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Suppression of fluctuations in a two-band superconductor with a quasi-one-dimensional band
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Chainlike structured superconductive materials (such as A2Cr3As3, with A = K, Rb, Cs) exhibit the multiband
electronic structure of single-particle states, where coexisting quasi-one-dimensional (Q1D) and conventional
higher-dimensional energy bands take part in the creation of the aggregate superconducting condensate. When
the chemical potential approaches the edge of a Q1D band in a single-band superconductor, the corresponding
mean-field critical temperature increases significantly but the superconductivity is quenched by fluctuations.
However, recent investigation has revealed that when a Q1D band is coupled to a higher-dimensional one
by the interband Cooper-pair transfer, the thermal superconductive fluctuations can be suppressed so that
the resulting critical temperature can be close to its mean-field value. In the present work, we calculate the
mean-field Tc0 and fluctuation-shifted Tc critical temperatures for a two-band superconductor where a Q1D
band coexists with a higher-dimensional band, and investigate how the thermal fluctuations are sensitive to
the system parameters. We find that Tc is close to Tc0 in a wide range of microscopic parameters, and even the
dimensionality of the higher-dimensional band does not play an essential role. Thus, the screening mechanism
for suppressing fluctuations via the pair-exchange coupling between the bands is indeed relevant for a large class
of Q1D multiband superconducting materials, encouraging further experiments aimed at reaching larger critical
temperatures in such multiband superconductors.
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I. INTRODUCTION

Experimental detection of two superconductive gaps in
MgB2 [1–4] sparked a plethora of theoretical studies of the
multiband or multigap models of superconductivity; see, e.g.,
Refs. [5–10]. The core of the difference between the multi-
and single-band materials lies in the interference of multi-
ple contributing condensates, which makes their properties to
deviate from those of the single-condensate systems. The in-
terference can, among other things, suppress superconducting
order-parameter fluctuations, which is here referred to as the
multiband fluctuations screening mechanism [11,12]. In par-
ticular, recently it has been demonstrated [12] that enormous
thermal fluctuations in a quasi-one-dimensional (Q1D) su-
perconducting condensate [13–15] can be suppressed almost
completely when the latter is coupled to a 3D condensate via
the pair-exchange transfer, even when this coupling is rather
weak [12].

The study in Ref. [12] has also demonstrated that the fluc-
tuation screening can have a significant effect even in the case
of a shallow Q1D band coupled to a conventional deep 3D
band (shallow and deep refers to a position of the chemical
potential, close or far from the band edge, respectively). The
superconducting condensate in such a case is a coherent mix-
ture of the standard BCS state in the 3D deep band and nearly
BEC state in the Q1D shallow band—the so-called multi-
band BCS-BEC crossover regime, characterized by a much
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higher mean-field critical temperature. The physical reason
for this amplification of the superconducting temperature is a
Feshbach-like resonance; see, e.g., Refs. [16–20,22,23]. It ap-
pears when the chemical potential approaches the Q1D-band
edge, which results in much higher density of single-particle
states (DOS) due to the van Hove singularity. The fluctu-
ations of the superconducting order parameter in the Q1D
band tend to quench the superconductivity [13–15] and their
impact further increases in the presence of a shallow Q1D
band. However, the fluctuation screening induced by the pair-
exchange coupling to a band of a larger dimensionality can
suppresses the fluctuations and restore the superconductivity,
also at elevated temperatures T ∼ Tc0. This scenario to reach a
high critical temperature is of especial relevance for materials
that combine Q1D and higher-dimensional bands, like the
recent chainlike structured materials [24–26]. However, the
same screening mechanism takes place also in systems where
both shallow and deep bands are quasi-2D (Q2D) [11].

Motivated by recent theoretical works reporting this
fluctuation suppression mechanism [11,12] and ongoing ex-
periments on the multiband superconductors with Q1D bands,
such as A2Cr3As3 (A = K, Rb, Cs) [24–30] and organic super-
conducting compounds [31–34], we investigate details of the
fluctuation screening in a two-band system, where a shallow
Q1D band is coupled to a conventional Q2D or 3D reservoir
band. This model serves as a prototype for the chainlike struc-
tured superconducting materials mentioned above.

This work complements the earlier study [12] by in-
vestigating how the fluctuation-induced renormalization of
the critical temperature depends on the interplay of the
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microscopic parameters such as the dimensionality of the
higher-dimensional reservoir band, its energy depth (the
Fermi energy relative to its band bottom), and intraband pair-
ing interactions. These parameters determine the suppression
of fluctuations in the Q1D band by controlling the fluctuations
in the reservoir band. The latter become stronger when, e.g.,
the energy depth or the dimensionality of the reservoir band
decreases. It is thus necessary to go beyond a simplified model
considered in the previous study [12] where only the coupling
of the Q1D condensate to that of the 3D deep band (with
almost negligible fluctuations) has been investigated.

The paper is organized as follows. In Sec. II we con-
sider the two-band generalization of the BCS model and the
equation for the mean-field critical temperature. Then, we
derive the effective Ginzburg-Landau (GL) free-energy func-
tional that controls the superconducting order-parameter
fluctuation corrections to the critical temperature. Details of
computing the Q1D coefficients in the GL functional are given
in the Appendix. In Sec. III we discuss relevant parameters
of the two-band system and calculate the mean-field criti-
cal temperature Tc0 and its fluctuation-renormalized value Tc.
Section IV summarizes our results.

II. FORMALISM

In this section, we outline the formalism necessary to
calculate the mean-field Tc0 and fluctuation-renormalized Tc

critical temperatures of a two-band superconductor. We as-
sume that one of the bands is quasi-one-dimensional (Q1D)
and is close to the Feshbach-like resonance associated with
the Lifshitz transition [16–20,22,23] that occurs when the
chemical potential crosses the bottom of the Q1D band. This
band can be referred to as shallow. The second band has a
higher dimensionality and its energy depth (the Fermi energy)
is varied in our calculations. We consider two variants of this
band: quasi-two-dimensional (Q2D) and three-dimensional
(3D). The Q1D band is assumed to determine the mean-field
critical temperature Tc0 of the system. The intraband coupling
in the higher-dimensional band is weak enough, so that the
critical temperature of the superconductive transition in this
band, taken as a separate superconductor, is much lower than
Tc0 of the two-band system.

