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We study a multiorbital Hubbard model coupled to local Jahn-Teller phonons to investigate the super-
conducting state realized in fullerides. A weak-coupling approach is employed in combination with a local
self-energy approximation. In addition to the normal and anomalous self-energies of the electrons, we consider
the phonon self-energy, which allows a self-consistent treatment of the energetics. The frequency dependence
of the self-energies and their characteristic coefficients, such as renormalization factors and dampings, are
investigated in detail using numerical calculations. It is clarified that the anisotropic phonons play an important
role in the stabilization of the superconducting state. By comparing the full results with those without phonon
self-energies, we show that the superconductivity is stabilized by the softening of the phonon frequency. The
effects of electronic fluctuations are also considered, and shown to lead to the coupling to orbitons, an analog of
plasmons in the electron gas. This additional contribution further stabilizes the superconducting state.
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I. INTRODUCTION

Electron-phonon coupling is ubiquitous in solids, and it
causes a variety of interesting phenomena. One prominent ex-
ample is superconductivity; the effective interaction between
electrons becomes attractive due to contributions mediated by
the phonons and results in Cooper pair formation. Although
in the conventional BCS theory the attractive interaction is
treated as instantaneous, the actual electron-phonon interac-
tion leads to a retardation effect in the effective interaction.
This situation is described by the Eliashberg theory [1,2],
which allows to incorporate the retardation effect. Recently,
band-structure calculations have also been performed within
this framework, and they have shown success in predicting
the superconducting transition temperature [3–8].

Usually, the phonons describe atomic oscillators in solids.
The situation is, however, different in the fulleride super-
conductors [9–17]. Since these are molecular crystals, it is
important to consider the physics of each molecular unit.
In fact, in these materials, the dominant phonon contribu-
tion is associated with local molecular vibrations. As for the
electron-electron interaction, the Coulomb interaction inside
the molecule also plays an important role. Thus the most
relevant interactions have a local nature. The simplest model
to describe such a situation is the Holstein-Hubbard model,
where a single orbital is assumed and the electron charge
couples to spatially local Einstein phonons. However, the
existing fulleride superconductors have three degenerate t1u

(or t1g) molecular orbitals, and the electrons in this multior-
bital system couple to spatially local anisotropic molecular
vibrations (Jahn-Teller phonons) [18–20]. We therefore need
to analyze the Jahn-Teller-Hubbard model with multiple
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electron/phonon degrees of freedom in order to understand
the physics of fullerides.

In the three-dimensional fullerides with cubic symmetry,
intersite correlations are relatively weak so that the dynamical
mean-field theory (DMFT), which takes into account local
correlations, is a suitable theoretical approach [21]. Due to
the coupling to Jahn-Teller phonons, the effective Hund’s
coupling for the t1u orbitals becomes antiferromagnetic at low
energies [22]. For this reason, multiorbital Hubbard models
with antiferromagnetic Hund’s coupling have been intensively
investigated [23–32]. For a more accurate treatment, however,
we need to explicitly consider the phonon degrees of free-
dom and the associated retardation effects. In the fulleride
context, systems with both electron-electron and electron-
phonon interactions have been analyzed using quantum Monte
Carlo methods [33–36] and weak-coupling perturbation the-
ory [37,38]. However, since the interactions between electrons
and phonons in multiorbital systems are quite complicated,
they have been simplified in these theoretical studies.

In this paper, we analyze the model by using the Eliashberg
theory within the framework of DMFT, which provides an
intuitive understanding of the Jahn-Teller Hubbard model.
We focus on the fact that the electron-electron interaction
and electron-phonon interaction can be handled in a unified
way by introducing the charge-orbital (multipolar) moments
[39]. This makes it easier and more transparent to formulate
the Eliashberg equations for the Jahn-Teller Hubbard model.
While the multiorbital nature complicates the theoretical for-
mulation, the local nature of the correlation effects allows to
reveal the structure of the self-consistent equations. We will
also analyze the model in an analytic way in the normal state,
which provides some intuitive understanding of the under-
lying physics. A more elaborate analysis will be done with
the help of numerical calculations. Based on this theoreti-
cal approach, we clarify how the superconducting transition
temperature is determined. Specifically, we discuss the effect
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of the phonon self-energies and also propose a possible fur-
ther improvement of the theory by introducing the “orbiton,”
which is an analog of the plasmon in the theory of the electron
gas.

This paper is organized as follows. In the next section,
we derive the self-consistent Eliashberg equations from the
variational principle. In Sec. III, the phonon self-energy is in-
troduced, which is necessary for the self-consistent treatment
of the internal energy. Section IV is devoted to the analysis of
the normal Fermi liquid in the weak-coupling limit. We pro-
vide detailed numerical results in Sec. V. In Sec. VI, we study
a more complicated situation by considering the fluctuations
from the electron-electron interaction. Finally, we summarize
the results in Sec. VII. Appendix A explains the connection
to the actual C60 molecule. Convenient formulas and some
calculation details are provided in Appendixes B and C.

II. SELF-CONSISTENT EQUATIONS

A. Jahn-Teller-Hubbard model

We consider the three-orbital Hubbard model coupled to
isotropic and anisotropic phonons. The Hamiltonian is written
as

H = He + Hp + Hep. (1)

The electron part is given by He = He0 + Hint, where
He0 describes the noninteracting part and Hint is the local
Coulomb interaction with the Slater-Kanamori form

Hint = 1

2

∑
iσσ ′

∑
γ1γ2γ3γ4

Uγ1γ2γ3γ4 c†
iγ1σ

c†
iγ2σ ′ciγ4σ ′ciγ3σ , (2)

where i is the lattice site index and σ = ↑,↓ denotes spin. The
orbital index is written as γ = x, y, z and refers to the molecu-
lar t1u orbitals relevant for alkali-doped fullerides. We use the
standard parametrization for the interaction: Uγ γ γ γ = U is the
intraorbital interaction, Uγ γ ′γ ′γ = U ′ is the interorbital inter-
action, and Uγ γ ′γ γ ′ = Uγ γ γ ′γ ′ = J (>0) is the ferromagnetic
Hund’s coupling (γ �= γ ′). Assuming spherical symmetry in
the interaction, we set U ′ = U − 2J . The noninteracting part
will be specified later.

