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Fluctuation-induced odd-frequency spin-triplet pairing in a disordered electron liquid
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We consider a two-dimensional disordered conductor in the regime when the superconducting phase is
destroyed by the magnetic field. We analyze a combination of fluctuations of different origin which results
in an effective interaction amplitude suitable for a spontaneous s-wave odd-frequency pairing instability. We
observe that the end point of the superconductivity is a quantum critical point separating the conventional
superconducting phase from a state with the odd-frequency spin-triplet pairing instability. We speculate that
this could shed light on a rather mysterious insulating state observed in strongly disordered superconducting
films in a broad region of the magnetic fields.
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I. INTRODUCTION

Despite decades of studying disordered superconducting
films [1–3], the level of understanding of these systems
remains far from being satisfactory. In homogeneously
disordered films, the degradation of the superconducting tem-
perature Tc with disorder [4] is well described by a theoretical
curve obtained in Ref. [5]. Its notable feature is existence of
an ending point, which is an example of a quantum critical
point induced by disorder. However, in the past few years, a
more complex physical picture has emerged in experiments.
Namely, a gap has been found [6] in the scanning tunnel-
ing spectroscopy measurements of the density of states of
some amorphous films. This gap tends to a finite value in
the vicinity of vanishing Tc. This observation was attributed
to inhomogeneities [7,8], and the observed gap was called
a “pseudogap,” Eg. By contrast, when a point-contact. spec-
troscopy has been applied [9], another gap, �c, has been
unveiled which follows Tc and disappears together with it.
In Ref. [9], the superconducting gap �c has been attributed
to the phase-coherent state, while the pseudogap Eg to the
preformed Cooper pairs. We are skeptical about the possibility
of coexistence of two gaps, which originate from the same
s-wave spin-singlet pairing, in a strongly disordered material.
Besides the existence of the two gaps, a rather mysterious
insulating behavior has been observed in many amorphous su-
perconducting films when the superconductivity is destroyed
by the applied magnetic field [10–13].

Here we consider an odd-frequency triplet pairing as an
alternative to the scenario involving preformed s-wave pairs.
The possibility of the odd-frequency pairing has been studied
since 1974 when Berezinskii [14] made a breakthrough re-
mark that the required antisymmetry of the superconducting
pairing function with respect to the electron exchange can be
resolved by an odd dependence on its time arguments. Al-
though the odd-frequency superconductivity is expected under
mesoscopic conditions [15–22], so far there was no reliable
example of the odd-frequency pairing in bulk materials. For

the odd-frequency pairing, an electron interaction should be
strongly retarded. In this paper, we consider the electron scat-
tering by impurities (disorder) as a source of a pronounced
time dependence of the effective electron interaction.

In the presence of strong scattering caused by the impu-
rities the variants of the off-diagonal long-range order are
limited to only s-wave orders. As a result, only two phases are
possible: regular (Cooper pairing) s-wave, spin-singlet (even-
frequency) and the s-wave, spin-triplet (odd-frequency). In
this paper we identify the processes of the electron interac-
tions which generate the odd-frequency pairing amplitude. In
a search for such processes, we exploit the fact that fluctua-
tions are particularly strong near the boundary of the phase
instability. Hence, we mixed fluctuations of different origin
such that their combination is suitable for the s-wave odd-
frequency spin-triplet pairing. With that in hand, we have
found that in the vicinity of the region where the conventional
superconducting phase is destroyed by the magnetic field, the
odd-frequency pairing instability must inevitably develop at
low-enough temperatures. We, however, distinguish this pair-
ing from the odd-frequency superconductivity. The question
of the phase coherence, which is needed for true supercon-
ductivity, has not been studied enough for the odd-frequency
pairing, especially in the presence of the magnetic field.

The rest of the paper is organized as follows. In the
main part of the text we emphasize the conceptual aspects
of the work. The details of the calculations can be found in
four extended Appendices. To make the paper self-contained,
technical aspects of general character are presented in the
Appendix A.

II. PRELIMINARIES

For illustrative purposes, let us start with a four fermion
term in the action, which is nonlocal in time,

V̂int = V (t1, t2)
∑
αβ

�̄α (t1)�̄β (t2)�β (t2)�α (t1), (1)
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where V (t1, t2) is a function of times t1 and t2, α and β denote
fermion’s spin [generally speaking, V (t1, t2) may depend on
spins], and �̄ and � are the Grassmann fields. As an example,
consider α �= β, in which case the interaction can be split in
the Cooper channel into a sum,∑

α �=β

�̄α (t1)�̄β (t2)�β (t2)�α (t1)

= 1

2
[�̄↑(t1)�̄↓(t2) − �̄↓(t1)�̄↑(t2)]

× [�↓(t2)�↑(t1) − �↑(t2)�↓(t1)]

+ 1

2
[�̄↑(t1)�̄↓(t2) + �̄↓(t1)�̄↑(t2)]

× [�↓(t2)�↑(t1) + �↑(t2)�↓(t1)]. (2)

Here the first line corresponds to the Cooper pairing in the sin-
glet channel, while the second one corresponds to the pairing
in the triplet channel. It is clear that if V (t1, t2) = δ(t1 − t2),
then the term in the triplet channel vanishes due to the an-
ticommutation relations of the Grassmann field operators.
However, this term is nonzero for a time-dependent inter-
action. Berezinskii noticed that V (t1, t2) permits to resolve
the required antisymmetry of the superconducting pairing
function, F (1; 2) = −F (2; 1), by an odd dependence on the
time arguments. This is called the odd-frequency supercon-
ducting pairing. Generally, the odd-frequency pairing opens
a possibility to an s-wave spin-triplet and also to a p-wave
spin-singlet superconducting pairings [23,24]. However, in
the presence of a strong disorder, scattering on impurities
smears out the orbital order, and only the s-wave spin-triplet
may survive [16,25–28].

In order for the exotic odd-frequency pairing to get a
chance to reveal itself, the time dependence of the electron
coupling should be well pronounced. In this paper we rely
on the fact that the disorder contributes to the emergence of
a strong time dependence of the effective electron interaction
amplitudes. The point is that matrix elements calculated with
the eigenstates obtained in a given realization of the impurities
are strongly energy dependent. Technically, propagation of
electrons on large scales in a disordered medium is described
by slow diffusive modes, diffusons, and Cooperons. These
modes make the electron interactions to be effectively time
dependent. The effect is stronger in low dimensions, and we,
therefore, concentrate on the electron liquid in disordered
films.

Motivated by the experiments on disordered film supercon-
ductors, we analyze here a conventional system without any
modeling assumptions. The free-electron part of the Hamil-
tonian, Ĥ0 = k2

2m + Vd (r), consists of the kinetic part and the
Gaussian distributed disorder potential Vd (r), where m is the
fermion’s mass, and k is the absolute value of momentum.
Note that in the presence of a strong disorder further detal-
ization, such as band structure or angular dependencies of the
parameters, is rather meaningless as only zero-harmonic sur-
vives. Correspondingly, the electron-electron interactions will
be described by only three Fermi liquid amplitudes. The one,
denoted as Z , is the coupling constant in the charge-density
channel, the other one describes interaction in the spin-density
channel (�2) and, finally, the interaction amplitude Vs acts in

the s-wave spin-singlet Copper channel. All three amplitudes
for energies of interest are instantaneous. The amplitude Vs is
assumed to be attractive, Vs < 0. The amplitude responsible
for superconducting pairing in the spin-triplet channel, which
is of the most interest to us, is absent in the bare Hamiltonian.

To analyze electron modes on large scales, it is preferable
to integrate out fast short-range single-particle degrees of free-
dom and describe electrons in terms of the effective action
of the diffusive modes. Large scales allow one to consider
averaging the action with respect to the disorder. Here a subtle
technical point arises. Averaging is often performed using
replicas in the technique of the Matsubara frequencies. Per
contra, we prefer to apply the Keldysh contour technique.
The advantage of this approach is that one avoids the an-
alytic continuation from the imaginary frequency axis. The
cost, however, is in the doubling of the field variables in the
Keldysh space [29]. For each branch of the Keldysh contour,
one has to introduce an independent set of the Grassmann
numbers. Thus, we write the fermion Grassmann numbers
�̂ in spin (↑, ↓) space S, time-reversal Gor’kov-Nambu (ψ ,
ψ̄) space N, and also in the Keldysh (+/−) space K which
corresponds to the forward/backward branches of the contour
correspondingly. In total, �̂ has 2 × 2 × 2 = 8 components
in the KSN spaces. We will use a set of the Pauli matrices τi

acting in the Gor’kov-Nambu space and the set of matrices σα

to describe real spin degree of freedom. Matrices from the τi

and σα sets will not have hats, only matrices in the Keldysh
space will be indicated by a hat.

III. Q-MATRIX DESCRIPTION

In disordered conductors, perturbations of charge and spin
relax diffusively at low frequencies and large distances. In
a system obeying time-reversal symmetry, the low-energy
modes in the Cooper channel also have a diffusive form.
These modes, diffusons, and Cooperons, fully describe the
low-energy dynamics of the disordered electron liquid. There-
fore, it is convenient to describe an ensemble of disordered
electrons directly in terms of the diffusive modes. This can
be done with the use of the so-called Q-matrix technique
in the framework of the nonlinear sigma model (NLσM)
that includes the effects of electron-electron (e-e) interactions
[30–32] (also see Appendix A for details). The e-e interac-
tion causes a rescattering of various diffusive modes. In its
essence, the NLσM is not a model but a minimal micro-
scopic theory, which incorporates all symmetry constraints
and conservation laws relevant to the low-energy dynamics
of electrons in disordered conductors,

iS0 = −πν

8
Tr
∫

r
{D[∇Q̂(r)]2 + 4iτ3εQ̂(r)}, (3)

where ν is the density of states and D is the diffusion co-
effiecient. Matrices Q̂εε′ (r), apart from eight KSN indexes,
depend on a spatial coordinate and two frequencies (indicated
as indexes), which are Fourier transforms of the two times
(unlike the Matsubara variables, the frequencies here are real).
The traces are in frequency (F), K, S, and N spaces, such that
Tr ≡ TrFKSN (see Appendix A for more details). Components
of the Q matrix represent all possible two-fermion aver-
ages with slow time and spatial arguments. Correspondingly,
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deviations of the Q matrix from its equilibrium position de-
scribe fluctuations of various quantities such as charge, spin,
and Cooper pairs that slowly propagate at large distances.
There is a natural reason to introduce the Q-matrix tech-
nique for studying the e-e interactions. Namely, nonlinearity
of the Q matrices, imbedded into the constraints imposed on
them, automatically produces scattering between the various
diffusive modes (a sort of anharmonicity) in the form corre-
sponding to the Goldstone’s nature of these modes.

Matrices exploited in the NLσM have an “onion-shell”-
type structure [33,34]:

Q̂ = Û ◦ Û ◦ σ̂3 ◦ ˆ̄U ◦ Û−1 ≡ Û ◦ Q̂ ◦ Û−1, (4)

where ◦ denotes convolution in time. The Keldysh matrix
σ̂3, which encodes the difference in propagation of the re-
tarded and advanced directions in time, stands in their core.
Matrices Û = exp(−Ŵ /2) and ˆ̄U = exp(Ŵ /2), which stand
next, parametrize rotations in the Keldysh space about the σ̂3

matrix, with Ŵ being the rotation generators. Fluctuations of
the Ŵ fields considered within the Gaussian approximation
describe the manifold of the diffusive modes, which include
diffusons and the Cooperons.

So far, no information about the electron state has been
introduced. This is achieved [29,35,36] by the two flanking
matrices Û and Û−1:

Ûε =
[

ûε 0
0 ûT

ε

]
N

, ûε =
[

1 Fε

0 −1

]
K

. (5)

Their presence is indicated by underscoring the matrix Q. Ma-
trices Û introduce information about the electron state, which
is described by the distribution function F . In equilibrium, the
distribution function is Fε = tanh( ε

2T ). Indices N and K used
in the matrices above denote Gor’kov-Nambu and Keldysh
spaces of the matrices correspondingly.

IV. ELECTRON-ELECTRON INTERACTION IN THE
COOPER CHANNELS

The e-e interactions in combination with the nonlinear am-
plitudes of the diffusive modes, which appear in the expansion
of Û and ˆ̄U matrices beyond the linear order in Ŵ , mix all
the diffusive channels (i.e., the charge, spin, and the Cooper
ones). Therefore, a detailed analysis of the theory requests for
the NLσM in its complete form, including interactions in the
charge-density and spin-density channels (Z and �2 terms), as
well as the interaction in the conventional s-wave spin-singlet
Cooper channel (Vs term):

iSee = −i
π2ν2

8
Z
∫

ε1,ε
′
1,ε2,ε

′
2

∫
r

TrKSN[γ̂ 1/2τ±Q̂ε1ε
′
1
(r)]TrKSN[γ̂ 2/1τ±Q̂ε2ε

′
2
(r)]δε1−ε′

1,ε
′
2−ε2 (6)

+i
π2ν2

8
�2

∫
ε1,ε

′
1,ε2,ε

′
2

∫
r

TrKSN[γ̂ 1/2τ±σQ̂ε1ε
′
1
(r)]TrKSN[γ̂ 2/1τ±σQ̂ε2ε

′
2
(r)]δε1−ε′

1,ε
′
2−ε2 (7)

+i
π2ν

8

∫
ε1,ε

′
1,ε2,ε

′
2

Vs(ε1, ε2)
∫

r
TrKSN[γ̂ 1/2τ±Q̂ε1ε

′
1
(r)]TrKSN[γ̂ 2/1τ∓Q̂ε2ε

′
2
(r)]δε1−ε′

1,ε
′
2−ε2 , (8)

here, as it follows from their matrix and frequency
structures, each of the e-e interaction terms couples
different blocks of the Q matrices. Matrices γ̂ 1

and γ̂ 2 are standard in the Keldysh technique [29];
the compact notation Tr[γ̂ 1/2..]Tr[γ̂ 2/1..] stands for
(Tr[γ̂ 1..]Tr[γ̂ 2..] + Tr[γ̂ 2..]Tr[γ̂ 1..]) summation, and the
same for the Tr[τ±..]Tr[τ∓..]. Thus, the expression written in
Eq. (8) combines four terms with a different order of matrices.
In the term given by Eq. (8), matrices γ̂ and τ± = 1

2 (τx ± iτy)
regulate the structure in the Keldysh and Gor’kov-Nambu
spaces, correspondingly. A combination of τ+ and τ−
matrices together with the spin identity matrices (not shown
explicitly) in Eq. (8) restricts the Vs(ε1, ε2) interaction term

to the Cooper pairing in the spin-singlet channel [31,35]. For
technical aspects we refer the reader to the Appendix A.

