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While global quantum quench has been extensively used in the literature to understand the localization-
delocalization transition for the one-dimensional quantum spin chain, the effect of geometric quench (which
corresponds to a sudden change of the geometry of the chain) in the context of such transitions is yet to
be well understood. In this work, we investigate the effect of geometric quench in the Aubry-André model,
which supports localization-delocalization transition even in one dimension. We study the spreading of the
entanglement and the site occupation with time and find many interesting features that can be used to characterize
localization-delocalization transition. We observe that geometric quench causes a power-law type growth of the
entanglement entropy in the delocalized phase in contrast to the linear growth which is found in the global
quench studies. We also find that the saturation values in the many-body localized (MBL) phase obey area law in
contrast to the usual volume law, which is a signature feature of the MBL phase in the context of global quench.
This area law can also be understood from the long time site-occupation profile in the MBL phase.
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I. INTRODUCTION

In one dimension, any arbitrary weak amount of disorder is
sufficient to localize all eigenstates of a noninteracting system.
This phenomenon is famously known as Anderson localiza-
tion [1,2]. The question of how this picture is modified by
interactions remained unclear for a very long time. However,
relatively recently, Basko, Aleiner, and Altshuler have argued
that an interacting many-body system can undergo a so-called
many-body localization (MBL) transition in the presence of
quenched disorder [3]. There has been a plethora of work in
this direction in the past decade to understand the nature of
this phase transition both theoretically[4–14] and experimen-
tally as well [15–17]. The MBL transition is rather unique
in contrast to more conventional quantum phase transitions.
This is not a transition in the ground state; instead, the MBL
transition involves the localization of highly excited states of a
many-body system with finite energy density. Also, this MBL
phase is of fundamental interest in the context of statistical
mechanics. Local subsystems of a generic interacting many-
body system are expected to equilibrate with their surround-
ings and that has led to the so-called eigenstate thermalization
hypothesis (ETH), which states that individual eigenstates of
the interacting system encode thermal distributions of local
quantities [18–20]. However, the many-body localized phase
is an exception, in which the individual eigenstates fail to obey
ETH and the notion of ergodicity breaks down [21,22].

Most of the out-of-equilibrium studies of localization-
delocalization transition involve the so-called quantum
quench, in which a system is initially prepared in the ground
state of a many-body quantum Hamiltonian, and a nontrivial
unitary dynamics is then induced by changing instantaneously
(i.e., quenching) one (or many) control parameters. Depend-

ing on whether this change happens locally or in the whole
system, the quench falls into the class of local or global
quenches, respectively. One uses universal features of dif-
ferent diagnostics, e.g., entanglement entropy, out of time
correlators (OTOC) to distinguish between different phases of
the systems [23–28].

In our work, we focus on a situation that is intermedi-
ate between a local and a global quench. We consider the
real-time dynamics following an instantaneous change of the
geometry or the size of the system, the so-called geometric
quench [29–32]. More specifically, we prepare an initial state,
which is say the ground state of a lattice Hamiltonian of
length LA, then study unitary dynamics under the same lattice
Hamiltonian of length L, where L > LA. The question we
are addressing here is whether one can use this geometric
quench as a probe to detect localization-delocalization transi-
tions. Thanks to extraordinary advancements of ultracold gas
experiments, this kind of sudden expansion of lattice size or
traps has been realized in recent days [33,34].

Given that a noninteracting one-dimensional system of
fermions in the presence of a true disorder does not show
any localization-delocalization transition, the Aubry-André
(AA) Hamiltonian [35] is one of the best suited Hamilto-
nians in order to investigate the effect of geometric quench
in the localization-delocalization transition. Instead of pure
randomness, this model has the incommensurate on-site po-
tential, which drives a system in the localized phase, and
the localization-delocalization transition occurs for a finite
incommensurate potential amplitude in contrast to the usual
Anderson localization in one dimension, which requires only
an infinitesimal disorder strength to localize all states. One can
also explore the MBL transition introducing the interaction in
this model [36].
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In our study, we investigate the effect of geometric quench
in the Aubry-André model. We have used the spreading of the
entanglement and the site-occupation with time as two tools to
characterize localization-delocalization transition. Our main
two results are the following. (1) We have observed that
geometric quench causes a power-law type growth of the
entanglement entropy in the delocalized phase in contrast to
the linear growth, which is found in the global quench studies.
(2) The saturation values in the many-body localized (MBL)
phase obey area law in contrast to the usual volume law which
is a signature feature of the MBL phase in the context of global
quench [37]. This area law feature can also be well understood
from the site-occupation profile in the MBL phase.

