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Platinum equation of state to greater than two terapascals:
Experimental data and analytical models
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In order to develop a high impedance standard for shock physics applications, we investigated the equation of
state (EOS) and shock compression of bulk platinum using canonical ab initio molecular dynamics (AIMD)
simulations, coupled with experimental data on Sandia’s Z machine. In simulations, we sampled the thermo-
dynamic state space along isotherms ranging from 300 to 100 000 K for densities of 18 to 40 g/cm3. While
this rectilinear grid of EOS points was useful for preliminary experimental design, material going outside of
the density/temperature space of the AIMD simulations required a SESAME-style, broad-range EOS, which we
developed independently and subsequently compared to the AIMD simulations. In the final step we validated the
SESAME EOS with experimental shock data to 2177 GPa on Sandia’s Z machine. The theoretical and AIMD
results are in excellent agreement with experiments.
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I. INTRODUCTION

All scientific disciplines require standards with which to
gauge unknown quantities. In high-pressure and shock com-
pression physics several materials play the role of standards,
or reference materials, some of the most important being SiO2

[1–3], Al, Cu [4] (dynamic compression), Au [5,6], Pt [6], and
Ag and Cu [7] (static compression). In this context platinum,
with its simple phase diagram, is an attractive addition to the
family of reference materials. The face-centered cubic lattice
of the Pt crystal does not display any experimentally observed
phase change between absolute zero and the melting point, at
2045 K [8–10].

Another key requirement for impactors/flyers in any shock
experiment is a high-fidelity equation of state (EOS), be-
cause the pressure generated in the target material is usually
extrapolated from a high-fidelity EOS of the impactor by
way of impedance matching [11]. In this work we present
a SESAME-style, broad-range EOS of platinum which we
compare to ab initio molecular dynamics (AIMD) simulations
and validate with experimental shock data to 2177 GPa on
Sandia’s Z machine. This is one step toward verifying the
platinum SESAME EOS as a “standards” model.

II. DENSITY FUNCTIONAL THEORY

We conducted first-principles density functional theory
(DFT) calculations of the cold curve (0 K) using the
Vienna ab initio simulation package (VASP) [12–15]. The
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exchange-correlation energy was computed with the
parametrization of Perdew, Burke, and Ernzerhof for solids
(PBEsol) [16]. We used PBEsol instead of PBE [17,18] based
on bulk modulus and reference density work presented by
Dewaele et al. [19] and Corso [20].

In the Kohn-Sham equations, the nuclei were represented
by a projector augmented wave (PAW) method [21]. The PAW
pseudopotential contained 16 electrons in the valance and
we set the cutoff energy for the cold-curve calculations to
1000 eV. We utilized first-order Methfessel-Paxton smearing
[22], with a value of σ = 50 meV, to control partial occupan-
cies for each wave function. The cutoff criterion was 10−6 eV.
The k-point mesh was Monkhorst-Pack [23] 18 × 18 × 18
for a four-atom fcc unit cell which yielded an energy error
of 1.6 meV/atom. A third-order Birch-Murnaghan fit gave
V0 = 15.05 Å3, B0 = 287 GPa, and B′

0 = 5.31 while a Vinet
fit for the same V0 gave B0 = 288 GPa and B′

0 = 5.97. The
DFT cold-curve simulations were compared with a subse-
quent SESAME model (discussed later) and the Vinet fit to
data from Fratanduono et al. [10] as well as data and theory
from Elkin et al. [24], and are shown in Fig. 1. As can be seen,
the DFT simulations compare well with the SESAME model,
the Vinet fit, and other theories.