The bare value of Vs(ε1, ε2) is defined by the electron-
phonon interaction at the frequency arguments about the
Debye frequency. However, as is well known, the bare value
gets strongly modified by the rescattering processes as well as
the corrections generated by the Coulomb interaction which
suppresses superconductivity in disordered films [5]. All
such processes developing on the whole interval of energies
down to ε � Tc can be properly included into the amplitude
�s(ε1, ε2) which substitutes the initial Vs(ε1, ε2) in Eq. (8).
The renormalized amplitude �s(ε1, ε2) will be used below
throughout this paper, cf. Ref. [37] (see Appendix B for de-
tails).

The interaction in the spin-triplet part of the Cooper channel is

iStriplet = i
π2ν

8

∫
ε1,ε

′
1,ε2,ε

′
2

Vt (ε1, ε2)
∫

r
TrKSN[γ̂ 1/2τ±σQ̂ε1ε

′
1
(r)]TrKSN[γ̂ 2/1τ∓σQ̂ε2ε

′
2
(r)]δε1−ε′

1,ε
′
2−ε2 . (9)

Here Vt (ε1, ε2) is some interaction amplitude which depends on the frequencies from different trace blocks. Note that the matrices
γ̂ and τ in Eqs. (8) and (9) stand in the same combinations. A crucial difference between the singlet and triplet pairing is in the
spin structure of the trace blocks. In the latter case, the spin Pauli matrices σ select the triplet pairs only.
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Vodd

+σ σ σ σ σ= σΓt Γt

ε1 ε2 ε2ε1 ε

FIG. 1. Equation for the effective interaction amplitude in the
spin-triplet part of the Cooper channel. Comments to the odd-
frequency interaction amplitude Vodd are in the text. The black
rectangle denotes the Cooperon mode inside each of the sections in
the Cooper ladder. The Pauli matrices σ acting in the spin space
select the spin-triplet channel.

In contrast to the singlet Cooper channel, in the triplet
channel the bare interaction is absent. However, as we will
see in Sec. V some analog of the “bare” interaction can be
generated as a result of mixing different channels. In order to
get an idea about what kind of the e-e interaction could be
efficient in the triplet channel, we now construct the Cooper
ladder assuming general form of the interaction Vt (ε1, ε2). To
derive the ladder, we expand the Q̂ matrices in Eq. (9) to
the first order in Ŵ , and average a series of thus obtained
terms within the Gaussian approximation. As a result, we
get the following equation for the effective amplitude in the
spin-triplet channel, see Fig. 1:

�t (ε1, ε2) = 1

2
[Vt (ε1, ε2) − Vt (ε1,−ε2)] −

∫ +∞

−∞

1

2
[Vt (ε1, ε)

− Vt (ε1,−ε)]
Fε

ε
�t (ε, ε2)

dε

2
. (10)

We see that the spin-triplet Cooper ladder describing �t

is generated by a 1
2 [Vt (ε1, ε2) − Vt (ε1,−ε2)] combination

[25,26,38,39], which is odd in its frequency argument ε2.
Note that in the case of the singlet pairing, the corresponding
combination has a + sign, i.e., it is even in its frequency
arguments. Such a difference is due to the anticommutation
of fermion fields, which in the diagram language corresponds
to the exchange of the arguments in the Cooperon mode
(black rectangle in Fig. 1) connecting two amplitudes in the
�t ladder. Moreover, the resulting amplitude in the triplet
Cooper ladder must be symmetric under the exchange of ε1

and ε2. Therefore, only the part of the e-e amplitude Vt (ε1, ε2),
which is odd with respect to its both arguments is effective
in the triplet channel. The obtained combination, denoted as
Vodd(ε1, ε2) (as it is odd in both arguments), stands in the
equation depicted in Fig. 1.

We have gotten two very instructive results for the disor-
dered system:

(i) Not only is the odd-frequency pairing compatible with
the triplet pairing, but it is the only possibility: The triplet part
of the Cooper channel automatically selects odd dependence
of the Cooper pair on the frequency arguments.

(ii) The amplitude in the triplet part of the Cooper chan-
nel can be thought of as the first harmonic in the frequency
dependence: Only the odd-frequency component passes
through the sequence of scattering.

To conclude, the interaction amplitude has to possess a
special structure in its frequency arguments in order to not
get filtered out for the triplet odd-frequency pairing.

V. ELECTRON-ELECTRON INTERACTION IN THE
ODD-FREQUENCY COOPER CHANNEL

We have to identify a process which will be effective for
the odd-frequency Cooper channel. Since the bare interac-
tion in the spin-triplet Cooper channel is absent, it has to be
generated by the nonlinear amplitudes of the NLσM which
mix the e-e interactions acting in different channels. The pro-
cesses of this kind (a sort of anharmonicity) inevitably lead
to a small parameter ρ = 1

(2π )2ν2DD , where ν2D is the effective
two-dimensional density of states. Amorphous superconduc-
tors films used in the experiments are relatively thick. In
these systems the electron excitations are not quantized in
the transverse direction. On the contrary, the diffusive modes
(diffusons and Cooperons) are effectively two dimensional.
Hence, the appearance of ν2D.

We start with the processes [30–32] which result in trans-
ferring of the interaction amplitudes Eqs. (6)–(8) into the
spin-triplet part of the Cooper channel. We conclude that
to the first order in �2 or Z the obtained interaction in the
spin-triplet part of the Cooper channel is rather weak. The
spin-triplet pairing instability in this case may exist, but it is
of a threshold type. Namely, unlike in the BCS theory, where
for any attractive interaction there is a transition temperature,
the instability in the spin-triplet channel will occur only for
effective interactions larger than a threshold value, which is
controlled by the parameter ρ. It turned out that the threshold
value corresponds to ρ ∼ 1, i.e., to the amount of disorder at
which the system is close to the Anderson insulating state.
However, the theory we are developing in this paper aims
at physical systems, which are in the metallic regime. To
complete the analysis in the first order with respect to the e-e
interaction amplitudes, we have checked that it is impossible
to generate an interaction amplitude in the triplet part of the
Cooper channel with the use of the spin-singlet amplitude �s

only.
In view of this experience, it is natural to anticipate the

occurrence of the odd-frequency spin-triplet pairing in the
vicinity of some other instability. In this case the smallness of
ρ could be compensated by the effective amplitude of the e-e
interaction related to this instability. Motivated by the experi-
ments, in the analysis of the second order in the e-e interaction
amplitudes, we have chosen to exploit divergence of the �s

amplitude when the system approaches a phase transition into
the conventional s-wave spin-singlet superconducting state.
As is well known, in the vicinity of the superconducting tran-
sition, the critical fluctuations are nonlocal in time and space
[40,41]. Therefore, they may generate an effective interaction
in the spin-triplet Cooper channel. We have checked that out
of the �s�2 and �sZ combinations, only the diagrams with �2

appeared to be relevant for the spin-triplet part of the Cooper
channel, while the �sZ combination does not contribute. This
is not surprising, as the spin-density amplitude �2 is the
only process that can rescatter superconducting fluctuations
�s from the spin-singlet into the spin-triplet part of the Cooper
channel.

Thus, to the leading order in the e-e interactions, the pro-
cesses that result in the amplitude for the spin-triplet part
of the Cooper channel are presented in Fig. 2 (see Appen-
dices C 1 and C2 for details of the derivation). Here one of
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sΓ

1 Γ2 Γ2

ε1

-ε

ε

-ε2 -ε2

ε1

-ε'1 -ε'2 -ε'1 -ε'2

2

1-ε

ε2sΓ

FIG. 2. Amplitude efficient for the spin-triplet pairing. �s is
the amplitude in the spin-singlet Cooper channel, and �2 describes
the spin-density interaction. The e-e interaction terms are equipped
with a Cooperon and a diffuson both depicted by black blocks but
distinguished by the arrow structure. The Cooperon accompanies
the interaction amplitude in the Cooper channel, while the diffuson
stands together with the spin-density amplitude.

the e-e interaction amplitudes is in the spin-singlet Cooper
channel (�s), while the other one describes the spin-density
interaction (�2). In addition, the e-e interaction terms are
equipped with a Cooperon and a diffuson. The Cooperon
accompanies the amplitude �s, while the diffuson appears
together with the amplitude �2. This is in line with the knowl-
edge that in the disordered systems, fluctuations are enhanced
by the soft diffusive modes described by Cooperons and dif-
fusons.

Note that the amplitudes similar to those with the Cooperon
and diffuson presented in Fig. 2 but with two Cooperons
or two diffusons are not relevant. This conclusion is also
confirmed by our numerical estimates. In other words, these
renormalization group terms do not contribute as they mostly
cancel out in the process of extraction of the odd-frequency-
dependent terms.

As we demonstrate below, the frequency dependence of
the process presented in Fig. 2 is rather remarkable. We are
interested in a case when a sum of incoming frequencies
(as well as a sum of outgoing ones) is equal to zero. Next,
for fixed incoming frequency ε1, we study Vodd(ε1, ε2) as a
function of the outgoing frequency ε2 (see Appendix C 2 for
technical details). For a model situation when �s is taken to
be a constant as a function of frequencies, the dependence of
the amplitude Vodd(ε1, ε2) on the two frequencies ε1 and ε2 is
illustrated in Fig. 3. There, the obtained frequency dependence
reminds that of a sgn(ε2) function. In particular, it has a jump
at ε2 = 0 and then extends over a large interval of frequencies.
The jump at ε2 = 0 persists at finite temperatures.

A note here is in order. The derived effective interaction
Vodd(ε1, ε2) is time-reversal symmetric as it remains invari-

ant under the sign change of both frequencies, Vodd(ε1, ε2) =
Vodd(−ε1,−ε2).

Importantly, as it follows from Fig. 3, the largest of the
two frequencies (incoming or outgoing) does not cut off
the interaction amplitude presented in Fig. 2. This picture
is very different from the logarithmic integrals commonly
encountered in the renormalization group approach. Namely,
the integrals determining the odd-frequency amplitude are
limited by the smallest of the two frequencies, or other low-
energy cut-offs such as the temperature or the magnetic field.
In contrast to the renormalization group, the largest of the
two frequencies drops out, and on the ultraviolet side the
amplitude Vodd is limited only by the dependence of the e-
e interactions amplitudes on their frequencies. This unique
property makes the odd-frequency pairing remarkably effec-
tive. Namely, when, as a result of the renormalizations, the
amplitude in the singlet channel grows up and becomes of
the order one or larger, |�s| � 1, the amplitude in the triplet
channel presented in Fig. 2 exploits this renormalized value
in the whole interval of its outgoing frequency. Owing to this
very peculiar property, the obtained amplitude �t appears to
be so efficient.

VI. ODD-FREQUENCY PAIRING INSTABILITY

One can easily see from Eq. (10) that for a type of the odd-
frequency interaction amplitude presented in Fig. 3, i.e., for an
attractive �s, the sign of the effective amplitude generated in
Fig. 2 is in favor of the triplet instability (for more details see
Appendix C). Next, because of the extended frequency depen-
dence of the amplitude Vodd(ε1, ε2) demonstrated in Fig. 3, we
arrive at the situation, which is very similar to the instability in
the conventional singlet channel. There, pairing at low-enough
temperatures is inevitable as long as the sign of the electron
interaction is attractive. Similarly, in the triplet channel the
instability is also inevitable if Vs < 0. We suggest that this
instability may explain the observed pseudogap behavior in
the disordered superconducting films. Since the amplitude
Vodd benefits from the divergence of �s, the pseudogap has to
develop at temperatures larger than Tc and be larger than the
gap in the singlet channel, �s. However, the physical picture
is obscured by the effect of finite temperature and coexistence
of two pairings.

In an attempt to elucidate the triplet instability in the triplet
channel, we will turn to the case when the singlet supercon-
ductivity is suppressed by the magnetic field, i.e., H > Hc2.

FIG. 3. Plot of the odd-frequency interaction amplitude Vodd(ε1, ε2) in the absence of the magnetic field for ε1τ = 0.05 (blue), ε1τ = 0.1
(orange), and ε1τ = 0.3 (green); left T τ = 0.01 and center T τ = 0.1. On the right is a plot of analytical expression of the interaction amplitude
for ε1τ = 0.1 at T = 0, cf. plot on the left. Combination ρ|�s|�2 is taken to be equal to 1.
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FIG. 4. Plot of the odd-frequency interaction amplitude Vodd(ε1, ε2) for ε1τ = 0.05 (blue), ε1τ = 0.1 (orange), and ε1τ = 0.3 (green);
ωc2τ = 0.1 and the magnetic field is left ωcτ = 0.15, center ωcτ = 0.3, and right ωcτ = 0.45. Temperature in all cases is T τ = 0.01. Parameter
4ρ�2 is set to be equal to 1.

Then the lowest temperatures are accessible for the analysis
of the triplet odd-frequency instability. As is well known,
orbital motion introduces an energy gap ωc = D�−2

H into the
Cooperon modes, where �H is the cyclotron radius. The orbital
effect does not depend on spins and it influences the Cooper-
ons in Fig. 1 as well as those in Fig. 2. Besides, the magnetic
field cuts off the effective interaction amplitude �s.

