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We study time dynamics of 1D disordered Heisenberg spin-1/2 chains focusing on a regime of large system
sizes and a long-time evolution. This regime is relevant for observation of many-body localization (MBL),
a phenomenon that is expected to freeze the dynamics of the system and prevent it from reaching thermal
equilibrium. Performing extensive numerical simulations of the imbalance, a quantity often employed in the
experimental studies of MBL, we show that the regime of a slow power-law decay of imbalance persists to
disorder strengths exceeding by at least a factor of 2 the current estimates of the critical disorder strength for
MBL. Even though we investigate time evolution up to the few thousands of tunneling times, we observe no
signs of the saturation of imbalance that would suggest freezing of system dynamics and provide smoking gun
evidence of MBL. We demonstrate that the situation is qualitatively different when the disorder is replaced by a
quasiperiodic potential. In this case, we observe an emergence of a pattern of oscillations of the imbalance that
is stable with respect to changes in the system size. This suggests that the dynamics of quasiperiodic systems
remains fully local at the longest timescales we reach, provided that the quasiperiodic potential is sufficiently
strong. Our study identifies challenges in an unequivocal experimental observation of the phenomenon of MBL.
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I. INTRODUCTION

Generic isolated quantum many-body systems initialized
in an out-of-equilibrium state are expected to approach
featureless thermal states described by the eigenstate ther-
malization hypothesis [1–3]. Many-body localization (MBL)
[4,5] has been put forward as a mechanism that prevents the
approach to equilibrium due to an interplay of interactions and
strong disorder.

The phenomenon of MBL has received a lot of attention
over the last decade [6–8]. The MBL phase is characterized
by the presence of local integrals of motion [9–15] that in-
hibit the transport [6,16], and slow down the spreading of
the quantum entanglement [17,18]. MBL has been investi-
gated numerically in disordered spin chains [19–22] that map
onto spinless fermionic chains, in systems of spinful fermions
[23–26] or bosons [27–29] and found in systems with random
interactions [30–32] or in various types of quasiperiodic (QP)
systems [33–35]. All those investigations were confirming the
belief that MBL is a robust mechanism of ergodicity break-
ing that can be expected to occur in a wide class of local,
one-dimensional quantum many-body systems provided that
a sufficiently strong quenched disorder is present.

This belief was challenged in Ref. [36] where it was ar-
gued that MBL might not be stable in the asymptotic sense,
i.e., in the limit of an infinite time and system size, and the
observations of earlier works indicate only a presence of an
MBL regime found at a finite system size and finite times.
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This lead to an intense debate about the stability of MBL
[37–39] and its dynamical properties [40–44]. Despite these
works, it is presently unclear whether a stable MBL phase
exists much deeper in the MBL regime than was previously
estimated [45] or whether there is no stable MBL phase at
all [46]. An example of the latter scenario is provided by
disordered constrained spin chains which, despite hosting a
wide nonergodic regime at finite system sizes [47], become
ergodic in the thermodynamic limit [48].

The double limit of infinite time and system size is the
source of difficulties in establishing the status of MBL. On
one hand, one may investigate properties of eigenstates of
many-body systems that encode the properties of the system
at infinite time. However, the eigenstates can be found in
an unbiased fashion only for relatively small system sizes L
(for instance, for the usually studied spin-1/2 chains, L � 24
[49,50]), which does not allow for a fully controlled extrapo-
lation of the results to the thermodynamic limit L → ∞. On
the other hand, tensor network algorithms [51,52] such as time
evolving block decimation (TEBD) [53,54] or time-dependent
variational principle (TDVP) [55–58] allow one to study time
evolution of systems comprised of hundreds or even thousands
of sites. Unfortunately, the time evolution of many-body sys-
tems can be traced faithfully with such algorithms only up
to times restricted by the growth of the entanglement in the
system. Since, in strongly disordered systems, the entangle-
ment entropy grows only logarithmically in time, maximal
times of several hundred tunneling times were achieved
in Refs. [25,59–61]. Nevertheless, there is no straightfor-
ward way of extrapolating these results to the infinite time
limit.
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FIG. 1. Interactions induce a slow decay of the imbalance I (t )
that persists to long times. This is visualized comparing results for
noninteracting (� = 0) and interacting (� = 1) systems. Data for
disordered XXZ model Eq. (1) at disorder strength W = 4. The
squares denote the Heisenberg time tH that scales exponentially with
system size L.

Figure 1 illustrates the difficulties in assessing whether
the system is ergodic or MBL in a quench experiment. It
shows the time evolution of the so-called imbalance I (t ) for a
disordered XXZ spin-1/2 chain (precise definitions are given
in the following section). An ergodic system has no memory
of its initial state and the imbalance vanishes in the long-time

limit: I (t )
t→∞→ 0. In contrast, the information about the ini-

tial density profile persists indefinitely in the MBL phase in

which I (t )
t→∞→ I0 > 0. For the noninteracting system (� =

0), one clearly sees that after initial oscillations, the imbalance
saturates to a constant value. Such a behavior allows for a
straightforward experimental observation of Anderson local-
ization in the absence of interactions [62,63]. The main effect
of interactions is that the imbalance decays to much longer
times, as exhibited by data for � = 1. The timescale at which
I (t ) ceases to decay is of the order of Heisenberg time tH [64]
that is proportional to an inverse of the mean-level spacing of
the system and hence it is exponentially large in system size L.
As a consequence, the data presented in Fig. 1 allow us only
to conclude that at the considered disorder strength W = 4,
the system is in a finite time MBL regime [45]. The value of
the imbalance in the t → ∞ limit is clearly decreasing with
system size L and it is impossible to determine from the data
in Fig. 1 whether in the limit L → ∞, t → ∞ the system
remains MBL at W = 4 or whether the ergodicity is restored.

The presence of MBL regime has been demonstrated in a
number of numerical works as well as in experiments with
cold atoms and ions [65–71]. The aim of this paper is to
determine whether we can observe unambiguous signatures of
the MBL phase in the time evolution of disordered many-body
systems. To that end, we perform extensive numerical simu-
lations of disordered XXZ spin-1/2 chain and concentrate on
the time evolution of density correlation functions.

Let us note that we, on purpose, limit our discussion to
short-ranged interactions although MBL has been addressed
also for long-range (e.g., dipolar [72–76], Ising-type [77–81],
or cavity-mediated [82,83]) interactions. Similarly, we do

not address the existence and properties of localization in
disorder-free potentials (such as, e.g., tilted lattices)—the
subject of intensive recent studies [84–97]. We want to con-
centrate on the pure, traditional MBL case.

The paper is structured as follows. In Sec. II, we introduce
the XXZ spin chain. We provide results for small system
sizes and formulate tentative criteria for observation of the
MBL phase in Sec. III. Then, we verify whether those cri-
teria are fulfilled by dynamics of the XXZ spin chain in the
regime of large disorder strengths and system sizes in Sec. V.
Subsequently, we investigate time evolution of entanglement
entropy in that regime in Sec. VI. Finally, instead of random
disorder we consider time dynamics of the system with a QP
potential in Sec. VII. We draw our conclusions in Sec. VIII.

II. MODEL AND OBSERVABLES

In this paper, we concentrate on 1D XXZ spin chain with
Hamiltonian given by

H = J
L−1∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

) +
L∑

i=1

hiS
z
i , (1)

where �Si are spin-1/2 matrices, J = 1 is fixed as the en-
ergy unit, open boundary conditions are assumed, and hi ∈
[−W,W ] are independent, uniformly distributed random vari-
ables. The Jordan-Wigner transformation allows us to map
XXZ spin chain Eq. (1) to a system of interacting spinless
fermions, with the tunneling matrix element equal to J and
nearest-neighbor interaction strength �. This allows us to
make a connection between the disordered XXZ model and
optical lattice experiments (as, e.g., in Ref. [65]). The random-
field XXZ spin chain has been widely studied in the MBL
context, see, e.g., Refs. [22,98–108]. Various estimates of
the critical disorder strength WC for the transition to MBL
phase (for � = 1) include WC ≈ 3.7 [22], WC ≈ 3.8 [109],
WC ≈ 4.2 [60,110], WC � 5 [59,111], WC ≈ 5.4 [50].