To further validate the DFT calculations, again using the
PBEsol functional, the elastic constants (Fig. 2) were eval-
uated with the four-atom conventional unit cell, for which
the stresses were calculated in response to applied strains.
Here the k-point mesh was 32 × 32 × 32 and the energy
cutoff was 644 eV. The phonons were calculated by the
small-displacement method, specifically displacing an atom
by 0.03 Å at the experimental volume and by scaled amounts
at other volumes. A 6 × 6 × 6 supercell with 216 atoms was
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FIG. 1. Platinum cold curve calculated using the PBEsol
(red squares) potential. Samples of the independently developed
SESAME cold curve are represented by the blue circles. The black
line in the main plot is the Vinet fit to data based on [10]. The cyan
triangles are selected examples from Fig. 3 of Elkin et al. [24]. All
calculations are in excellent agreement.

used with an energy cutoff of 294.6 eV and the k-point mesh
of 8 × 8 × 8. The phonons were evaluated from the forces us-
ing the PHON code [25]. The DFT-calculated elastic constants
in Table I compare well with experimental data [26,27]; sim-
ilarly the DFT-calculated phonon dispersion in Fig. 3 shows
good agreement with experimental data [28].

We conducted ab initio molecular dynamics simulations
(AIMD) simulations in order to create a tabular EOS directly
usable in a hydrodynamics code. The AIMD simulations used
the 16-electron pseudopotential, PBEsol, and the Mermin
generalization of the Kohn-Sham equations to finite temper-
ature [29]. We performed simulations in the canonical (NVT)
ensemble along isotherms ranging from 300 to 100 000 K and
densities from 18.0 to 40.0 g/cm3. In all AIMD, we utilized
108-atom periodic supercells to ensure negligible interaction
between the structures simulated and their periodic images. At
50 000 K we reduced the number of atoms to 54, and to 40 at
80 000 K. We carried out property averaging in the Brillouin
zone using the Monkhorst-Pack 2 × 2 × 2 in the solid regime
and Baldereschi mean-value special k point [30] in the liquid.
We used a time step for ion motion of 1.0 fs in the simulations,
with velocities scaled to the temperature at each simulation
step. The cutoff energy was set to 600 eV, producing an error

FIG. 2. Elastic constants as a function of density. The size of the
open circles is roughly representative of the error bars of the Z data.

FIG. 3. Phonon dispersion curves of Pt measured at 90 K (red
crosses) [28] and calculated in the harmonic approximation (solid
black line).

of 0.2 meV. Selected results of this grid of EOS points are
shown in Fig. 4.

III. EQUATION OF STATE DESIGN

We attempted to use the DFT-generated table (Supplemen-
tal Material [32]) as an EOS model in a hydrodynamics code.
While this was adequate for some simulations, the relatively
high minimum density (18 g/cm3) using this grid as a tabu-
lar EOS suffered from shortcomings. For example, material
releasing from the shocked state reached densities below this
minimum and caused the interpolation methods to return spu-
rious results when extrapolating off the grid. Therefore, we
developed a new EOS table in the SESAME format [33],
SESAME 3732, to give a broader range of densities and tem-
peratures than was feasible to produce with DFT and which

FIG. 4. The different colors represent different isotherms. The
solid lines were taken from the SESAME table and the squares
were taken from the DFT-generated grid. The squares also show the
density grid resolution for the DFT-generated table. The location of
the DFT-approximated melt line is seen at the discontinuity along
the 6000 K and 20 000 K isotherms. For a comparison, several
points from experiments by Zha et al. [31] at 1900 K are shown
as cyan triangles. The theory and simulations are very close to the
experimental data.
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TABLE I. Calculated elastic constants at zero temperature. Comparison to inelastic x-ray scattering data [26] and Z machine isentropic
compression data [27].

ρ V P C11 C12 C44

(g/cm3) (Å3) (GPa) (GPa) (GPa) (GPa)

DFT

20.25 16.00 −15 269 190 42
21.60 15.00 1 364 254 72
23.14 14.00 25 488 340 115
24.92 13.00 62 655 456 176
27.00 12.00 118 882 618 260
29.45 11.00 205 1201 846 380
32.40 10.00 339 1640 1178 553
36.00 9.00 553 2268 1673 804
40.50 8.00 904 3183 2445 1175
46.29 7.00 1504 4556 3699 1724

IXS

21.48 15.09 0 349 246 73
21.55 15.04 1 361 261 75
22.97 14.11 21 496 372 119

Z machine

28.13 11.52 159.4 304
28.32 11.44 161.8 375
28.40 11.41 164.2 365
28.80 10.25 312.0 640

was required for many types of simulations. As a test of the
EOS building tools, we developed the SESAME EOS table
independently of the DFT work and compared the table with
DFT after completion.