Now the actual form of the effective amplitude of the
interaction in the Cooper channel �s(ω, q, H, T ) has to be
employed [41,42] (see Appendix D for details). The results for
different magnetic fields are presented in Fig. 4. A comparison
of Figs. 3 and 4 reveals substantial changes in the behavior of
the amplitude Vodd(ε1, ε2). The jump disappears at ε2 = 0 and,
instead, a finite slope at small energies evolves with the mag-
netic field which leads to a suppression of the low-frequency
contribution.

Furthermore, the overall value of amplitude decreases with
the magnetic field. However, after the initial rapid drop, the
further evolution of the amplitude Vodd(ε1, ε2) with the mag-
netic field develops relatively slowly. This yields a chance
to get a rather broad window of magnetic fields for which
the odd-frequency pairing instability may occur. We have
analyzed the instability by solving the equation of Fig. 1 in
a matrix form. The minimal eigenvalue λmin of the kernel has
to be less than −1 in order for the instability to develop. For
the parameters indicated in Fig. 5, the instability extends up
to the magnetic field Hodd ≈ 2.5Hc2. The plot also shows that
for the chosen parameter values the temperature dependence
of the instability is almost saturated.

VII. DISCUSSION

No reliable mechanism for the spontaneous odd-frequency
pairing instability in bulk materials has been demonstrated
so far (for a review see Refs. [27,28]). In this paper, we
proposed disordered electron liquid as the platform for the
odd-frequency pairing. Starting from the action of the NLσM,
we have generated a term in the e-e interaction, which is
relevant for the spin-triplet superconducting channel. In a
disordered system with strong electron momentum scattering
by impurities, the s-wave odd-frequency pairing is left as the
only pairing possibility in the spin triplet channel.

In order to elevate the effectiveness of the pairing, we
considered the odd-frequency pairing in the superconducting
films when the superconducting phase is destroyed by the
magnetic field. The obtained amplitude of the e-e interaction

is very peculiar. The largest of the two external frequencies
(i.e., incoming and outgoing) does not cut off automatically
the amplitude. In that sense the picture is very different from
the logarithmic integrals encountered in the renormalization
group. As a consequence of this peculiar feature, the de-
velopment of the triplet pairing instability in the vicinity of
the domain of the conventional superconductivity becomes
inevitable.

We would like to comment that, paradoxically, while the
odd-frequency pairing requires a pronounced time depen-
dence of the pairing potential, the main obstacle for such
pairing is the time-dependent potential itself. The point here
is that the wave-function renormalization can be rather strong
for the retarded interactions, see, e.g., Refs. [43,44]. This
renormalization suppresses the pairing transition and can even
eliminate it completely [45]. This is, however, valid for an
ordinary time-dependent potential V (ε), but not for the in-
teraction amplitude Vodd(ε1, ε2) generated by the processes
presented in Fig. 2. This interaction does not contribute to the
wave-function renormalization.

There remains ordinary [i.e., not related to Vodd(ε1, ε2)]
wave-function renormalizations, which can be strong enough
in a disordered system. One can be concerned with the effect
of renormalizations induced by the interaction �s whose large

1.5 2 2.5 3 3.5
-3

-2.5

-2

-1.5

-1

-0.5

0

FIG. 5. Finding the odd-frequency pairing instability which cor-
responds to λmin < −1. Critical magnetic fields Hc2 was chosen to
give ωc2τ = 0.1, and parameter ρ�2 = 0.05. (Blue) T τ = 0.01 and
(red) T τ = 0.001. Matrix used for finding the instability is 200 ×
200. The instability extends up to the magnetic fields Hodd ≈ 2.5Hc2.
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value we exploited in this paper to overcome the smallness of
the parameter ρ induced by the disorder. If this effect were
so drastic, then these corrections would have also eliminated
superconducting transition in the singlet channel. But by as-
sumption we limited ourselves to the systems in which the
s-wave superconductivity does develop.

Our calculations were performed in the framework of the
Keldysh technique rather than using the Matsubara frequen-
cies. As a byproduct, this allowed us to avoid complications
[46,47] with the anomalous function F written in the Matsub-
ara frequencies.

We think that the two-gap structure observed in the dis-
ordered superconductors [9,48] can be a manifestation of
the two distinct pairing mechanisms, i.e., spin-singlet and
odd-frequency spin-triplet, rather than two limits of the same
s-wave spin-singlet pairing. If the latter case was indeed true,
one would expect a continuous transition of one gap into
another as a function of temperature or of the rate of the
disorder, but it does not happen, and the two gaps coex-
ist. In regards of any other non s-wave pairing, any p-wave
or Fulde-Ferrell-Larkin-Ovchinnikov orders do not survive
strong disorder. Next, in clean systems it is common that if
two gaps appear, they correspond to pairing on different parts
of the Fermi surface. Again, due to the impurity scattering
all such peculiarities of the Fermi surface are expected to be
smeared out in the disordered superconductors.

Moreover, we believe that the mechanism of the odd-
frequency pairing in the regime when the superconducting
phase is destroyed by the magnetic field leads to opening
of a gap in the spectrum of electrons but does not result in
superconductivity. Then, experimentally observed insulating
behavior induced by the magnetic field in the vicinity of the
superconducting domain [10–13] can naturally be explained.
At this point, this, of course, is only an educated guess. The
question of the phase coherence for the odd-frequency pairing,
which is needed to confirm or disprove our proposition, has so
far not received adequate attention, especially in the presence
of the magnetic field. The phase fluctuations may depend cru-
cially on the interaction amplitude in the spin-triplet pairing
channel. If so, then the analysis of the phase fluctuations for
the odd-frequency pairing cannot be performed in the univer-
sal manner. This question remains open for further studies.

VIII. CONCLUSIONS

In this paper we have proposed experimentally reliable and
so-far elusive mechanism of the spontaneous odd-frequency
spin-triplet pairing instability. As is well known, fluctuations
appearing at the phase transition lead to strong effects and
can even change the order of the phase transition [49–51].
Here we mixed two fluctuations of different origin to gener-
ate an effective interaction amplitude suitable for the s-wave
odd-frequency, spin-triplet pairing. Importantly, this analy-
sis was performed for a conventional system without any
modeling assumptions. Based on our theoretical calcula-
tions, we have made a claim that the odd-frequency paired
state could have already been experimentally observed in
the two-gap measurements of the disordered film supercon-
ductors [9,48]. There, one of the gaps corresponds to the
odd-frequency paired state. Moreover, we stated that in the

experiments where a disordered superconducting thin film is
driven to an insulator with an external magnetic field [10–13],
the insulator corresponds to an odd-frequency paired state.

We conclude with a remark that the mechanism of the odd-
frequency instability found in this paper, i.e., the one which
develops on the “shoulders” of a conventional phase transition
due to mixing of the fluctuations which necessary accompany
the transition, could also be searched for in other physical
scenarios and systems, not only in a disordered electron liquid.
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APPENDIX A: TECHNICAL DETAILS OF THE
NONLINEAR SIGMA MODEL IN KELDYSH SPACE

1. Keldysh contour and the action

The Hamiltonian Ĥ density of noninteracting fermions
consists of the kinetic part and the Gaussian distributed dis-
order Vd (r), namely Ĥ = k2

2m + Vd (r) − μ, where μ is the
chemical potential, m is the fermion’s mass, and k is the
momentum. We assume the system to be three dimensional
for the sake of generality. Since we will be looking at the time
properties of the Cooper channel, we chose to work in the
Keldysh formalism. Construction of the Keldysh field theory
below is along the lines of Refs. [29,35,36]. In this formalism,
the time dependence is defined on the Keldysh contour C
which consists of a forward and backward parts. The fermion
action on the contour is formally written as

iS0 = i
∫

C
dt
∫

r
�̄(t, r)(iτ3∂t − τ0H )�(t, r). (A1)

In its definition we also chose to write the fermion Grassmann
fields in spin and time-reversal (Gor’kov-Nambu) spaces,
namely

� = 1

2

⎛
⎜⎜⎝

ψ↑
ψ↓
ψ̄

TF
↓

−ψ̄
TF
↑

⎞
⎟⎟⎠, �̄ = 1

2
(ψ̄↑, ψ̄↓,−ψ

TF
↓ , ψ

TF
↑ ), (A2)
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where the arrows denote real spin of fermions and Pauli ma-
trices τ3 and τ0 act in the Gor’kov-Nambu space. Throughout
the Appendices matrices τ0, τ1, τ2, and τ3, identity and three
Pauli matrices correspondingly, will operate in the Gor’kov-
Nambu space. Here TF acts only on time, which is denoted by
a F (frequency) abbreviation. The spinors obey

�̄ = (−iτ1σy�)TFSN , (A3)

here TFSN acts on the spin (S) and Nambu (N) structure and
time. We transform the action into

iS0 = i
∫

t,r

ˆ̄�(t, r)σ̂3(iτ3∂t − τ0Ĥ )�̂(t, r), (A4)

where we expanded the space of the Grassmann fields to
accomodate the two Keldysh contour parts (Keldysh space),

�̂ =
(

�+
�−

)
, ˆ̄� = (�̄+, �̄−), (A5)

where ± correspond to the forward/backward contours. To
shorten the notations, we have introduced

∫
r(..) ≡ ∫ dr(..),∫

t (..) ≡ ∫ +∞
−∞ dt (..), and later we will use

∫
q(..) = ∫ dq

(2π )3 (..)

and
∫
ε
(..) ≡ ∫ dε

2π
(..). These notations will be used throughout

the Appendices. A Pauli matrix σ̂3, with a hat, acts in the
Keldysh space. Throughout the Appendices the hat symbol
will correspond to the Keldysh space only. Overall, the �̂ is
a spinor in time-reversal, spin, and Keldysh spaces. Now, the
spinors obey

ˆ̄� = (−iτ1σy�̂ )TFKSN , (A6)

where now T ≡ TFKSN acts on the whole space. Here σy is
the Pauli matrix in spin space. Throughout the Appendices
matrices σ0, σx, σy, and σz, the identity matrix and three Pauli
matrices, operate in the spin space. The Hamiltonian is Ĥ =
σ̂0H in case it is the same on the both parts of the Keldysh
contour, where σ̂0 is the identity matrix in Keldysh space. We
note that another set of two Keldysh matrices will be intro-
duced later when working with electron-electron interactions.
It is convenient to perform the Keldysh-Larkin-Ovchinnikov
rotation with the help of a matrix,

L̂ = 1√
2

[
1 −1
1 1

]
K

, L̂−1 = 1√
2

[
1 1

−1 1

]
K

. (A7)

We then define

ˆ̄� = ˆ̄�

[
L̂−1 0

0 σ̂3L̂−1

]
N

, �̂ =
[

L̂σ̂3 0
0 L̂

]
N

�̂, (A8)

with a ˆ̄�σ̂3�̂ = ˆ̄��̂ property. These new spinors also obey
the same symmetry relation as the the ˆ̄� and �̂. To show this,
note that L̂−1 = L̂TK , and[

L̂−1 0
0 σ̂3L̂−1

]TKN

N

τ1 =
[

L̂ 0
0 L̂σ̂3

]
N

τ1 = τ1

[
L̂σ̂3 0

0 L̂

]
N

.

(A9)

The Hamiltonian gets rotated as

Ĥ = L̂Ĥ L̂−1, (A10)

and the action becomes

iS0 = i
∫

t,r

ˆ̄�(t, r)
(
iτ3∂t − τ0Ĥ

)
�̂(t, r). (A11)

Used above, and which will be used throughout the Appen-
dices, matrix notation [

.. ..

.. ..

]
K

(A12)

will be used to highlight that the matrix is in the Keldysh (K)
space. Similarly, a matrix in spin space will be denoted with S
and in Gor’kov-Nambu space with N.

