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Thermal transport in two-dimensional nematic superconductors
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We study the thermal transport in a two-dimensional system with coexisting superconducting (SC) and nematic
orders. We analyze the nature of the coexistence phase in a tight-binding square lattice where the nematic state
is modelled as a d-wave Pomeranchuk-type instability and the feedback of the symmetry breaking nematic state
on the SC order is accounted for by mixing of the s, d paring interaction. The electronic thermal conductivity
is computed within the framework of Boltzmann kinetic theory where the impurity scattering collision integral
is treated in the Born and unitary limits. We present qualitative, analytical, and numerical results that show that
the heat transport properties of SC states emerging from a nematic background are quite distinct and depend on
the degree of anisotropy of the SC gap induced by nematicity. We describe the influence of the Fermi surface
topology, the van Hove singularities, and the presence or absence of zero-energy excitations in the coexistence
phase on the the low-temperature behavior of the thermal conductivity. Our main conclusion is that the interplay
of nematic and SC orders has visible signatures in the thermal transport, which can be used to infer SC gap
structure in the coexistence phase.
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I. INTRODUCTION

Low-temperature transport properties of normal metals are
primarily determined by the scattering of electrons by impuri-
ties. For heat transport, the linear T dependence of the thermal
conductivity κn(T ) can be explained using semiclassical trans-
port theory based on the Boltzmann kinetic equation [1],
which has also been used to explain heat transport properties
of conventional superconductors [2]. The advent of uncon-
ventional superconductors like heavy fermions [3], cuprates
[4–7], and iron-based superconductors [8–10], lead to new
questions regarding the low-temperature transport properties
of such systems since the unconventional superconductors
significantly differ from the uniformly gapped conventional
superconductors and their gap structure may contain nodal
points [i.e., points on the Fermi surface (FS) where the su-
perconducting gap is zero]. The small energy gap surrounding
the nodal points allows quasiparticles to be easily excited
and hence these nodal quasiparticles dominate the heat trans-
port properties at low temperatures. Thermal transport in
unconventional superconductors has been previously studied
theoretically by various authors with different levels of so-
phistication [11–16], and thermal conductivity measurements
are a useful probe of the gap structure of unconventional
superconductors [17,18].

Unconventional superconductors possess complex phase
diagrams with multiple broken symmetry phases coexisting
with superconductivity. Often these multiple phases appear at
similar ordering temperatures when material properties (like
dopant concentration) are varied over wide ranges. While it
is fairly common for unconventional superconductors to have
proximate magnetic and superconducting orders [19–23],
only in recent years have nematic states been reported for

both iron-based superconductors [24–26] as well as cuprates
[27–32]. (Here nematic order means electronic nematicity,
where the electronic state has the same translational symmetry
as the underlying crystal, but a lower rotational symmetry.)
Studies on the origin of the nematic state [33] argue that
in iron-based superconductors, nematic order is driven by
either spin fluctuations [34,35] (in the case of pnictides) or
orbital fluctuations [36–38] (in the case of chalcogenides).
For cuprates it has been proposed that the nematicity arises
from fluctuations of stripe order [39,40] or from the instability
of the Fermi surface (Pomeranchuk instability) [41–44]. Fur-
ther the the superconducting instability in a nematic electron
fluid has been studied using renormalization group (RG) tech-
niques [45]. It has been shown that fluctuations of the nematic
order parameter at the quantum critical point eventually leads
to the superconducting pairing instability.

Regardless of the origin of the nematic state, the influ-
ence of nematicity on the emerging superconducting state
can change the character of the superconducting order
from s-wave to d-wave pairing [46]. Additionally, since the
anisotropy of the superconducting state correlates with the
Fermi surface deformation of the nematic state, the compe-
tition or cooperation between the SC and nematic orders is
found to depend on the nematic distortion of the Fermi surface
relative to the anisotropy of the superconducting gap function
[47].

Nematic superconductors themselves may display interest-
ing thermal transport behavior. For instance, the nematic to
isotropic quantum phase transition deep within the d-wave
superconducting phase of a two-dimensional tetragonal crys-
tal are predicted, within the framework of the Boltzmann
equation, to display a logarithmic enhancement of the ther-
mal conductivity at the nematic critical point [48]. Other

2469-9950/2022/105(21)/214515(13) 214515-1 ©2022 American Physical Society

https://orcid.org/0000-0002-2864-3353
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.214515&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1103/PhysRevB.105.214515


SEN CHOUDHURY, PETERSON, AND IDZERDA PHYSICAL REVIEW B 105, 214515 (2022)

theoretical studies, performed using the quasiclassical formal-
ism, show that the oscillations of the thermal conductivity in
multiband superconductors with an anisotropic gap under a
rotating magnetic field, change sign at low temperatures and
fields and can be used to distinguish between nodes and min-
ima in the energy gap of iron-based superconductors [49,50].