In the phonon parts, we consider local phonons arising
from the dynamical deformation of the fullerene molecule,
which couples to the orbital degrees of freedom of the elec-
trons. The Hamiltonian is given by

Hep =
∑

iη

gηφiηTiη, (3)

Hp =
∑

iη

ωηa†
iηaiη, (4)

where φiη = aiη + a†
iη is a displacement operator for

molecular vibrations. The charge-orbital moment Tiη (η =
0, 1, 3, 4, 6, 8) is introduced together with the Gell-Mann ma-
trices as

Tiη =
∑
γ γ ′σ

c†
iγ σ λ

η

γ γ ′ciγ ′σ , (5)

λ̂0 =
√

2

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, λ̂1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

λ̂3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ̂4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

λ̂6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, λ̂8 =

√
1

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠, (6)

and describes the change in the isotropic (η = 0) and
anisotropic (η = 1, 3, 4, 6, 8) electron charge distribution.
The hat symbol (̂ ) indicates a 3 × 3 matrix in the orbital
space. There are useful orthogonality relations: Tr λ̂ηλ̂η′ =
2δηη′ , (λ̂0)2 = 2

3 1̂,
∑

η=8,3(λ̂η )2 = 4
3 1̂ and

∑
η=1,6,4(λ̂η )2 =

2 1̂. In cubic symmetric systems, such as fcc fullerides, poly-
nomial representations can be assigned to each component:
η = 0 ↔ r2 (A1g), η = 8, 3 ↔ 3z2 − r2, x2 − y2 (Eg), and
η = 1, 6, 4 ↔ xy, yz, zx (T2g), where r2 = x2 + y2 + z2 and
the irreducible representations are written in the parenthesis.
We note that the decomposition into irreducible representa-
tions relevant for the electronic degrees of freedom is [t1u ×
t1u] = A1g + Eg + T2g where [· · · ] stands for the symmetric
product corresponding to electric (time-reversal-even) degrees
of freedom such as charge and orbital moments.

In an actual isolated fullerene molecule (point group Ih),
there are 174 vibrational modes, and two Ag and eight Hg

modes are coupled to the charge-orbital moments defined in
the t1u electronic orbital space [18]. This complicated situation
is approximated by choosing one dominant contribution for
each irreducible representation. A more detailed discussion is
provided in Appendix A.

Using the above Gell-Mann matrices, the Slater-Kanamori
interaction can be rewritten in a symmetric and compact
form [39],

Hint =
∑

iη

Iη : TiηTiη :, (7)

where the colon (:) symbol represents the normal ordering.
The interaction parameters are I0 = 3

4U − J and I1 = I3 =
I4 = I6 = I8 = J

2 , as derived from the original Hint and re-
flecting the spherical symmetry. One can recognize that the
forms of the electron-electron interaction in Eq. (7) and the
electron-phonon interaction in Eq. (3) are similar, which
makes the formulation transparent as will be shown in the
following sections. We can utilize this property to introduce
the “orbiton,” a bosonic excitation associated with the Slater-
Kanamori interaction, as discussed in Sec. VI. If one wants
to describe the interaction in a cubic environment, one has
to use different values for I3 (= I8, Eg) and I1 (= I4 = I6,
T2g), which corresponds to U ′ �= U − 2J [39]. The interac-
tion parameters are related to the Slater-Kanamori parameters
by I0 = 1

4 (U + 2U ′), I3 = 1
2 J , and I1 = 1

4 (U − U ′), where
I1 − I3 = 1

4 (U ′ + 2J − U ) controls the cubic anisotropy. In
the following, we assume I1 = I3.

It is convenient to trace out the phonons by employing the
path-integral formalism. In order to do this, we consider the
partition function

Z =
∫

DcDa exp(−Se[c] − Sep[c, a] − Sp[a]), (8)
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where c and a are Grassmann and complex numbers asso-
ciated with the electrons (fermions) and phonons (bosons),
respectively. The bosons can be integrated out, and the resul-
tant partition function is given by

Z = A
∫

Dc exp(−Seff [c]), (9)

where A is an unimportant constant. The effective action is
given by Seff = Se0 + Sint with

Se0 =
∫

dτ c̄(τ )∂τ c(τ ) +
∫

dτHe0(τ ), (10)

Sint =
∫

dτdτ ′ ∑
iη

Uη(τ − τ ′)Tiη(τ )Tiη(τ ′). (11)

For simplicity, we have used a vector notation for the Berry
phase term in Eq. (10). The retarded interaction is given by

Uη(τ ) = Iηδ(τ ) + g2
ηGη(τ ), (12)

where Gη(τ ) = −〈T aη(τ )āη(0)〉0 is the noninteracting boson
Green’s function. Here T indicates the imaginary-time order-
ing operator. The explicit expression is

Gη(τ ) = −e(β−τ )ωη θ (τ ) + e−τωη θ (−τ )

eβωη − 1
. (13)

We note that, while the formulations are written in terms of
continuous imaginary time for simplicity, the actual calcula-
tion must be performed for discrete variables [40].

B. Variational principle for the electrons

The DMFT approximation, which allows to treat strong
local correlation effects, is a suitable theoretical framework

for three-dimensional electron systems. However, taking full
account of the retarded interaction in multiorbital systems is
technically challenging, and some additional approximations
are needed. Here we analyze the above model by employing
the variational principle. We introduce the model action in the
form

Smodel = Se0 +
∫

dτdτ ′ ∑
iγ γ ′σσ ′

{
ρ

γγ ′
σσ ′ (τ, τ ′)c̄iγ σ (τ )ciγ ′σ ′ (τ ′)

+ Δ
γγ ′
σσ ′ (τ, τ ′)c̄iγ σ (τ )c̄iγ ′σ ′ (τ ′)

+ Δ
γγ ′∗
σσ ′ (τ, τ ′)ciγ ′σ ′ (τ ′)ciγ σ (τ )

}
, (14)

where ρ and Δ are complex local auxiliary fields to be deter-
mined. This model action is the most generic one with bilinear
terms with respect to the Grassmann numbers.

At this point, we also introduce the single-particle Green’s
function, which is defined by

Ǧγ γ ′ (i j; τ − τ ′) = −〈T ψiγ (τ )ψ̄ jγ ′ (τ ′)〉 (15)

=
(

Gγ γ ′ (i j; τ − τ ′) Fγ γ ′ (i j; τ − τ ′)
F̄γ γ ′ (i j; τ − τ ′) Ḡγ γ ′ (i j; τ − τ ′)

)
, (16)

where the quantum statistical average is defined with the
model action as 〈· · · 〉 = (

∫
Dc · · · e−Smodel )/

∫
Dc e−Smodel .

The check symbol (ˇ) indicates a 2 × 2 matrix in the Nambu
space. The Nambu spinor has been introduced as ψiγ =
(ciγ↑, c̄iγ↓)T and ψ̄iγ = (c̄iγ↑, ciγ↓).

We employ the Gibbs-Bogoliubov inequality for the varia-
tional free-energy functional Fvar given by

− ln Z � Fvar = − ln Zmodel + 〈Seff − Smodel〉, (17)

where the partition function is Zmodel = A
∫

Dc e−Smodel . Min-
imizing Fvar, we obtain the self-consistent equation

(
ρ

γγ ′
↑↑ (τ, τ ′) 2Δ

γγ ′
↑↓ (τ, τ ′)

2Δ
γ ′γ
↑↓ (τ ′, τ )

∗ −ρ
γ ′γ
↓↓ (τ ′, τ )

)
= 2

∑
ηγ1γ2

Uη(τ − τ ′)
(−λη

γγ2
λ

η

γ1γ ′Gγ2γ1 (τ − τ ′) λη
γγ1

λ
η

γ ′γ2
Fγ1γ2 (τ − τ ′)

λη
γ2γ

λ
η

γ1γ ′Fγ1γ2 (τ − τ ′) −λ
η

γ ′γ2
λη

γ1γ
Ḡγ1γ2 (τ − τ ′)

)
, (18)

where we have defined the symmetrized interaction as

2Uη(τ − τ ′) = Uη(τ − τ ′) + Uη(τ ′ − τ ) (19)

and defined Ǧγ γ ′ (τ ) ≡ Ǧγ γ ′ (ii; τ ) assuming translational
symmetry. We note that the Hartree term just gives a chemical
potential shift for a cubic-symmetric system and is neglected.
We have assumed spin-singlet pairing and even imaginary-
time dependence of Δ↑↓(τ, τ ′).