2. Disorder average and Hubbard-Stratonovich decoupling

The disorder potential Vd (r) is assumed a short-range δ

correlated, such that

〈Vd (r)Vd (r′)〉 ≡
∫

D[Vd (r)]Vd (r)Vd (r′)e−πντ
∫

r V 2
d (r)

= 1

2πντ
δ(r − r′), (A13)

where ν is the three-dimensional density of fermionic states
and τ is the impurty scattering time. We then average the
action over the disorder,

〈eiS0〉dis ≡
∫

D[V ]e−πντ
∫

r V 2(r)e−i
∫

t,r V (r) ˆ̄�(t,r)�̂(t,r)

= e− 1
4πντ

∫
r

∫
t

ˆ̄�(t,r)�̂(t,r)
∫

t ′
ˆ̄�(r,t ′ )�̂(r,t ′ ). (A14)

We need to now decouple the resulting four-fermion term.
It can be shown that a Hubbard-Stratonovich field formed
out of same time fermion field operators will only redefine
the chemical potential of fermions. The Hubbard-Stratonovich
field formed out of different time fermion fields is of particular
importance. Introduce∫

D[Q̂]e− πν
4τ

∫
r Tr[Q̂(r)Q̂(r)] = 1, (A15)

where Q̂ is a matrix in spin (S), Gor’kov-Nambu (N),
and Keldysh (K) spaces. The trace Tr here is over K, S,
and N spaces and also over the time, namely Tr[Q̂Q̂] =∫

tt ′ TrKSN[Q̂tt ′Q̂t ′t ]. This notation will be used throughout the
Appendices, when working in the time domain. In frequency
space, the trace over time turns in to a trace over the fre-
quencies, whose notation will be introduced in Appendix A 3.
Under the exponent, we transform

Tr[Q̂tt ′Q̂t ′t ] +
∫

tt ′

1

π2ν2
[ ˆ̄�(t )�̂(t )][ ˆ̄�(t ′)�̂(t ′)]

→ Tr[Q̂tt ′Q̂t ′t ] −
∫

tt ′

2

πν
ˆ̄�(t )Q̂tt ′�̂(t ′), (A16)

where in deriving it is useful to present ˆ̄�(t )�̂(t ) =∑
n

ˆ̄�(n)(t )�̂(n)(t ), where n denotes spinor’s element, and do
the same for TrQ̂tt ′Q̂t ′t =∑nm

∫
tt ′ Q̂nm

tt ′ Q̂mn
t ′t product. Elements

of the Q̂tt ′ matrix are in accord with the product of the spinors
it decomposed, namely Q̂tt ′ ∝ �(t )�̄(t ′).
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3. Noninteracting action

After we integrate the Grassmann fields out, we obtain an
action for the Q̂ matrix,

iS0 = −πν

8τ

∫
r

Tr[Q̂2] + 1

2

∫
r

Tr ln

[
Ĝ−1 + i

2τ
Q̂

]
, (A17)

Q̂tt ′ (r) = i

πν

[
Ĝ−1 + i

2τ
Q̂

]−1

tt ′,r
, (A18)

where Ĝ−1 is the inverse of the Green function of the system.
Here, recall, Tr also stands for the trace over time variables as
introduced in Appendix A 2. Because of the symmetry the Q̂
matrix obeys, Q̂ = τ1σyQ̂T σyτ1 (because of the chosen time-
reversal space of the spinors and due to the extra minus sign
when interchanging the Grassmann fields when transposing
the product of two Grassmann fields), one gets the saddle-
point solution

Q̂tt ′ =
[
�̂(t − t ′) 0

0 �̂T (t − t ′)

]
N

≡ �̂[N](t − t ′), (A19)

where in frequency domain,

�̂ε =
[
�R

ε �K
ε

0 �A
ε

]
K

=
[

1 2Fε

0 −1

]
K

, (A20)

where Fε = tanh( ε
2T ) is fermionic distribution function at

equilibrium. Gradient expansion around the saddle point gives
the following action describing fluctuations:

iS0 = −πν

8

∫
r

Tr{D[∇Q̂(r)]2 − 4τ3∂t Q̂(r)}, (A21)

where D = 1
3v2

F τ is the diffusion coefficient. We note that the
diffusion coefficient is that of a three-dimensional system. In
the main text a limit of thick film is taken. Fourier convention
is

Q̂εε′ (r) =
∫

tt ′
Q̂tt ′ (r)eiεt−iε′t ′

. (A22)

The action is rewritten as

iS0 = −πν

8
TrKSN

∫
r

∫
εε′

{D[∇Q̂εε′ (r)][∇Q̂ε′ε (r)]

+4iτ3ε̂Q̂εε′ (r)δε,ε′ }, (A23)

≡ −πν

8
Tr
∫

r
{D[∇Q̂(r)]2 + 4iτ3ε̂Q̂(r)}, (A24)

where δε,ε′ = 2πδ(ε − ε′). Here we have introduced a trace
over frequencies, TrF . Together with it, we have also intro-
duced a notation Tr for the trace over the full space, namely
Tr ≡ TrFKSN (note that this same notation was also used in
the time domain). For example, for some operator Ŷεε′ the
trace over frequencies reads as TrFŶ = ∫

ε
Ŷεε . For two opera-

tors, TrF [Aε1ε2Yε2ε1 ] ≡ ∫
ε1ε2

[Aε1ε2Yε2ε1 ]. Sometimes we will be
switching from TrF [..] to

∫
ε
[..] or vice versa. We will be using

this TrF [..] notation throughout the rest of the Appendices.

When introducing the trace over frequencies, we had to also
introduce a ε̂Q̂εε′ = εQ̂εε′ operation.

4. Interactions

Now let us add electron-electron interactions. Here we will
follow lines of Refs. [32,36] when including the interactions
in to the theory,

Hint = 1

2

∫
rr′

ρ(t, r)Ṽρ (r − r′)ρ(t, r′) − 2Vσ

∫
r

s(t, r)s(t, r)

+ Vs

ν

∑
α �=β

∫
r
�̄αβ (t, r)�βα (t, r), (A25)

where

ρ(t, r) =
∑

α

�̄α (t, r)�α (t, r), (A26)

s(t, r) = 1

2

∑
αβ

�̄α (t, r)σαβ�β (t, r), (A27)

�q,βα (t ) =
∑

k

�k+qβ (t )�−kα (t ). (A28)

where ρ(t, r) and s(t, r) are the charge and spin densities
correspondingly and �q,βα (t ) is the spin-singlet Cooper pair
density. The part of the action corresponding to the interac-
tions reads (we outline it for the sake of sign bookkeeping),

eiSint = e−i
∫

C dtHint [�̄,�] = e−i
∫

t dt (Hint [�̄+,�+]−Hint [�̄−,�−]),

(A29)

where in the second equality sign we have split the action in
to forward and backward parts of the Keldysh contour. The
two contours do not get coupled because of the local in time
interaction. Hubbard-Stratonovich decoupling of the charge
part of the interaction goes as,

1

2
[θ±(t, r′) + Ṽρ (r − r′)ρ±(t, r′)]Ṽ −1

ρ (r − r′)

× [θ±(t, r) + Ṽρ (r − r′)ρ±(t, r)]

− 1

2
ρ±(t, r)Ṽρ (r − r′)ρ±(t, r′) (A30)

= 1

2
θ±(t, r′)Ṽ −1

ρ (r − r′)θ±(t, r) + θ±(t, r)ρ±(t, r),

(A31)

where ρ±(t, r) =∑α �̄±;α (t, r)�±;α (t, r) is the fermion’s
density on the ± contour. We have introduced a short
notation for summation over the contour parts, for ex-
ample θ±(t, r)ρ±(t, r) ≡ θ+(t, r)ρ+(t, r) + θ−(t, r)ρ−(t, r).
This notation will be used throughout the Appendices. Same
Hubbard-Stratonovich transformation applies to the spin sec-
tor,

− 1

2
[�θ±(t, r) + 2Vσ s±(t, r′)]V −1

σ [�θ±(t, r) + 2Vσ s±(t, r)]

+ 2s±(t, r)Vσ s±(t, r), (A32)

= −1

2
�θ±(t, r)V −1

σ
�θ±(t, r) − 2�θ±(t, r)s±(t, r). (A33)
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In the Cooper channel we make a similar transformation,[
θ̄ c
±(t, r) + Vs

ν
�̄±,↑↓(t, r)

] ν

Vs

[
θ c
±(t, r) + Vs

ν
�±,↓↑(t, r)

]

−�̄±,↑↓(t, r)
Vs

ν
�±,↓↑(t, r), (A34)

= θ̄ c
±(t, r)

ν

Vs
θ c
±(t, r) + �̄±,↑↓(t, r)θ c

±(t, r)

+θ̄ c
±(t, r)�±,↓↑(t, r). (A35)

We split the electron-electron interaction action in to two
parts, iSint = iSint,1 + iSint,2, where iSint,1 describes coupling
of the Grassmann operators with the Hubbard-Stratonovich
fields, and iSint,2 contains only the Hubbard-Stratonovich
fields. Overall, after splitting in to ± Keldysh contours and
performing Keldysh-Larkin-Ovchinnikov rotation, the iSint,1

becomes

iSint,1 = i
∫

t,r

ˆ̄�(t, r)

[
θ̂ + �̂θ �σ θ̂ c

− ˆ̄θ c θ̂T + σy(�̂θ �σ )T σy

]
N

�̂(t, r)

≡ −i
∫

t,r

ˆ̄�(t, r)Ĥint,θ �̂(t, r), (A36)

where, we repeat, we defined ˆ̄� = ˆ̄�L̂−1 and �̂ = L̂σ̂3�̂,
with a property ˆ̄�σ̂3�̂ = ˆ̄��̂. Note the way the Gor’kov-
Nambu space is organized due to the time-reversal space
properties. Each Hubbard-Stratonovich field has a structure
in Keldysh space,

θ̂ = γ̂ 1θcl + γ̂ 2θq, (A37)

θ̂ c = γ̂ 1θ c
q + γ̂ 2θ c

cl, (A38)

where θcl/q = 1
2 (θ+ ± θ−) are classical (cl) and quantum (q)

components correspondingly. Same definitions apply to θ c

fields. The difference in the way diagonal and off-diagonal
in Gor’kov-Nambu space fields rotate is due to the specifics
of the rotation Eq. (A8). Here and throughout the Appendices
a new set of matrices acting in Keldysh space is introduced,

γ̂ 1 =
[

1 0
0 1

]
K

, γ̂ 2 =
[

0 1
1 0

]
K

. (A39)

These matrices will only appear in the action describing the
electron-electron interaction, thus distinct from existing σ̂0

and σ̂3 notations. The spin structure of the Cooper channel
interaction field is

θ̂ c
αβ = θ̂ c

[
1 0
0 1

]
S

= θ̂ cσ0, (A40)

and the same for the ˆ̄θ c field.
Action describing the Hubbard-Stratonovich, iSint,2, fields

is

iSint,2 = i

2

∫
t,rr′

TrKSN
[
θ̂ (r′, t )Ṽ −1

ρ (r − r′)γ̂ 2θ̂ (t, r)
]
,

(A41)

− i

2

∫
t,r

TrKSN

[
�̂θ (t, r)V −1

σ γ̂ 2 �̂θ (t, r)
]
, (A42)

+ i
∫

t,r
TrKSN

[
ˆ̄θ c(t, r)

ν

Vs
γ̂ 2θ̂ c(t, r)

]
. (A43)

After integrating fermions out, one gets an action

iS0 + iSint,1 = −πν

8τ

∫
r

Tr[Q̂2]

+ 1

2

∫
r

Tr ln

[
Ĝ−1 + i

2τ
Q̂ − Ĥint,θ

]
. (A44)

It is not clear now how to find the saddle point of the action
containing the interaction fields. We then take a perturbative
route in which, first, the noninteracting saddle point is derived
and we know everything about the fluctuations around it (see
Appendix A 3). Next, the interactions are assumed as pertur-
bations to the saddle point, and one studies them by expanding
the logarithm,

iS0 + iSint,1 = − πν

8

∫
r

Tr{D[∇Q̂(r)]2 − 4τ3∂t Q̂(r)},
(A45)

− iπν

2

∫
r

Tr[Q̂(r)Ĥint,θ (r)], (A46)

here by underscored Q̂ we mean the parametrization of this
matrix that takes into account the electron’s distribution func-
tion, see Eqs. (4) and (5). We will define it in the next
Appendix A 5, while for the rest of Appendix A 4 the specific
form of Q̂ will not be important.

Now one has to integrate all interaction fields out and
obtain an effective action for the Q̂ matrix. We will be using
an identity based on Gaussian integration where for arbi-
trary vector χ̂ , ˆ̄χ , one writes a path integral over vectors ˆ̄φ
and φ̂,

1

NA

∫
D[ ˆ̄φ, φ̂]e− ˆ̄φÂφ̂e

ˆ̄φχ̂+ ˆ̄χφ̂ = 1

NA
NAe ˆ̄χ Â−1χ̂ = e ˆ̄χ Â−1χ̂ ,

(A47)

where NA is the normalization factor. Summation over all
indexes was assumed in deriving the identity.

We outline the steps for the interaction in the charge sector.
Hamiltonian in the charge sector Ĥint,ρ (the one containing θ̂

fields) of the Ĥint,θ Hamiltonian is

− iπν

2
TrKSN[Q̂Ĥint,ρ] = −iπνTrKSN[Q̂τ+γ̂ 1]θ cl

− iπνTrKSN[Q̂τ+γ̂ 2]θq. (A48)

The action describing Hubbard-Stratonovich fields in charge
sector is

i
1

2
Ṽ −1

ρ TrKSN[θ̂ γ̂ 2θ̂] = 2iṼ −1
ρ θ clθq. (A49)

Summing the two and making a shift in the Hubbard-
Stratonovich fields, we get

− iπν

2
TrKSN[Q̂Ĥint,ρ] + i

1

2
Ṽ −1

ρ TrKSN[θ̂ γ̂ 2θ̂ ], (A50)

= 2iṼ −1
ρ

(
θ cl − 1

2
ṼρπνTrKSN[Q̂τ+γ̂ 2]

)
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×
(

θq − 1

2
ṼρπνTrKSN[Q̂τ+γ̂ 1]

)
− i

π2ν2

2
ṼρTrKSN

×[Q̂τ+γ̂ 2]TrKSN[Q̂τ+γ̂ 1], (A51)

= 2iṼ −1
ρ θ̃ clθ̃q − i

π2ν2

2
ṼρTrKSN[Q̂τ+γ̂ 2]TrKSN[Q̂τ+γ̂ 1].

(A52)

After integrating θ̃ cl and θ̃q fields out, we will obtain action
describing rescattering of charge parts of the Q̂ matrices.

Generalizing to all combinations of matrices in Keldysh
and Gor’kov-Nambu spaces, performing the same transfor-
mation as above for remaining spin density and Cooper parts
of the interaction, we finally obtain the action iSee for the
rescattering between different blocks of the Q̂ matrix,

iSee = −i
π2ν2

8

∫
t,rr′

Ṽρ (r − r′)TrKSN[γ̂ 1/2τ±Q̂tt (r)]TrKSN

× [γ̂ 2/1τ±Q̂tt (r′)], (A53)

+i
π2ν2

8
Vσ

∫
t,r

TrKSN[γ̂ 1/2τ±σQ̂tt (r)]TrKSN

×[γ̂ 2/1τ±σQ̂tt (r)], (A54)

+i
π2ν

8
Vs

∫
t,r

TrKSN[γ̂ 1/2τ±Q̂tt (r)]TrKSN

×[γ̂ 2/1τ∓Q̂tt (r)], (A55)

where τ± = 1
2 (τ0 ± τz ) and τ± = 1

2 (τx ± iτy). Here we
introduced summation notation γ̂ 1/2Âγ̂ 2/1B̂ = γ̂ 1Âγ̂ 2B̂ +
γ̂ 2Âγ̂ 1B̂, and the same for the Gor’kov-Nambu space,
τ±Âτ∓B̂ = τ+Âτ−B̂ + τ−Âτ+B̂. Summations over Keldysh
and Gor’kov-Nambu spaces, as in the expressions above, are
independent of each other. Overall, there are four terms in the
TrKN[γ̂ 1/2τ±..]TrKN[γ̂ 2/1τ∓..] type sum. In the line (A54),
the product of the spin matrices reads as

TrS[σ..]TrS[σ..] = TrS[σx..]TrS[σx..] + TrS[σy..]TrS[σy..]