Recent experimental studies have examined the structure
of the SC gap in iron-based nematic superconductors. Using
specific heat measurements, it was found that the electronic
specific heat was linear in T for T < Tc, indicating the pres-
ence of line nodes [51] while angle-resolved photo-emission
spectroscopy (ARPES) [52] observed spontaneous breaking
of the rotational symmetry of the SC gap amplitude as well as
the unidirectional distortion of the Fermi pockets. (It should
be noted that this latter study indicated that in the compound
LiFeAs, nematicity could occur below Tc and speculated that
superconducting state develops a spontaneous nematic order
at Tc.)

The gap structure of nematic superconductors have also
been probed by thermal conductivity experiments [53,54]
demonstrating that in the T → 0 limit, the residual linear term
κ (T )/T is extremely small, indicating nodeless superconduc-
tivity in FeSe. Finally in the case of cuprate superconductors
[28,29] and strontium ruthenate materials [55], transport
measurements show large strongly temperature-dependent
anisotropies in these otherwise isotropic electronic systems.

Motivated by these experimental studies and in comple-
ment to previous theoretical studies, this paper investigates
the thermal transport properties of a nematic system, where
the superconducting phase arises out of a nematic background
(i.e., the onset of SC order occurs at a lower temperature
than the nematic order). To treat the nematic and SC orders
on equal footing, we introduce a mean-field Hamiltonian
and determine how the interaction between these coexisting
phases impacts the heat transport properties of the system. We
emphasize that in this paper we study a single-band electronic
system with a tight binding dispersion ξk. We do not consider
the effects arising from the multiplicity of bands and there-
fore neglect orbital degrees of freedom. Thus our analysis
is not directly applicable to iron pnictide superconductors
(where multi orbital mixing plays a significant role), but is
more relevant for cuprate superconductors. Nevertheless, we
believe that the analysis given below provides important in-
sights regarding the interplay of superconducting and nematic
orders and their impact of thermal transport properties of such
systems, particularly in the coexistence phase.

For our transport calculations we use the quasiparticle
Boltzmann equation (which is physically more transparent
than calculations based on the Green’s function or quasiclas-
sical methods), and calculate the thermal conductivity for the
case where the dominant scattering process of quasiparticles
is by nonmagnetic impurities. Within Boltzmann theory, we
only consider the case of small phase shifts (i.e., the Born
approximation) and phase shifts close to π/2 (i.e., the uni-
tary limit). The quasiparticle Boltzmann approach fails at low
temperatures when low-energy quasiparticles cannot be well
established due to impurity broadening. In the following we
assume that a quasiparticle description applies [56].

The organization of the paper is as follows. In Sec II A,
we discuss the model Hamiltonian and the formalism we

have employed. The self-consistent approach to determining
coexisting nematic and SC order parameters is presented in
Sec. II B and the kinetic formalism is described in Sec. II C.
Numerical results for heat conductivity are discussed in
Sec. III. Section IV is a brief conclusion.

II. MODEL AND FORMALISM

A. Hamiltonian

For our model we consider a 2D system with a single band
with an inversion symmetric dispersion ξk(=ξ−k ) given by

H0 =
∑

k,σ=±1

ξkc†
kσ

ckσ , (1)

where

ξk = −2[t1(cos kx + cos ky) + 2t2 cos kx cos ky] − μ.

This describes the nearest-neighbor and next-nearest-neighbor
hopping on a 2D square lattice with lattice spacing a = 1. The
nematic state is modelled through an additional mean-field
Hamiltonian [57]

Hnem =
∑
k,σ

� fkc†
kσ ckσ , � = −Vnem

∑
k

fk〈c†
kck〉, (2)

where � is the nematic order parameter and fk = (cos kx −
cos ky). This additional term causes a deformation of the
Fermi surface (FS), which elongates it along the kx axis and
shrinks it along the ky axis as is illustrated in Fig. 1. Thus
in the nematic state (when � �= 0) the deformed FS does not
have the same point group symmetry of the underlying 2D
lattice and can capture the effect of symmetry-breaking FS
deformations on the SC state [47]. In this paper, only the case
where the nematic transition temperature is greater than the
superconducting critical temperature (TN > Tc) is considered
(i.e., superconductivity arises inside the nematic state).