The paper is organized as follows. In Sec. II, we introduce
the model and protocols. Next, we discuss the characteristics
of the site-occupation profile in Sec. III. In Sec. IV, we inves-
tigate entanglement dynamics followed by geometric quench.
Finally, in Sec. V, we summarize our results.

II. MODEL AND PROTOCOLS

We study a system of fermions in a one-dimensional lattice
of size L, which is described by the following Hamiltonian:

Ĥ = −
L−1∑

i=1

(ĉ†
i ĉi+1 + H.c.) + 2h

L∑

i=1

cos(2παi + φ)n̂i

+V
∑

i

n̂in̂i+1, (1)

where ĉ†
i (ĉi) is the fermionic creation (annihilation) operator

at site i, n̂i = ĉ†
i ĉi is the number operator, and α is an irrational

number. Without loss of any generality, we choose α =
√

5−1
2 ,

and φ is a random number chosen between [0, 2π ]. We av-
erage over φ for all the calculations presented in this work
to obtain better statistics. In the absence of interaction, i.e.,
V = 0, the Hamiltonian Ĥ is known as the Aubry-André (AA)
model. It supports a delocalization-localization transition as
one tunes h. In the thermodynamic limit, h = 1 corresponds
to the transition point [35].

Given that we wanted to investigate the effect of geometric
quench in these systems, we do the following quench proto-
cols. First, we prepare the initial state as a ground state of the
Hamiltonian Ĥ in a one-dimensional lattice of size LA < L
and keep the (L − LA) sites completely empty. For all our cal-
culations, we fixed the total number of fermions as N = LA/2
and LA = L/2. Then we let the state evolve under the unitary
evolution of the Hamiltonian Ĥ , which is supported in a one-
dimensional lattice of size L. This quench protocol is different
than the local quench [38–41], where the initial state is ob-
tained by “gluing” together with two identical copies of the
ground state, i.e., |ψ (t = 0)〉 = |GS〉LA ⊗ |GS〉(L−LA ). On the
other hand, in our case, the initial state is chosen to be |ψ (t =
0)〉 = |GS〉LA ⊗ |0〉(L−LA ). For V = 0, all the calculations are
done using the on-body density matrix approach [42], while
for the interacting case we use the finite time density matrix
renormalization group (tDMRG) technique [43–46] to obtain
all the results. Some of the data displayed in the main text are
obtained using the tDMRG algorithm, as implemented in the
ITensor Julia library [47].

FIG. 1. (Upper panel) Variation of the site occupation for dif-
ferent time for h = 0.5, and L = 2LA = 200. Inset shows the data
collapse for the data for different times as we rescale the x
axes with (i − LA)/vst and the dashed line represents ni = 1/4 −
(1/2π ) sin−1[(i − LA)/vst], where vs is the fitting parameter. (Lower
panel) Variation of ni for different values of h for fixed time t = 14.
Solid and dashed lines correspond to the site occupation for t = 0 for
h = 0.25 and h = 1.5, respectively. Inset shows the variation of the
fitting parameter vs with h.

III. SITE OCCUPATION

In this section, we discuss the real-time dynamics of
the site occupation ni = 〈n̂i〉 subject to the tuning of disor-
der strength (h) and the interaction (V ) after the geometric
quench. First, we prepare the initial state to be a ground state
of a Hamiltonian (1) on a lattice of size L/2. Then we attach
an empty lattice of size L/2 with it. Hence the site occupation
has a domain wall profile in the beginning. Then the site
occupation wave front propagates with a velocity vs(V, h)
(function of disorder strength and the interaction) for t > 0.

We first focus on the noninteracting case, i.e., V = 0.
Figure 1 (upper panel) shows the evolution of site occupation
ni = 〈n̂i(t )〉 at different time steps for h = 0.5. Given that,
for h = 0.5, the Hamiltonian (1) remains in the delocalized
phase, one expects that the wave front would propagate to-
wards the boundary of the lattice; that is precisely what is
observed in Fig. 1. The next question one should ask is how
does one evaluate the wave front propagation velocity vs? For
that we use the ansatz, i.e., 〈ni(t )〉 = 1/4 − (1/2π ) sin−1[(i −
LA)/vst], which can be obtained analytically using a semi-
classical reasoning that was also applied in Refs. [48,49] for
h = 0. We also get a remarkable data collapse for ni = 〈n̂i〉
versus rescaled variable (i − LA)/vst as shown in the inset of
Fig. 1.