In the development of the SESAME EOS, we used a stan-
dard three-term decomposition of the Helmholtz free energy:
cold curve, ion thermal, and electron thermal components, i.e.,
F (T,V ) = Fcold (V ) + Fion(T,V ) + Felectron(T,V ) [33]. The
ion thermal component used a Debye approximation for
the solid [34] and a corrected Debye [35] approximation for
the fluid [36]. The thermodynamic Grüneisen gamma and
reference Debye temperature in the ion thermal model were
set by matching isobaric expansion data [37] and specific heat
[38]. The cold curve was determined via a Mie Grüneisen
approximation by matching a simple quadratic to the exper-
imental Us/Up shock data. The intercept of the quadratic was
fixed to match the adiabatic bulk modulus from ultrasonic data
[37]. The derivative of the Grüneisen gamma (�) parame-
ter with respect to density was obtained by matching to the
room temperature diamond anvil cell data [19]. The electron
thermal component was determined using the Thomas-Fermi-
Dirac (TFD) model.

IV. AIMD-SESAME COMPARISON

When we compared select isotherms (0 K, 2000, 6000,
20 000, and 50 000 K) between SESAME 3732 and DFT we
found that there was a systematic offset in pressure and energy
in the fluid region for 2000 K and above.

� = V

(
dP
dT

)

(
dE
dT

) |V . (1)

We also compared the Grüneisen � as defined in Eq. (1)
where P is pressure, T is temperature, E is specific internal
energy, and V is specific volume. Results are shown in Fig. 5.

When comparing the selected isotherms, dP/dT obtained
from DFT and SESAME were found to be quite similar at
temperatures between 2000 and 20 000 K. However, dE/dT
from DFT was found to be larger than, similar to, and slightly
lower than that from SESAME at 2000, 6000, and 20 000 K,
respectively. The 6000 K isotherm’s dP/dT and dE/dT are
approximately equal. The 20 000 K DFT isotherm’s dE/dT

FIG. 5. Grüneisen � as a function of density for several
isotherms. The � calculated from the DFT-generated table com-
pares well with the SESAME table in the liquid. The large spike
at 25 g/cm3 along the 6000 K isotherm and at 36 g/cm3 along the
20 000 K isotherm is the melt transition.
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FIG. 6. Specific heat as a function of density along the 2000 K
isotherm. The specific heat is about 10% higher in DFT than in
SESAME and is reflected in the Grüneisen � at this temperature.
The oscillations in the DFT specific heat are from taking a finite-
difference derivative of stochastic simulations.

is just slightly lower than SESAME while dP/dT is about the
same. For the 50 000 K isotherm both dP/dT and dE/dT
from DFT were found to be lower than that from SESAME,
resulting in a cancellation of differences such that the inferred
Gamma from both appeared to be similar.

These differences may be explained by either (i) a differ-
ence in the value of Gamma used in the liquid ion model,
compensated by the cold-curve pressure, or (ii) an underes-
timation of the specific heat in the TFD thermal electronic
model.

In Fig. 4, each line is an isotherm between 2000 K and
50 000 K with a DFT density point every 0.5 g/cm3. The
discontinuity in the 6000 K and 20 000 K isotherms is the
melt transition as approximated by DFT given the cell size of
our simulations, or the Lindemann melt approximation used
in SESAME. In the AIMD simulations, the structure started
as solid and, if it melted, all temperatures above that for a
given density were then started as liquid (usually from the
output of the previous simulation). As such, the DFT melt
transition should be considered an upper bound in tem-
perature. Nonetheless the SESAME EOS melt density is
consistent with DFT. The SESAME pressures for a given den-
sity and temperature compare well with the DFT simulations
in the solid in contrast to the liquid, where the SESAME
pressures are systematically higher, as seen in Fig. 4. This
leads us to the conclusion that the SESAME tables use an
isothermal bulk modulus in the liquid that is different from
that calculated by DFT.