Besides the random disorder hi ∈ [−W,W ], we also
consider the case of QP potential, for which hj =
W QP cos(2πk j + φ), where k = (

√
5 − 1)/2 and φ is a ran-

dom phase taken from the uniform distribution between
[0, 2π ]. The QP potential breaks the translation invariance of
the system playing a role similar to disorder and leading to
MBL at a critical strong amplitude of the QP potential W QP

C ,
with various estimates ranging from W QP

C ≈ 1.5 [33,112–116]
through W QP

C ≈ 2.4 [117,118], up to W QP
C ≈ 4 [119]. Its im-

portant to note that the properties of the transition to the MBL
phase in QP systems are distinct from the transition in systems
with random disorder [34,120–122].

We analyze dynamics of imbalance

I (t ) = D
L−l0∑

i=1+l0

〈ψ (t )|Sz
i |ψ (t )〉〈ψ |Sz

i |ψ〉, (2)

where |ψ (t )〉 = e−iHt |ψ〉, |ψ〉 is the initial state, the constant
D assures that I (0) = 1, and l0 > 0 diminishes the influence
of boundaries (in our calculations, we take l0 = 2). The results
are averaged over nreal disorder realizations. As the initial
state, we take the Néel state with every second spin pointing
up and every second spin down |ψ〉 = | ↑↓ . . . ↑↓〉. In the
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following section, we also take |ψ〉 as a product state of
eigenstates of Sz

i operators with average energy 〈ψ | H |ψ〉
being in the middle 10% of the spectrum of H—we refer to
such a choice as a density correlation function C(t ).

We note that other observables, see, e.g., Refs. [102,123],
suffer from finite-size and finite-time limitations similar to
Eq. (2). Hence, it seems that their behavior is always governed
by the broad distributions of relaxation timescales [124], and
that is why we concentrate on the very simple observable
given by Eq. (2), which has another advantage of being di-
rectly accessible in experiments with cold atoms [65].

To find the time-evolved state |ψ (t )〉, we employ Cheby-
shev expansion of the evolution operator e−iHt [125], which
allows us to investigate time evolution of systems of L � 20
sites up to the Heisenberg time tH = 2π/s ∼ ecL (where s
is the average level spacing in the middle of the spectrum
and c determines the scaling of Hilbert space dimension with
system size: for spin-1/s chains c = ln 2). For larger system
sizes L = 50, 100, 200, we use a TDVP algorithm, with bond
dimension χ , specified later in the text for each W and L
considered. In the latter case, we focus on relatively large
disorder strengths W � 8 which allows us to investigate time
evolution up to a few thousand tunneling times J−1.

III. HOW TO OBSERVE AN MBL PHASE?

Numerical [126] as well as experimental [67] investiga-
tions of the imbalance I (t ) indicate a presence of a wide
regime of disorder strength W in which the imbalance decays
according to a power law I (t ) ∼ t−β . As a criterion for a
transition to MBL, Ref. [59] introduced the condition that β

vanishing within error bars implies the onset of MBL. The
problem with such a criterion is that the error bars on β can
be significantly reduced with increasing time of evolution and
number of disorder samples, pushing the tentative boundary
of MBL to larger and larger disorder strengths. An alternative
was put forward in Ref. [61], which used a cutoff βcut such
that β < βcut implies MBL behavior. The cutoff value of βcut
was taken from a comparison of critical disorder strength
estimated from gap ratio statistics as WC ≈ 4 for system size
L ≈ 20 and the decay rate of imbalance at that system size.

The latter criterion also runs into problems. If we assume
a simplified model of the decay of the imbalance, in which
I (t ) ∼ t−β for t < tH , and then I (t ) = const for t > tH (which
is mildly consistent with data shown in Fig. 1), then the value
of the imbalance at infinite time is I (∞) = I (tH ) = e−cLβ .
Hence, to have a finite value of imbalance in the t → ∞,
the exponent governing decay of imbalance should vanish at
least as β ∼ L−1. Keeping this in mind, we now examine the
dynamics of the density correlation function C(t ) in a system
of moderate size L � 20.

Figure 2(a) shows C(t ) for disorder W = 3 for which the
XXZ spin chain is in the ergodic phase. The density corre-
lation function, as well as the imbalance are characterized
by oscillations at small times due to the coupling between
neighboring spins. Those oscillations are gradually damped
with time t , and the slow decay becomes the main feature
of the dynamics of I (t ) and C(t ). With an increasing system
size, the power-law decay of C(t ) persists to longer and longer

FIG. 2. Time evolution of density correlation function C(t ) in
disordered XXZ model. (a), (b) C(t ) for various system sizes L =
10, ..., L = 20 at disorder strengths W = 3, 5, data averaged over
nreal > 104 disorder realizations. (c), (d) Time evolution of the flow-
ing beta function β(t ) that locally describes the exponent of decay of
C(t ). The red squares denote the Heisenberg time tH ∼ ecL .

times, not changing much beyond the Heisenberg time tH .
The interaction induced decay of C(t ) is evidently getting
more abrupt with increasing L. The situation is, in fact, quite
similar for W = 5 [see Fig. 2(b)], which, according to the
majority of estimates (e.g., Refs. [22,35,110]) is already in
the MBL phase. While the decay of C(t ) is much slower than
for W = 3, it persists to long times and the saturation value of
C(t ) is decreasing with L.

To investigate the slow decay of C(t ) in more quantitative
fashion, we consider a time-dependent β(t ) function [117]
that is obtained from the fit C(t1) = at−β(t )

1 in the interval t ∈
[t1, 1.5t1]. The resulting β(t ) functions are shown in Fig. 2(c)
and 2(d). For W = 3, we observe that, at first, the decay
of C(t ) is well described by a power law [β(t ) is constant]
and then the decay gradually slows down, stopping at the
timescale approximately an order of magnitude larger than
tH . For W = 5, the slow down of the decay of C(t ) occurs
at smaller times, however, a nonvanishing β(t ) up to Heisen-
berg time signals further, non-negligible decay of the density
correlation function.

Results presented in this section show that the correlation
functions decay up to Heisenberg time or even longer. More-
over, comparison of results for W = 3 and W = 5 indicates
that it is hard to propose an accurate phenomenological model
for the decay of C(t ). Nevertheless, building on intuitions
obtained in this section, we conclude that an unambiguous
observation of the MBL phase should include at least one of
two conditions:

(1) The value of the exponent β that is decreasing with
system size as L−1—in such case even if the power-law decay
persists up to the Heisenberg time, the imbalance is nonvan-
ishing in the limit t → ∞.
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(2) A decrease of value of β(t ) with time t that occurs in
a system size independent fashion indicating the saturation of
the imbalance at all experimentally accessible times beyond a
certain timescale.

The results for small system sizes indicate that if the dy-
namics of the imbalance satisfies either criterion (1) or (2),
the system is in an asymptotic MBL phase. In that sense,
the conditions (1) and (2) can be thought of as conditions
sufficient for the observation of MBL phase. Conditions (1)
and (2) must be verified with care and their fulfillment is not
in a strict sense a proof for a stable MBL phase: a system that
satisfies either of them could still be ergodic. For instance,
one may imagine a decrease of β(t ) in time in a system size
independent fashion below a certain (large from the exper-
imental perspective) timescale combined with an onset of a
fast decay of imbalance beyond a certain larger timescale.
Nevertheless, such scenarios seem to be ruled out by the
results for small system sizes and for that reason we treat
conditions (1) and (2) as sufficient for observation of the MBL
phase. At the same time, we would like to note that neither
condition is a necessary criterion for an observation of MBL
phase. Other scenarios in which the system breaks ergodicity
can be envisioned. For instance, the imbalance may behave in
a nonmonotonous in time manner with a nonzero infinite time
average in the large system size limit, disallowing the analysis
of I (t ) with a power-law decay.