Next, we define the self-energy by

Smodel = Se0 +
∫

dτdτ ′ ∑
iγ γ ′

ψ̄iγ (τ )�̌γ γ ′ (τ − τ ′)ψiγ ′ (τ ′).

(20)

Note that � is introduced in the restricted local Nambu
basis for a spin-singlet pair, while the auxiliary fields in
Eq. (14) can describe a more general situation. The self-
consistent equation can then be written in a simple matrix

form,(
�̂11(τ ) �̂12(τ )
�̂21(τ ) �̂22(τ )

)
=

(
ρ̂↑↑(τ, 0) 2Δ̂↑↓(τ, 0)

2Δ̂T
↑↓(0, τ )

∗ −ρ̂T
↓↓(0, τ )

)

= −2
∑

η

Uη(τ )

(
λ̂η 0
0 −λ̂η

)
ˇ̂G(τ )

(
λ̂η 0
0 −λ̂η

)
, (21)

where the diagonal and off-diagonal parts correspond to
the normal and anomalous self-energies, respectively. This
Eliashberg equation is consistent with the weak-coupling per-
turbation theory with respect to the electron-phonon coupling
constant gη and the electron-electron interaction Iη, which
confirms the validity of our equation.

Let us make a comment on the difference between our
formulation and that utilizing the Stratonovich-Hubbard trans-
formation. In the latter case, we must be careful about the sign
of the interaction term and the convergence of the Gaussian
integrals. Furthermore, the decoupling of the interaction us-
ing the auxiliary bosonic field is not unique [41]. With the
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variational principle used in the present paper, on the other
hand, the equations are uniquely defined once the variational
action is written down. The symmetry of the original system
is also automatically encoded in the effective action.

Models with retarded interactions have been numerically
studied using DMFT combined with the continuous-time
quantum Monte Carlo method [35,36]. For the three-orbital
case, the interactions need to be truncated to density-density
terms in the actual calculation because of the fermion sign
problem [35,36]. While the electronic correlation effects in
higher orders are incorporated, the symmetry is lowered from
the original one in this approximation. On the other hand,
while only the lowest-order contributions are considered in
our method, we include all the interaction terms and that the
full symmetry of the original Hamiltonian is preserved.

C. Cubic-symmetric solution

The cubic symmetry simplifies the self-consistent equa-
tions considerably. Within the restricted t1u orbital space, the
cubic symmetry requires that the self-energy must be propor-
tional to the identity matrix in orbital space. Hence we can
write the self-energy as

�̂11(iωn) = �̂22(iωn) = �(iωn)1̂, (22)

�̂12(iωn) = �̂21(iωn) = �(iωn)1̂, (23)

where we have chosen the phase of the anomalous self-energy
as real. [We write these relations with the fermionic Matsub-
ara frequency ωn = (2n + 1)πT (n ∈ Z) at temperature T .]
Correspondingly, the Green’s functions are also proportional
to the identity matrix: Ĝ = G1̂ and F̂ = F 1̂.

With this, we obtain a much simplified Eliashberg equa-
tion:

�(τ ) = −Ueff (τ )G(τ ), (24)

�(τ ) = Ueff (τ )F (τ ), (25)

Ueff (τ ) = 4

3

∑
η

Uη(τ ). (26)

The last expression shows that each η equally contributes to
the effective interaction among the electrons. This point will
be discussed in Sec. IV in more detail. We note that we do not
consider the possibility of orbital symmetry breaking, even
though such a symmetry breaking can occur in the strongly
correlated regime [25,27,29,42–44].

The Dyson equation, which also now has a simple form
due to the cubic symmetry, connects the local self-energy and
Green’s function as(

G(iωn)
F (iωn)

)
=

∫
dε

ρ(ε)

[iωn − �(iωn)]2 − �(iωn)2 − ε2

×
(

iωn − �(iωn) + ε

�(iωn)

)
, (27)

where the intersite information is included in the density of
states ρ(ε). We will take a semicircular shape for ρ(ε), since
we want to understand the qualitative features which do not
depend on the details of the density of states.

III. PHONON SELF-ENERGY

As derived in the last section, the simple variational prin-
ciple for the effective electron system results in a coupling to
free bosons. Here we consider the self-energy for the phonons
and show that it is important for self-consistent energetics in
electron-phonon-coupled systems.

In the presence of the self-energy, the 〈a†a†〉-type average
becomes finite. Hence a representation involving φiη = aiη +
a†

iη instead of aiη is more appropriate. The corresponding
Green’s function is defined by

Dη(τ ) = −〈T φiη(τ )φiη〉. (28)

The relations among the phonon Green’s functions are de-
tailed in Appendix B. The off-diagonal part with respect to
η is zero because of the orthogonality theorem in the group
theory under the cubic symmetry. The Fourier transform is
given by

Dη(iνm)−1 = Dη0(iνm)−1 − �η(iνm), (29)

Dη0(iνm) = 2ωη

(iνm)2 − ω2
η

, (30)

where νm = 2mπT (m ∈ Z) is the bosonic Matsubara fre-
quency at temperature T . We have assumed a local self-energy
also for the phonons. Note that the Dyson equation for the
phonon part does not involve any intersite information, be-
cause of the local nature of the noninteracting Hamiltonian, in
contrast to the electron case.

The self-energy is obtained by weak-coupling perturbation
theory. Up to second order in the electron-phonon coupling
gη, we obtain

�η(iνm) = g2
ηχη(iνm), (31)

where we define the charge-orbital correlation function

χη(τ ) = −〈T Tiη(τ )Tiη〉conn (32)

= 4[G(τ )G(−τ ) − F (τ )2] ≡ χ (τ ), (33)

and “conn” represents the contribution from the connected
diagrams. The phase of the pair potential, and therefore the
pair amplitude (= anomalous Green’s function), is fixed as
real. The factor of 4 originates from spin and the trace of
the square of the Gell-Mann matrices. Note that the charge-
orbital correlation function χη is expressed only in terms of
the electronic degrees of freedom. It is not dependent on the
index η because vertex corrections are neglected.

Correspondingly, the effective interaction in Eq. (19) is
replaced by

Uη(iνm) = Iη + 1
2 g2

ηDη(iνm), (34)

which now includes the self-energy. This may be derived by
second-order perturbation theory or by repeating the proce-
dure in the last section with the phonon self-energy.

Although the phonon self-energy from the coupling to the
electrons is sometimes neglected in strong-coupling theories
[45], it is necessary for an accurate evaluation of the internal
energy [46]. We note that the phonon self-energy may be
dropped in the free-energy difference between the normal and
the superconducting states [47], but it should be kept in the
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free energy itself. In the context of the Jahn-Teller-Hubbard
model, the interaction energy can be explicitly written in terms
of the self-energies as [46]

2〈Hint〉 + 〈Hep〉
= 6T

∑
n

[�(iωn)G(iωn) + �(iωn)F (iωn)]eiωn0+
, (35)

〈Hep〉 = −
∑

η

T
∑

m

�η(iνm)Dη(iνm)eiνm0+
. (36)

When the electron-electron interaction is absent, the two ex-
pressions must give the same result, and hence the phonon
self-energy is necessary for a self-consistent theory. The equa-
tions obtained above ensure this self-consistency and can be
used to derive the expression for the phonon self-energy.