Based on the difference in the Grüneisen � from Fig. 5, we
compared the specific heat, Cv , of SESAME vs DFT along the
2000 K isotherm. The results are shown in Fig. 6. The DFT
Cv is calculated by finite difference between two isotherms.
The SESAME specific heat is fitted to experimental calori-
metric data for the solid leveraging a Debye model for the ion
thermal response and a TFD model for the electron thermal
contributions. At T/Tmelt = 1, the ion thermal incorporates a
fixed entropy change of melt (�S = 0.8) and then smoothly
transitions to an ideal gas. As can be seen, the values are
different and contribute to the difference in temperature along

FIG. 7. Hugoniot and isentrope calculated from DFT
and SESAME EOSs. The isentrope is virtually identical in
pressure/density space. The DFT-calculated isentrope values
compare well with experimental data [10].

the isentrope which is discussed later.

E − E0 = (P + P0)(V0 − V )/2. (2)

The Rankine-Hugoniot energy jump condition can be writ-
ten as Eq. (2) where E, P, and V are the specific energy,
pressure, and specific volume of the material and E0, P0,
and V0 are the reference state. We used this jump con-
dition to calculate the Hugoniot for both the DFT and
SESAME EOS; results are shown in Fig. 7. Both Hugoniots
compare quite well with each other in P(ρ) space. The prin-
cipal isentrope, which remains entirely in the solid, exhibits
minimal differences in pressure/density space. However, dif-
ferences due to specific heat become apparent when viewed in
pressure/temperature space (Fig. 8). Given the nature of DFT
as apposed to a SESAME-style analytical model, we would
expect the DFT to be more accurate but need to confirm this
with experimental data.

FIG. 8. Hugoniot and isentrope calculated from DFT and
SESAME EOSs in pressure/temperature space. The Hugoniot com-
pares well in pressure/temperature space until melt. The difference
in the specific heat of liquid causes the two Hugoniots to diverge
above the melt boundary. In the inset, the isentropes calculated from
the DFT and SESAME EOSs show a clear difference in the specific
heat.
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FIG. 9. Sound speeds calculated from the DFT and SESAME
EOSs. The large oscillations in the sound speeds are from the melt
transition. The sound speeds of both models along the isentrope lie
within the thickness of the lines used in the figure.

Finally, using Eq. (3),

C2
s = dP

dρ
|S = dP

dρ
|T +

(
dP
dT |ρ

)2

ρ2 dE
dT |ρ

T, (3)

we calculated the sound speed along the Hugoniot and
isentrope for both EOSs (Fig. 9). The sound speeds are com-
parable for both models despite having a difference in specific
heat. This may be attributed to the fact that the isentrope
is a path-dependent quantity while the sound speed is not,
and thus, the integrated effect is evident in the P(T ) fig-
ure. The large oscillations at 35 g/cm3 are due to the melt
transition. Near 40 g/cm3, the sound speed calculated from
the DFT-generated table continues to have large oscillations
and is because of the finite-difference style of derivative used
on the more sparsely populated DFT EOS and the statistical
uncertainty in the pressure and energy of the DFT EOS.

V. EXPERIMENTS: Z MACHINE

To validate the EOS table, we carried out shock com-
pression experiments using the Sandia Z Machine [39]. The
Z machine is a pulsed power system capable of producing
shaped current pulses and induced magnetic fields of more
than 20 MA and 10 MG, respectively. We can utilize the Z
machine to accelerate aluminum flyer plates up to 40 km/s
[40] to probe the Hugoniot states. In this study, the highest
velocity was 30.79 km/s.