With those remarks in mind, we now turn to an analysis of
time dynamics of large systems in the strong-disorder, long-
time regime, which seems to be the most suitable one to find
signatures of the MBL phase. Criteria (1) and (2) will be the
guiding principles of our analysis. First, however, let us briefly
consider a noninteracting system.

IV. NONINTERACTING TEST CASE

We consider now the Hamiltonian Eq. (1) and set � = 0
which via Jordan-Wigner transformation maps to a set of
noninteracting spinless fermions in a random on-site potential
hi. This model is known to be Anderson localized [127] for
an arbitrary amplitude of the disorder W . Since the model is
noninteracting, we calculate the time evolution of an initial
state |ψ〉 in numerically exact fashion in time polynomial in
system size (see Appendix A 3). As the initial state, we take
the Néel state |ψ〉 = | ↑↓ . . . ↑↓〉. The obtained time-evolved
imbalance I (t ) provides a reference for our approximate time
propagation using TDVP. Note that while in the noninteract-
ing case obtaining the exact solutions for arbitrary disorder
realization is a straightforward task, this is not so for TDVP—
in the latter case, the algorithm keeps track of a matrix product
state (MPS) that belongs to the full many-body Hilbert space
in a manner similar to the interacting case.

The TDVP algorithm used is described in detail in Ap-
pendix A. The convergence of TDVP crucially relies on a
value of the bond dimension χ . The time-evolved state |ψχ (t )〉
obtained with TDVP becomes a better and better approxima-
tion of the exact time-evolved state |ψ (t )〉 as χ increases.
However, the simulation cost increases with the value of the
bond dimension as χ3. Hence, one has to choose the value
of χ such that the observables of interest are converged with
the bond dimension, i.e., do not change with increase of χ so

FIG. 3. Comparison of the time evolution for noninteracting sys-
tem between exact propagation and TDVP approximate algorithm
(L/2 fermions for the system size L = 50 at disorder strength W =
10). Top: The imbalance, I (t ) (left) and the entanglement entropy in
the middle of the chains, S(t ) (right) obtained in exact propagation
(blue curves extending to larger times) and via TDVP (lighter, orange
line). Bottom shows the difference between exact and TDVP results
for imbalance (left) and entropy (right).

one can safely assume that their value approximates well the
value in the exact time evolved state |ψ (t )〉. For the interacting
model Eq. (1), we present details on the convergence of results
with the bond dimension χ in Appendix A. In the remainder
of this section, we compare the exact solution |ψ (t )〉 for
the noninteracting case (� = 0) with the time-evolved state
obtained with TDVP.

For our test, we take disorder amplitude W = 10 and prop-
agate the Néel state up to time tmax = 1500 for 1000 disorder
realizations using TDVP with bond dimension χ = 128. Fig-
ure 3(a) compares the obtained imbalance I (t ) with the result
of the exact numerical solution for the noninteracting model.
The exact solution and TDVP result agree very well up to
tmax = 1500 reached in TDVP simulations. The exact imbal-
ance typically exceeds the TDVP result, the difference, shown
in Fig. 3(c), grows in time and saturates around t = 800 at
2 × 10−6. The TDVP slightly underestimates the imbalance in
agreement with the findings of Ref. [60]. Nevertheless, both
TDVP as well as the exact results show that the exponent β

governing the decay of the imbalance is vanishing within the
estimated error bars as shown in Table I. The vanishing β ful-
fills trivially the criterion (1) for observation of localization.

We also calculated entanglement entropy S(t ) for a bipar-
tition of the lattice into subsystems A and B of length L/2,

S(t ) = −TrA[ρA ln ρA], (3)

where ρA = TrB |ψ (t )〉 〈ψ (t )|, TrC denotes trace with respect
to degrees of freedom of subsystem C and |ψ (t )〉 is the state
of the system. The entanglement entropy S(t ) is shown in
Fig. 3(b). We observe that after an initial increase, the entropy
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TABLE I. Details of numerical simulations for W = 10 and
� = 0: System size L = 50, maximal time reached in time evolution
tmax, the bond dimension χ (not displayed for the exact numerical
calculation), number of disorder realizations nreal, and the exponent β

obtained from the fit I (t ) ∼ t−β in interval t ∈ [100, tmax]. The error
of β is estimated by resampling over the disorder realizations (here,
as well in the rest of this paper).

tmax χ nreal β

L = 50 1500 128 1000 (0.97 ± 1.12) × 10−4

L = 50 1500 1000 (0.96 ± 1.12 × 10−4

L = 50 5000 1000 (−0.23 ± 0.43) × 10−4

oscillates around a constant value—similarly to the imbalance
I (t ). As Fig. 3(d) shows, TDVP slightly overestimates the
entanglement entropy. The ratio between the error of TDVP
simulation and the value of the observable is roughly two or-
ders of magnitude larger than for the imbalance. Nevertheless,
the results from TDVP and the numerically exact simulation
practically overlap, showing that TDVP provides a reliable
information about the entanglement entropy growth.

Encouraged by this comparison, by setting � = 1, we shift
toward the interacting case for which a comparison with the
exact dynamics is not possible. There, we necessarily rely
on self-consistency tests of our simulations described in Ap-
pendix A.

V. TIME EVOLUTION OF IMBALANCE AT STRONG
DISORDER IN LARGE SYSTEMS

Taking into account the various estimates of the critical dis-
order strength WC for transition to the MBL phase, discussed
in Sec. II, we fix the disorder amplitude at W = 8 and W =
10. Such disorder strengths, according to the aforementioned
estimates of WC , are expected to lay significantly above the
transition to the MBL phase.

The evolution of imbalance I (t ) for W = 8 is shown in
Fig. 4 whereas the details of numerical simulations are shown
in Table II. After an initial transient decay and oscillations that
last up to t ≈ 100, we observe a slow but steady monotonic
decrease of I (t ) that persists up to the largest time tmax = 1500
reached in the simulation. The value of tmax is not sufficiently
large to unambiguously pinpoint the functional form of the
decay of I (t ). Nevertheless, we observe that the imbalance
is well fitted by a power-law decay I (t ) ∼ t−β in the inter-

TABLE II. Details of numerical simulations for W = 8: system
size L, maximal time reached in time evolution tmax, the bond di-
mension χ , number of disorder realizations nreal, and the exponent β

obtained from the fit I (t ) ∼ t−β in interval t ∈ [100, 1500]. The error
of β is estimated by resampling over the disorder realizations (here,
as well in the rest of this paper).

tmax χ nreal β

L = 50 1500 128 4000 (10.03 ± 1.23) × 10−4

L = 100 1500 128 2000 (11.07 ± 0.97) × 10−4

L = 200 1500 160 1000 (11.03 ± 0.81) × 10−4

FIG. 4. Time evolution of imbalance I (t ) for systems of size
L = 50, 100, 200 at disorder strength W = 8, details of the simula-
tions and fits are given in Table II. Top: The shaded lines denote I (t )
whereas the solid lines denote a running overage of I (t ) over window
(t − 25, t + 25), dashed lines denote power-law fits I (t ) ∼ t−β in
time interval t ∈ [100, 1500]. Bottom: The running beta function
β(t ), dashed lines show the value of β, the error of β(t ) is estimated
by resampling over the disorder realizations (here, as well as in the
rest of this paper).

val t ∈ [100, 1500]. The values of the exponent β, shown in
Table II, are positive, confirming that the slow decay of I (t ) is
present (for a discussion of the stability of the value of β with
respect to the choice of the fitting interval see Appendix. B).
Moreover, within the estimated error bars, the values of β are
the same for system sizes L = 50, 100, 200, indicating clearly
that condition (1) for the observation of MBL phase is not met
at W = 8.

To check whether condition (2) is fulfilled, we consider
the flowing beta function β(t ) obtained from fitting I (t1) =
at−β(t )

1 in the interval t ∈ [t1, 1.5t1]. The result, shown in the
bottom panel of Fig. 4, indicates that the decay of the imbal-
ance slows down considerably for t≈150. However, beyond
that time, the value of the β(t ) oscillates around the exponent
β. Therefore, we see no traces of slowing-down of the decay
of imbalance at W = 8.