Practically, if we consider only the electron self-energies,
the electron-electron interaction energy and electron-phonon
interaction energy always appear together in Eq. (35), and
the electron-electron interaction contribution itself cannot be
evaluated from the single-particle Green’s function. The dif-
ference between Eqs. (35) and (36) needs to be evaluated
to obtain 〈Hint〉, and hence we must calculate the phonon
self-energy.

IV. ANALYSIS OF THE NORMAL FERMI LIQUID

Before we study the numerical solution of the Eliashberg
equations, we consider the normal-state properties based on
the lowest-order perturbation theory. The physics in this sec-
tion is basically the same as previously discussed for the
usual electron-phonon coupling [48], and the local nature of
the phonons in our paper makes it easier to understand the
underlying mechanism. We first consider the charge-orbital
moment correlation function [Eq. (33)] given by

χ (iνm) = 4T
∑

n

G(iωn)G(iωn + iνm), (37)

where G is the local Green’s function and the normal state is
assumed so that the anomalous Green’s function is zero (F =
0). Here we take the zeroth-order contribution for the Green’s
function:

G0(iωn) =
∫

dε
ρ(ε)

iωn − ε
. (38)

Using a semicircular bare density of states, ρ(ε) =
2

πD2

√
D2 − ε2, we obtain

χ (iνm) = − 16
3 ρ(0) + 4πρ(0)2|νm| (39)

at low energies and at low temperatures (see Appendix C for
the derivation). The first term corresponds to a static local
susceptibility Re χ (0) ∝ ρ(0). The second term gives the Ko-
rringa relation Im χ (ω + i0+)/ω ∝ ρ(0)2 for a normal metal,
which originates from a dynamical local correlation function.

This expression immediately yields the phonon self-energy
according to Eq. (31). The phonon Green’s function is given
by

Dη(iνm) = 2ωη

(iνm)2 − ω̃2
η − 2γη|νm| , (40)

where the shifted frequency ω̃η and the damping γη for the
phonons are given by

ω̃η = ωη

√
1 − 32ρ(0)g2

η

3ωη

� ωη − 16

3
ρ(0)g2

η, (41)

γη = 4πρ(0)2g2
ηωη. (42)

The decrease in the frequency implies a softening of the
phonons caused by the coupling to the electrons. Indeed, the
denominator of Eq. (40) shows a damped harmonic oscillator
with harmonic potential 1

2 ω̃2
ηx2 (x is a coordinate), whose cur-

vature is smaller than the original potential 1
2ω2

ηx2 (ωη > ω̃η).
We also consider the effect of the phonon self-energy on

the effective interaction given in Eq. (26). It evaluates in the
low-frequency limit to

Ueff (iνm = 0) =
∑

η

[
4

3
Iη −

(
ωη

ω̃η

)2

λη

]
, (43)

where we have defined the bare attractive interaction λη =
4g2

η

3ωη
[not to be confused with the Gell-Mann matrices λ̂η in

Eq. (6)]. The effective interaction can be rewritten in terms of
the original interaction parameters as

Ueff (iνm = 0) = U −
(

ω0

ω̃0

)2

λ0

+2J − 2

(
ω3

ω̃3

)2

λ3 − 3

(
ω1

ω̃1

)2

λ1, (44)

where we have used the cubic symmetry, i.e., the equivalence
of η = 3, 8 (Eg) and that of η = 1, 6, 4 (T2g). The first and
second lines of Eq. (44) imply the contributions from the
isotropic (η = 0) and anisotropic parts (η �= 0), respectively.
The repulsive Coulomb interaction implies that the contri-
bution from U (>0) is not favorable for Cooper pairs, and
J (>0) is energetically unfavorable for spin-singlet pairing.
In the electron-phonon interaction parts, since there is the
relation ωη > ω̃η due to the softening of the phonons, the
attractive interaction is expected to be enhanced by the phonon
self-energy. We will further examine this point with numerical
calculations in the next section (see Sec. V D).

It can be recognized that the Jahn-Teller phonon contri-
butions λ1,3,4,6,8 are important as they give five times larger
contributions in total in the present system compared with the
isotropic component λ0 (∼λ1, see Appendix A). In contrast,
for the electron-electron interaction, the anisotropic parts
I1,3,4,6,8 are of the order of the Hund’s coupling J , which is
small compared with the isotropic component I0 ∼ U , espe-
cially in fullerides with extended molecular orbitals. Hence,
compared to the isotropic case which has only the η = 0
component in the first line of Eq. (44), the effective attractive
interaction is much enhanced in the system with Jahn-Teller
phonons. This gives a simple answer why the fulleride su-
perconductors with multiple degrees of freedom have a high
transition temperature.
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Once the phonon propagator has been obtained, the self-
energy for the electrons can be also evaluated as

�(iωn) = − iρ(0)ωn

∑
η

ω2
ηλη

ω̃2
η

− iρ(0)
(
π2T 2 − ω2

n

)
sgn ωn

∑
η

ω2
ηγηλη

ω̃4
η

, (45)

where we have assumed the magnitude relations T, |ωn| �
ωη � D (see Appendix C for the derivation). This expression
determines the properties of the Fermi liquid such as the mass
renormalization (first term) and quasiparticle damping (sec-
ond term) near zero temperature. While the above expressions
are based on several assumptions such as λη, ωη � D, they fit
the numerical results well at small electron-phonon coupling,
as shown in the next section. On the other hand, the electron-
electron interaction only gives a chemical potential shift in the
normal state and does not alter the physical properties. We will
reconsider this point in Sec. VI and take fluctuations from Iη
into account.

V. NUMERICAL SOLUTION OF
THE ELIASHBERG EQUATION

A. Parameters

Throughout this section, we take the energy unit 2D = 1,
where D is the half bandwidth of the semicircular density of
states (D will be varied in Sec. VI). We consider the three
half filled orbitals, as realized in the alkali-doped fullerides,
and choose λη = λ0. This condition with no η dependence ap-
proximately corresponds to the realistic situation for fullerene
molecules (see Appendix A for more details). The Hund’s
coupling is fixed as J/U � 0.03 [20], and we choose ωη =
ω0 = 0.15 in the following. The tuning parameters are then
the Coulomb interaction U , the electron-phonon coupling λ0,
and the temperature T . Since the goal of this paper is a
qualitative understanding of superconductivity in fullerides,
we systematically vary these tuning parameters.

B. Normal state

We begin with the discussion of the frequency depen-
dence of the self-energies. We take T = 0.002 and change
the electron-phonon coupling λ0 (=λη for all η). The system
becomes superconducting for λ0 = 0.125 and 0.175 if we
allow for a nonzero pair potential. Here we concentrate on the
normal state, while the pairing state will be discussed in the
next subsection. In the normal phase, the Coulomb interaction
U just contributes to the chemical potential shift and may be
neglected, while it affects the pair potential.