In the present experiments, we generated shocked states
of up to 2177 GPa using geometries illustrated in Fig. 10:
the coaxial geometry and the 2-sided stripline geometry for
extremely high velocity shots. The Al flyer plate is shocklessly
accelerated toward the target stack, composed of a sample of
platinum (Pt, ∼300–400 μm, ρ0 21.45 g/cm3) and either a
polymethylpentene (also known by its trade name TPX) or
α-quartz window. While the backside of the flyer was melted
by the high driving current, the impact side of the flyer re-
mained at solid density [40], producing a steady shock in the
sample.

We used two push-pull velocity interferometer systems for
any reflector (VISAR) [41,42] with dual velocity per fringe

FIG. 10. Shock experiments on the Z machine. (a) The two
experimental configurations used in this work to generate lower pres-
sure data (coaxial configuration) and higher pressure data (stripline
configuration). (b) Processed VISAR signals showing impact on a
transparent window above and below the Pt sample and shock break-
out on the Pt sample itself.

(VPF) capabilities to measure velocity up to impact at the tar-
get (Fig. 10). Three VISAR signals are typically recorded for
the sample eliminating 2π ambiguities and providing redun-
dant measurements for improved precision. We typically use
three different VPFs on the sample: 0.5878 km/s/f, 1.0632
km/s/f, and 1.4317 km/s/f.

Since the sample is opaque to VISAR light, impact time
was determined for both the opaque and transparent samples
from fiducials observed in transparent windows adjacent to the
opaque sample stack. Impact time was then corrected for any
measured tilt of the impact plane and for the relative offset of
the 2 windows and the sample (typically a few μm). Shock
breakout was directly monitored at the back surface of the
opaque sample, through a window. We then calculated the
sample shock velocity (US) using the transit time determined
from the VISAR fiducials and the measured thickness. The
shock wave was also monitored in a thick quartz witness
window, which allowed us to determine any correction due
to acceleration of the flyer and apply this correction to the US

of the sample.
For the transit time measurements, the uncertainty was less

than 0.5%. In the VISAR analysis, we used a transit time
determination of the shock velocity using unprocessed VISAR
signals. To calculate transit time, we determined when the raw
VISAR signal had a change larger than the standard deviation
of the signal prior to the change. That marked our impact and
our transit into the backing TPX or α-quartz window. We used
the standard deviation from the transit time determination,

224109-5



KYLE R. COCHRANE et al. PHYSICAL REVIEW B 105, 224109 (2022)

TABLE II. Linear fit parameters and the off-diagonal term in the
covariance matrix for the fit parameters of the Al flyer. US = C0 +
s1UP.

Flyer C0 (km/s) s1 σC0σ s1 × 103

Al 6.322 ± 0.231 1.188 ± 0.020 −4.605

along with the uncertainty in the sample thickness, to deter-
mine the uncertainty in the shock velocity.

In a simple shock event the conservation of mass, mo-
mentum, and energy is described by Rankine-Hugoniot jump
conditions [Eqs. (2), (4), and (5)], where P, ρ, and E are the
pressure, density, and specific internal energy, respectively,
of the shocked material relative to its initial state, denoted
with the subscript 0. P, ρ, and E are related by the shock
velocity (US) and particle velocity (UP) of the shock wave.
By definition, the principal Hugoniot initiates from ambient
conditions.

ρ

ρ0
= US

US − UP
, (4)

P = ρ0USUP. (5)

Knowing the initial densities of the sample and the Al
flyer plate and measuring the flyer VF and the sample US ,
we calculated the sample Hugoniot state density, pressure,
and particle velocity (UP). The Hugoniot state was deter-
mined using a Monte Carlo impedance matching analysis
[43,44] to solve the Rankine-Hugoniot equations. The Monte
Carlo impedance matching (MCIM) method accounted for the
correlated and uncorrelated uncertainties in the experimental
measurement and the Al Hugoniot standard. In the MCIM,
uncorrelated random numbers with one standard deviation
equal to the measurement uncertainty were used to adjust
the flyer velocity, the shock velocity, and the initial densities
about their mean value. Correlated random numbers adjust the
fit parameters to the aluminum Hugoniot standard. The linear
fit parameters and correlation between the parameters for the
aluminum standard are listed in Table II.