A. Two-band BCS model

We consider the two-band system with the s-wave pair-
ing in both bands, using the standard generalization of the
BCS model [35,36] with the pair-exchange coupling between
the different bands. The coupling matrix gνν ′ (ν, ν ′ = 1, 2)
is symmetric and real, where ν = 1 stands for the higher-
dimensional (Q2D or 3D) band and ν = 2 corresponds to the
Q1D band. We consider that the system is in the clean limit
and the effects of impurities can be neglected. The mean-field
Hamiltonian of the model in the real space writes as [37]

H =
∫

d3r

{ ∑
ν=1,2

[ ∑
σ=↑,↓

ψ̂†
νσ (r)Tν (r)ψ̂νσ (r)

+ (ψ̂†
ν↑(r)ψ̂†

ν↓(r)�ν (r) + H.c.)

]
+ 〈 ��, γ̆ ��〉

}
, (1)

FIG. 1. (a) Sketch of the single-particle energies ξk1 and ξk2

versus kx . Panels (b) and (c) illustrate the energy-dependent DOSs
for the Q1D+Q2D and Q1D+3D two-band systems: the total and
band-dependent DOSs are shown in a range of energies around the
Lifshitz point of the order of the cutoff energy.

where ψ̂νσ (r) are the operators for carriers with spin σ in
band ν, Tν (r) is the single-particle Hamiltonian, and �ν (r)
is the gap function in the respective band. Here we use the
vector notation �� = (�1,�2)T , with the scalar product 〈., .〉,
and denote by γ̆ = ğ−1 the inverse of the coupling matrix ğ
with elements gνν ′ .

The mean-field solution for the condensate is obtained by
diagonalizing the Hamiltonian self-consistently, together with
the self-consistency gap equation [37,38]

�ν (r) =
∑

ν ′=1,2

gνν ′Rν ′ (r), (2)

where Rν (r) = 〈ψν↑(r)ψν↓(r)〉 are the anomalous averages.
For the single-particle Hamiltonian Tν (r) we adopt the

effective mass approximation [12] so that the single-particle
energy is approximated as

ξk1 = ε0 +
∑

α

h̄2k2
α

2m1
− μ, ξk2 = h̄2k2

x

2m2
− μ, (3)

where k = {kx, ky, kz}, and index α assumes values {x, y} for
the Q2D band and {x, y, z} for the 3D one; mν is the carrier
effective mass for band ν, ε0 is the energy shift between the
bands, and μ is the chemical potential of the system, measured
with respect to the edge of the Q1D band. Notice that the
energy dispersion of the Q1D (Q2D) band is degenerate in
the remaining {y, z} (z) directions. The respective summation
over kα in these directions, which is needed in the calculations
of the band density of states (DOS), is estimated by simply
introducing multiplicative factors ny and nz related to the
Brillouin zone sizes in the corresponding directions.

The energies and the chemical potential are taken relative
to the edge of the Q1D band. The edge of the higher-
dimensional band is located below the edge of the Q1D
band, so that ε0 < 0. A schematic energy diagram of the
bands is shown in Fig. 1(a). The calculations involving the
higher-dimensional band are performed within the standard
approximations of the BCS theory, whereas the contribu-
tion of the shallow band requires a more accurate approach.
In what follows we assume |μ| < h̄ωc, with h̄ωc the cutoff
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energy of the pairing interaction, where the Q1D Feshbach-
like resonance is most pronounced. Below we set the
Boltzmann constant as kB = 1.

B. Mean-field critical temperature

The mean-field critical temperature Tc0 is obtained by solv-
ing the linearized gap equation∑

ν ′=1,2

Lνν ′�ν ′ = 0, Lνν ′ = γνν ′ − Aνδνν ′ , (4)

where δνν ′ is the Kronecker symbol, and Aν are given by (see
the Appendix)

A1 = N1 ln

(
3.56

πTc0

)
, A2 = N2

∫ 1

−μ̃

dε
tanh(ε/2T̃c0)

ε
√

ε + μ̃
, (5)

where the quantities marked by a tilde are normalized by the
cutoff energy, and the DOS N1 for the higher-dimensional
band is given by NQ2D

1 = nzm1/2h̄2 for the Q2D case and
N3D

1 = m1kF /2π2h̄2 for the 3D case, with the Fermi mo-
mentum h̄kF = √

2m1(μ + |ε0|). For the Q1D band N2 =
nynz

√
m2/32π2h̄3ωc, which is the Q1D DOS at the cutoff

energy h̄ωc (the divergent part of the energy-dependent Q1D
DOS is kept inside the integral). The energy-dependent DOSs
for bands 1 and 2 are sketched in Figs. 1. For simplicity and
without loss of generality, we assume that the factor nz is the
same for both bands.

The critical temperature Tc0 is found from Eq. (4). The ex-
istence of a nontrivial solution for the gap functions assumes
that the determinant of the matrix L̆ (with the elements Lνν ′ )
is zero, and one gets

(g22 − GA1)(g11 − GA2) − g2
12 = 0, (6)

where G = g11g22 − g2
12. Since Aν ∝ Nν , the solution de-

pends on the dimensionless coupling constants

λ11 = g11N1, λ22 = g22N2, λ12 = g12
√

N1N2. (7)

Of the two possible solutions to Eq. (6) one has to choose the
one with the largest Tc0. Notice that the choice of m1, m2, ny,
and nz is not important here; one needs only to choose the
dimensionless coupling constants λi j to calculate Tc0.