+ TrS[σz..]TrS[σz..]. (A56)

Such notations will be used throughout the Appendices to
facilitate readability of the expressions.

Picking only the short-range parts of the interaction,
Vρ (r) = V0,ρ (r) + V1,ρδ(r), and recalling Ṽρ (r) = 2Vρ (r) −
Vσ we introduce

Z = ν(2V1,ρ − Vσ ) ≡ 2�1 − �2, (A57)

�2 = νVσ , (A58)

�0(r) = 2νV0,ρ (r). (A59)

We will omit the �0(r) in the following. We then rewrite the
interaction

iSee → iSee ≡ −i
π2ν

8
Z
∫

t,r
TrKSN[γ̂ 1/2τ±Q̂tt (r)]TrKSN

× [γ̂ 2/1τ±Q̂tt (r)], (A60)

+i
π2ν

8
�2

∫
t,r

TrKSN[γ̂ 1/2τ±σQ̂tt (r)]

×TrKSN[γ̂ 2/1τ±σQ̂tt (r)], (A61)

+i
π2ν

8
Vs

∫
t,r

TrKSN[γ̂ 1/2τ±Q̂tt (r)]

×TrKSN[γ̂ 2/1τ∓Q̂tt (r)]. (A62)

Fourier transform in time domain reads,

iSee = −i
π2ν2

8
Z
∫

ε1,ε
′
1,ε2,ε

′
2

∫
r

TrKSN[γ̂ 1/2τ±Q̂ε1ε
′
1
(r)]TrKSN

×[γ̂ 2/1τ±Q̂ε2ε
′
2
(r)]δε1−ε′

1,ε
′
2−ε2 , (A63)

+i
π2ν2

8
�2

∫
ε1,ε

′
1,ε2,ε

′
2

∫
r

TrKSN[γ̂ 1/2τ±σQ̂ε1ε
′
1
(r))]TrKSN

× [γ̂ 2/1τ±σQ̂ε2ε
′
2
(r)]δε1−ε′

1,ε
′
2−ε2 , (A64)

+i
π2ν

8
Vs

∫
ε1,ε

′
1,ε2,ε

′
2

∫
r

TrKSN[γ̂ 1/2τ±Q̂ε1ε
′
1
(r)]TrKSN

×[γ̂ 2/1τ∓Q̂ε2ε
′
2
(r)]δε1−ε′

1,ε
′
2−ε2 , (A65)

where δε1−ε′
1,ε

′
2−ε2 ≡ 2πδ(ε1 − ε′

1 − ε′
2 + ε2) is the energy

conservation. Recall,
∫
ε
(..) ≡ ∫ +∞

−∞
dε
2π

(..).
For the sake of convenience, to compactly describe action

for the interaction, we will be using new auxiliary interaction
fields. We introduce

φ̂ρ,αβ (t, r) = δαβτ+φ̂ρ,+(t, r) + δαβτ−φ̂ρ,−(t, r), (A66)

φ̂σ,αβ (t, r) = σαβτ+φ̂σ,+(t, r) + σαβτ−φ̂σ,−(t, r), (A67)

φ̂c,αβ (t, r) = δαβτ+φ̂c,+(t, r) + δαβτ−φ̂c,−(t, r), (A68)

where ± index in τ± in φ̂ρ,σ,c,±(t, r) refers to the component
of the Gor’kov-Nambu space. Because of the SU(2) invari-
ance of the system, we did not specify spin components of
the φ̂σ,αβ (t, r) with their own index. Each field is also decom-
posed in Keldysh space as

φ̂ρ,±(t, r) = γ̂ 1φ
(1)
ρ,±(t, r) + γ̂ 2φ

(2)
ρ,±(t, r), (A69)

φ̂σ,±(t, r) = γ̂ 1φ
(1)
σ,±(t, r) + γ̂ 2φ

(2)
σ,±(t, r), (A70)

φ̂c,±(t, r) = γ̂ 1φ
(1)
c,±(t, r) + γ̂ 2φ

(2)
c,±(t, r). (A71)

We rewrite the three electron-electron interaction terms as (we
omit spin indexes)

iSee = −π2ν2

4

∑
m=ρ,σ,c

∫
tt ′,rr′

TrKSN
[
φ̂m(t, r)Q̂tt (r)

]
TrKSN

× [φ̂m(r′, t ′)Q̂t ′t ′ (r′)
]
, (A72)

= −π2ν2

4

∑
m=ρ,σ,c

∫
ε1,ε

′
1,ε2,ε

′
2

∫
rr′

TrKSN[φ̂m;ε1ε
′
1
(r)Q̂ε′

1ε1 (r)]

× TrKSN[φ̂m;ε2ε
′
2
(r′, t ′)Q̂ε′

2ε2 (r′)], (A73)
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≡ −π2ν2

4

∑
m=ρ,σ,c

∫
rr′

Tr[φ̂m;ε1ε
′
1
(r)Q̂ε′

1ε1 (r)]

× Tr[φ̂m;ε2ε
′
2
(r′, t ′)Q̂ε′

2ε2 (r′)]. (A74)

In the last line, to note, Tr ≡ TrFKSN was used, where TrF is
a trace over the frequency variable. We note that for the spin
sector, m = σ , the fields turn in to scalar product of φ̂ vectors,
namely

iSee,σ = −π2ν2

4

∫
tt ′,rr′

TrKSN[φ̂σ (t, r)Q̂tt (r)]

× TrKSN[φ̂σ (r′, t ′)Q̂t ′t ′ (r′)]. (A75)

In frequency space, which we will be working below, the
fields are correlated as〈

φ
(i)
ρ;n,ε1ε

′
1
(r1)φ( j)

ρ;m,ε2ε
′
2
(r2)
〉
φ

= i

2ν
Z γ̂ 2

i jδn,mδ(r1 − r2)δε1−ε′
1,ε

′
2−ε2 , (A76)

where γ̂ 2 is the second Pauli matrix referring to the Keldysh
space, 〈

φ
(i)
σ ;n,ε1ε

′
1
(r1)φ( j)

σ ;m,ε2ε
′
2
(r2)
〉
φ

= − i

2ν
�2γ̂

2
i jδn,mδ(r1 − r2)δε1−ε′

1,ε
′
2−ε2 . (A77)

Interaction in the Cooper channel〈
φ

(i)
c;n,ε1ε

′
1
(r1)φ( j)

c;m,ε2ε
′
2
(r2)
〉
φ

= − i

2ν
Vsγ̂

2
i jδ(r1 − r2)δn,−mδε1−ε′

1,ε
′
2−ε2 . (A78)

Here everywhere δn,m is the Kronecker symbol and not a δ

function like in the frequency space. It can also be shown that〈
φ

(i)
ρ;n,ε1ε

′
1
(r1)φ( j)

ρ;m,ε2ε
′
2
(r2)
〉
φ

= i

2ν
Z γ̂ 2

i jδn,−mδ(r1 − r2)δε1−ε′
1,ε

′
2−ε2 , (A79)

and the same for σ part. Namely, the two charge and spin parts
of different Gor’kov-Nambu sectors are connected with the
same interaction as within the same sector.

5. Matrix Q̂ parametrization

We parametrize the saddle point of the matrix Q̂ and fluc-
tuations around the saddle point as

Q̂ = Û ◦ Û ◦ σ̂z ◦ ˆ̄U ◦ Û−1 ≡ Û ◦ Q̂ ◦ Û−1, (A80)

where ◦ is time convolution, and

Ûtt ′ =
[

ûtt ′ 0
0 ûT

tt ′

]
N

, (A81)

where

ûtt ′ =
[

1 Ftt ′

0 −1

]
K

, (A82)

where Ftt ′ (r) is the distribution function at, in general,
nonequilibrium. Rotation matrix is parametrized as ˆ̄U =

exp(Ŵ /2). It must have a property Ŵ σ̂3 + σ̂3Ŵ = 0. From the
Q̂T

εε′ = σyτ1Q̂εε′τ1σy identity, one can deduce another prop-
erty, Ŵ T

εε′ = −σyτ1Ŵεε′τ1σy. In TR basis, we write the matrix
as

Ŵ =
[

P̂ ˆ̃B1
ˆ̃B2 −σyP̂T σy

]
N

. (A83)

It is very important to rewrite off-diagonal elements (particle-
particle part) of the Gor’kov-Nambu space as

Ŵ =
[

P̂ B̂1(iσy)
(−iσy)B̂2 −σyP̂T σy

]
N

, (A84)

and in this way, one will connect rescattering in the particle-
hole channel (denoted by P̂ matrix) with the particle-particle
channel (denoted by B̂1 and B̂2) in a straightforward manner.
In particle-hole channel one has

P̂ =
[

0 dcl

dq 0

]
K

, (A85)

where also dcl and dq have their own spin structure. We will
go over the spin structure in Appendix A 6. In particle-particle
channel the matrices are

ˆ̃BT
1/2 = −σy

ˆ̃B1/2σy, (A86)

B̂T
1/2 = B̂1/2, (A87)

this results in the following parametrization of the B̂1/2 matri-
ces in spin basis:

B̂1/2 =
[

Â1/2 R̂1/2

Ŝ1/2 D̂1/2

]
S

(A88)

with relations R̂TK
1/2 = Ŝ1/2, ÂTK

1/2 = Â1/2, and D̂TK
1/2 = D̂1/2. We

will go over the parametrization in Appendices A 6 and A 7.

6. Example 1 of working in frequency domain:
Absence of Cooper channel

Consider only the particle-hole sector of the Q̂ matrix by
completely disregarding the particle-particle one. In this case
the Q̂ matrix is parametrized as

Q̂ = û ◦ Û ◦ σ̂3 ◦ ˆ̄U ◦ û−1 ≡ û ◦ Q̂ ◦ û−1, (A89)

with

ûtt ′ =
[

1 Ftt ′ (r)
0 −1

]
K

, ûε =
[

1 Fε (r)
0 −1

]
K

. (A90)

Fluctuations close to the saddle point are described by a rota-
tion matrix Û = exp(−P̂/2), where P̂σ̂3 = −σ̂3P̂, and is

P̂αβ =
[

0 dcl
αβ

dq
αβ 0

]
K

. (A91)

With that, we get Q̂ = σ̂3 exp(P̂).
The noninteracting part of the action, iS0 → iSD

0 where
index D stands for diffusion, is derived up to second power
of P̂,

iSD
0 = −πν

4

∫
r

Tr[D(∇Q̂)2 + 4iε̂Q̂], (A92)
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≈ −πν

4

∫
r

Tr[−D(∇P̂)2 + 2iε̂σ̂3P̂2], (A93)

= −πν

4

∫
q

∫
εε′

dq
αβ;εε′ (q)[Dq2 − i(ε − ε′)]dcl

βα;ε′ε (−q),

(A94)

−πν

4

∫
q

∫
εε′

dcl
αβ;εε′ (q)[Dq2 + i(ε − ε′)]dq

βα;ε′ε (−q).

(A95)

This part describes the diffusion of the density modes. Here∫
q(..) ≡ ∫ dq

(2π )3 (..). Correlators in diffuson sector are〈
dcl/q

αβ;ε1ε
′
1
(q)dq/cl

μη;ε2ε
′
2
(−q)

〉
= − 2

πν
δε1ε

′
2
δε′

1ε2δαηδβμDR/A(ε1 − ε′
1, q), (A96)〈

dcl/q
αβ;ε1ε

′
1
(q)
[
dq/cl

μη;ε2ε
′
2
(−q)

]T 〉
= − 2

πν
δε1,−ε2δε′

1,−ε′
2
δαμδβηDR/A(ε1 − ε′

1, q), (A97)〈
dq

αβ;ε1ε
′
1
(q)dq

μη;ε2ε
′
2
(−q)

〉
= 〈dcl

αβ;ε1ε
′
1
(q)dcl

μη;ε2ε
′
2
(−q)〉 = 0, (A98)

where

DR/A(ω, q) = 1

Dq2 ∓ iω
(A99)

is called the diffuson mode, a mode which describes a diffu-
sion of fermionic charge and spin densities.

7. Example 2 of working in frequency domain: Presence
of Cooper channel

Let us now study the Cooper channel. Again, we write

Q̂ = Û ◦ Û ◦ σ̂3 ◦ ˆ̄U ◦ Û−1 ≡ Û ◦ Q̂ ◦ Û−1, (A100)

here Û = exp(−Ŵ /2) and ˆ̄U = exp(Ŵ /2). We recall that the
matrix is parametrized as

Ŵεε′ =
[

P̂ B̂1(iσy)
(−iσy)B̂2 −σyP̂T σy

]
εε′

. (A101)

In spin space it is convenient to present the matrices in singlet
and triplet basis, namely

B̂1/2;αβ = 1√
2
σαβ b̂1/2, (A102)

where components in Keldysh space are

b̂1;0 =
[

0 c1;0

cTF
1;0 0

]
K

, b̂1;x =
[

0 c1;x

cTF
1;x 0

]
K

,

b̂1;y =
[

0 −c1;y

cTF
1;y 0

]
K

, b̂1;z =
[

0 c1;z

cTF
1;z 0

]
K

, (A103)

b̂2;0 =
[

0 cTF
2;0

c2;0 0

]
K

, b̂2;x =
[

0 cTF
2;x

c2;x 0

]
K

,

b̂2;y =
[

0 cTF
2;y

−c2;y 0

]
K

, b̂2;z =
[

0 cTF
2;z

c2;z 0

]
K

. (A104)

With the transposition rule

b̂TK
1;0;−m,−n =

[
0 c1;0;−m,−n

cTF
1;0;−m,−n 0

]TK

K

=
[

0 cTF
1;0;−m,−n

c1;0;−m,−n 0

]
K

=
[

0 c1;0;n,m

cTF
1;0;n,m 0

]
K

= b̂1;0;n,m (A105)

it is straightforward to show B̂T
1/2 = B̂1/2.