The impedance matching calculation was performed to
determine UP, ρ, and P in the Hugoniot state. The data
were saved and the calculation restarted using new random
numbers. A database of Hugoniot states was built for 107

iterations and the final Hugoniot state was calculated as the
mean with 1 standard deviation of the distribution as the
uncertainty. The principal Hugoniot data for platinum samples

experimentally measured on the Z machine are listed in
Table III.

Platinum release states were determined from the measured
shock velocity in the quartz backing the samples. As quartz
has been highly constrained for shock pressures in the range
200–1600 GPa [1], we were able to use the known quartz
Hugoniot to determine the pressure and particle velocity in
the quartz window. To determine the state of platinum at the
end point of the release curve, the average velocity determined
from the platinum shock transit time was corrected for accel-
eration over the entire duration of the transit. This acceleration
correction was carried out by relating the measured instanta-
neous shock velocity in an adjacent window to the average
shock velocity in the platinum using a zeroth-order correction
U inst

S,P (t ) = 〈US,P〉
〈US,W 〉U

inst
S,W (t ) where U inst

S,P is the calculated instanta-
neous shock velocity in the platinum, and 〈US,P〉 and 〈US,W 〉
are the average shock velocity in the window [45]. The in-
stantaneous shock velocity at breakout from the platinum was
taken as the final value of the platinum data after fitting over
0.5 ns to mitigate random noise in the data.

The shock velocity in the quartz used for the impedance
matching calculation was determined by fitting the measured
quartz shock velocity over the first 1.0 ns of data after the
shock in the anvil reached a steady state. This was then prop-
agated backward through the glue to determine the velocity
which would have been measured if the samples were in
intimate contact with no glue layer [46]. In this experiment,
the glue layer was measured to be ∼1 μm and the correspond-
ing correction to the quartz shock velocity was 0.012 km/s
(compared to the measurement uncertainty of 0.026 km/s).
Pressure and particle velocity uncertainties in the release state
were determined using a Monte Carlo routine to account for
covariance of the quartz Hugoniot fit and the measurement
uncertainty.

Next, we compare the DFT and SESAME models with
experimental data; the results are shown in Fig. 11. The
SESAME EOS is within the error bars of the experimental
values along the Hugoniot with the exception of the point
at ≈ 41 g/cm3. It is unclear why this point does not follow
the expected P(ρ) curve and warrants further examination
such as a second experiment. The values interpolated from
the DFT grid, as well as the points directly calculated via the
jump condition, overlie the SESAME results well and both
are within the experimental uncertainty. Because the DFT grid
stopped at 40 g/cm3, additional calculations were specifically
done to test DFT at the highest pressure. Again, DFT pressure
matched SESAME.

TABLE III. Experimental Hugoniot results. Vf is the aluminum flyer velocity. Up and US are the platinum particle and shock velocities. ρ

and P are the platinum shock density and pressure.

Vf UP US ρ P
(km/s) (km/s) (km/s) (g/cm3) (GPa)

21.58 ± 0.03 4.93 ± 0.04 11.12 ± 0.08 38.54 ± 0.42 1175 ± 7
23.04 ± 0.03 5.29 ± 0.04 11.58 ± 0.06 39.50 ± 0.35 1315 ± 8
23.67 ± 0.07 5.49 ± 0.05 11.64 ± 0.12 40.60 ± 0.67 1371 ± 9
25.05 ± 0.08 5.82 ± 0.05 12.11 ± 0.08 41.33 ± 0.50 1513 ± 10
30.79 ± 0.03 7.29 ± 0.07 13.93 ± 0.11 44.99 ± 0.71 2177 ± 15
30.79 ± 0.02 7.27 ± 0.07 13.88 ± 0.11 45.09 ± 0.70 2165 ± 15
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FIG. 11. Comparison of the experimental Hugoniot data by
Holmes et al. [9] and the Z data with the calculated EOS and DFT
points. With the exception of the one data point near 41 g/cm3, the
SESAME Hugoniot is within the error bars of the experimental data.