C. The free-energy functional

The mean-field results of the previous section can be
strongly modified by thermal superconducting fluctuations. To
investigate the impact of those fluctuations by calculating the
related corrections to the critical temperature in the vicinity
of the Lifshitz transition μ � 0, we evaluate the corrections
by using the Gibbs distribution e−F/T with the free energy F
given by

F =
∫

d3r

[ ∑
ν=1,2

fν + 〈 ��, Ľ ��〉
]
, (8)

where fν in the vicinity of Tc0 can be expanded in powers of
�ν and its gradients, which yields (see the Appendix)

fν = aν |�ν |2 + bν

2
|�ν |4 +

∑
α=x,y,z

K(α)
ν |∂α�ν |2. (9)

For the higher-dimensional band the coefficients are given by
the standard expressions. In particular, a1 and b1 are the same
for the Q2D and 3D variants,

a1 = −τN1, b1 = 7ζ (3)

8π2

N1

T 2
c0

(10)

with τ = 1 − T/Tc0. The remaining coefficient is given by

K(α)
1 = h̄2v2

1

6
b1 (11)

with α = {x, y, z} for the 3D band and

K(α)
1 = h̄2v2

1

4
b1, K(z)

1 = 0, (12)

with α = {x, y} for the Q2D band. For the Fermi velocity in
these expressions we have v1 = h̄kF /m1.

For the shallow Q1D band (for |μ| < h̄ωc) the expressions
for the coefficients can only be represented in the form of the
integrals written as

a2 = −τ
N2

2Tc0

∫ 1

−μ̃

dε
sech2(ε/2T̃c0)√

ε + μ̃
,

b2 = N2

4h̄2ω2
c

∫ 1

−μ̃

dε
sech2(ε/2T̃c0)

ε3
√

ε + μ̃

[
sinh

(
ε

T̃c0

)
− ε

T̃c0

]
,

K(x)
2 = N2v

2
2

8 ω2
c

∫ 1

−μ̃

dε

√
ε + μ̃

ε3
sech2

(
ε

2T̃c0

)

×
[

sinh

(
ε

T̃c0

)
− ε

T̃c0

]
, K(y,z)

2 = 0, (13)

where T̃c0 and μ̃ are defined in Eq. (5), and the characteristic
velocity of the Q1D band is given by v2 = √

2h̄ωc/m2.
The free energy in Eq. (8) for the two-band system can be

simplified considerably by representing �� as a linear combi-
nation of the eigenvectors of the matrix L̆ as [11,12]

�η+ =
(

S
1

)
, �η− =

(
1

−S

)
, (14)

where

S = g11 − GA2

g12
, (15)

(S � 0 for the s-wave pairing). Using the representation

��(r) = ψ (r)�η+ + ϕ(r)�η−, (16)

where ψ (r) and ϕ(r) are the modes associated with �η+ and
�η−, the free-energy functional can be rearranged as

F =
∫

d3r( fψ + fϕ + fψϕ ), (17)

where fψ and fϕ have the same structure as Eq. (9), but with
�ν replaced by ψ (r) and ϕ(r), respectively. The coefficients
in aν, bν,K(α)

ν are changed as

aψ = S2a1 + a2, bψ = S4b1 + b2,

K(α)
ψ = S2K(α)

1 + K(α)
2 (18)
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and

aϕ = a(0)
ϕ + a1 + S2a2, bϕ = b1 + S4b2,

K(α)
ϕ = K(α)

1 + S2K(α)
2 , a(0)

ϕ = (1 + S2)2

SGg12
, (19)

with α = {x, y, z}. Finally, fψϕ in Eq. (17) describes the inter-
action between the modes ψ and φ.

By virtue of Eq. (15), the quantity S is real and we have
a(0)

ϕ �= 0 for arbitrary parameters of the two-band model. This

implies that the characteristic length ξ
(α)
φ =

√
K(α)

φ /aφ of the
mode φ is generally finite near Tc0, which is a consequence
of the fact that the two contributing condensates are coupled
by the Josephson-like pair transfer between the different band
condensates. Consequently, ψ is the only critical mode with

the divergent characteristic length ξ
(α)
ψ =

√
K(α)

ψ /aψ at T →
Tc0. The pair fluctuations, controlled by the mode ϕ, produce
noncritical corrections, which can be safely neglected close to
Tc0. Thus, the analysis of the pair fluctuations can consider
only the critical mode; i.e., F is well approximated by the
single-component GL functional

F �
∫

d3r

(
aψ |ψ |2 + bψ

2
|ψ |4 +

∑
i=x,y,z

K(α)
ψ |∂αψ |2

)
, (20)

where the presence of the two bands is reflected only in
the coefficients aψ, bψ , and K(α)

ψ that are averages over the
contributing bands [see Eq. (18)].

From the definition of �η+ in Eq. (14) it follows that S con-
trols the relative occupation of the reservoir band with ν = 1.
In the limit S → ∞, the Q1D band (ν = 2) is depleted and
aψ → S2a1, bψ → S4b1, and K(α)

ψ → S2K(α)
1 . Also, Eq. (14)

yields �1 = ψS in this case, and the GL free energy of
the system is reduced to the free energy of the higher-
dimensional band.

In the opposite limit S → 0, the higher-dimensional band
does not contribute. In this case, Eq. (18) yields aψ → a2,
bψ → b2, and K(α)

ψ → K(α)
2 . Now Eq. (14) gives ψ = �2, and

the GL free energy in Eq. (20) is fully determined by the
Q1D band.

Before proceeding further, it is important to discuss
Eq. (20) in the context of the fluctuation screening mecha-
nism [11,12]. One sees that the thermal fluctuations in both
bands are not independent as they are controlled by the same
mode ψ : the band gap functions are given by δ�1 = Sδψ and
δ�2 = δψ . Loosely speaking, “light” fluctuations of the Q1D
condensate are “pinned” to the “heavy” fluctuations in the
higher-dimensional band. This illustrates the physical reason
why the fluctuations in the Q1D band can be screened by the
reservoir higher-dimensional band.

In more detail, the fluctuations are controlled by the su-
perfluid stiffness coefficient Kψ , defined by Eq. (18) as the
average over the bands. One can see that in the limit v1 � v2,
the main contribution to the stiffness coefficient is provided by
the higher-dimensional band. In this limit strong fluctuations,
specific to Q1D systems, are fully suppressed and cannot
affect the critical temperature [12]. However, in real systems
the ratio v1/v2 is finite and the fluctuations reduce the critical
temperature Tc < Tc0. Thus, the main problem is to clarify the

domain of microscopic parameters of the model, where Tc is
not significantly reduced with respect to Tc0.

