrix are the same and given as
aii = −i γ 2

t t0
, i = 1, 2, . . . , N . Note that to arrive at this result

we also assumed t0 to be larger than the system band energies.
In what follows, since we are only interested in the scaling
with γ 2, we therefore only keep track of these parameters and
suppress all the other parameters of the setup.

The inverse of this tridiagonal matrix can be computed
easily following a transfer matrix approach [50]. It is to check
that

Gr
i j = (−1)i+ j �1,i−1�N− j,N

�1,N
, j > i, (A2)

and Gr
i j = Gr

ji for i > j. Here, �i, j is the determinant of the
submatrix starting with the i th row and column and ending
with the j th row and column. The determinant of each of this
submatrix is related to the product of transfer matrices Ta =
(−iγ 2 −1

1 0 ). With this in hand, it is easy to check that Gr
i j ∼

|λ+|−|i− j|−1, where λ+ is the largest eigenvalue of the 2 × 2
transfer matrix Ta. In this strong γ limit, |λ+| ∼ γ 2. Thus,
Gr

i j ∼ γ −2(| j−i|+1). Similarly, GiN ∼ γ −2(|N−i|+1) and Gr
1i ∼

γ −2i. As a result, we can write down the transmission prob-
abilities as Ti j = γ 4|Gi j |2 ∼ γ −4| j−i|, TiR = TRi = γ 2|Gr

iN |2 ∼
γ −2γ −4|N−i|, and TiL = TLi = γ 2|Gi1|2 ∼ γ −2γ −4|i−1|.

2. Analytical form of the W matrix and its
inverse in the strong γ limit

With the above result for Gi j , we now construct the W
matrix in the strong γ regime. Along the diagonal of the W
matrix, the first and last matrix elements contain the dominant
contribution as 1/γ 2 which appears from the T1L and TNR

terms, respectively. The other diagonal elements depend on
γ as 1/γ 4. The off-diagonal elements of Wi j depend on γ

as γ −4|i− j|. We therefore consider only the first neighbors
of the diagonal entries, i.e., for |i − j| = 1, which gives the
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dominant contribution as 1/γ 4 and all the other off-diagonal
terms can be neglected. Thus, W reduces to a tridiagonal
matrix in this strong γ limit, given as

W =

⎛
⎜⎜⎜⎜⎝

1/γ 2 −1/γ 4 0 0 · · ·
−1/γ 4 2/γ 4 −1/γ 4 0 · · ·

0 −1/γ 4 2/γ 4 −1/γ 4 · · ·
· · · · · · · · · · · ·
0 0 0 −1/γ 4 1/γ 2

⎞
⎟⎟⎟⎟⎠.

Now, to check the leading-order behavior of γ in the
conductance following the expression for effective transmis-
sion [Eq. (18)], the most dominant contribution comes from
TNR ∼ 1/γ 2 (independent of N) and T1L ∼ 1/γ 2 (independent
of N). Thus, we need to calculate the W−1

N1 element to see
the leading-order behavior, given as W−1

N1 = 1/�1,N [W]. The
determinant �1,N [W] can be once again computed following
the transfer matrix approach,(

�1,N [W]
�1,N−1[W]

)
= 1

γ 4

(
γ 2 −1
1 0

)(
2 −1
1 0

)N−2(
γ 2 −1
1 0

)

×
(

1
0

)
. (A3)

Interestingly, the matrix
(

2 −1
1 0

)
is nondiagonalizable. One

can however write it as the Jordan normal form J = (1 1
0 1

)
using a transformation S. Thus, we can rewrite the matrix
equation as

(
�1,N [W]

�1,N−1[W]

)
= 1

γ 4

(
γ 2 −1
1 0

)
SJN−2S−1

(
γ 2

1

)

= 1

γ 4

(
γ 2 −1
1 0

)
S

(
1 N − 2
0 1

)
S−1

(
γ 2

1

)
,

(A4)

with S = (
i 0
i −i

)
. Using this, �1,N [W] ∼ N

γ 4 (Aγ 4 + Bγ 2 +
C) + D with constant A, B,C, and D. Thus with large
γ , W−1

N1 ∼ 1/(AN + D) and is independent of γ . Thus,
in the second term of Eq. (18), we obtain G ∝ Teff ≈
TRNW−1

N1 T1L ∼ 1
Nγ 4 , which gives us the desired scaling for

conductance. The derived result also shows that in the strong
γ regime the conductance scales as 1/N , indicating a diffusive
behavior.
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032130 (2017).
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