In two of the Z experiments, we obtained release data into
the quartz which allowed us to further evaluate the SESAME
model and the DFT simulations. The top rows of Table IV
list the measured shock velocity at breakout in the platinum,
the subsequent shock velocity in the quartz upon release, and
the inferred particle velocity and pressure in the quartz based
on the quartz standard [3]. Note that the error bars associated
with the platinum shock velocities shown in Table IV are
larger than those in Table I. The uncertainty in the inferred
shock velocity at breakout is greater than at the impact surface
because a rarefaction wave had overtaken the shock front
in the platinum prior to breakout into the quartz window;
uncertainty in the timing of the rarefaction overtake results in
larger uncertainty the shock velocity at breakout. To evaluate
the SESAME model we calculated release isentropes starting
at shock pressures along the SESAME Hugoniot that corre-
sponded to the measured shock velocity in the platinum. The
intersection of these release curves with the quartz standard
resulted in the predicted quartz shock velocities, particle ve-
locities, and pressures listed in the middle rows of Table IV. In
both cases the measured shocked state in the quartz is slightly
higher than the SESAME model prediction. A similar process
was followed to evaluate the DFT simulations using targeted
simulations and the quasi-isentropic expansion approxima-

tion of the Rankine-Hugoniot jump condition. The results
for the predicted quartz shock velocities, particle velocities,
and pressures are listed in the bottom rows of Table IV. The
DFT results are in much better agreement with experiment,
and in contrast to the SESAME model, the measured shock
state in the quartz is slightly lower than the DFT simulations.
The better agreement between the release experiments and
DFT suggests that DFT provides a better description of the
off-Hugoniot behavior in the liquid.

VI. CONCLUSION

We used density functional theory AIMD methods and
SESAME analytical tools to build two different platinum
equations of state. The Hugoniot, isentrope, and sound speed
values compare quite well between the two despite having
the different P(T ) values as shown in Fig. 4 or the different
specific heat values as shown in Fig. 6, etc., which suggests
a canceling error. Both models compared quite well with our
experimental data to over 2.1 TPa as shown in Fig. 11. Addi-
tionally, the good agreement between DFT-calculated elastic
constants and experiment lends further confidence to the
analytical models. The wide-ranging SESAME EOS allows
access to lower density and higher temperature regimes than
the DFT table, thereby allowing simulation of a wider variety
of experiments, particularly in regimes where DFT calcula-
tions are computationally intractable. Because the SESAME
models are based on a Debye model we would expect the
DFT Cv to be more accurate. However, we need to mea-
sure the temperature along the isentrope in order to confirm
this. Finally, in this work we establish platinum as a stan-
dard for shock experiments. However, comparisons with a
more diverse set of experimental data are needed before
the model can be considered a standard in other regimes
(i.e., off-Hugoniot).
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TABLE IV. Quartz release.

U Pt
S U Q

S U Q
P PQ

(km/s) (km/s) (km/s) (GPa)

Experiment

11.62 ± 0.16 15.84 ± 0.026 8.73 ± 0.019 366 ± 1.4
11.93 ± 0.21 16.41 ± 0.026 9.14 ± 0.018 397 ± 1.4

SESAME 3732

11.62 ± 0.16 15.55 ± 0.23 8.53 ± 0.16 351.3 ± 11.8
11.93 ± 0.21 15.98 ± 0.29 8.84 ± 0.21 374.3 ± 15.6

DFT

11.62 ± 0.16 15.92 ± 0.23 8.79 ± 0.16 370.8 ± 11.8
11.93 ± 0.21 16.58 ± 0.29 9.27 ± 0.21 407.2 ± 15.6
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