D. Ginzburg number

The impact of the thermal fluctuations on the criti-
cal temperature is determined by the Ginzburg number
(also known as the Ginzburg-Levanyuk parameter) Gi = 1 −
TGi/Tc0, where TGi is defined as the temperature at which
the heat capacity given by the mean-field theory is equal
to the fluctuation-driven heat capacity [39]. As is seen, Gi
defines the temperature interval near Tc0, where the pair fluc-
tuations cannot be ignored. For the Q1D+2D system there
are two nonzero stiffness coefficients in the GL functional,
the effective dimensionality of the GL theory is 2, and the
corresponding Gi number [11,39] is expressed as

Gi(2D) = Tc0bψnz

4πa′
ψ

√
K(x)

ψ K(y)
ψ

, (21)

where a′
ψ = daψ/dT . Notice that nz appears in Eq. (21) be-

cause Nν for Q1D and Q2D bands has the dimensions of the
3D DOS, taking into account the degeneracy of the momen-
tum states along the z direction in the Q2D case and along the
y and z directions in the Q1D case. The factor ny is absorbed
in the coefficients bψ, a′

ψ , and K(α)
ψ whereas nz is not only

included in these coefficients (through Nν) but also appears
explicitly in Eq. (21). As bψ ∝ nz, a′

ψ ∝ nz, and K(α)
ν ∝ nz,

one can see that nz does not eventually contribute to Gi2D.
Then, one can rewrite the right-hand side of Eq. (21) in the
form of the standard 2D Ginzburg number [11,39] with the
coefficients that depend on the band DOSs accounting only
for the states associated with the x and y directions. Utilizing
the expressions for the coefficients aψ, bψ , and K(x,y)

ψ given by
Eq. (18), we arrive at

Gi2D = Gi2D
1

b2/b1 + S4

S(a′
2/a′

1 + S2)
√
K(x)

2 /K(x)
1 + S2

, (22)

where the Ginzburg number of band 1 is given by

Gi2D
1 = Tc0b1nz

4πa′
1

√
K(x)

1 K(y)
1

= Tc0

μ + |ε0| , (23)

where a′
ν = daν/dT and Eqs. (10) and (12) are used.

Similarly, for the Q1D+3D case there are three nonzero
stiffness coefficients in the GL functional of the two-band
system, the number of the effective dimensions of the GL
functional (20) is 3, and the Ginzburg number is expressed
in the form [12,39]

Gi3D = 1

32π2

Tc0b2
ψ

a′
ψK

(x)
ψ K(y)

ψ K(z)
ψ

. (24)

Utilizing Eq. (18), one finds

Gi3D = Gi3D
1

(b2/b1 + S4)2

S4(a′
2/a′

1 + S2)
(
K(x)

2 /K(x)
1 + S2

) , (25)
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where the Ginzburg number of band 1 with the 3D dispersion
is given by

Gi3D
1 = 1

32π2

Tc0b2
1

a′
1K

(x)
1 K(y)

1 K(z)
1

, (26)

which can be rewritten as

Gi3D
1 = 27π4

14ζ (3)

(
Tc0

μ + |ε0|
)4

; (27)

see Eqs. (10) and (11).
It is instructive to examine the limiting cases S → 0 and

S → ∞. As is mentioned above, when S → ∞, band 2 does
not contribute [see Eq. (14)], and superconductivity is deter-
mined by the condensate in band 1. In this limit, Eqs. (22)
and (25) yield, respectively, Gi2D → Gi2D

1 and Gi3D → Gi3D
1 .

In the opposite limit S → 0, the contribution of band 1
is negligible and Gi → ∞ for both Q1D+2D and Q1D+3D
systems. Formally, the divergence in the Ginzburg number
follows from the fact that K(y,z)

ψ = S2K(y,z)
1 → 0 at S → 0 for

the Q1D+3D system in Eq. (24) and K(y)
ψ = S2K(y)

1 → 0 for
the 1D+2D system in Eq. (21). This implies that for one
or two spatial directions the integral over the momentum,
appearing in the expression for the fluctuation-driven heat
capacity (see Ref. [39]), becomes divergent. This divergence
is artificial and has to be regularized, e.g., by introducing the
momentum cutoff in the integration (i.e., by taking account
of the boundary of the Brillouin zone). However, since we
are interested in the regime of the pair-fluctuation suppression
with Gi significantly smaller than 1, we can simply ignore this
regularization in our further calculations.

E. Fluctuation corrections to Tc

The Ginzburg number Gi gives a good estimate for the
temperature range in the vicinity of the critical temperature
where thermal fluctuations are large. However, the fluctua-
tions suppress the superconductivity and reduce the critical
temperature itself. As the thermal fluctuations of the two-band
system are controlled by the effective single-component GL
free-energy functional, we can utilize standard expressions
connecting the Ginzburg number with the fluctuation-driven
shift of the critical temperature in single-band superconduc-
tors; see details in Ref. [12]. For the case of the GL functional
with the two effective dimensions (Q1D+Q2D), one can use

δTc

Tc
= 4Gi(2D), δTc = Tc0 − Tc, (28)

where Tc is the Berezinski-Kosterlitz-Thouless (BKT) transi-
tion temperature [40] (see the discussion in Ref. [11]). One
can also apply the renormalization group result [11,39], which
yields δTc/Tc = 2Gi(2D) ln(1/4Gi(2D) ). However, this formula
is applicable only when [11] δTc/Tc � 0.1 (one can see that
its right-hand side even changes sign for Gi > 1/4). In ad-
dition, values of the critical temperature calculated within
the BKT scenario of the pair fluctuations are very close to the
renormalization group estimates for δTc/Tc = 0.005–0.1. The
difference becomes significant only when δTc/Tc � 0.001 but
in this regime Tc and Tc0 are almost indistinguishable. Thus,
it is more convenient to choose the BKT variant (28) in our
present study.

For the Q1D+3D system we have three nonzero stiffness
coefficients and can utilize

δTc

Tc
= 8

π

√
Gi(3D), (29)

which is the result of the 3D renormalization group
analysis [39].