In conclusion, for W = 8, neither criterion (1) nor (2) is
fulfilled. Hence, we proceed to repeat our analysis for larger
disorder strength W = 10.

Time evolution of the imbalance I (t ), as well as the flowing
β(t ) function are shown in Fig. 5. While the decay of im-
balance clearly slowed down considerably, as reflected by the
values of the exponent β shown in Table III, upon the increase
of disorder strength from W = 8 to W = 10, the system-size
dependence of β remains the same: the values of β are, within
the estimated error bars, similar for L = 50, 100, 200, clearly
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FIG. 5. Time evolution of imbalance for W = 10, denotation the
same as in Fig. 4. Details of the simulations and fits given in Table III.

not satisfying criterion (1). The flowing β(t ) function, shown
in the bottom panel of Fig. 5, indicates that the decay of
imbalance is relatively fast around t ≈ 200 and then slows
down considerably at t ≈ 500 for which the value of β(t ) is
vanishing. However, around t ≈ 800 the flowing β(t ) function
acquires again a value similar to β and the decay of imbalance
persists and criterion (2) is not met.

To make sure that our conclusions for W = 10 are valid,
we increased the maximal time reached in our simulations to
tmax = 5000 for system size L = 50; the results are presented
in Fig. 6. We indeed observe that the slow decay of imbalance
I (t ) persists up to the longest time achieved in our simulation.
This is exemplified by the power-law fit I (t ) ∼ t−β that accu-
rately matches the decay of imbalance in the whole interval
t ∈ [100, 5000], with the exponent β close to the values ob-
tained for the shorter time intervals, see Table III. Moreover,
the flowing β(t ) function oscillates around the value β in
the whole interval of available times. We see no signs of the
slowdown of decay of I (t ), which leads us to conclude that
criterion (2) is not fulfilled for W = 10.

In conclusion, we found no clear signatures of the MBL
phase in results presented in this section, even though we
considered significantly larger times and disorder strengths

TABLE III. Details of numerical simulations for W = 10, deno-
tations the same as in Table II.

tmax χ nreal β

L = 50 1500 128 4000 (3.93 ± 0.82) × 10−4

L = 100 1500 128 2000 (3.60 ± 0.53) × 10−4

L = 200 1200 160 1000 (3.50 ± 0.87) × 10−4

L = 50 5000 192 2000 (3.08 ± 0.51) × 10−4

FIG. 6. Time evolution of imbalance for W = 10 in extended
time interval, denotation the same as in Fig. 4. Details of the sim-
ulations and fits given in Table III.

than in earlier studies [59,60]. One immediate question is
whether we can go even further in the attempts to observe
the MBL phase and consider larger disorder strength W and
bigger maximal time tmax. The factor that limits such a con-
tinuation most severely is the slowdown of decay of I (t ) with
W . To observe in a statistically significant way a decay of I (t )
at larger W , the increase of tmax should be coupled with an
increase of the number of disorder realizations nreal. This con-
siderably increases the resources needed for such numerical
simulations. The same considerations apply to experiments
with quantum many-body systems which are limited by a
finite coherence time (typically limited to at most 1000 tun-
neling times [96], thus shorter than the times considered by
us) as well as resources needed to perform disorder averages.

VI. TIME EVOLUTION OF ENTANGLEMENT ENTROPY

The time dependence of the entanglement entropy is one
of the tools that may be used to identify the existence of
the MBL phase. While typically in the deconfined systems
the entanglement entropy grows linearly in time when the
evolution is started from the low entanglement, e.g., separable
state, in MBL one expects a logarithmic entanglement entropy
growth [128,129]. It is, therefore, instructive to study the
entropy growth in our case in the regime of large disorder
strengths and long times probed in our numerical simulations.
Since the Hamiltonian Eq. (1) conserves the total magneti-
zation

∑L
i=1 Sz

i , the entanglement entropy S of subsystem A
consisting of lattice sites 1, . . . L/2 can be written as a sum
S(t ) = Sn(t ) + Sc(t ), where Sn(t ) is the number entropy and
Sc denotes the configurational entropy [69,82,97,130–133].
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FIG. 7. Time evolution of entanglement entropy for L = 50 and
W = 10. Top: Configuration entanglement entropy Sc(t ) denoted
by solid line, dashed lines denote power-law and logarithmic fits
f (t ). The inset shows the residual f (t ) − Sc(t ). Bottom: The number
entanglement entropy Sn(t ) is denoted by solid line, dashed line
denotes a double-logarithmic fit f2(t ). The inset shows the residual
f2(t ) − Sn(t ).

The number entropy is given by

Sn(t ) = −
∑

n

p(n) ln p(n), (4)

where p(n) is the probability that
∑L/2

i=1 Sz
i is equal to n.

[We note that
∑L/2

i=1 Sz
i is proportional to the total number of

spinless fermions in subsystem A after Jordan-Wigner trans-
formation of Eq. (1), explaining the term “number entropy.”]
The configurational entropy is given by

Sc(t ) = −
∑

n

p(n)Tr[ρ(n) ln ρ(n)], (5)

where ρ(n) is the block of the reduced density matrix in
sector with

∑L/2
i=1 Sz

i = n. Our results for the entanglement
entropies Sn(t ) and Sc(t ) are shown in Fig. 7. The configu-
rational entropy Sc(t ) is expected to grow logarithmically in
time [128,129] in the MBL regime. We observe that after
an initial transient at times t � 10, the growth of Sc(t ) is
well described by a power law Sc(t ) ∝ tγ with γ = 0.250(2)
in the interval t ∈ [10, 600]. This behavior resembles the
time dynamics of entanglement entropy observed in the er-
godic regime at moderate values of disorder W ≈ 2.5 [126].
However, at longer times, the increase of Sc(t ) slows down
and is well fitted by Sc(t ) = a + b ln t with a = −0.04437(7)
and b = 0.02001(9) for t ∈ [400, 5000] in agreement with
expectations for the MBL regime. The growth of the num-
ber entropy is significantly slower, and is very well fitted

FIG. 8. Time evolution of imbalance I (t ) for QP potential. Top:
Results for the amplitude of QP potential W QP = 2 the shaded lines
denote I (t ) whereas the solid lines denote a running overage of I (t )
over window (t − 25, t + 25), dashed lines denote power-law fits
I (t ) ∼ t−β in time interval t ∈ [500, 5000]. Bottom: The same for
W QP = 3. Details of simulations are given in Table IV.

by a double logarithmic formula Sn(t ) = a + b ln ln t with
a = 0.1496(6) and b = 0.0120(3) in a wide regime of times
t ∈ [20, 5000]. This confirms the prediction of Refs. [40,44]
for the significantly larger system size and disorder strength
than tested before.

In conclusion, the slow decay of imbalance observed in
Sec. V is accompanied by a logarithmic increase of the config-
urational entanglement entropy Sc(t ) and a double logarithmic
growth of the number entropy Sn(t ). Those quantities provide
a complementary to the imbalance insight into the dynamics
of the slow delocalization of the system. At the same time,
they do not allow for an observation of the MBL phase in
a fashion similar to the imbalance. For a localized system,
one expects a saturation of Sn(t ) [41]. The upper limit, Sn =
ln(3) ≈ 1.01, predicted in Ref. [41] is much higher than the
values reached by a very slow double logarithmic growth of
Sn(t ) observed in Fig. 7. Note also that a very recent study,
Ref. [134], instead of such a a slow double logarithmic growth
predicts a power-law approach of Sn to its asymptotic value
at t → ∞. This cannot be tested for the large system sizes
(L � 50) considered by us since we are unable to determine
the asymptotic value of limt→∞ Sn(t ).

VII. QUASIPERIODIC SYSTEMS

In this section, we attempt observation of the MBL phase in
dynamics of the system with QP potential, defined in Sec. II.
To that end, we investigate the impact of the amplitude of QP
potential W QP on time evolution of imbalance I (t ).