Next, we discuss the effect of disorder strength on the
propagation of the site occupation wave front. As we increase
the disorder strength (h), the velocity of the wave front starts
decreasing and, finally, the wave front almost gets frozen as
we cross the transition point, i.e., h = 1 as shown in Fig. 1
(lower panel). Inset shows the variation of vs with h. Now
we focus on the effect of interactions. Once we switch on
the interaction, we observe melting of the domain wall in the
site occupation profile similar to the one observed earlier for
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FIG. 2. (Upper panel) Variation of the site occupation for dif-
ferent time for h = 0.5, V = 0.5, and L = 2LA = 100. Inset shows
the data collapse for the data for different times as we rescale the
x axis with (i − LA)/vst and the black dashed line represents ni =
1/4 − (1/2π ) sin−1[(i − LA)/vst], where vs is the fitting parameter.
(Lower panel) Variation of ni for different values of h for fixed time
t = 15 for V = 0.5. Solid and dashed lines correspond to the site
occupation for t = 0 for h = 0.0 and h = 1.5, respectively. Inset
shows the variation of the fitting parameter vs with h.

the noninteracting case. Figure 2 (upper panel) describes the
propagation of site occupation wave front at different time
steps for V = 0.5. Once again we use the same ansatz, i.e.,
〈ni(t )〉 = 1/4 − (1/2π ) sin−1[(i − LA)/vst], to extract the vs.
Figure 2 (lower panel) shows the change in behavior of site
occupation profile as a function of h for a given time, i.e.,
t = 15. As expected, with the increase of h, the velocity of
the propagating wave front starts decreasing, as shown in the
inset of Fig. 2 (lower panel). In order to make the comparison
even more clear, we plot the variation of vs with h in Fig. 3
for different values of interaction strength. We see a general
feature with vs, which dies down as we increase the disorder
strength h even for the interacting case. This is due to the
effect of the many-body localization effect; as we approach
the ergodic-MBL transition point, the site occupation profile
hardly changes with time. In order to quantify the change in
the site occupation profile with time in the delocalized phase,
we use another quantifier, i.e., �n(t ) = ∑

i |ni(t ) − ni(t =
0)|. In Fig. 4, we show the variation of �n(t ) with t for
the noninteracting case for different values of h. We find an
initial power-law growth, i.e., �n ∼ tγ , and then it saturates
(apart from some small oscillations). Interestingly this expo-
nent γ � 1 for h = 0, but it decreases as one increases the
value of h. In the inset, we also show the long time average of

FIG. 3. Variation of the vs with the disorder strength for V =
1, 0.5, 0, −0.5, −1.

�n, i.e., 〈�n〉 = 1
T2−T1

∫ T2

T1
�n dt (note that we choose T1 and

T2 to be large so that �n at that time window remains in the
saturation regime), for different values of h and L and we find
that 〈�n〉 obeys a volume law. Next, we investigate the effect
of interactions. As Fig. 5 suggests, we find a similar behavior
of �n(t ) with t even in the presence of interaction.

However, the exponent γ depends on the interaction and
disorder strength, which has been displayed in Fig. 6. While,
for h = 0, it seems that γ does not depend on interaction
strength significantly, for nonzero h, there is a generic trend
that the value of γ (for a given h) decreases as the magni-
tude of interaction strength increases. Due to the limitation
of tDMRG simulation, we were unable to reach a very long
time; hence the saturation value of �n cannot be analyzed as
one could do it for the noninteracting case.