Thus, employing the Ginzburg number calculated with
Eqs. (28) and (29) for the Q1D+Q2D and Q1D+3D mod-
els, respectively, one can find the related shift of the critical
temperature (with respect to the mean-field superconductive
critical temperature) from Eqs. (28) and (29).

III. NUMERICAL RESULTS

Now we investigate how the critical temperature Tc de-
pends on the system parameters, including the dimensionality
and the depth of the higher-dimensional band, as well as on
the interaction strength and effective carrier masses of the both
contributing bands. The analysis is done in two steps: first, we
calculate the mean-field critical temperature Tc0 and then the
critical temperature Tc, renormalized due to the pair thermal
fluctuations.

A. Model parameters

The mean-field critical temperature Tc0 is determined by
the three dimensionless coupling constants λ11, λ22, λ12 and
the chemical potential μ. Within the adopted model, μ ∼
0 determines the proximity to the Lifshitz transition point
(the Feshbach-like resonance) and is used as a variable in
our calculations. We avoid the trivial regime of a domi-
nant higher-dimensional band λ11 � λ22 at which the system
characteristics are close to those of a conventional BCS
superconductor. Notice that a similar situation occurs for
large pair-exchange couplings λ12 � λ22 because intensive
Cooper-pair transfer between the contributing bands washes
out the Q1D effects. Thus, the most physically interesting
is the case of λ11, λ12 � λ22, where the Q1D physics is still
important.

Below we choose λ22 = 0.2, which is in the range of the
values typical for the dimensionless couplings of conven-
tional superconductors [41]. For the higher-dimensional band,
we investigate two variants: the vanishing coupling constant
λ11 = 0 (λ11 � λ22), and λ11 = 0.24 (λ11 � λ22). Finally, to
study the effects of the interband interactions on the system
properties, several values of the pair-exchange coupling λ12

are considered.
To calculate the critical temperature renormalized by the

thermal pair fluctuations, one needs to know the Ginzburg
number of the two-band system in addition to Tc0. The former
depends on the Ginzburg number of the higher-dimensional
band Gi1, the band occupation parameter S, as well as on
the ratios N2/N1 and v2/v1. As follows from Eq. (15), S is
controlled by λνν ′ , μ, and N2/N1, whereas Gi1 is determined
by the chemical potential μ and the band depth ε0. Further,
the ratio v2/v1 = √

m1/[m2(μ̃ + |ε̃0|)] depends on μ, ε0, and
the band mass ratio m2/m1. Consequently, we find that Tc is
governed by λνν ′ , μ, ε0, N2/N1, and m2/m1. Notice that there
is no need to specify the cutoff energy h̄ωc as the latter simply
determines the energy scale of the model.
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FIG. 2. The mean-field critical temperature Tc0 of the two-band
system as a function of the chemical potential μ. Panels (a) and
(b) demonstrate results obtained for the intraband couplings λ11 =
0.24 and λ11 = 0 in the higher-dimensional band; results for the
Q1D+Q2D and Q1D+3D models are the same. The calculations
assume the intraband coupling in the Q1D band is λ22 = 0.2 while
the pair-exchange interband coupling is λ12 = 0, 0.05, 0.1, 0.15, 0.2.
The dotted line represents Tc0 obtained in the limit λ12 → 0 of uncou-
pled bands.

The ratio of the band DOSs N2/N1 is close to 1 in most
of two-band superconductors, see Ref. [11], and for sim-
plicity we choose N2/N1 = 1. Finally, we consider different
values of ε0 and m2/m1, to investigate how the depth of band
1 impacts Tc and how this impact is sensitive to the band
mass ratio m2/m1. In multiband superconductors the effective
band masses can significantly deviate from that of free elec-
trons [42], and therefore the ratio m2/m1 is not necessarily
equal to 1.

B. Mean-field critical temperature Tc0

Figure 2 demonstrates Tc0 versus the chemical potential
μ for λ11 = 0.24 in panel (a) and for λ11 = 0 in panel (b);
the results of solving Eq. (6) are given for the set of the
pair-exchange couplings λ12 = 0, 0.05, 0.1, 0.15, 0.2. Notice
that the mean-field critical temperature does not depend on
the number of the dimensions of band 1. Moreover, one can
see that Tc0 is not much sensitive to particular values of λ11

and λ12 at μ > −0.2 (here and below the values of the energy-
related quantities are given in units of the cutoff energy). The
mean-field critical temperature enhancement is mainly deter-
mined by the van Hove singularity of the Q1D DOS, which
results in the Q1D Feshbach-like resonance enhancement of
superconductivity and the related enhancement of Tc0. Notice

FIG. 3. The critical temperature Tc renormalized by the pair fluc-
tuations versus μ, calculated for λ12 = 2 × 10−3 [panel (a)] and
λ12 = 5 × 10−3 [panel (b)]. The depth of the higher-dimensional
band is chosen as |ε0| = 300h̄ωc and the mass ratio is set to m2/m1 =
1. Results for the Q1D+Q2D and Q1D+3D models are given by blue
and red lines, respectively. The dotted lines correspond to λ11 = 0
whereas the solid lines represent the case of λ11 = 0.24. Black lines
give the mean-field critical temperature, for comparison.

that this enlargement starts at μ � −0.2, not at μ = 0. This
downward shift is related to the Cooper-pair binding energy
∼ max[Tc0] � 0.2 and to the temperature-dependent smearing
of the Fermi surface of the normal state. One can see that only
at μ < −0.2 the contribution of the Q1D band is negligible,
and Tc0 is fully determined by the higher-dimensional band:
Tc0 = 0 for λ11 = 0 and Tc0 ≈ 0.02 for λ11 = 0.24. We note
that even for λ11 = 0.24 the maximal value of Tc0 is larger
by an order of magnitude than Tc0 at μ < −0.2. We note
that the possibility of a significant increase of Tc0 is at the
core of researchers’ interest in the Feshbach-like resonances
in multiband superconductors [20,22,23].