The effect of the symmetry-broken nematic state on the
development of the SC order can be accounted for by using
a SC order parameter of the form [47]

�k = �Yk

where Yk = (1 + r fk )/
√

1 + r2 (Yk is normalized by√
1 + r2 to ensure that

∫
d2k

(2π )2 |Yk|2 = 1) and �k = �−k.
Here r is a phenomenological anisotropy parameter and is a
measure of the degree of anisotropy caused by the coexisting
nematic order. (The anisotropy parameter r is proportional
� and when � is zero, the SC interaction reduces to pure
s wave.) This form of the order parameter encapsulates the
mixing of the s and d-wave components induced by nematic-
ity (it is assumed that superconductivity only exists in the
spin singlet channel). While r ∝ �, it should be noted that
it also depends on details of the electronic structure [47] that
are beyond the scope of this paper (hence r is treated as a
phenomenological parameter). In the nematic state, r �= 0 and
can be either positive or negative.

In Fig. 2, the nonuniform SC gap amplitude is illustrated as
a colored band bordering the deformed FS for different values
of the anisotropy parameter r. As shown in the figure, the
direction of the SC gap maximum relative to the direction FS
elongation (induced by the nematic order) depends on whether
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FIG. 1. Evolution of the Fermi surface shape under nematic dis-
tortion at different temperatures. Closed FS (μ = −4.8TN ) at T > TN

(black curve), at T = 0.97TN (magenta curve) and T = 0 (green
curve). The blue dots indicate the locations of the saddle points in
the band structure that lead to van Hove singularities in the bare DOS
(see Fig. 5). It can be seen that the magenta curves pass through
the saddle points at (π, 0). The band parameters are t1 = 6TN and
t2 = −TN .

r is positive or negative. Thus, the superconducting part of the
mean-field Hamiltonian can be written as

HSC = 1

2

∑
k,σ

σ�Yk(c†
kσ c†

−k−σ + H.c.),

� = −Vsc

∑
k

Yk〈c−k,↓ck,↑〉, (3)

and the full mean-field Hamiltonian for intertwined nematic
and superconducting orders given by

H = H0 + Hnem + HSC

can be recast into a matrix form for particular spin orientations
σ = ±1(↑,↓)

H (σ ) = 1

2

∑
k

�̂
†
k,σ Ĥ

(σ )
k �̂k,σ ,

Ĥ(σ )
k =

(
ξk + � fk σ�k

σ�k −ξk − � fk

)
, (4)

where �̂
†
k,σ = (c†

kσ , c−k−σ ) is the Nambu vector. The leading
factor of 1/2 is from the particle-hole doubling of the bands
in superconductivity. The eigenvalues of Ĥ(σ )

k give the quasi-
particle energies, ±Ek, where

Ek =
√

(ξk + � fk )2 + �2
k. (5)

As noted earlier, the nature of the spectrum critically depends
on the value of the anisotropy parameter, r. When r > 0,

FIG. 2. A qualitative illustration of the superconducting gap am-
plitude for different values of the anisotropy parameter r along the
FS deformed by the nematic order (dotted line indicates original
FS, solid line indicates deformed FS). For positive values of r, the
direction of the the SC gap maximum (cyan) is antialigned with
the FS elongation. For negative values of r, the direction of the
the SC gap maximum (orange) is aligned with the FS elongation.
The parameters used for the illustration are μ = −4.8TN , t1 = 6TN ,
t2 = −TN , � = 0.2TN , and � = 1.34TN .

the spectrum has nodes (i.e., points on the nematic FS for
which Ek = 0) only if the parameter r exceeds a critical value

r > r+
c where r+

c = − 2t1t2+t2�−4t2
2

4t2
2 +t2μ−4t1t2

. When r < 0, the spectrum
has nodes only if the parameter r is below a critical value

r < r−
c where r−

c = − 2t1t2+t2�+4t2
2

4t2
2 +t2μ+4t1t2

. These critical values r±
c

can be determined from the condition Ek = 0, which occurs
only when ξ̃k ≡ ξk + � fk and �k simultaneously vanish. To
find the location of the nodes we set

ξ̃k = 0 ⇒ k∗
y = cos−1

(
− μ + 2t1 cos kx − � cos kx

2t1 + 4t2 cos kx + �

)
, (6)

which gives us the ky coordinates of all points along the
nematically deformed FS on the upper half of the BZ as
a function of kx. To find the locations of the nodes on the
deformed FS, we set

�(kx,k∗
y ) = 0 ⇒ k±

x = cos−1

(−t2 − rt1 ± p

2rt2

)
,

p =
√

t2
2 + r2t2

1 − rt2� − r2μt2. (7)