Figure 1(a) shows the imaginary part of the electron normal
self-energy on the imaginary-frequency axis. The real part is
zero at half filling. With increasing electron-phonon coupling,
the magnitude of the self-energy is enhanced. The linear slope
at low frequencies also becomes steeper for larger λ0, indicat-
ing that the renormalization of the quasiparticles is stronger.

We also show the phonon self-energy in Fig. 1(b). The
static component at νm = 0 shows the energy shift caused
by the electron-phonon coupling. In the normal state, the
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FIG. 1. (a) Electron self-energy and (b) phonon self-energy eval-
uated in the normal and superconducting states. The parameters
are chosen as T = 0.002 and U = 2. The symbol “SC” indicates a
solution in the superconducting state.

low-energy limit has a linear functional form, although the
whole function is even with respect to frequency. This nonan-
alytic behavior corresponds to the damping which originates
from the second term in Eq. (39).

Next, we show the characteristic coefficients extracted
from the self-energies. The renormalization factor a of the
electrons is defined by

a =
(

1 − lim
ωn→0

∂Im �(iωn)

∂ωn

)−1

� 1 (46)

and the quasiparticle damping � by

� = − lim
ωn→+0

Im �(iωn) � 0. (47)

The actual extrapolation to zero frequency is performed nu-
merically at each temperature. Hence the extrapolated values
are meaningful only at low temperatures.

Figure 2 shows the inverse of the renormalization factor in
(a) and the damping divided by the square of temperature in
(b) as a function of λ0 at several temperatures. In panel (b), we
plot the data on a logarithmic scale since the damping covers
a wide range of values. Both quantities are increasing func-
tions of the electron-phonon coupling. At small couplings,
λ0 � 0.1, the renormalization factor is temperature indepen-
dent as shown in Fig. 2(a) at low temperatures, indicating the
formation of a Fermi liquid. The damping also shows a Fermi-
liquid behavior proportional to the square of temperature. In
this weak-coupling regime, the behaviors are approximately
captured by the analytic formula in Eq. (45).
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FIG. 2. Electron-phonon interaction parameter dependence of
(a) the inverse of the renormalization factor and (b) the damping
factor divided by the square of temperature, defined in Eqs. (46)
and (47), evaluated in the normal state. The dotted lines indicate the
analytic form given in Eq. (45).

On the other hand, for λ0 > 0.1, the value of a−1 shows
a significant temperature dependence even at low tempera-
tures. This implies a non-Fermi liquid behavior at least in the
temperature regime shown in the figure. This anomaly is also
reflected in other physical quantities, such as the specific heat,
as will be shown later. While the calculations have been per-
formed by assuming a normal state [i.e., �(iωn) = 0], these
non-Fermi liquid solutions would be replaced by a supercon-
ducting phase if we allow for a nonzero �. The anomaly at
low temperatures in the normal state may, however, still be
observed under a magnetic field which suppresses the super-
conducting state.

Actually, the non-Fermi liquid behavior in the normal state
seems to be unavoidable for a strong-coupling superconduc-
tor; it is closely related to the entropy balance seen in the
specific heat. We will consider this aspect later in Sec. V C.
We note that, in the context of the present paper, the terminol-
ogy “strong coupling” means a strong retardation effect from
the electron-phonon coupling [45], which is different from the
higher-order electronic correlation effects.

In the case of the phonons, the shifted quasiparticle energy
ω̃η and the damping γη are extracted from the low-energy
properties of the self-energy:

ω̃2
η = ω2

η + 2ωη lim
νm→+0

Re �(iνm), (48)

γη = ωη lim
νm→+0

∂Re �(iνm)

∂νm
. (49)

These parameters are shown in Fig. 3. The phonon energy
is shifted to a smaller value as shown in panel (a), which
indicates a softening of the phonons by the coupling to the
electrons. As for the damping shown in panel (b), it increases
linearly in the Fermi-liquid regime at small couplings, while
the behavior changes at large λ0. The temperature dependence
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FIG. 3. Electron-phonon interaction parameter dependence of
(a) the shifted phonon energy determined by Eq. (48) and (b) the
phonon damping determined by Eq. (49) evaluated in the normal
state. The dotted lines show the analytic functional forms of Eqs. (41)
and (42).

is still present at large coupling, reflecting the non-Fermi
liquid behavior, and is stronger for the damping in panel (b)
compared with the shifted energy in panel (a).

C. Superconducting state

In this subsection, we discuss the frequency dependence
of the anomalous self-energy shown in Fig. 4(a). It has the
dimension of energy and is sometimes referred to as pair
potential or gap function. A larger λ0 results in a larger mag-
nitude, reflecting the stronger effective attraction among the
electrons. For U = 0, the anomalous self-energy is largest at
zero frequency and becomes zero in the high-frequency limit.
This behavior is characteristic of the retardation effect caused
by the electron-phonon coupling and is in contrast with the
usual BCS theory, which leads to a frequency independent
gap function. For U > 0, the magnitude at low frequencies
is decreased by the repulsive Coulomb interaction. It is also
notable that the signs in the low-frequency limit and high-
frequency limit are opposite, which indicates a change from
attractive to repulsive interactions at a certain frequency.

The effect of the pair potential is also reflected in the
normal self-energy as shown in Fig. 1. Although the super-
conducting state is realized for λ0 = 0.125 and 0.175, its
effect on Im� is not prominent as shown in Fig. 1(a). In the
phonon self-energy, on the other hand, a qualitatively different
feature can be seen for the superconducting case with λ0 =
0.125, 0.175: The linear behavior at low frequencies changes
to a quadratic one as shown in Fig. 1(b). This reflects the
energy-gap formation in the electronic state, which removes
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FIG. 4. (a) Anomalous self-energy for the electrons.
(b) Electron-phonon interaction parameter dependence of the pair
potential in the low-frequency (filled symbols) and high-frequency
(open symbols) limits. The temperature is chosen as T = 0.002.
The inset shows a zoom of the region near the transition point for
U = 0.4.

the damping in the low-energy limit. However, the difference
between normal and superconducting states is small, which
agrees with the expectation from Ref. [47].

The anomalous self-energy in Fig. 4(a) is characterized by
the two values at low frequency [�(iωn = 0)] and at high fre-
quency [�(iωn = ∞)]. The λ0 dependence of these quantities
is shown in Fig. 4(b) at several values of U . The magnitude of
�(0) continues to increase with increasing electron-phonon
coupling, while �(∞), which originates from the Coulomb
interaction, does not. Although the critical behavior near
the transition point is of the square-root-mean-field type, as
shown in the inset of panel (b), such a dependence can only
be seen in a narrow parameter regime.

D. Specific heat

We now consider the specific heat which is evaluated
as the temperature derivative of the internal energy C =
∂〈H 〉

∂T = ∂
∂T (〈He0〉 + 〈Hint〉 + 〈Hp〉 + 〈Hep〉). Solving the

self-consistent equations, we obtain the self-energies for the
electrons and phonons. Then, the interaction energies can be
calculated by Eqs. (35) and (36). The kinetic and potential
energies can also be evaluated from the local Green’s function.
Thus the internal energy is calculated from the single-particle
Green’s function and self-energies. We note that both the elec-
tron and the phonon self-energies are needed in our algorithm.