C. Renormalized Tc close to the Lifshitz transition

We now consider impact of the thermal pair fluctuations
and calculate the critical temperature Tc renormalized by the
fluctuations. Figure 3 shows Tc as a function of μ, calculated
for the pair-exchange couplings λ12 = 10−3 [panel (a)] and
λ12 = 2 × 10−3 [panel (b)]. Here the depth of band 1 with
respect to the bottom of band 2 is chosen as |ε0| = 300, which
yields the Fermi energy of the higher-dimensional band EF =
|ε0| + μ ≈ 300. This value of the Fermi energy is close to that
of the conventional elemental superconductors, see Ref. [43]
(e.g., for Al we have EF ≈ 350 whereas in Pb one gets EF ≈
1000). The ratio of the band masses is chosen as m2/m1 = 1.
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Results for the Q1D+Q2D and Q1D+3D systems are shown
by the red and blue lines, correspondingly. To demonstrate the
shift of the critical temperature by the fluctuations, Tc0 is also
shown Figs. 3(a) and 3(b) by the black lines. In all cases, solid
lines correspond to λ11 = 0.24 and the dotted lines are related
to λ11 = 0.

Figure 3 demonstrates that the pair fluctuations are neg-
ligible for μ < 0.2 and important for μ > 0.2, where the
contribution of the Q1D band matters. It is seen from Fig. 3(a)
that for μ > 0.2 the difference between the results for λ11 =
0.24 and λ11 = 0 is almost negligible for the Q1D+Q2D
system and not even visible for the Q1D+3D case. Moreover,
as follows from Fig. 3(b), this difference tends to disappear
for larger values of λ12. For example, it is not visible in panel
(b) for both the Q1D+Q2D and Q1D+3D systems. Thus,
though the higher-dimensional condensate can exist only due
to the Cooper-pair transfer from the Q1D band at λ11 = 0, the
coupling to the higher-dimensional band “kills” the Q1D pair
fluctuations similarly to the case of a finite value of λ11.

As is well known, the role of fluctuations increases in
low-dimensional samples [39]. Then, one can expect that the
effect of the pair fluctuations on the critical temperature in
the Q1D+Q2D model should be significantly stronger than
that in the Q1D+3D model. Figure 3 demonstrates that Tc is
indeed lower in the Q1D+Q2D system. However, the most
pronounced difference between the critical temperatures of
the two models is only about 30%; see the results in Fig. 3(a)
for μ ≈ 0.2–0.6. The reason for such a weak dependence
of Tc on the dimensionality of band 1 is originated in the
dependence of δTc/Tc on Gi: the fluctuation-driven shift of the
critical temperature is linear in Gi2D while it is proportional
to the square root of Gi3D [cf. Eqs. (28) and (29)]. Though
Gi2D is indeed by orders of magnitude larger than Gi3D, the
difference between the corresponding values of δTc is much
less pronounced. For instance, at μ ≈ 0.4 and λ12 = 10−3 we
have Gi2D ≈ 5 × 10−2 and Gi3D ≈ 4.5 × 10−4.

The most important result is that Tc rapidly approaches
Tc0 when the interband coupling increases above λ12 � 10−3

(Fig. 3). Notice that in this regime one can still have λ12 �
λ22, so that at μ > −0.2, Tc0 is determined by the resonant
Q1D band. This conclusion is independent of the intraband
coupling λ11 in the higher-dimensional band and holds even
when the higher-dimensional condensate appears only due to
the proximity-like effect between the bands.

D. Impact of the energy depth of the reservoir band

The results in Fig. 3 are obtained for |ε0| = 300 (recall that
all energy-related quantities are given in units of the cutoff
energy in the text) and, as mentioned above, the corresponding
Fermi energy of band 1 is in the range of the Fermi ener-
gies of the conventional elemental superconductors. However,
in novel superconducting materials EF can be significantly
smaller, down to 10 or even below this value [44–47]. This
is why in Fig. 4 we consider how Tc is sensitive to |ε0|. We
again employ λ22 = 0.2, λ11 = 0 and 0.24 (dotted and solid
lines, respectively) and use λ12 = 2 × 10−3 in Fig. 4(a) and
λ12 = 5 × 10−3 in Fig. 4(b). The chemical potential is now
fixed as μ = 0.4 which corresponds to a nearly maximal value

FIG. 4. The critical temperature Tc renormalized by the fluctua-
tions, plotted as a function of the reservoir band depth |ε0|, calculated
for μ/h̄ωc = 0.4 and m2/m1 = 1: Panel (a) represents λ12 = 2 ×
10−3 and panel (b) corresponds to λ12 = 5 × 10−3. The results for
the Q1D+Q2D (blue lines) and Q1D+3D (red lines) systems are
shown for both the passive (λ11 = 0) and active (λ11 = 0.24) regimes
of band 1 by the dotted and solid lines.

of Tc; see Fig. 3(b). Here we still adopt m2/m1 = 1 while this
value will be changed below.

Our results demonstrate that Tc increases with |ε0|, asymp-
totically approaching Tc0 (saturation) for very large values of
|ε0|. Notice that Tc0 is only weakly dependent on λ11 and
λ12, as shown in Figs. 2 and 3. Thus, we find that the pair
fluctuations are quenched in the limit |ε0| → ∞, which is in
agreement with our previous results for the two-band model
with a deep higher-dimensional band [12].

For relatively small values of |ε0| one finds that Tc deviates
notably from Tc0. In this case the coherence length of band
1 decreases, which leads to an increase of Gi1, and so to an
enhancement of the pair fluctuations in the reservoir band;
see Ref. [39]. This, in turn, results in a rise of Gi and δTc;
see Eqs. (22), (25), (28), and (29). In addition, the ratio v2/v1

decreases with decreasing |ε0| and so does the ratio K(x)
2 /K(x)

1 .
As the latter appears in the denominators of Eqs. (28) and (29),
one obtains an additional contribution to an increase of
Gi and δTc.

One can see that the suppression of the fluctuations is
more effective in the Q1D+3D system, but again, we do
not observe an order of magnitude difference between the
critical temperatures in the Q1D+Q2D and Q1D+3D models
even at small |ε0|. Notice that only the results for Tc > 0.05
are shown in Fig. 3 since our formalism does not apply for
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FIG. 5. The same as in Fig. 4 but for m2/m1 = 1/4.

strong pair fluctuations with Gi close to 1; see the discussion
after Eq. (27).