IV. ENTANGLEMENT DYNAMICS

Next, we investigate the entanglement dynamics. Even
though there are many measures to characterize the
entanglement, here we focus on probably one of the most

FIG. 4. (Main panel) Variation of δn = ∑
i |ni(t ) − ni(t = 0)|

with time for different values of h and V = 0, and L = 2LA = 200.
Solid lines are �n ∼ tγ with γ = 1, 0.93, 0.78, 0.67, 0.38 for h =
0, 0.25, 0.5, 0.75, 1, respectively. Inset shows the variation for long
time average of �n/L with h for L = 200 and 300.
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FIG. 5. Variation of δn = ∑
i |ni(t ) − ni(t = 0)| with time for

different values of h and the interaction V . Top figure shows the
variation for V = 0.5 where solid lines are �n ∼ tγ with γ =
1.00, 0.94, 0.80, 0.63, 0.55 for h = 0, 0.25, 0.5, 0.75, 0.90, respec-
tively. Bottom figure shows the variation for V = 1.0 where solid
lines are �n ∼ tγ with γ = 1.00, 0.85, 0.63, 0.43, 0.39 for h =
0, 0.25, 0.5, 0.75, 0.90, respectively.

popular measures of the entanglement, i.e., von Neuman en-
tanglement entropy. Considering a bipartition of a system
in a pure state |ψ〉 into parts A and B, a standard measure
of their mutual entanglement is the von Neumann entropy
SA = −TrρA log ρA. Here ρA is the reduced density matrix for
A, obtained after tracing part B from the full density matrix
ρ = |ψ〉〈ψ |.

We present the results for the time evolution of the entan-
glement entropy following the geometric quench in Fig. 7.
First, we focus on the delocalized phase, i.e., h < 1. Both
for the noninteracting case and interacting case, we find that
the growth of entanglement with time obeys power-law type
scaling, i.e., tη (see Fig. 7). This exponent η seems to decrease

FIG. 6. Scaling exponent γ with the interaction and the disorder
strength.

FIG. 7. Evolution of entanglement entropy in the delocalized
regime. Solid lines represent actual data and dotted lines are
best fit line for S(t ) ∼ tη for different values of h. Top fig-
ure shows the variation for V = 0 of system size L = 32, where η =
0.60, 0.52, 0.39, 0.31 for h = 0.25, 0.5, 0.75, 0.90, respectively. In-
set shows the saturation of the entanglement entropy for system sizes
L = 8, 12, 16, 20 for h = 0.5. Bottom figure shows the variation for
V = 0.5 of system size L = 32, where η = 0.61, 0.54, 0.40, 0.34
for h = 0.25, 0.5, 0.75, 0.90, respectively. Inset shows the saturation
of the entanglement entropy for system sizes L = 8, 12, 16, 20 for
h = 0.5.

with increasing h (see Fig. 7). Note that, in the limit h = 0 and
V = 0, this power-law growth of entanglement was reported
in the context of geometric quench in Ref. [30]. This feature is
quite unique compared to the usual global quench, where the
entanglement growth is always found to be linear in time in
the delocalized phase [36,50], except for long-range systems
[51]. However, the long-time saturation values of entangle-
ment entropy followed by geometric quench for delocalized
phase obey volume law (see the inset of Fig. 7), which also
has been observed for global quench. Now we focus on the
localized phase. In the absence of interaction, the entangle-
ment growth profile for geometric quench is very similar to
the one observed for the usual global quench, i.e., there is a
short time growth followed by saturation, and the saturation
values do not change with the system size and hence follow
area law (see Fig. 8) [37]. However, for the global quench
in the presence of interaction, the time evolution profile of
the entanglement entropy is very different compared to the
noninteracting case. The interacting case shows a logarithmic
growth followed by a saturation, while saturation values of the
entanglement entropy obey volume law. On the other hand, in
the case of geometric quench, we find that the entanglement
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FIG. 8. Evolution of entanglement entropy in the localized
region(h = 2.0) for L = 12, 16, 20, 24 for V = 0 (top) and V = 0.5
(bottom).

profile is very similar to the noninteracting results. The time
evolution profile of the entanglement entropy does not possess
a logarithmic growth; also the saturation value obeys area law
(see Fig. 8). This area law can also be understood from the
long time site-occupation profile, where we found that the
wave front almost gets frozen and the site occupation goes
exponentially to zero on the new sites independent of the
system size. Hence it is expected that the long time dynam-
ics of the bipartite entanglement entropy would not depend
on the system size; that automatically implies the long time
saturation value would obey area law. We have also checked
the robustness of our results by repeating our calculations for
different initial states (see the Appendix).