224203-7



PIOTR SIERANT AND JAKUB ZAKRZEWSKI PHYSICAL REVIEW B 105, 224203 (2022)

TABLE IV. Details of numerical simulations QP potential, de-
notations the same as in Table II. The bond dimension χ is not
displayed for calculation performed with the Chebyshev expansion
of the evolution operator.

tmax χ nreal β

L = 12, W QP = 2 5000 106 (1.8 ± 0.2) × 10−3

L = 16, W QP = 2 5000 105 (9.5 ± 0.2) × 10−3

L = 20, W QP = 2 5000 5 · 104 (19.0 ± 0.1) × 10−3

L = 12, W QP = 3 5000 106 (3.3 ± 0.4) × 10−4

L = 16, W QP = 3 5000 105 (8.8 ± 0.3) × 10−4

L = 20, W QP = 3 5000 5 · 104 (8.9 ± 0.6) × 10−4

L = 12, W QP = 4 5000 106 (2.1 ± 0.4) × 10−4

L = 16, W QP = 4 5000 105 (2.8 ± 0.3) × 10−4

L = 50, W QP = 4 4000 128 (3.0 ± 1.3) × 10−4

L = 12, W QP = 5 10000 106 (0.3 ± 0.7) × 10−4

L = 16, W QP = 5 10000 105 (1.1 ± 0.8) × 10−4

L = 50, W QP = 5 4500 128 2000
L = 100, W QP = 5 3000 128 1000
L = 200, W QP = 5 2500 128 600

The results for W QP = 2, 3 are shown in Fig. 8. The behav-
ior of I (t ) is qualitatively similar to the systems with random
disorder: after an initial transient, the decay of imbalance is
well fitted by a power law I (t ) ∼ t−β . The exponent β is
clearly increasing with system size both for W QP = 2 and
W QP = 3, as shown in Table IV, suggesting that the system
delocalizes in the thermodynamic limit at those values of W QP

and neither criterion (1) nor (2) for observation of the MBL
phase is met.

The decay of imbalance I (t ) slows down considerably
when the amplitude of the QP potential is increased to W QP =
4 as shown in Fig. 9. The exponents β governing the power-
law decay of imbalance for W QP = 4 are comparable to the
exponents obtained for W = 10 for the random disorder.
However, the behavior of the running averages of I (t ) (shown
by the solid lines in Fig. 9) is different: We observe significant
oscillations around the fitted power-law decay. The pattern
of those oscillations is not stable with increasing the system
size, L.

This behavior changes qualitatively for W QP = 5. For this
amplitude of the QP potential, we observe an emergence of
a pattern of oscillations of I (t ) at times t � 200 that remains
the same when the system size is increased from L = 12 to
L = 200. This is the first case for which we observe that the
increase of the system size does not enhance its delocalization.
Instead, this result shows that the dynamics of a small system
comprised of L = 12 sites is reproduced in the bulk of the
large system of L = 200 sites. Such behavior suggests that the
system remains MBL in the thermodynamic limit at W QP =
5, although our approach is inherently limited to dynamics at
finite times and cannot give a definite answer about the fate of
the system at t → ∞.

Two remarks are in order. First, the values of the running
average of I (t ) are not changing monotonically with L: the
curve for L = 16 is on the top whereas that for L = 50 on the
bottom. This is caused by the statistical fluctuations associated

FIG. 9. Time evolution of imbalance I (t ) for QP potential for
W QP = 4, 5, denotation the same as in Fig. 8. Details of the simu-
lations and fits given in Table IV.

with the finite number of disorder realizations nreal as well
as by the erratic changes of 2πkL modulo 2π with L that
determine the number of full periods of the QP potential in
the whole chain. Second, the emergent pattern of oscillations
of I (t ) prevents us from determining whether the imbalance
I (t ) slowly decays in time. Performing a power-law fit in the
interval t ∈ [1000, 10000] we have found nonvanishing values
of β as shown in Table IV. However, β changes significantly
when the interval in which the fit is performed changes. This
shows that criteria (1) and (2) are effectively inapplicable to
the dynamics of imbalance in QP potential.

We refer the reader to Appendix C for further numerical
studies of the imbalance in QP potential, where we show that
the persistent oscillations tend to decay for even larger values
of the amplitude W QP. We also show there that the character of
the oscillations depends on the parameter k which determines
the quasiperiodicity of the potential by also simulating the
dynamics for k = √

2/2.
To explore the dynamics in the QP potential from a dif-

ferent perspective, we calculate the number, Sn(t ), and the
configurational, Sc(t ), entropies for W QP = 5. The results
are shown in Fig. 10. Rather than observing an anticipated
monotonic increase of the entanglement entropies, we may
distinguish three time intervals (A, B, C) in the time depen-
dence of Sc,n(t ). In interval I , for t � 4500, we observe an
algebraic in time increase of Sc(t ) (compare the inset in the
top panel in Fig. 10 drawn in the log-log scale). This behavior
is accompanied by a slow increase of the number entropy
Sn(t ) which initially follows a logarithmic growth, saturates
around t ≈ 300, and then again seems to follow a logarithmic
growth. In interval I, the results for small L = 16, 20 and large
system sizes L = 50, 200 practically overlap both for Sc(t )
and Sn(t ). This is another property suggesting the locality of
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FIG. 10. Time evolution of entanglement entropy for QP poten-
tial with W QP = 5. Top: Configuration entanglement entropy Sc(t )
for system sizes L = 16, 20, 50, 200. The inset shows the same but
on log-log scale. The dashed lines divide the time into intervals I,
II, III (see text). Bottom: The corresponding number entanglement
entropy Sn(t ).

the dynamics at W QP = 5. We observe for L = 16, 20 that the
behavior of Sc(t ) changes qualitatively at larger times: Sc(t )
is approximately constant in region II (4500 < t < 20 000)
and grows logarithmically in time in region III (t > 20 000).
Both for Sc(t ) as well as for Sn(t ), the results for L = 16
and L = 20 are practically overlapping in time intervals II
and III. Unfortunately, regimes II and III are inaccessible in
TDVP calculations for large system sizes. This prevents us
from deciding whether the initial power-law growth of Sc(t )
is continued in the large time limit for large system sizes
(leading to a slow approach towards ergodicity) or whether the
features of the entanglement growth at L = 20 are consistent
with the behavior system for L → ∞ (leading to a stable MBL
phase).

VIII. CONCLUSIONS

In this paper, we have addressed the problem of a possible
experimental observation of MBL. The presence of interac-
tions gives rise to a slow dynamics toward equilibrium in
strongly disordered systems. This leads us to argue that an ob-
servation of even a very slow decay of correlation functions in
a finite interval of time is insufficient to claim an unambiguous
observation of MBL.

For relatively small systems comprising less than L = 20
lattice sites, we calculated time dynamics beyond the Heisen-
berg time which allowed us to extrapolate the results to the
infinite time limit. Building on intuitions obtained in that way,

we formulated criteria (1) and (2) for an observation of the
MBL phase. Criterion (1) requires a slowdown of the decay
of density correlation functions as L−1 when the system size
L is increased. Criterion (2) demands a saturation of corre-
lation functions beyond a certain timescale in a system size
independent manner. We would like to emphasize that these
criteria are neither sufficient nor necessary conditions to prove
that a system is MBL. Rather, we perceive criteria (1) and (2)
as hints of whether the dynamics of a given system breaks the
ergodicity or not.

Performing large-scale tensor network simulations of time
evolution of disordered XXZ spin chains of up to L = 200
sites, we did not find a regime of parameters in which the
criterion (1) or (2) for observation of MBL would be satisfied.
For considered disorder strengths, we always encountered the
slow but persistent decay of imbalance hinting at a slow ap-
proach of the system toward the eventually delocalized future.
This conclusion was obtained even though we focused on the
regime of disorder strengths lying significantly above the cur-
rent estimates of the critical disorder strength for transition to
MBL phase and pushed the maximal time reached in our sim-
ulations to a few thousands of tunneling times. In that respect,
our results are consistent with the nonexistence of the MBL
phase in the thermodynamic limit, see also Refs. [36,46].
We also revisited the dynamics of the entanglement entropy
confirming the logarithmic growth of its configurational part
and the double logarithmic increase of the number entropy in
the regime of long times and large system sizes, confirming
predictions of Refs. [40,44].