Figure 5 shows the temperature dependence of the specific
heat at U = 2. We first consider the normal state. The results
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FIG. 5. Temperature dependence of the specific heat divided by
the temperature. The interaction parameter is taken as U = 2. The in-
set shows the data for the normal phase on a logarithmic temperature
scale. The filled symbols show the results for the superconducting
state, while the open symbols are for the normal state. The dotted
lines are a guide to the logarithmic temperature dependence.

are shown by open symbols, and smoothly change down to the
lowest temperature. The fluctuating behavior originates from
a numerical error associated with the numerical temperature
derivative, although the internal energy itself is an almost
smooth function. On the high-temperature side of the figure,
C/T behaves as nearly temperature independent. In the weak-
coupling case, e.g., λ0 = 0.1, the specific-heat coefficient is
temperature independent with the value C/T � 100 down
to the lowest temperature. In this case, the renormalization
factor is roughly estimated from Fig. 2(a) as a−1 ∼ 4. Since
the noninteracting limit of the specific-heat coefficient evalu-
ates to C/T = 2π2ρ(0) � 25, the expected C/T value from
the Fermi liquid theory is 4 × 25 = 100, consistent with the
specific-heat calculation. For a stronger coupling, however,
the situation changes: The specific-heat coefficient shows a
logarithmic increase at low temperatures, as shown in the
inset, which clearly deviates from the Fermi liquid behavior.

If we consider the superconducting state, the logarithmic
region is replaced by the superconducting region (see filled
symbols). Although the system above the transition tem-
perature shows a nearly temperature-independent C/T , the
renormalization factor plotted in Fig. 2(a) shows a strong
temperature dependence. Hence the transition at T = Tc does
not occur from a normal Fermi liquid.

Next, we focus on the entropy balance: Both in the normal
(n) and the superconducting (s) states, the entropy must be the
same at the transition temperature:

Sn(Tc) − Ss(Tc) =
∫ Tc

0
dT

Cn(T ) − Cs(T )

T
= 0. (50)

This quantity may be graphically estimated as the closed area
shown in Fig. 5. For a small coupling such as λ0 = 0.1, the
entropy balance is nearly satisfied with a constant (Fermi
liquid) C/T for the normal state. On the other hand, for
larger couplings, the balance would not be satisfied if Cn/T
were temperature independent below Tc. This is because the
specific-heat jump is larger in the strong-coupling case. Hence
the normal state specific-heat coefficient must be enhanced at
low temperatures to balance the result of the superconducting
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FIG. 6. (a) Specific-heat jump as a function of λ0 evaluated at
T = Tc. The value is normalized by the specific heat in the normal
state at the transition temperature. (b) Ratio between the gap function
in the low-frequency limit and the transition temperature.

state. Thus the logarithmic divergence of Cn/T appears to be
inevitable for a superconductor with strong retardation effects.

For a strong-coupling superconductor, the specific-heat
jump at the transition temperature is known to be enhanced,
compared with the BCS limit [45]. Here we also confirm
this behavior for the Jahn-Teller-Hubbard model: Figure 6(a)
shows the specific-heat jump Cs(Tc) − Cn(Tc) normalized by
Cn(Tc). We also add a point for the BCS limit evaluated
by the attractive model with U = −0.2. The value in the
weak-coupling limit approaches this BCS value. As a related
quantity, we also show the ratio between �(0) and Tc in
Fig. 6(b), which is also enhanced compared with the universal
value in the BCS theory. The ratio �(0)/Tc is a simple increas-
ing function of λ0, while the specific-heat jump decreases on
the stronger coupling side.

E. Phase diagram

Figure 7(a) shows the I0-λ0 phase diagram in the plane
of the interaction parameters. The region above the phase
boundary becomes superconducting due to the attractive inter-
action caused by the electron-phonon coupling λ0. This phase
boundary shifts downward at lower temperatures to enlarge
the superconducting regime.

It is interesting to compare these results with those for
zero phonon self-energy (� = 0). We note that, with this
approximation, Eq. (35) is not identical to Eq. (36) even with-
out electron-electron interactions. Whereas the self-consistent
treatment of the internal energy is lost, the solution can still
be obtained by the iterative method using the Eliashberg equa-
tion. The results are shown in Fig. 7(b) and demonstrate the
importance of the phonon self-energy. We need larger values
of the electron-phonon coupling to induce the superconduct-

FIG. 7. Phase diagram in the plane of I0 and λ0. The phonon self-
energy is considered in the top panel (a), while it is neglected in the
bottom panel (b). We take ωη = 0.15 and λη = λ0.

ing state compared with the case with phonon self-energy.
Hence the phonon self-energy helps the superconducting state
by softening the phonon frequency, as discussed in connection
with Eq. (44).

VI. PHONON-ORBITON COUPLING

We now proceed one step further in order to improve the
accuracy of the theory. Utilizing the fact that the electron-
electron interaction (3) and electron-phonon interaction (7)
are written in terms of the same physical quantity Tiη (charge-
orbital moments), we try to incorporate the fluctuations from
the Coulomb interaction. First we define the momentum of the
phonons

piη = (aiη − a†
iη )/i, (51)

which satisfies the canonical commutation relation
[φiη, piη] = 2i. With this, the action can be rewritten as

S [φ, p, c] = Se0[c] +
∑

iη

∫
dτ

[
− i

2
piη∂τφiη

+ ωη

4

(
φ2

iη + p2
iη

) + gηφiηTiη + IηT 2
iη

]
, (52)

where Iη > 0 (the case with Iη < 0 can be considered sep-
arately). Given the above form of the interaction terms,
it is tempting to describe the electron-electron interac-
tion and electron-phonon interaction in a unified way. The
Stratonovich-Hubbard transformation for the Coulomb inter-
action term is unique for this representation, and the integral
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with respect to the p field gives

S ′[φ, Q, c] = Se0[c] +
∑

iη

∫
dτ

[
ωη

4
φ2

iη + 1

4ωη

(∂τφiη )2

+ Iη
2

Q2
iη + (gηφiη +

√
2 iIηQiη )Tiη

]
. (53)

The newly introduced local variable Qiη is similar to the plas-
mon in the electron gas problem [49]. This bosonic variable is
associated with the electronic orbital moment, and we call it
“local orbiton.” (Since the Qi,η=0 component originates from
the local charge, we may call it “local plasmon.”) In the spirit
of DMFT, we include the local self-energy contribution of this
term. From Eq. (53), we recognize that the electron operator
is coupled to a phonon-orbiton field φ̃ defined as

g̃ηφ̃iη(τ ) ≡ gηφiη(τ ) +
√

2 iIηQiη(τ ), (54)

where g̃ may be regarded as a renormalized coupling constant.
Then the formulation in the last sections can be recycled by
replacing g → g̃ and φ → φ̃.