The effective band masses can significantly deviate from
the free-electron mass in multiband superconductors [42] and
then the ratio m2/m1 can be notably different from 1. As
mentioned above, the value of v2/v1 is controlled by |ε0| and
by the ratio m2/m1. The larger (smaller) is the value of m2/m1,
the smaller (larger) is the ratio v2/v1 at a given |ε̃0| and,
then, the larger (smaller) is the impact of the pair fluctuations.
For illustration, we calculate Tc with the same microscopic
parameters as in Fig. 4 but for m1 = 4m2; see Fig. 5. The
results in Fig. 5 are similar to those in Fig. 4 but the region of
strong fluctuations shifts to lower values of |ε0|. For instance,
for the Q1D+3D system Tc is equal to half of Tc0 at |ε̃0| ≈ 7–8
in panel (a) and at |ε̃0| ≈ 2–3 in panel (b).

Thus, a drop of Tc at small |ε0| demonstrates that
the Q1D thermal pair fluctuations are significantly en-
hanced when the reservoir band approaches its shallow
regime. However, quite surprisingly, we find that the fluc-
tuations are significantly weakened even when the Fermi
energy of the higher-dimensional band is by two orders of
magnitude smaller than EF in the conventional elemental
superconductors.

IV. CONCLUSION

Although the mean-field critical temperature of a single-
band Q1D superconductor can be very large when approach-
ing the van Hove singularity, the thermal pair fluctuations
suppress or even eliminate altogether the superconductiv-
ity, reducing the critical temperature to very low values or
to zero. However, the situation changes dramatically when

a Q1D band is coupled to the reservoir condensate of a
higher-dimensional band due to the pair transfer between the
bands. This pair-exchange coupling can effectively suppress
the detrimental Q1D pair thermal fluctuations [12].

This work studies details of how thermal superconducting
fluctuations are quenched in a two-band system comprising
a Q1D and Q2D/3D bands, and the critical temperature Tc

approaches its mean-field value Tc0. The focus of the study is
to clarify how the screening of the pair thermal fluctuations in
such a two-band system depends on the microscopic param-
eters specifying the single-particle bands and the intra- and
interband pairing interactions.

Although the two-band system is controlled by a fairly
large number of different parameters, our calculations demon-
strate that the fluctuation suppression effect is a general
phenomenon, taking place in a wide parametric domain. This
domain for the Q1D+Q2D model is very close to that of the
Q1D+3D model. Furthermore, we find that the fluctuation
suppression occurs even if the reservoir band alone does not
develop the superconducting state and also when the reservoir
band is nearly shallow, having a relatively small band Fermi
energy in comparison to that of the conventional metallic su-
perconductors. Notice that the case of unusually small Fermi
energies in superconducting compounds is not a theoretical
assumption or oversimplification; it is relevant, e.g., for FeSe,
where multiple overlapping bands crossing the Fermi level
have similar small depths [46,47].

The present results have both fundamental and practical
importance. Our work uncovers an important aspect of
the physics of multiband superconductors exhibiting a
BCS-BEC crossover (see experimental results in
Refs. [42,44–47] and theoretical studies in Refs. [16–23]).
It is commonly expected that thermal superconducting
fluctuations proliferate when a system approaches the
BCS-BEC crossover and then goes into the BEC regime.
In contrast, our study and investigations of the previous
works [11,12] demonstrate that those fluctuations, being
detrimental in the single-band case, are screened in the
multiband superconductors by the pair-exchange coupling of
a shallow-band condensate in the BCS-BEC crossover regime
to the band that is still in the BCS regime. As a result, the
preformed Cooper pairs and the associated pseudogap induced
by thermal fluctuations disappear and the critical temperature
of the global coherence approaches the higher pair-formation
temperature. Interestingly, this conclusion agrees with the
recent scanning tunneling microscopy findings for multiband
FeSe superconductors [47].

From the practical point of view, our results are encourag-
ing to merit engineering and further detailed investigations of
the Q1D multiband superconductors, such as recent materials
A2Cr3As3, with A = K, Rb, Cs [24–30]. Our investigation
confirms that tuning the Lifshitz topological transition asso-
ciated with the edge of a Q1D band, e.g., by means of doping,
applying external pressure or chemical engineering, is a very
promising way to achieve robust high-Tc superconductivity.
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APPENDIX: COEFFICIENTS FOR THE Q1D GL THEORY

In this Appendix we derive the coefficients for the Q1D
GL theory for the reader’s convenience. Below we follow the
standard procedure of the microscopic derivation of the GL
formalism introduced by Gor’kov [48,49]. In the vicinity of
the mean-field critical temperature the gap function �ν (r)
is small and the corresponding anomalous Green’s function
Rν (r) can be represented by series in powers of �ν (r). Adopt-
ing the Gor’kov truncation procedure [48,49] and keeping
only the lowest nonlinear term, we obtain the anomalous
Green’s function as

Rν (r) = Iaν[�ν (r)] + Ibν[�ν (r)], (A1)

where

Iaν =
∫

d3r′Kaν (r, r′)�ν (r′) (A2)

and

Ibν =
∫

d3r′d3r′′d3r′′′Kbν (r, r′, r′′, r′′′)

× �ν (r′)�∗
ν (r′′)�ν (r′′′), (A3)

with the integral kernels defined by

Kaν (r, r′) = −T
∑

ω

G (0)
νω (r, r′)Ḡ (0)

νω (r, r′) (A4)

and

Kbν (r, r′, r′′, r′′′) = − T
∑

ω

G (0)
νω (r, r′)Ḡ (0)

νω (r′, r′′)

× G (0)
νω (r′′, r′′′)Ḡ (0)

νω (r′′′, r). (A5)

Here the normal-state Green’s function is expressed in terms
of the single-electron energy ξkν as

G (0)
νω (r, r′) =

∫
d3k

(2π )3

e−ik(r−r′ )

ih̄ω − ξkν

, (A6)

and Ḡ (0)
νω (r, r′) = −G (0)

ν,−ω(r′, r). The integral kernels involve,
as usual, the summation over the fermionic Matsubara fre-
quencies ω → ωn = πT (2n + 1)/h̄ (n = 0,±1,±2, . . .).