Finally, we investigated the time evolution of QP systems.
The dynamics of the QP system is very much similar to a
random system at intermediate values of the amplitude W QP,
with a slow, power-law like decay of imbalance. However,
for a stronger QP potential, at W QP = 5, we demonstrated an
emergence of a pattern of oscillations in the imbalance I (t ).
This pattern remains stable with the increase of the system
size. This qualitatively different behavior of the imbalance
in a striking fashion shows that the dynamics of QP systems
at sufficiently large potential strengths becomes local. While
we were eventually not able to fully exclude the decay of
the imbalance in the infinite time limit, the result for QP
systems appears to not be far from being sufficient to claim
an observation of MBL phase. In any case, our results show
that the asymptotic properties of transition to MBL phase may
be probed more easily in QP systems (see Ref. [122] for the
analysis of the QP system from the spectral perspective).

We would like to stress that our results, especially for disor-
dered systems, do not exclude the existence of a stable MBL
phase. Rather, they provide lower bounds on timescales and
disorder strengths required to observe the freezing of system
dynamics in the long-time limit that defines the MBL phase.
Those lower bounds are relevant both for future numerical
simulations of disordered systems as well as for experiments
with quantum simulators.
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APPENDIX A: TESTS ON THE NUMERICAL ACCURACY
OF THE PRESENTED RESULTS

The results presented in the main text are obtained using
different numerical techniques that will be described in detail
below. We also provide details of the numerical method for
used for the noninteracting system.

There are two types of errors in our results. The first is
the statistical error which arises due to fluctuation of results
from one disorder realization to another at fixed parameters of
the system. The resulting errors in the exponent β governing
the decay of imbalance I (t ), as well as in the running β(t )
function are estimated by the bootstrap technique, i.e., by
resampling over the disorder realizations. In the figures, we
plot the imbalance I (t ) as well as a running average of the
imbalance. Importantly, however, in the fits that determine
β(t ) and β, we always use the full data for the imbalance
I (t ). The second type of uncertainties are the systematic errors
that might occur when the numerical simulations are not fully
converged. Those systematic errors are particularly relevant
for TDVP results. Below, we describe numerical tests that
confirm that the values χ used by us in the main text are
sufficient for the results to be converged, i.e., independent of
the value of the bond dimension χ .

1. Chebyshev time propagation

For small system sizes (L � 20), we use Chebyshev prop-
agation scheme as described in detail in Ref. [125]. In a
nutshell, this approach approximates the time evolution op-
erator U (�t ) = exp(−iH�t ) over time period �t as

U (�t ) ≈ e−ib�t

(
J0(a�t ) + 2

N∑
k=1

(−i)kJk (a�t )Tk (H)

)
,

(A1)
where a = (Emax − Emin)/2, b = (Emax + Emin)/2 and Emin

(Emax) is the energy of the ground state (the highest excited
eigenstate) of the Hamiltonian H . The Hamiltonian is rescaled
to H = 1

a (H − b) so the spectrum of H belongs to the [−1, 1]
interval, Jk (t ) is the Bessel function of the order k, and Tk (x) is
the Chebyshev polynomial of order k. The order of expansion
N needed to assure convergence of the expansion Eq. (A1)
for a given time step �t is computed in the following way.
We take a random normalized state |ψR〉, calculate the state
U (�t ) |ψR〉 with a certain trial order of expansion Ntr, and
compute its norm. If the norm of U (�t ) |ψR〉 deviates from
unity by more than 10−13, we know that Ntr needs to be in-
creased; otherwise Ntr is decreased. This allows us to perform
a binary search for Ntr in the interval Ntr ∈ [5, 5000] (the upper
boundary is determined by the maximal time step �t and
parameters of the model). The result of this binary search, N0

tr ,

is then incremented by 20%, yielding the desired order N =
1.2N0

tr . We calculate the order of expansion whenever the time
step �t changes in our algorithm. To calculate the time evo-
lution of an initial state |ψ (0)〉, we repeatedly apply Eq. (A1)
to obtain |ψ (�t )〉, |ψ (2�t )〉, . . ., |ψ (tmax)〉. We have tested
this procedure for system sizes L � 16 comparing |ψ (tmax)〉
with state |ψED(tmax)〉 = U (tmax) |ψ (0)〉 evolved using time
evolution operator U (tmax) determined by means of the full ex-
act diagonalization of the Hamiltonian H . For tmax = 105, we
checked that the norm || |ψ (tmax)〉 − |ψED(tmax)〉 || is smaller
than 10−10 in the whole parameter range considered in this
paper. The deviation from unity of the norm of the state
propagated with the Chebyshev expansion: 1 − || |ψ (tmax)〉 ||
was smaller than 10−12 for all system sizes considered in
this paper. For L � 16 the corresponding deviations in the
value of C(t ) function (as compared to |ψED(tmax)〉) were
smaller than 10−13. We note that the main advantage of the
Chebyshev expansion is that it efficiently utilizes the sparse
matrix structure of the Hamiltonian of the system. This is due
to the fact that a single time propagation step U (�t ) |ψ (t )〉
reduces to O(N ) matrix-vector products and a calculation of
linear combinations of vectors.

2. Tensor network approaches

The Chebyshev propagation scheme is not effective for
larger system sizes since it operates on the quantum states
expressed as vectors in the full Hilbert space that is expo-
nentially large in system size. In contrast, tensor network
techniques parametrize only a fraction of the full Hilbert
space, encoding the state of the system in a MPS. This al-
lows us to investigate time evolution of systems larger than
L > 25. The tensor network techniques were developed over
the years, starting from seminal works of Vidal [53,54]
and White and Feguin [136]. The link between the two
approaches was illuminated in Ref. [137]. Those schemes
are known as time-dependent density matrix renormalization
group techniques (tDMRG) or TEBD techniques. The impor-
tant modification came with the variational approach leading
to algorithms based on TDVP, optimal for an assumed lim-
itation of the Hilbert space [55–58]. The time evolution can
be calculated effectively with tensor network approaches only
when the bond dimension χ of the MPS is sufficiently large
to encode the state of the system. This gives rise to an upper
limit on the entanglement entropy in the state of the system
for a given χ . This, in turn, translates into maximal time
tmax to which time evolution of the system can be accurately
simulated with TDVP/tDMRG for a given bond dimension
χ . Calculations in our paper rely on the fact that for dis-
order strengths W = 8 − 10, the spreading of entanglement
in the system is very slow, which allows us to probe the
time evolution at times equal to a few thousand tunneling
times. The TDVP algorithm for time evolution consists of
two stages. In the first stage, we use the so called two-site
TDVP which allows for an accurate estimation of the errors.
They appear mainly due to the truncation of the Hilbert space
via Schmidt decomposition between the sites. When a disre-
garded Schmidt weight exceeds 10−12, the Hilbert space is
enlarged so in this stage the algorithm is practically exact
until the bond dimension reaches the prescribed value χ at
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FIG. 11. Comparison of the imbalance I (t ) (averaged over times
[t − 10, t + 10]) for system size L = 200 and disorder strength W =
10 obtained with TEBD and TDVP algorithms. The bond dimension
is fixed as χ = 128 and the results are averaged over 24 disorder
realizations. The inset shows the difference between the imbalances
I (t ) for TDVP and TEBD propagation schemes.

a given bond. At this stage, we switch (at this bond) to a
one-site TDVP algorithm; from this moment, errors due to
the Hilbert space truncation start to accumulate. This is a
standard, well-developed strategy [60,61] which we follow in
our paper.