V. CONCLUSIONS

In this work, our main goal was to understand the effect
of geometric quench on localized and delocalized phases.
While there have been extensive studies on such systems,
global quench has been used as a very important tool both
experimentally [15–17] and theoretically to characterize these
phases; the effect of geometric quench has not been well
explored so far. We use mainly two types of diagnostics: (1)
site-occupation profile and (2) entanglement entropy. While
entanglement entropy is a very popular measure to detect
localization-delocalization transition even when a system un-
dergoes a global quench, site-occupation profile remains a
useful tool for geometric quench. We have extensively studied
the effect of the incommensurate potential strength and the
interaction strength on the wave front velocities. We found

that, in the delocalized phase, the wave front moves towards
the boundary, but, in the localized phase (even in the presence
of interactions), the wave front almost gets frozen, i.e., almost
no change can be observed even when one waits a very long
time.

On the other hand, the entanglement entropy shows quite
a distinct feature compared to the global quench. In the de-
localized phase, the entanglement growth is tη with η < 1,
in contrast to the linear growth found in the case of global
quench. However, the saturation values are observed to be
obeying a volume law, i.e., the same as the global quench.
Recently it has been observed that the entanglement entropy
for a bipartition which is already close to maximally entangled
can only grow very little and due to the monogamy of entan-
glement [52,53], in order to generate entanglement across the
cut, highly nontrivial processes have to occur to free some
degrees of freedom before they can entangle with the other
subsystem [54]. Given that our initial state is the ground state
of a Hamiltonian on lattice size LA, it has entanglement built
into that subsystem. On the other hand, the usual product
random states (e.g., Néel state) have zero entanglements in
each subsystem. Hence one might expect that entanglement
growth for the random product state is much faster, i.e., linear
in time, compared to tη growth with η < 1 for our case.

In the localized phase, the entanglement profile for the
geometric quench cannot be distinguished between Anderson
localized phase and the MBL phase. In both cases, the satu-
ration values obey area law. These results can be understood
from the wave front dynamics, where we find that the wave
front almost gets frozen and the site occupation goes expo-
nentially to zero on the new sites. The decay length scale
is independent of the system size (it depends on the single-
particle localization length) [55]. Given that one expects the
bipartite entanglement entropy will depend on the site occu-
pations on the empty sites, it is expected that the entanglement
dynamics would not depend on the system size.

Given that the geometric quench can be experimentally
realized in an ultracold setup [33,34], our future plan will be
to investigate similar protocols for long-range systems [51,56]
and systems with single-particle mobility edges [57]. Also, it
will be interesting to study non-Hermitian [58] systems in the
shade of similar light.
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APPENDIX

In the main text, we had presented the results of the en-
tanglement dynamics for geometric quench starting from an
initial state |ψ (t = 0)〉 = |GS〉LA ⊗ |0〉(L−LA ). We found that,
in contrast to the global quench, the saturation of entangle-
ment entropy in the MBL phase due to the geometric quench
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FIG. 9. Evolution of entanglement entropy in the localized re-
gion (h = 2.0) for the first excited state (|ψ1〉) as initial state.
Top figure shows the variation for V = 0.0 for system sizes L =
12, 16, 20, 24. Bottom figure shows the variation for V = 0.5 for
system sizes L = 12, 16, 20, 24.

obeys area law, while, in the global quench, it obeys volume
law. In order to check the robustness of our results, we now
repeat our calculation for initial states,

|ψ1(t = 0)〉 = |E1〉LA ⊗ |0〉(L−LA ), (A1)

|ψ2(t = 0)〉 = |E2〉LA ⊗ |0〉(L−LA ), (A2)

where |E1〉 and |E2〉 are respectively the first and second
excited states of the Hamiltonian H (LA).

FIG. 10. Evolution of entanglement entropy in the localized re-
gion (h = 2.0) for the second excited state (|ψ2〉) as initial state.
Top figure shows the variation for V = 0.0 for system sizes L =
12, 16, 20, 24. Bottom figure shows the variation for V = 0.5 for
system sizes L = 12, 16, 20, 24.

In Fig. 9 and Fig. 10, we show the entanglement growth
for the initial states |ψ1〉 and |ψ2〉. In both cases, we found
that, for V = 0 (in the Anderson-localized phase) and V = 0.5
(in the MBL phase), the entanglement entropy saturates to a
value that does not depend on the system size L, which corre-
sponds to area law. While for V = 0 in the Anderson-localized
phase, the saturation value of the entanglement entropy fol-
lowed by a global quench also satisfies area law, but, for the
nonzero value of V (in the MBL phase), it is extensive.
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