Another matrix is

Ûtt ′ =
[

ûtt ′ 0
0 ûT

tt ′

]
N

, (A106)

where

ûtt ′ =
[

1 Ftt ′ (r)
0 −1

]
K

, ûε =
[

1 Fε (r)
0 −1

]
K

,

ûT
ε =

[
1 0

−Fε (r) −1

]
K

. (A107)

Non-interacting action reads,

iS0 = −πν

8

∫
r

Tr{D[∇Q̂(r)]2 − 4τ3∂t Q̂(r)}. (A108)

Fourier convention is

Q̂εε′ (r) =
∫

tt ′
Q̂tt ′ (r)eiεt−tε′t ′

. (A109)

The action is rewritten as

iS0 = −πν

8
TrKSN

∫
r

∫
εε′

{D[∇Q̂εε′ (r)][∇Q̂ε′ε (r)]

+ 4iτ3ε̂Q̂εε′ (r)δε,ε′ }, (A110)

where δε,ε′ = 2πδ(ε − ε′). This action contains studied
charge and spin density sectors (diffusons), and it now con-
tains a Cooper channel. We have already studied the diffuson
modes; now let us focus on the Cooper channel. Rule for the
frequency matrix is

ε̂c1/2; j;εε′ = εc1/2; j;εε′ , (A111)

ε̂cT
1/2; j;εε′ = εcT

1/2; j;εε′ . (A112)

We expand around the saddle point,

1

2
TrFKSN

[
σ̂3τ3εŴ 2

εε

]
= 1

2
TrFK

[
εσ̂3
(
B̂1,εε′ B̂2,ε′ε − B̂2,εε′ B̂1,ε′ε

)]
, (A113)

= 1

2
TrFK[εσ̂3(b̂1,εε′ b̂2,ε′ε − b̂2,εε′ b̂1,ε′ε )], (A114)

=
3∑

j=0

TrF [(ε + ε′)c1; j;εε′c2; j;ε′ε]. (A115)

The Gor’kov-Nambu part iSGN
0 of the noninteracting action,

iS0 = iSD
0 + iSGN

0 , where iSD
0 part has already been studied in

214523-13



ZYUZIN AND FINKEL’STEIN PHYSICAL REVIEW B 105, 214523 (2022)

Appendix A 6, is

iSGN
0 = −πν

2

∑
q; j

Tr[Dq2 + i(ε + ε′)]c1; j;εε′ (−q)c2; j;ε′ε (q).

(A116)

We use this action to calculate correlation function. Correla-
tors in the Cooper channel written in frequency domain and
momentum are

〈c2;i;ε′
1ε1 (q)c1; j;ε′

2ε2 (−q)〉 = − 2

πν
δi jδε1ε

′
2
δε′

1ε2C
A(ε′

1 + ε1, q),

(A117)

〈c1;i;ε′
1ε1 (q)c2; j;ε′

2ε2 (−q)〉 = − 2

πν
δi jδε1ε

′
2
δε′

1ε2C
A(ε1 + ε′

1, q),

(A118)

〈cT
2;i;ε′

1ε1
(q)cT

1; j;ε′
2ε2

(−q)〉 = − 2

πν
δi jδε1ε

′
2
δε′

1ε2C
A(−ε′

1 − ε1, q)

= − 2

πν
δi jδε1ε

′
2
δε′

1ε2C
R(ε′

1 + ε1, q),

(A119)

〈c2;i;ε′
1ε1 (q)cT

1; j;ε′
2ε2

(−q)〉

= 〈c2;i;ε′
1ε1 (q)c1; j;−ε2−ε′

2
(−q)〉

= − 2

πν
δi jδε1,−ε2δε′

1,−ε′
2
CA(ε′

1 + ε1, q), (A120)

〈c1;i;ε′
1ε1 (q)cT

2; j;ε′
2ε2

(−q)〉

= − 2

πν
δi jδε1,−ε2δε′

1,−ε′
2
CA(ε′

1 + ε1, q), (A121)

where

CR/A(ω, q) = 1

Dq2 ∓ iω
(A122)

is called the Cooperon, which described weak localization
(quantum interfernce) of fermions.

8. Contraction

We consider a correlator which will be heavily used in the
perturbation theory,

〈Tr[Â(r)Ŵ (r)]Tr[Ŷ (r′)Ŵ (r′)]〉W , (A123)

where Â and Ŷ are some fields in spin, Gor’kov-Nambu, and
Keldysh spaces. The correlator is calculated to be

〈Tr[Âε1ε
′
1
(r)Ŵε′

1ε1 (r)]Tr[Ŷε2ε
′
2
(r′)Ŵε′

2ε2 (r′)]〉W , (A124)

= − 2

πν
Tr[Â(r)]αβ;⊥K ;‖N ;ε1ε

′
1
�̂N (ε1 − ε′

1, r − r′)[Ŷ (r′)]βα;⊥K ;‖N ;ε2ε
′
2
δε1,ε

′
2
δε′

1,ε2 , (A125)

+ 2

πν
Tr[τ1σyÂ(r)σyτ1]T

αβ;⊥K ;‖N ;ε1ε
′
1
�̂N (ε1 − ε′

1, r − r′)[Ŷ (r′)]βα;⊥K ;‖N ;ε2ε
′
2
δε1,ε

′
2
δε′

1,ε2 , (A126)

− 2

πν
Tr[Â(r)]αβ;⊥K ;⊥N ;ε1ε

′
1
ĈN (ε1 + ε′

1, r − r′)[Ŷ (r′)]βα;⊥K ;⊥N ;ε2ε
′
2
δε1,ε

′
2
δε′

1,ε2 , (A127)

+ 2

πν
Tr[τ1σyÂ(r)σyτ1]T

αβ;⊥K ;⊥N ;ε1ε
′
1
ĈN (ε1 + ε′

1, r − r′)[Ŷ (r′)]βα;⊥K ;⊥N ;ε2ε
′
2
δε1,ε

′
2
δε′

1,ε2 , (A128)

where the diffusion part is

�̂N (ω, q) =
[
�̂(ω, q) 0

0 �̂†(ω, q)

]
N

,

�̂(ω, q) =
[
DA(ω, q) 0

0 DR(ω, q)

]
K

, (A129)

�̂†(ω, q) = �̂(−ω, q), �̂(ω, q) = �̂T (ω, q), (A130)

[note that �̂ε+ ω
2 ,ε− ω

2
(q) defined in Ref. [36] is identical to

�̂(−ω, q) defined above such that the results are in agreement
with each other] and the Cooperon part is

ĈN (ω, q) =
[
Ĉ(ω, q) 0

0 Ĉ†(ω, q)

]
N

,

Ĉ(ω, q) =
[
CA(ω, q) 0

0 CR(ω, q)

]
K

, (A131)

Ĉ†(ω, q) = ĈT (ω, q) = Ĉ(−ω, q), (A132)

where

DR/A(ω, q) = 1

Dq2 ∓ iω
, CR/A(ω, q) = 1

Dq2 ∓ iω
. (A133)

We remind that TFKSN ≡ T is the transposition in frequency,
Keldysh, spin, and Gor’kov-Nambu spaces correspondingly.
One can rewrite the diffusion propagator,

�̂N (ω, q) = Dq2

(Dq2)2 + ω2
− iω

(Dq2)2 + ω2
σ̂3τ3

≡ �N (ω, q) + �̄N (ω, q)σ̂3τ3, (A134)

and the Cooperon matrix,

ĈN (ω, q) = Dq2

(Dq2)2 + ω2
− iω

(Dq2)2 + ω2
σ̂3τ3

≡ CN (ω, q) + C̄N (ω, q)σ̂3τ3. (A135)

We have introduced the following symbols:

Â‖N = 1

2
(Â + τ3Âτ3), Â⊥N = 1

2
(Â − τ3Âτ3), (A136)

Â⊥K = 1

2
(Â − σ̂3Âσ̂3), (A137)
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which will be used throughout the notes. In deriving the con-
traction we have used following identities:

(Ŷ )TFKS
⊥N = (τ1Ŷ τ1)TFKSN

⊥N ≡ (τ1Ŷ τ1)T
⊥N , (A138)∑

n=0,x,y,z

TrS (Âσyσn)TrS (σyŶ σn) = 2TrS (ÂσyσyŶ )

= 2TrS (ÂŶ ), (A139)∑
n=0,x,z

TrS (Âσyσn)TrS (σyŶ σn) − TrS (Âσyσy)TrS (σyŶ σy)

= 2TrS[(σyÂσy)TSŶ ]. (A140)

An equivalent, and useful, form of the correlator can be
obtained utilizing the following identity:

TrÂ⊥K⊥NĈNŶ⊥K⊥N = TrĈ†
N Â⊥K⊥NŶ⊥K⊥N . (A141)

APPENDIX B: S-WAVE COOPER CHANNEL

In this Appendix we first derive propagator in the spin-
singlet s-wave part of the Cooper channel when the interaction
Vs is constant as a function of frequencies. This corresponds
to the BCS model, and in most literature Vs = �c notation is
used in this case. Then, for a general form of the frequency-
dependent interaction, we derive equation on the interaction
amplitude in both spin-singlet and spin-triplet s-wave Cooper
channels.

1. Propagator in the spin-singlet part of the Cooper channel

Here we derive dynamically dressed interaction in the
Cooper channel-propagator in the Cooper channel [35] for the
case when Vs = const as a function of frequencies. It will ap-
pear in the following considerations and will simply substitute
bare Vs interaction in the spin-singlet Cooper channel with the
renormalized, �s(ε1, ε

′
1, q) interaction amplitude. We expand

the interaction to second order in Ŵ matrices,

iS[2]
ee,c = −π2ν2

4

∫
r,r′

Tr
[
φ̂c,ε1ε

′
1
(r)σ̂3τ0Ŵε′

1ε1 (r)
]

× Tr
[
φ̂c,ε2ε

′
2
(r′)σ̂3τ0Ŵε′

2ε2 (r′)
]
. (B1)

Here the interaction fields φ̂c are correlated as (see the Ap-
pendix A for more details)

〈
φ

(i)
c;n,ε1ε

′
1
(r1)φ( j)

c;m,ε2ε
′
2
(r2)
〉
φ

= − i

2ν
Vsγ̂

2
i jδ(r1 − r2)δn,−mδε1−ε′

1,ε
′
2−ε2 , (B2)

where Vs is the bare interaction corresponding to attraction,
that is Vs < 0. Up to second order in interaction action iS[2]

ee ,

1

2
〈(iS[2]

ee,c)(iS[2]
ee,c)〉W = 1

2

(
−i

π2ν

8

)2

V 2
s

∫
ε1,ε

′
1,ε2,ε

′
2

∫
ε3,ε

′
3,ε4,ε

′
4

δε1−ε′
1,ε

′
2−ε2δε3−ε′

3,ε
′
4−ε4 (B3)

〈TrKSN[γ̂ [1/2]A1τ [±]A2 σ̂3Ŵε1ε
′
1
]TrKSN[γ̂ [2/1]A1τ [∓]A2 σ̂3Ŵε2ε

′
2
]TrKSN[γ̂ [2/1]B1τ [∓]B2 σ̂3Ŵε3ε

′
3
]TrKSN[γ̂ [1/2]B1τ [±]B2 σ̂3Ŵε4ε

′
4
]〉W (B4)

=
(

−i
π2ν

8

)2

V 2
s

∫
ε1,ε

′
1,ε4,ε

′
4

TrKSN[γ̂ [1/2]C1τ [±]C2 σ̂3Ŵε1ε
′
1
]TrKSN[γ̂ [2/1]C1τ [∓]C2 σ̂3Ŵε4ε

′
4
]

[∫
ε2

Iε2,ε2+ε1−ε′
1

]
δε1−ε′

1,ε
′
4−ε4 , (B5)

where 〈...〉W must be understood as a contraction appearing
in the correlator defining the whatever diagram under study.
A factor of 2 is due to two ways one could contract the
traces. This factor is in agreement with the slow and fast fields
decomposition used in the renormalization group procedure,
see Ref. [36]. Summation notation over the A1(2), B1(2), and
C1(2) indexes was introduced after Eq. (8) in the main text.
We have defined expression Iε2,ε2+ε1−ε′

1
for compactness of the

already loaded expressions,∫
ε2

Iε2,ε2+ε1−ε′
1
= 8

πν

∫
ε2

C̄†
N (ε2 + ε2 + ω, q)(Fε2 + Fε2+ω ),

(B6)

≡ C(ω, q), (B7)

where ω = ε1 − ε′
1 and

C̄N (ω, q) = − iω

(Dq2)2 + ω2
. (B8)

It is instructive to note that if the sign of C̄N was different, we
would have had a case when repulsion resulted in attraction

in the s-wave spin-singlet Cooper ladder. Integration over the
frequency gives

i
π2ν

8
C(ω, q) ≈ −1

4

{
ln

[
�2

T 2 + (Dq2−iω
2

)2
]

+ 2 ln

[
2γ

π

]}

− 1

4

{
ln

[
�2

T 2 + (Dq2+iω
2

)2
]