The electronic part can be integrated with the use of
second-order perturbation theory. In the frequency domain,
the effective action for the bosons is given by

S ′′[φ, Q]

=
∑
imη

(
φ∗

iη(iνm) Q∗
iη(iνm)

)

× 1

2

(
ωη

2 − 1
2ωη

(iνm)2 + g2
ηχ (iνm)

√
2 igηIηχ (iνm)√

2 igηIηχ (iνm) Iη − 2I2
η χ (iνm)

)

×
(

φiη(iνm)
Qiη(iνm)

)
(55)

=
∑
imη

�φ†
iη(iνm)

[ − 1
2 D̂−1

η (iνm)
] �φiη(iνm), (56)

where D̂η =
(

Dη,φφ Dη,φQ

Dη,Qφ Dη,QQ

)
with Dη,AB(τ ) =

−〈T Aiη(τ )Biη(0)〉 is the bosonic Green’s function matrix
of the coupled phonon-orbiton system. The orbital correlation
function χ has already been defined in Eq. (33). The
off-diagonal components show that the phonon and orbiton
are coupled locally through the coupling to the electrons. If
we set Iη to zero, we reproduce the results in Sec. III.

We can also calculate the electronic self-energy from
Eqs. (24) and (25). Considering Eqs. (34) and (54), the ef-
fective interaction may be written as

Ũη(τ ) = 1
2 g̃2

ηDη,φ̃φ̃ (τ ) (57)

= 1
2 g2

ηDη,φφ (τ ) +
√

2 igηIηDη,φQ(τ ) − I2
η Dη,QQ(τ ).

(58)

Note that this expression is based on second-order perturba-
tion theory with respect to the coupling between the electrons
and bosons.

With the coupling to orbitons, a dynamical correction to
the electron self-energy appears even without the coupling to
phonons. In order to recognize the effect which is newly in-
cluded here, let us consider the case with gη = 0. The effective

FIG. 8. Phase diagram in the plane of temperature and inverse
bandwidth. The parameters are chosen as U = 2 and λ0 = 0.15. The
result without phonon self-energy (blue line) is calculated with �η =
0 [defined in Eq. (29)], while the result with phonon self-energy
(orange line) is for �η �= 0. In the case with phonon self-energy and
phonon-orbiton coupling (green line), the phonon Green’s function
and effective interactions are calculated using Eqs. (55–58).

interaction for the channel η can then be written as

Ũη(iνm) = Iη
1 − 2Iηχ (iνm)

, (59)

where Ũη(∞) = Iη corresponds to a bare interaction (χ <

0). Since the relation 0 < Ũη(iνm) < Iη holds, the effective
interaction Ũ (iνm) represents a locally screened Coulomb re-
pulsive interaction. The different η channels are not mixed in
this expression. It follows from Eq. (59) that the screening fac-
tor (1 − 2Iηχ )−1 becomes smaller if the original interaction Iη
is bigger. This indicates that the charge part I0 ∼ U is strongly
screened, while the effect for the orbital part I1,3,4,6,8 ∼ J
(� U ) is much weaker.

Figure 8 shows the transition temperature obtained (i)
without phonon self-energy, (ii) with phonon self-energy, and
(iii) by adding the phonon-orbiton coupling. The horizontal
axis qualitatively corresponds to the negative pressure effect,
which diminishes the overlap of the molecular orbitals of the
fullerides. From the figure, we conclude that the transition
temperature is enhanced by the phonon self-energy and is fur-
ther pushed up by the coupling to orbitons. The latter occurs
because the fluctuation effects from the Coulomb interaction
effectively reduce the bare repulsive interaction. Note that this
result applies only to the weak-coupling side of the pressure-
temperature phase diagram, while strong correlation effects
must be taken into account for the other side close to the Mott
insulator.

Let us emphasize again that the present approach is based
on perturbation theory and the results are not necessarily
physical when they are applied to large coupling constants.
For example, the system becomes superconducting even with-
out the coupling to phonons (at D = 0.5 and T = 0.002,
superconductivity appears for U � 8). This is because the
fluctuation effect included in the above formulation always
gives an attractive contribution to the effective interaction, i.e.,
Ũη − Iη < 0. However, in this large-U regime, it is natural to
assume that the system is located in a Mott insulating phase
with strong local repulsion. Hence the results are valid only
at small Coulomb interactions, while the region with larger
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couplings requires more sophisticated techniques. Despite this
limitation, the approach formulated in this paper is useful for
the physical interpretation of the solutions.

Finally, we also note the importance of the multiorbital
nature as discussed in connection with Eq. (44). If we consider
only the η = 0 components, which are present even in the
single-orbital model, the transition temperature becomes too
low to be visible in Fig. 8 because of the small attractive
interaction. On the other hand, if one compares the fullerides
to a specific single-orbital system, the difference in bandwidth
and density of states also has to be taken into account. Since
the differences in the effective attraction and density of states
both affect the transition temperature, a separate analysis of
the specific single-orbital material is necessary for quantita-
tive results.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have studied the Jahn-Teller-Hubbard
model, where the electrons in multiple orbitals are locally cou-
pled to both isotropic and anisotropic phonons. We employed
the Eliashberg approach and calculated the self-energies for
the electrons and phonons. We discussed the characteristic
behaviors of the specific heat and mapped out the phase di-
agram. The effect of the coupling to the anisotropic phonons
and their self-energy is important to account for the super-
conducting transition temperature. The fluctuations from the
Coulomb interaction may be incorporated by introducing the
orbitons through the Stratonovich-Hubbard transformation of
the Coulomb interaction, where the phonons and orbitons can
be handled in a unified way because of the charge-orbital
moment description of the interactions.

The formulation given in this paper may be understood
analogous to the electron gas model with infinitesimal trans-
lational symmetry. There the electron-electron interaction can
be written as

Hint =
∫

dq I (q)n(q)n(−q) (60)

and the electron-phonon coupling as

Hep =
∫

dq g(q)φ(q)n(−q), (61)

where n(q) is the Fourier transformation of the electron
density and φ(q) is that of the local dilation [50]. These
expressions for the electron gas model are analogous to the ex-
pressions in Eqs. (7) and (3), if the center of mass momentum
q is replaced by the index η. The crucial step to manipulate the
electron-electron interaction and electron-phonon coupling in
our model is to rewrite the interaction in a form that respects
the symmetry, i.e., the multipole representation in Eq. (7) [39].
Thus this representation is useful beyond a simple rewriting of
the interaction form and connects to the concept of momentum
in the electron gas model.

We have found a low-temperature logarithmic divergence
of the specific-heat coefficient in the normal state, which is
necessary to assure the entropy balance between the normal
and superconducting states with strong retardation effects. In
this context, it is interesting to point out that the recently
discovered superconductor UTe2 [51,52] shows a peculiar
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FIG. 9. Interaction density of states Jη(ω) from the contribu-
tions of two A1g and eight Hg molecular vibrations of C60. For the
visualization, we replace delta functions by Lorentzians with width
0.01 eV.

behavior of the specific heat: The entropy balance seems
not satisfied within the experimentally measured temperature
range. Even though the pairing mechanism should be differ-
ent, our results suggest that the strong coupling nature requires
the normal-state specific-heat coefficient to be enhanced at
very low temperatures.
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APPENDIX A: ELECTRON-PHONON COUPLING
IN FULLERENE MOLECULES

In this Appendix, we discuss the electron-phonon system
in an isolated C60 molecule, which has 3 × 60 − 6 vibration
modes. The t1u electrons can be coupled with two Ag phonons
and eight Hg phonons (point group Ih) [53,54]. We denote
these degrees of freedom by ξ , and the frequencies and cou-
pling constants are written as ωξ

η, gξ
η where η identifies the

degenerated components. The effective interaction from the
electron-phonon coupling can then be written as

Uph,η(iνm) =
∫

Jη(ω)
ω

(iνm)2 − ω2
dω, (A1)

with the interaction density of states Jη(ω) = ∑
ξ (gξ

η )2δ(ω −
ωξ

η ). This is a familiar expression reminiscent of the standard
Eliashberg theory [45].