The detailed comparison of the performance of TEBD
and TDVP algorithms for the random-field XXZ chain, but
for lower disorder amplitudes than in the present paper, was
performed in in our previous work [60]. It was shown, in
particular, that the TEBD algorithm that is unconverged, i.e.,
the bond dimension is not sufficiently large to follow the time
evolution of the state up to the requested time tmax, spuriously
indicates a stabilization of the imbalance I (t ), suggesting a
localization in the system. In contrast, unconverged TDVP
has a tendency to show a delocalization in the system by
overestimating the degree of decay of the imbalance I (t ).
An analogous behavior of TDVP was also observed in a
different disorder-free models in Ref. [58]. This motivates
us to compare results for the imbalance I (t ) obtained with
TEBD and TDVP algorithms as shown in Fig. 11. The re-
sults are averaged over 24 disorder realizations for L = 200
and W = 10. We observe that the agreement between TDVP
and TEBD results is excellent, indicating the convergence for
individual disorder realizations. The difference between the
curves at late times oscillates around 4 × 10−5. This small dis-
crepancy can be compared with the total change of the value
of imbalance �I = 7 × 10−4 in the interval t ∈ [100, 1200]
for L = 200 (cf. Fig. 5). The latter value is more than an order
of magnitude larger than the discrepancy between TDVP and
TEBD results. This suggests that the exponent of power-law
decay β = (3.50 ± 0.87) × 10−4 for L = 200 (see Table III)
is accurately estimated.

While TEBD is faster per time step for such a large
disorder amplitude (W = 10), we must take a very small
time step �t = 0.001 for TEBD to obtain converged results.
The error of the approximate unitary evolution may be esti-
mated by a relative energy change in the TEBD algorithm
[(〈ψTEBD(tmax)|H |ψTEBD(tmax)〉 − E0)/E0, where |ψTEBD(t )〉
is the state obtained in TEBD time evolution and E0 =

FIG. 12. Comparison of the imbalance I (t ) (averaged over times
[t − 10, t + 10]) for system size L = 50 and disorder strength W = 8
obtained with TEBD and TDVP algorithms. The bond dimension is
fixed as χ = 128 and the results are averaged over 1000 disorder
realizations. The dashed line shows the fitted power-law decay of
I (t ). The inset shows the difference between the imbalances I (t ) for
TDVP and TEBD propagation schemes.

〈ψ (0)|H |ψ (0)〉]. It remains below 10−4 for even the most
unfavorable disorder realization (for χ = 128). At the same
time, the total accumulated error, equal to the sum of squares
of Schmidt coefficients disregarded in all time steps, associ-
ated with necessary truncations inherent to TEBD is below
10−5. As shown in the following, the resulting error is suffi-
ciently small to obtain an accurate estimate of the exponent
β. The required small step makes, however, the application
of TEBD scheme not practical. For large disorder amplitudes
and large timescales, it is more efficient to use TDVP. It allows
us to keep the time step at a reasonable value, �t = 0.1 [the
timescale is fixed by J = 1 in Eq. (1)]. We have checked by
decreasing the time step that the chosen value leads to accurate
results. The agreement of TDVP results with the numerically
exact results for the noninteracting case, shown in Fig. 3,
provides another test of the convergence of our results with
the time step.

While the comparison for L = 200 is carried out for 24
disorder realizations only, we supplement it with comparison
for W = 8 and L = 50 carried out for over a 1000 disorder
realizations in Fig. 12. Again the discrepancy between curves
is small—of the order of 4 × 10−5 as for L = 200 data in
Fig. 11. A larger number of disorder realizations allows us
to extract reliably β values from both simulations. They agree
very well with each other, indicating the agreement between
both algorithms used.

The above comparison of TEBD and TDVP algorithms
suggests a good convergence of our TDVP results. To further
investigate the accuracy of the TDVP scheme, we compare
results obtained for a varying bond dimension χ . Figure 13
summarizes our results. In each of the investigated cases, we
observe that the curves showing the imbalance I (t ) practically
overlap for both bond dimensions considered (cf. the insets
in Fig. 13). We observe that the exponents β governing the
power-law decay of imbalance for smaller and larger χ are
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FIG. 13. The imbalance I (t ) (averaged over times [t − 10, t +
10]) for system size L and disorder strength W obtained with TDVP
algorithm with bond dimension χ , dashed lines show power-law
fits I (t ) ∼ t−β in time interval t ∈ [100, tmax]. Top panel: L = 200,
W = 8, results averaged over 250 disorder realizations, tmax = 1500.
Center panel: L = 100, W = 10, results averaged over 1000 disorder
realizations, tmax = 1500. Bottom panel: L = 200, W = 10, results
averaged over 984 disorder realizations, tmax = 1200. The insets
show the difference between the imbalances for the larger and the
smaller value of χ .

consistent with each other, indicating a good convergence
of the data with the bond dimension. At the same time, we
observe that the β slightly decreases with the increase of the
bond dimension χ in each of the analyzed cases.

This dependence is further analyzed in the top panel of
Fig. 14 in which we have supplemented the data for χ = 128

FIG. 14. Top panel: Comparison of the imbalance I (t ) (averaged
over times [t − 10, t + 10]) for system size L = 50 and disorder
strength W = 10 obtained with TDVP algorithm with bond dimen-
sion χ = [50, 90, 128, 192]. The results are averaged over 1000
disorder realizations. The inset shows the difference �I (t ) = Iχ (t ) −
Iχ=192(t ) between the imbalance obtained with TDVP with the largest
bond dimension χ = 192 and the imbalances obtained with χ =
128, 90, 50. Bottom panel: The same, but data for the smaller bond
dimensions: χ = 48, 64, 96, 128 obtained with TEBD algorithm.
Note the difference in the range of the horizontal axes of the two
panels.

and χ = 192 with results for smaller bond dimensions χ =
50, 90. Interestingly, the agreement of results for χ � 50 up
to time t ≈ 1000 shows that already the results for χ = 50 are
a good estimate of the imbalance I (t ) in that time interval at
W = 10. At larger times, the results for χ = 50 are uncon-
verged and show spurious signatures of delocalization in the
system, consistent with our expectations based on Ref. [60].
The bottom panel of Fig. 14 compares the TDVP results for
χ = 192 with the imbalance obtained with TEBD and bond
dimensions χ = 48, 64, 96, 128. Contrary to the expectations
from Ref. [60], we see that TEBD also indicates weaker and
weaker decays of the imbalance I (t ) as the bond dimension
χ is increased. The difference between the TDVP and TEBD
results for the largest χ presented is no bigger than 4 × 10−5,
indicating that both algorithms yield consistent estimates of
β, β(t ).

224203-12



CHALLENGES TO OBSERVATION OF MANY-BODY … PHYSICAL REVIEW B 105, 224203 (2022)

FIG. 15. Top panel: Comparison of the values of the exponent
β governing the decay of the imbalance I (t ) for disorder strength
W = 10 and system size L = 50 obtained with TDVP propagation
scheme. The fitting was performed in the interval t ∈ [100, tmax] and
results are shown as a function of 1/χ , solid lines denote second-
order polynomial fits in 1/χ , the red point at 1/χ = 0 shows the
result β = (3.08 ± 0.51) × 10−4 from Table III. Bottom panel: The
exponent β as a function of 1/χ for TDVP and TEBD algorithms (for
L = 50, W = 10). The values of β presented in both are extracted
from data shown in Fig. 14.

To clarify the dependence of the results on the value of χ ,
we plot the values of the exponent β as function of 1/χ in the
top panel of Fig. 15. The value of the exponent β decreases
monotonously with the bond dimension χ . The change in the
value of β when χ increases from 50 to 192 is the smallest
for tmax = 1500 (indicating that smaller bond dimensions are
needed to get converged results for t < 1500) and increases
with the increase of tmax. Nevertheless, the extrapolations of
β with a second-order polynomial in 1/χ give consistent
results for all considered values of tmax. Importantly, those
extrapolations are in agreement with the result β = (3.08 ±
0.51) × 10−4 from Table III, confirming the convergence of
our simulations with the bond dimension. The bottom panel of
Fig. 15 shows a comparison of β for tmax = 1500 for TEBD
and TDVP results. The values of β are nearly independent
of χ for χ � 90, confirming that both algorithms are very
close to being converged at those bond dimensions for t <

tmax = 1500. Finally, the extrapolation of those results to the
large χ limit yields the consistent values of β for both TEBD
and TDVP in line with our message about the persistence of a

slow decay of the imbalance even at the large disorder strength
W = 10.