+ 2 ln

[
2γ

π

]}

(B9)

≡ −M(ω, q), (B10)

where ln γ = C ≈ 0.577 is the Euler’s constant. Again,
schematically

1

2

〈(
iS[2]

ee

)(
iS[2]

ee

)〉
W

=
(

i
π2ν

8

)
Vs

∫
ε1,ε

′
1,ε4,ε

′
4

TrKSN[γ̂ [1/2]C1τ [±]C2 σ̂3Ŵε1ε
′
1
]

× TrKSN[γ̂ [2/1]C1τ [∓]C2 σ̂3Ŵε4ε
′
4
], (B11)

Vs[−M(ω, q)]δε1−ε′
1,ε

′
4−ε4 , (B12)
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Veven
+=Γs Γs

ε1 ε2 ε2ε1 ε
σ0 σ0 σ0 σ0 σ0 σ0

FIG. 6. Equation for the interaction in the spin-singlet part of
the Cooper channel. Here σ0 corresponds to the spin identity matrix
selecting the spin-singlet part of the Cooper channel.

therefore, effective interaction considered to all orders reads,

Vs + VsVs[−M(ω, q)] + ... = Vs

1 + VsM(ω, q)
. (B13)

As a check, for ω = 0 and q = 0 case, setting � = 1
τ

,

M(0, 0) = ln
[ γ

πT τ

]
, (B14)

which is consistent with the renormalization group results.
Finally, in the action for the interaction in the Cooper channel,

iSee,c = i
π2ν

8

∫
ε1,ε

′
1,ε2,ε

′
2

∫
q
�s(ε1 − ε′

1, q)Tr

× [γ̂ 1/2τ±Q̂ε1ε
′
1
(q)]Tr[γ̂ 2/1τ∓Q̂ε2ε

′
2
(−q)]δε1−ε′

1,ε
′
2−ε2,

(B15)

we have made the following substitution:

Vs → �s(ε1 − ε′
1, q) = 1

V −1
s + M(ε1 − ε′

1, q)
. (B16)

This interaction will be of use when we will be considering
amplitudes in the triplet part of the Cooper channel. Note that,
as derived, �s does not depend on the ε2 and ε′

2 frequencies but
only on the ε1 − ε′

1 = ε′
2 − ε2 difference. Now, the interaction

fields must be updated,

〈φ(i)
c;n,ε1ε

′
1
(r1)φ( j)

c;m,ε2ε
′
2
(r2)〉φ

= − i

2ν
�s(ε1 − ε′

1, r1 − r2)γ̂ 2
i jδ(r1 − r2)δn,−mδε1−ε′

1,ε
′
2−ε2 ,

(B17)

which will be used in the following. In Appendix D we will
specify structure of �s in the presence of the external magnetic
field.

2. Equation for the interaction amplitude

Here we generalize the calculations in Appendix B 1 to
the frequency-dependent electron interaction in the Cooper
channel. In particular, we consider the case when Vs is a
function of frequencies, Vs(ε1, ε2). Furthermore, we outline
the equation on the interaction amplitude in spin-triplet part
of the Cooper channel, assuming some Vt (ε1, ε2) interaction
in the spin-triplet part of the Cooper channel. The action in
the singlet part of the Cooper channel is

iSsinglet = i
π2ν

8

∫
ε1,ε

′
1,ε2,ε

′
2

Vs(ε1, ε2)
∫

r
TrKSN[γ̂ 1/2τ±Q̂ε1ε

′
1
(r)]

× TrKSN[γ̂ 2/1τ∓Q̂ε2ε
′
2
(r)]δε1−ε′

1,ε
′
2−ε2 , (B18)

where Vs(ε1, ε2) is some interaction, a function of the frequen-
cies from different trace blocks. Also the interaction in the
triplet part of the Cooper channel is

iStriplet = i
π2ν

8

∫
ε1,ε

′
1,ε2,ε

′
2

Vt (ε1, ε2)
∫

r
TrKSN[γ̂ 1/2τ±σQ̂ε1ε

′
1
(r)]

× TrKSN[γ̂ 2/1τ∓σQ̂ε2ε
′
2
(r)]δε1−ε′

1,ε
′
2−ε2 , (B19)

where again Vt (ε1, ε2) is some interaction dependent on fre-
quencies from different trace blocks. In both cases we do
not know explicit expression for Vs(ε1, ε2) and Vt (ε1, ε2). For
example, in the above-considered example of the BCS model,
in singlet part bare the interaction is Vs(ε1, ε2) = const. In
the triplet part bare interaction is absent, but some effec-
tive interaction can be dynamically generated in rescattering
processes.

In order to construct a ladder in the Cooper channel, we
expand the Q̂ matrices to the first order in Ŵ , and get for the
action

iSsinglet + iStriplet ≈i
π2ν

8

∫
ε1,ε

′
1,ε2,ε

′
2

Vs(ε1, ε2)
∫

r
TrKSN[γ̂ 1/2τ±σ̂3Ŵε1ε

′
1
(r)]TrKSN[γ̂ 2/1τ∓σ̂3Ŵε2ε

′
2
(r)]δε1−ε′

1,ε
′
2−ε2 (B20)

+ i
π2ν

8

∫
ε1,ε

′
1,ε2,ε

′
2

Vt (ε1, ε2)
∫

r
TrKSN[γ̂ 1/2τ±σσ̂3Ŵε1ε

′
1
(r)]TrKSN[γ̂ 2/1τ∓σσ̂3Ŵε2ε

′
2
(r)]δε1−ε′

1,ε
′
2−ε2 . (B21)

The equation for the interaction amplitude in singlet part of the Cooper channel, shown in Fig. 6, is derived to be

�s(ε1, ε2) = 1

2
[Vs(ε1, ε2) + Vs(ε1,−ε2)] − π

∫
ε

1

2
[Vs(ε1, ε) + Vs(ε1,−ε)]

Fε

ε
�s(ε, ε2), (B22)

and in the triplet channel, shown in Fig. 7, is

�t (ε1, ε2) = 1

2
[Vt (ε1, ε2) − Vt (ε1,−ε2)] − π

∫
ε

1

2
[Vt (ε1, ε) − Vt (ε1,−ε)]

Fε

ε
�t (ε, ε2), (B23)

where recall
∫
ε
(..) ≡ ∫∞

−∞
dε
2π

(..). In the figures we defined
even and odd in frequencies components,

Veven(ε1, ε2) = 1

2
[Vs(ε1, ε2) + Vs(ε1,−ε2)], (B24)

Vodd(ε1, ε2) = 1

2
[Vt (ε1, ε2) − Vt (ε1,−ε2)], (B25)
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Vodd

+σ σ σ σ σ= σΓt Γt

ε1 ε2 ε2ε1 ε

FIG. 7. Equation for the interaction in the spin-triplet part of
the Cooper channel. Here σ correspond to the spin Pauli matrices
selecting the spin-triplet part of the Cooper channel.

effective in the corresponding channels. It is worth noting that
the minus sign in the definition of Vodd is due to σyσ

T σy = −σ.
A good discussion on the structure of the effective interaction
depending on the symmetry can be found in Ref. [39].

APPENDIX C: EFFECTIVE INTERACTION IN THE
TRIPLET PART OF THE COOPER CHANNEL

Here we derive an amplitude Vt (ε1, ε2) effective for the
spin-triplet part of the Cooper channel. In the beginning of
Sec. V we have explained why the amplitudes shown in Fig. 2

Γ2 Γ2

ε1

-ε

ε'

-ε2 -ε2

ε'

-ε

ε1

-ε'1 -ε'2 -ε'1 -ε'2

sΓsΓ

FIG. 8. Amplitude efficient for the spin-triplet pairing. The same
as in Fig. 2 but for a general set of frequencies.

are the most relevant for this channel. In this Appendix we
will calculate these diagrams. Here it will be convenient to
use their slightly modified version presented in Fig. 8, with
frequencies labeled in a way they appear in the course of
calculations.

1. Scheme of the derivation

In order to evaluate the diagrams in Fig. 8, we expand
the interaction action, which is expanded to third order in Ŵ
matrices,

iS[3]
ee = −π2ν2

4

∑
m=ρ,σ,c

∫
r,r′

Tr[φ̂m;ε1ε
′
1
(r)σ̂3Ŵε′

1ε1 (r)]Tr[φ̂m;ε2ε
′
2
(r′)σ̂3Ŵε′

2ε
(r′)Ŵεε2 (r′)], (C1)

to second order and then contract certain Ŵ matrices and get an action for the interaction in the triplet part of the Cooper channel,

iSmixed = 1

2
〈〈iS[3]

ee iS[3]
ee 〉φ〉W = 1

2

(
π2ν2

4

)2 ∫
r1,r2,r3,r4

〈KA(r1, r3)KB(r2, r4) + KB(r1, r3)KA(r2, r4)〉φ, (C2)

where vectors (vectors due to φ̂σ ) KA and KB are defined as

KA(r1, r3) = 〈Tr[φ̂c;ε1ε
′
1
(r1)σ̂3Ŵε′

1ε1 (r1)]Tr[φ̂σ ;ε2ε
′
2
(r3)σ̂3Ŵε′

2ε
(r3)Ŵεε2 (r3)]〉W (C3)

→ − 4

πν
Tr{[φ̂c(r1)σ̂3]αβ;⊥K⊥N ;ε1ε

′
1
− [τ1σyφ̂c(r1)σ̂3σyτ1]T

αβ;⊥K⊥N ;ε1ε
′
1
}ĈN (ε1 + ε′

1, r1 − r3), (C4)

{[φ̂σ (r3)σ̂3Ŵ (r3)]βα;⊥K⊥N ;ε′
1ε1 + [Ŵ (r3)φ̂σ (r3)σ̂3]βα;⊥K⊥N ;ε′

1ε1}, (C5)

which is the part of the diagram with the Cooperon mode, and

KB(r1, r3) = 〈Tr[φ̂n(r1)σ̂3Ŵ (r1)]Tr[φ̂c(r3)σ̂3Ŵ (r3)Ŵ (r3)]〉 (C6)

→ − 4

πν
Tr{[φ̂σ (r1)σ̂3]αβ;⊥K‖N ;ε1ε

′
1
− [τ1σyφ̂σ (r1)σ̂3σyτ1]T

αβ;⊥K‖N ;ε1ε
′
1
}�̂N (ε1 − ε′

1, r1 − r3), (C7)

{[φ̂c(r3)σ̂3Ŵ (r3)]βα;⊥K‖N ;ε′
1ε1 + [Ŵ (r3)φ̂c(r3)σ̂3]βα;⊥K‖N ;ε′

1ε1}, (C8)

which is the part of the diagram with the diffuson mode. By right arrow we mean selection of terms which will contribute to
the interaction in the Cooper channel. Some combinations do not contribute and can be ignored. In particular, deriving them, we
used

τ+τ− = τ+, τ−τ+ = 0, τ−τ− = 0, τ−τ− = τ−, (C9)

τ−τ+ = τ−, τ+τ− = 0, τ+τ+ = 0, τ+τ+ = τ+ (C10)

identities that selected only certain combinations of the interaction amplitudes.
Having defined KA(r1, r3) in Eq. (C3) and KB(r1, r3) in Eq. (C6), we are now in position to contract the φ̂ fields. For the φ̂c

fields we will study two cases, �s = const(ω, q) = Vs
1+Vs ln[ γ

πT τ
] and �s → �s(ω, q, H, T ) in magnetic field.
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2. Case of �s = const(ω, q)

Here we suppress all of the frequency dependence of the derived �s for the model of constant Vs. Overall, after tedious but
straightforward calculations one picks (denoted with the arrow below) the term effective in the triplet part of the Cooper channel,

〈KA(r1, r3)KB(r2, r4)〉φ → −16
1

(πν)2

1

(2ν)2
�s�2

∫
ε1,ε

′
1,ε2,ε

′
2,ε,ε

′
δε1−ε′

1,ε
′−ε′

2
δε′

1−ε,ε′
2−ε2δr1,r4δr2,r3 (C11)

× {Fε′
1
CN (ε1 + ε′

1, r1 − r3)�̄N (ε2 − ε′
2, r1 − r3) + Fε′

2
C̄N (ε1 + ε′

1, r1 − r3)�N (ε2 − ε′
2, r1 − r3)} (C12)

× TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (r3)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (r4)]. (C13)

Here �s = Vs
1+Vs ln[ γ

πT τ
] is a constant as a functioin of frequencies. In case of attraction, the bare value is Vs < 0. It can be

immediately shown that the ∝ Fε′
1
CN (ε1 + ε′

1, r1 − r3)�̄N (ε2 − ε′
2, r1 − r3) part does not withstand the procedure of antisym-

metrization in frequency required for the triplet part of the Cooper channel. This is because its elements do not couple the two
trace blocks in frequencies in line (C13). To show it, use δε′

1−ε,ε′
2−ε2 to integrate over ε′

2 frequency, then∫
ε′

2

δε′
1−ε,ε′

2−ε2Fε′
1
CN (ε1 + ε′

1, r1 − r3)�̄N (ε2 − ε′
2, r1 − r3) = Fε′

1
CN (ε1 + ε′

1, r1 − r3)�̄N (ε − ε′
1, r1 − r3), (C14)

and all the frequencies are only from one of the trace blocks, namely TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (r3)].
The second part with imaginary Cooperon survives only due to the dependence of Fε′

2
on ε′

2, rather than on ε′
1, as compared

to the first vanishing term. We then will focus on this term in the following. First, let us integrate over the frequency ε′
2,∫

ε′
2

δε′
1−ε,ε′

2−ε2Fε′
2
C̄N (ε1 + ε′

1, r1 − r3)�N (ε2 − ε′
2, r1 − r3) = Fε′

1−ε+ε2C̄N (ε1 + ε′
1, r1 − r3)�N (ε − ε′

1, r1 − r3). (C15)