In Fig. 9, we show the interaction density of states by
using the data from the first principles calculations provided in
Ref. [54]. We take the parameters for the GW approximation
and plot the values per component for the one-dimensional
(Ag) and five-fold degenerate representation (Hg). From the
figure, we see that the effective interactions for Ag and Hg

exhibit similar peak positions and spectral height, justifying
the assumption of η-independent ωη and λη used in the main
text. A similar result can also be found for the fulleride crystal
[55].
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APPENDIX B: PHONON GREEN’S FUNCTIONS

We consider the Green’s function of φ = a + a† = φ† and
p = (a − a†)/i = p† where the indices (i, η) are suppressed
in the Green’s function for simplicity. We define the Green’s
function as(

Gφφ (τ ) Gφp(τ )
Gpφ (τ ) Gpp(τ )

)
= −

〈
T

(
φiη(τ )
piη(τ )

)
(φiη piη )

〉
(B1)

and(
G11(τ ) G12(τ )
G21(τ ) G22(τ )

)
= −

〈
T

(
aiη(τ )
a†

iη(τ )

)(
a†

iη aiη
)〉

, (B2)

where A(τ ) = eτH Ae−τH is the Heisenberg picture with
imaginary time τ . We have the following relations in the
Fourier domain:

zGφφ = iωηGpφ = −iωηGφp, (B3)

z2Gφφ = 2ωη + ω2
ηGpp, (B4)

G11 = 1
4 (Gφφ + 2iGpφ + Gpp), (B5)

G22 = 1
4 (Gφφ − 2iGpφ + Gpp), (B6)

G12 = G21 = 1
4 (Gφφ − Gpp), (B7)

where z is a complex frequency and we take z = iνm

for the Matsubara representation. These relations can be
used for a general Hamiltonian with the form H =∑

iη ωηa†
iηaiη + H1[φ]. Combining Eqs. (B4) and (B7), we

obtain

G−1
φφ = z2 − ω2

η

2ωη

+ 2ωηG−1
φφG21, (B8)

where the first term on the right-hand side is the inverse of
the noninteracting Green’s function. Namely, the off-diagonal
Green’s function G21 ∼ 〈a†a†〉, which is the difference be-
tween Gφφ and Gpp according to Eq. (B7), is proportional to
the self-energy.

APPENDIX C: SELF-ENERGIES IN THE NORMAL STATE

1. Derivation of Eq. (39)

The calculation can be performed in a manner similar to Refs. [48,56]. The analytic continuation gives the correlation function
in the form

χ (iνm) = 2

π

∫
dε tanh

ε

2T
Im GR(ε)[GA(ε − iνm) + GR(ε + iνm)], (C1)

where νm > 0 and the superscripts R and A represent the retarded and advanced Green’s function, respectively. One thus finds

Re χR(ω) = 2

π

∫
dε tanh

ε

2T
Im GR(ε)[Re GR(ε − ω) + Re GR(ε + ω)], (C2)

Im χR(ω) = − 2

π

∫
dε

(
tanh

ε

2T
− tanh

ε − ω

2T

)
Im GR(ε)Im GR(ε − ω). (C3)

We use the noninteracting Green’s function for a semicircular density of states ρ(ε) = 2
πD

√
1 − (ε/D)2 θ (D − |ε|),

GR
0 (ε) = 2ε

D2
[1 −

√
1 − (D/ε)2 θ (|ε| − D)] − iπρ(ε), (C4)

and thereby obtain the following retarded correlation functions at low temperatures and at low frequencies:

Re χR(ω) = − 8

D2

∫
dερ(ε)|ε| + O(ω2) � − 32

3πD
, (C5)

Im χR(ω) � −4πρ(0)2ω. (C6)

Using the relation ρ(0) = 2
πD and performing the analytic continuation from the real to the imaginary axis, we find Eq. (39).

2. Derivation of Eq. (45)

We begin with the spectral representation of the self-consistent equation,

�R(ε) = − 1

2π

∫
dω

∫
dε′ ρ(ε′)Im U R

eff (ω)

ε − ε′ − ω + iδ

(
tanh

βε′

2
+ coth

βω

2

)
. (C7)

The real and imaginary parts are given by

Re �R(ε) = − 1

2π

∫
dω

∫
dε′ ρ(ε′)Im U R

eff (ω)

ε − ε′ − ω

(
tanh

βε′

2
+ coth

βω

2

)
, (C8)

Im �R(ε) = 1

2

∫
dωρ(ε − ω)Im U R

eff (ω)

(
tanh

β(ε − ω)

2
+ coth

βω

2

)
. (C9)
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Assuming that the phonon energy scale is small compared to the electronic energies (bandwidth), and by using the fact that
Im U R is an odd function, we obtain the imaginary part at low energies as

Im �R(max{ε, T } � ωη ) � ρ(0)
∫ ∞

0
dωIm U R

eff (ω)

(
1

2
tanh

β(ε − ω)

2
− 1

2
tanh

β(ε + ω)

2
+ coth

βω

2

)
(C10)

� −2πρ(0)

3

∑
η

g2
ηγηωη

ω̃4
η

∫ ∞

0
dω ω

(
coth

βω

2
− 1

2
tanh

β(ω − ε)

2
− 1

2
tanh

β(ω − ε)

2

)
(C11)

= −πρ(0)

3
(π2T 2 + ε2)

∑
η

g2
ηγηωη

ω̃4
η

, (C12)

where we have assumed that the the dominant contribution to the integral comes from ω � T at low enough temperatures due to
the Fermi distribution functions.

The real part can also be explicitly evaluated by assuming that the damping of the phonons is sufficiently small:

Re �R(ε) = 1

3

∑
η

g2
ηωη

ω̃η

∑
s=±

[
s

2

πD
I

(
ε − sω̃η

D

)
+ Re GR

0 (ε − sω̃η )

]
, (C13)

I (y) = P
∫ 1

−1
dx

sgn x
√

1 − x2

y − x
� 2 ln

(
e

2
|y|

)
(for y → 0), (C14)

where we have taken the low-temperature limit. In a moderately small energy range, i.e., ε, ω̃η � D, we can use the asymptotic
form and obtain

Re �R(ε) = 2ρ(0)

3

∑
η

g2
ηωη

ω̃η

(
ln

∣∣∣∣ε − ω̃η

ε + ω̃η

∣∣∣∣ + πε

D

)
. (C15)

Expanding the expression by ε and noting that the electronic bandwidth is much larger than the phonon energy scales, we find
the first term of Eq. (45).
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