3. Time evolution for free fermions

Here, for completeness, we provide details of the standard
(see Ref. [138] and references therein) approach to time evo-
lution of a system of non-interacting fermions used by us
in Sec. IV. The Hamiltonian Eq. (1), upon Jordan-Wigner
transformation, becomes

Ĥ = 2J
L−1∑
i=1

(
ĉ†

i ĉi+1 + ĉ†
i+1ĉi + �

2
n̂in̂i+1

)
+

L∑
i=1

hin̂i, (A2)

where ĉ†
i (ĉi) is the creation (anihilation) operator of a spin-

less fermion at site i, the canonical anticommutation relation
{ĉi, ĉ†

j } = δi j is fulfilled, and the number operator is given as

n̂i = ĉ†
i ĉi. For � = 0, the model Eq. (A2) becomes nonin-

teracting. Then, it can be written as a quadratic form of the
fermionic operators

Ĥ =
L∑

i, j=1

hi j ĉ
†
i ĉ j, (A3)

where we have introduced a L × L matrix h = (hi j ). Time
dependence of the fermion annihilation operator is given by

ĉi(t ) = eiĤt ĉie
−iĤt =

L∑
j=1

(e−iht )i j ĉ j, (A4)

where the second equality can be obtained from the Baker–
Campbell–Hausdorff formula. Defining a L × L correlation
matrix

C(t ) = (C(t ))i, j = 〈ψ | ĉ†
i (t )ĉi(t ) |ψ〉 , (A5)

and using Eq. (A4), we find that

C(t ) = eiht C(0) e−iht . (A6)

The correlation matrix C(0) at t = 0 is determined by the
initial state, and for the Néel state the only nonvanishing
coefficients are C(0)2k,2k = 1 where k = 1, . . . , L/2. The im-
balance is given by

I (t ) = D
L−l0∑

i=1+l0

(−1)i(C(t ))ii, (A7)

where the constant D assures that I (0) = 0. Finally, to cal-
culate entanglement entropy for a bipartition of the system
into subsystems consisting of sites 1, . . . , lA and lA + 1, . . . L,
we calculate eigenvalues λi of the submatrix (C(t ))lA

i, j=1 and
compute the entanglement entropy as [139,140]

S(t ) = −
lA∑

i=1

[λi ln(λi ) + (1 − λi ) ln(1 − λi )]. (A8)

The formulas Eqs. (A7) and (A8) allow us to calculate the
imbalance and entanglement entropy for the XXZ spin chain
with � = 0 with numerical cost scaling as L3.
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FIG. 16. The exponent β obtained from the fit I (t ) ∼ t−β in
interval t ∈ [tmin, tmax] as a function of tmin for W = 8, 10 and system
size L = 50, 200.

APPENDIX B: STABILITY OF THE POWER-LAW FITS
TO CHOICE OF TIME INTERVAL

In the main text, the imbalance was fitted by a power-law
decay: I (t ) ∼ t−β in interval t ∈ [tmin, tmax], where tmin = 100
and the value of tmax was equal to the maximal time reached in
time evolution (tmax = 1200, 1500, 5000). In this Appendix,
we discuss the impact of changes of tmin on the value of
exponent β.

The result is shown in Fig. 16. For W = 8, we observe that
the value β remains, within the estimated error bars, constant
in the interval tmin = [80, 200], justifying the choice tmin =
100 made in the main text. Inclusion of times t � 80 leads to
an increase of β—consistent with the small t behavior of the
imbalance shown in Fig. 4. When tmin � 200, the precision
of estimation of β decreases as the fitting interval [tmin, tmax]
gets narrower. Similar trends are observed for W = 10 for data
with tmax = 1500. However, the stability of the fit is greatly
improved when tmax = 5000: then, the choices of tmin from
interval [80,1000] lead to the values of β that agree within the
estimated error bars.

The value of β decreases approximately three times when
W is increased from 8 to 10. However, β clearly remains
positive within the estimated error bars, showing that the
imbalance I (t ) indeed decays in time. Extrapolating the trend
of changes in β, we may expect that β ≈ 10−4 at W = 12.
Assuming a similar scaling of the statistical error of β, already
at W = 12 we would need to either increase the number of
disorder realizations or increase tmax as compared to their
respective values at W = 8, 10 to be certain that the value of
β at W = 12 is positive.

APPENDIX C: OSCILLATIONS OF THE IMBALANCE
FOR QUASIPERIODIC SYSTEMS

In Sec. VII of the main text, we have demonstrated an
emergence of persistent oscillations of the imbalance I (t ) for
sufficiently strong QP potential. In this Appendix, we provide
further details on this phenomenon.

FIG. 17. Persistent oscillations for QP potential. The imbalance
I (t ) (averaged over times [t − 25, t + 25]) is shown by solid lines
for various amplitudes of QP potential W QP, shading shows the
imbalance without time averaging. The results are averaged over
more than 5000 realizations of QP potential and the system size is
fixed as L = 16. Top panel shows results for k =

√
5−1
2 whereas the

bottom panel for k =
√

2
2 . The range of the vertical axis is the same

for all subplots.

Since the oscillations do not depend on the system size (at
least for L � 12), we fix the system size as L = 16 and in-
vestigate the time evolution of the imbalance I (t ) varying the
amplitude W QP of the QP potential as well as the wave vector
k that determines the shape of the QP potential [recall that
h j = W QP cos(2πk j + φ)]. The results are shown in Fig. 17.

By comparing the results for fixed k =
√

5−1
2 , we note that

the amplitude of oscillations diminishes when W QP = 5 is
increased to W QP = 8. This could be expected as in the limit
of W QP → ∞, the initial Néel state becomes an eigenstate of
the XXZ model. In that limit, the oscillations are absent and
the imbalance remains trivially equal to unity throughout the
time evolution. Thus, the imbalance oscillations occur only
in a limited range of amplitudes of the QP potential: W QP

must be sufficiently large to give rise to a very slow dynamics
(unlike in Fig. 8) but not large enough to give rise to a trivial
dynamics. A similar decrease of the oscillations of I (t ) upon
the increase of W QP is visible in Fig. 17 for k =

√
2

2 .
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The differences in the pattern of oscillations for k =
√

5−1
2

and k =
√

2
2 (well pronounced for the smaller values of W QP

in Fig. 17) demonstrate that the oscillations of I (t ) depend in
a nontrivial fashion on the value of the constant k. By investi-
gating time dynamics of the density correlation function C(t )
for initial states that are eigenstates of the Sz

i operator but are

different than the Néel state, we noted that the pattern of the
oscillations of I (t ) also depends strongly on the initial state. In
particular, the density correlation function C(t ) averaged over
such initial states shows no long-time oscillations. This shows
that the emergence of the pattern of oscillations is determined
by the interplay of a spatial structure of the initial state and
the constant k of the QP potential.
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[11] M. Serbyn, Z. Papić, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[12] J. Z. Imbrie, Diagonalization and Many-Body Localization
for a Disordered Quantum Spin Chain, Phys. Rev. Lett. 117,
027201 (2016).

[13] T. B. Wahl, A. Pal, and S. H. Simon, Efficient representation
of fully many-body localized systems using tensor networks,
Phys. Rev. X 7, 021018 (2017).

[14] M. Mierzejewski, M. Kozarzewski, and P. Prelovšek, Counting
local integrals of motion in disordered spinless-fermion and
Hubbard chains, Phys. Rev. B 97, 064204 (2018).

[15] S. J. Thomson and M. Schiró, Time evolution of many-body
localized systems with the flow equation approach, Phys. Rev.
B 97, 060201(R) (2018).

[16] M. Žnidarič, A. Scardicchio, and V. K. Varma, Diffusive
and Subdiffusive Spin Transport in the Ergodic Phase of a
Many-Body Localizable System, Phys. Rev. Lett. 117, 040601
(2016).
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