We then Fourier transform the coordinate-dependent part of the second term,∫
r1,r3

C̄N (ε1 + ε′
1, r1 − r3)�N (ε − ε′

1, r1 − r3)TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (r3)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (r1)] (C16)

=
∫

q,q′
C̄N (ε1 + ε′

1, q′ − q)�N (ε − ε′
1, q′)TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (q)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (−q)]. (C17)

If we are interested in long-wavelength behavior of the resulting interaction, then we can neglect q as compared to q′. This will
be the case in the equation for the interaction amplitude (see Cooper ladder) where the frequency of the linking Cooperon is fast,
while the momentum is slow. Integration over q′ then reads as (we integrate over the angle first),∫ 1/�

0

q′dq′

2π
C̄N (ε1 + ε′

1, q′)�N (ε − ε′
1, q′) ≈ i

8πD

ε′
1 + ε1

(ε1 + ε)(2ε′
1 + ε1 − ε)

ln

[
(ε′

1 − ε)2

(ε′
1 + ε1)2

]
, (C18)

where the upper limit dropped out in our approximation. Overall, the action corresponding to mixed amplitudes is

iSmixed = i

(
π2ν

8

)
ρ(−�s)�2TrFVt (ε1, ε2)

∫
r

TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (r)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (r)]δε−ε1,ε2−ε′ , (C19)

where Vs = −|Vs| was assumed such that (−�s) = |Vs|
1−|Vs| ln[ γ

πT τ
] , ρ = 1

(2π )2ν2DD is the thin film’s resistance with ν2D being the

two-dimensional density of states. In two-dimensional metallic systems parameter ρ is ρ ∝ 1
kF �

� 1, where � is fermion’s
mean-free path, is the dimensionless resistance. This small parameter inevitably appears due to integration over the momenta of
the diffuson and Cooperon modes. We have set ε = ε1 and ε′ = ε2 (set up relevant for the Cooper ladder when frequencies sum
to zero) in deriving the interaction amplitude Vt (ε1, ε2),

Vt (ε1, ε2) = −1

2
[ f (ε1, ε2) + f (ε2, ε1)], (C20)

where

f (ε1, ε2) = −2π

∫
ε′

1

Fε′
1+ε2−ε1

ε′
1 + ε1

(2ε1)(2ε′
1)

ln

[
(ε′

1 − ε1)2

(ε′
1 + ε1)2

]
= 2π

2ε1

∫
ε′

1

Fε′
1+ε2−ε1

ε′
1 + ε1

2ε′
1

ln

[
(ε′

1 + ε1)2

(ε′
1 − ε1)2

]
. (C21)

We can analytically calculate f (ε1, ε2) only at T = 0,

1

2π
f (ε1, ε2) = 1

2ε1

∫
x

sgn(x + ε2 − ε1)
x + ε1

2x
ln

[
(x + ε1)2

(x − ε1)2

]
(C22)

= 1

2ε1

∫ 1/τ

|ε1−ε2|

dx

2π
ln

[
(x + ε1)2

(x − ε1)2

]
− 1

4
sgn(ε1 − ε2)

∫ |ε1−ε2|

−|ε1−ε2|

dx

2π

1

x
ln

[
(x + ε1)2

(x − ε1)2

]
(C23)
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≈ 1

2π
ln

[
1

τ 2(||ε1 − ε2| + ε1|)(||ε1 − ε2| − ε1|)
]

+ 1

2π

|ε1 − ε2|
ε1

ln

[
(||ε1 − ε2| − ε1|)
(||ε1 − ε2| + ε1|)

]
(C24)

− 1

2π

(ε1 − ε2)

ε1
�(|ε1| − |ε1 − ε2|) + 1

2π

[
2ε1

|ε1 − ε2| − 4sgn(ε1)sgn(ε1 − ε2)

]
�(|ε1 − ε2| − |ε1|), (C25)

where in the second integral ln[ (x+ε1 )2

(x−ε1 )2 ] ≈ 4 min(ε1,x)
max(ε1,x) approxi-

mation was used. We plot analytical expression for

Vodd(ε1, ε2) = 1

2
[Vt (ε1, ε2) − Vt (ε1,−ε2)], (C26)

interaction amplitude entering the equation in the triplet
Cooper ladder, in where Vt (ε1, ε2) is based on Eq. (C22) in the
right plot of Fig. 3 in the main text. At nonzero temperatures,
we plot numerial calculation of the interaction amplitude
Vodd(ε1, ε2) in the left and center of Fig. 3 in the main text.
Importantly, the sign of the interaction Vodd is attractive when
Vs < 0. This will lead to instability in the spin-triplet part of
the Cooper channel when T > Tc.

APPENDIX D: PAIRING IN THE PRESENCE
OF MAGNETIC FIELD

1. Zeroth Landau-level approximation

When the magnetic field is nonzero, one has to carefully
treat integration over the coordinates [41,42]. The Cooperon
part which enters the expression above reads,

C̄N (ε′
1 + ε1; r1, r3)

= −i(ε′
1 + ε1)

∑
N,α

�N,α (r1)�†
N,α (r3)[

ωc
(
N + 1

2

)]2 + (ε′
1 + ε1)2

, (D1)

here �N,α (r1) is the Landau wave function with N being main
quantum number, while α is angular. Identity for the Landau
wave functions is∑

α

�N,α (r1)�†
N,α (r3)

= 1√
2π�B

�N,0(r1 − r3) exp
[
− ie

2h̄c
B(r1 × r3)

]
, (D2)

where

�N,0(r) = 1√
2π�B

exp

(
− r2

4�2
B

)
LN

(
r2

2�2
B

)
, (D3)

where LN is the regular Laguerre polynomial. For our pur-
poses we can neglect the phase in the identity. We will only
consider a N = 0 term in the sum over the Landau levels,
and then L0 = 1. This is the so-called zeroth Landau-level
approximation. We then rewrite the identity in the form we
will be using in our further calculations,

∑
α

�0,α (r1)�†
0,α (r3) → 1

2π�2
B

exp

[
− (r1 − r3)2

4�2
B

]
. (D4)

In this approximation the Cooperon becomes

C̄N (ε′
1 + ε1; r1, r3) ≈ − i(ε′

1 + ε1)

2π�2
B

e
− (r1−r3 )2

4�2
B(

ωc
2

)2 + (ε′
1 + ε1)2

,

(D5)

which is now dependent on the coordinate difference r1 − r3.
To find Fourier image of the approximated Cooperon in mag-
netic field, we use∫

dx eiqxxe
− x2

4�2
B =

√
4π�2

Be−q2
x �

2
B , (D6)

and, therefore, we have∫
dx eiqxxe

− x2

4�2
B

∫
dy eiqyye

− y2

4�2
B = 4π�2

Be−q2�2
B . (D7)

Then

C̄N (ε1 + ε′
1, q) = −2e−q2�2

B
i(ε′

1 + ε1)(
ωc
2

)2 + (ε′
1 + ε1)2

. (D8)

Diffuson mode stays the same as in the case of zero magnetic
field, namely

�N (ε′
1 − ε1, q) = Dq2

(Dq2)2 + (ε′
1 − ε1)2

. (D9)

2. Effective interaction at nonzero magnetic field:
Case of �s(ω, q, H, T )

We now study the magnetic field dependence of the
diagrams presented in Fig. 8. In case of magnetic field
�s(ω, q, H, T ) is now a function of the magnetic field, tem-
perature, frequency, and momentum (we define below). Then
same steps as above apply, and we get for the relevant expres-
sion the following form:

〈KA(r1, r3)KB(r2, r4)〉φ
→ −16

1

(πν)2

1

(2ν)2
�2

∫
ε1,ε

′
1,ε2,ε

′
2,ε,ε

′
δε1−ε′

1,ε
′−ε′

2
δε′

1−ε,ε′
2−ε2

× δr1,r4δr2,r3 (D10)

× Fε′
2
�s(ε

′
1 − ε1, r4, r1, H, T )C̄N (ε1 + ε′

1, r1 − r3)

�N (ε2 − ε′
2, r1 − r3) (D11)

× TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (r3)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (r4)],
(D12)

where we have already discarded the term with imaginary part
of the diffuson mode. After the spin-singlet Cooper channel
propagator �s is used and zeroth Landau-level approximation
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is made, we get for the effective interaction

∫
r1,r2,r3,r4

�s(ε
′
1 − ε1, r4 − r1, H, T )C̄N (ε1 + ε′

1, r1 − r3)�N (ε − ε′
1, r2 − r4) (D13)

×TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (r3)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (r4)]δr1,r4δr2,r3 (D14)

=
∫

q,q′
�s(ε

′
1 − ε1, q′, H, T )C̄N (ε1 + ε′

1, q′)�N (ε − ε′
1, q′ − q)TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (q)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (−q)].

(D15)

Here we again neglect q as compared to q′ in
the expressions for diffuson. The zeroth Landau-level
assumption is

�s(ε
′
1 − ε1, q, H, T )

≈ 2e−q2�2
B

Vs

1 + VsM(ε′
1 − ε1, |q| = √ ωc

2D , H, T )
. (D16)

This propagator besides here also enters in the equation for
the s-wave spin-singlet Cooper channel interaction amplitude.
When �s(ε′

1 − ε1, q, H, T ) diverges, there is a phase transi-
tion. In the metallic regime, sign of the propagtor is negative
corresponding to attraction in the s-wave spin-singlet Cooper
channel. Let us now set T = 0 and define critical magnetic
field of the transition from the s-wave superconducting state
to metallic phase,

M(ε′
1 − ε1, q, H, T = 0) ≈ 1

4
ln

⎧⎪⎨
⎪⎩

�4
( 2γ

π

)4
[

( ωc
2 )2+(ε′

1−ε1 )2

4

]2

⎫⎪⎬
⎪⎭.

(D17)

Then

�s(ε
′
1 − ε1, q, H, T = 0)

= −2e−q2�2
B

1

ln
[

ωc
ωc2

]+ ln
√

1 + (ε′
1−ε1 )2

( ωc
2 )2

, (D18)

where ωc2 = 8γ�

π
e− 1

|Vs | corresponds to the critical magnetic
field at T = 0, i.e., Hc2. For magnetic fields ωc > ωc2, i.e.,
when the system is in the metallic regime, the sign of the
Cooper propagator does not change—it is negative. At the
transition the sign of Cooper propagator changes signaling
a phase transition in to superconducting state. Dynamics of
the Cooper propagator can make it to be sign changing as
a function of frequency as we are approaching the phase
transition in magnetic field from below, namely ωc � ωc2, but
we wish to study the system in the metallic regime away from
the transition. We question the stability of the metallic phase
in the vicinity to a transition to the regular s-wave spin-triplet
superconductivity

Both �s(ε′
1 − ε1, q′, H, T ) and C̄N (ε1 + ε′

1, q′) have the
same momentum, therefore integration over q′ is similar to the
one above for �s = const(ω, q) case. It is, however, important
to keep the upper limit, which would now be equal to 1/�B due
to the e−q2�2

B factor, in the integration over q′.
Next, when T �= 0 but H � Hc2,

M(ε′
1 − ε1, q, H, T ) ≈ 1

4
ln

⎧⎪⎨
⎪⎩

�4
( 2γ

π

)4
[
T 2 + 1

4

(
ωc
2

)2]2 + (ε′
1−ε1 )2

4

[
1
2

(
ωc
2

)2 − T 2
]+

[
(ε′

1−ε1 )2

4

]2

⎫⎪⎬
⎪⎭. (D19)

Then

�s(ε
′
1 − ε1, q, H, T ) = −2e−q2�2

B
1

ln

⎛
⎝ 4

{
[T 2+ 1

4 ( ωc
2 )2]

2+ (ε′1−ε1 )2

4 [ 1
2 ( ωc

2 )2−T 2]+
[

(ε′1−ε1 )2

4

]2}1/4

ωc2

⎞
⎠

, (D20)

≡ −2e−q2�2
B �̃s

(
ε′

1 − ε1, |q| =
√

ωc

2D
, H, T

)
, (D21)

where first term under the logarithm measures how far the system is from the phase transition, while the other one describes the
dynamics.

Overall, the action for the effective interaction in the triplet part of the Cooper channel is

iSmixed = i

(
π2ν

8

)
4ρ�2TrFVt (ε1, ε2)

∫
r3

TrKSN[στ±γ̂ 1/2σ̂3Ŵεε1 (r3)]TrKSN[στ∓γ̂ 2/1σ̂3Ŵε′ε2 (r3)]δε−ε1,ε2−ε′ , (D22)
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where the effective interaction Vt is

Vt (ε1, ε2) = −1

2
[ fMF(ε1, ε2) + fMF(ε2, ε1)], (D23)

1

2π
fMF(ε1, ε2) =

∫
x
Fx−(ε1−ε2 )�̃s

(
x − ε1, |q| =

√
ωc

2D
, H, T

)
x + ε1(

ωc
2

)2 + (x + ε1)2
ln

[(
D�−2

B

)2 + (x − ε1)2

(x − ε1)2

]
, (D24)

where � is a high-frequency cutoff. We can only study this
interaction numerically.

In Fig. 4 of the main text a plot of the interaction ampli-
tude Vodd(ε1, ε2) = 1

2 [Vt (ε1, ε2) − Vt (ε1,−ε2)] corresponding
to Eq. (D24) at different magnetic fields and frequencies is
shown. In Fig. 5 a dependence of the minimum eigenvalue
of the corresponding Eq. (B23) on the �t is plot. There is

a phase transition at magnetic field Hodd when λmin crosses
−1. Let us picture this instability. If we are increasing the
magnetic field from zero, then at ωc � ωc2 the system is the
s-wave spin-singlet superconductor; when the magnetic field
reaches ωc = ωc2 a phase transition occurs to the spin-triplet
odd-frequency paired state; then at ωc ≈ 2.5ωc2, finally, the
system becomes a metal.
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