Using Eqs. (2) and (A1), one obtains the integral
equations for the gap functions �1(r) and �2(r). In the next
step, the obtained integral equations are approximated by
partial differential equations via using the gradient expansion
(r′ = r + z),

�ν (r′) =
∑

m=0,1,2,...

(z · ∇)m

m!
�ν (r), (A7)

where we keep only the contributions up to second-order spa-
tial derivatives. Substituting this expansion into the integral
gap equations, we obtain

Iaν = I ′
aν + I ′′

aν, (A8)

with

I ′
aν =

∫
d3r′Ka2(r, r′)�2(r) (A9)

and

I ′′
aν =

∫
d3r′Ka2(r, r′)

(z · ∇)2

2
�2(r), (A10)

where the contribution of the first-order derivatives vanishes
due to the symmetry Ka2(r, r′) = Ka2(r′, r). Then, Eq. (A9)
is rewritten in the form

I ′
aν = T �2

∫
d3k

(2π )3

∑
ω

1

h̄2ω2 + ξ 2
kν

, (A11)

which is further reduced to

I ′
aν = �2

∫
d3k

(2π )3

tanh(ξkν/2T )

2ξkν

, (A12)

where we use the well-known relation for the summation over
the Matsubara frequencies∑

ω

1

h̄2ω2 + ξ 2
kν

= tanh(ξkν/2T )

2T ξkν

. (A13)

To proceed further, we recall that our analysis focuses on
the GL coefficients for the Q1D band. We take into account
that the single-particle energy in band 2 depends only on kx

(the Q1D band). Then, performing the integration over the
momentum k for band 2, we find∫

d3k
(2π )3

= nynz

∫
dkx

2π
, (A14)

where constants ny and nz are introduced to take into account
the Brillouin zone boundaries in the k space. Changing the
integration variable to the single-particle energy in Eq. (A12),
we arrive at (ν = 2)

I ′
aν = �2N2

∫ +∞

−μ̃

dε
tanh(ε/2T̃ )

ε
√

ε + μ̃
θ (1 − |ε|), (A15)

where N2 is the Q1D DOS at the cutoff energy, see Eq. (5),
T̃ is the temperature in units of the cutoff energy, and the
Heaviside step function θ (x) is introduced to restrict the inte-
gration over single-particle states as |ξk2| < h̄ωc. The derived
expression can be represented as a series of τ = 1 − T/Tc0

(τ is small near Tc0). Keeping only the leading and next-to-
leading terms in this expansion, one arrives at

I ′
2 = (A2 − a2)�2, (A16)

with

A2 = N2

∫ +∞

−μ̃

dε
tanh(ε/2T̃c0)

ε
√

ε + μ̃
θ (1 − |ε|), (A17)

and

a2 = −τ
N2

2T̃c0

∫ +∞

−μ̃

dε
sech2(ε/2T̃c0)√

ε + μ̃
θ (1 − |ε|). (A18)

Now, when μ̃ � 1, Eqs. (A17) and (A18) give the expressions
for A2 and a2 used in the article; see Eqs. (5) and (13).

We turn now to the calculation of I ′′
a2. It can be rewritten as

I ′′
a2 =

∑
i, j=1,2,3

∂i∂ j�2

∫
d3r′Ka2(r, r′)

ziz j

2
, (A19)
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where zi is the Cartesian component of z (i = x, y, z). The
integral in the right-hand side of this expression is rearranged
to get

I ′′
a2 = − T

2

∑
i, j=1,2,3

∂i∂ j�2

∑
ω

∫
d3k

(2π )3

× ∂ki

(
1

ih̄ω − ξk2

)
∂k j

(
1

ih̄ω + ξk2

)
, (A20)

with ki the Cartesian component of k. As the Q1D dispersion
does not depend on ky and kz, Eq. (A20) is reduced to

I ′′
a2 = T

h̄2

m2
∂2

x �2

∑
ω

∫
d3k

(2π )3

ξk2 + μ(
h̄2ω2 + ξ 2

k2

)2 . (A21)

The summation over the Matsubara frequencies yields∑
ω

1(
h̄2ω2 + ξ 2

k2

)2 = T sinh(ξk2/T ) − ξk2

8ξ 3
k2T 2

× sech2(ξk2/2T ). (A22)

Changing the integration variable to the single-particle energy
and keeping only the leading-order term in the τ expansion,
one obtains

I ′′
a2 = K(x)

2 ∂2
x �2, (A23)

with

K(x)
2 = h̄2v2

2
N2

8 h̄2ω2
c

∫ +∞

−μ̃

dε

√
ε + μ̃

ε3
sech2(ε/2T̃c0)

×
[

sinh

(
ε

T̃c0

)
− ε

T̃c0

]
θ (1 − |ε|), (A24)

which gives K(x)
2 in Eq. (13) when μ̃ � 1. Thus, for the first

term in Eq. (A1) we find

Ia2 = (A2 − a2)�2 + K(x)
2 ∂2

x �2. (A25)

Finally, we calculate the nonlinear term Ib2 in Eq. (A1). It
is represented in the form

Ib2 = − T �2|�2|2
∑

ω

∫
d3k

(2π )3

1(
h̄2ω2 + ξ 2

k2

)2 . (A26)

This expression is evaluated by taking the sum over the
Matsubara frequencies, see Eq. (A14), and changing the
integration variables as previously. Finally, applying the τ

expansion and keeping the leading contribution in τ , we get

Ib2 = b2�2(r)|�2(r)|2, (A27)

where

b2 = N2

4h̄2ω2
c

∫ +∞

−μ̃

dε
sech2(ε/2T̃c0)

ε3
√

ε + μ̃

×
[

sinh
( ε

T̃c0

)
− ε

T̃c0

]
θ (1 − |ε|). (A28)

For μ̃ � 1, this expression for b2 coincides with Eq. (13).
Thus, the anomalous Green’s function of the Q1D band in

the GL approximation is given by

R2(r) = (A2 − a2)�2 + K(x)
2 ∂2

x �2 + b2�2|�2|2. (A29)

Notice that the functional derivative of the free energy given
by Eq. (8) yields Eq. (2), where Rν is given by Eq. (A29).
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