In Fig. 3(a) we display k±
x as a function of r, which

identifies the critical values r±
c and shows that nodes only

exist at k+
x when r is positive and at k−

x when r is nega-
tive. The location of these nodes depends on the value of
the parameter r. Figure 3(b) shows the range of locations of
the point nodes on the deformed FS as r takes values in the
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FIG. 3. (a) Equation (7) has solutions k+
x only when r > r+

c (cyan
curve) and k−

x only when r < r−
c (orange curve). With the parameters

μ = −4.8TN , t1 = 6TN , t2 = −TN , and � = 1.34TN , the critical r val-
ues are r+

c ≈ 0.52866 and r−
c ≈ −0.61447. The dotted-vertical lines

emphasize that there are no solutions to Eq. (7) when r is in the range
r−

c < r < r+
c . (b) Range of locations (±k+

x , ±k∗
y ) of the nodes when

r+
c < r < 1 (shaded in cyan) and (±k−

x , ±k∗
y ) when −1 < r < r−

c

(shaded in orange). A particular r value only corresponds to point
nodes located either in the cyan regions or in the orange regions.

range r+
c < r < 1 (region shaded in cyan) and −1 < r < r−

c
(region shaded in orange). It should be emphasized that at any
given r value only a single point node exists in each quadrant
of the BZ, the shaded regions only represent the range of
locations.

FIG. 4. Gap amplitude |�k| in the coexistence phase along the
nematically deformed FS (ξ̃k = 0) at T = 0 with parameters μ =
−4.8TN , t1 = 6TN , t2 = −TN , r+

c ≈ 0.52866, and r−
c ≈ −0.61447.

(a) Low-energy excitations when 0 < r < r+
c occur at (±π,±k∗

y ) in
the BZ before the appearance of nodes. When r > r+

c secondary local
maxima of the SC gap amplitude appear at (±π,±k∗

y ). (b) Low-
energy excitations when r−

c < r < 0 occur at (0, ±k∗
y ) in the BZ

before the appearance of nodes. When r < r−
c secondary local max-

ima of the SC gap amplitude appear at (0,±k∗
y ).

In Fig. 4 we plot the |�k| along the deformed FS. We
see that for 0 < r < r+

c , |�k| has minima at (±π,±k∗
y ),

whereas for r−
c < r < 0, the minima occur at (0,±k∗

y ). There-
fore, these also indicate the locations of the excitations with
the lowest energies. However, once the nodes form (i.e., for
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FIG. 5. Evolution of the bare DOS under the nematic order at
different temperatures for a closed (μ = −4.8TN ) FS. The DOS at
T > TN and at T = 0 are given by the black and green curves in.
The van Hove singularities in the bare DOS cross the Fermi level
at T = 0.97TN (magenta curve). This occurs when the deformed FS
passes through the saddle point located at (π, 0) as seen in Fig. 1 (see
text for details).

r > r+
c or r < r−

c ), |�k| has a secondary local maxima at
these same locations in the BZ. The location of the low-energy
excitations (before the formation of nodes) and the appearance
of these secondary maxima of the gap amplitude (after the for-
mation of nodes) have a significant effect on the heat transport
properties of the system (see Sec. III).

While the presence of the nodes plays a dominant role in
determining the transport properties in the coexistence phase
at low temperatures (as will be discussed later in Sec. III), the
existence of van Hove singularities is an important feature that
influences transport properties for T > Tc when the system
is in the purely nematic phase. The dispersion relation in the
nematic phase (ξ̃k = ξk + � fk) has saddle points (|∇kξ̃k| =
0) close to the FS at (kx, ky) = (π, 0) and (0, π ), which can
be seen in Fig. 1 as the blue points. These saddle points cause
van Hove singularities to occur in the bare density of states at
energies ξ̃ vH

k = −μ + 4t2 ± 2�. Furthermore, as can be seen
in Fig. 1, the nematic FS passes through these saddle points
when the closed FS transitions to an open FS along the k̂x

axis.
In the absence of nematicity, the saddle points at (kx, ky) =

(π, 0) and (0, π ) lead to van Hove singularities in the bare
DOS at the same energy [57] (ξ vH

k = −μ + 4t2) as seen in the
black curve in Fig. 5. However as the nematic order parameter
becomes nonzero, the saddle points at (π, 0) and (0, π ) lead
to van Hove singularities in the bare DOS at different energies
ξ̃ vH

k = ξ vH
k − 2� and ξ̃ vH

k = ξ vH
k + 2� respectively. This can

be seen from the two singularities present in both the magenta

and green curves in Fig. 5. When the nematic order parameter
reaches the critical value �c = | − μ

2 + 2t2|, the van Hove
singularities cross the Fermi level as indicated in the magenta
curves in Fig. 5. The van Hove singularities crossing the Fermi
level [58] has an impact on the transport properties of the
system when T > Tc and will be discussed in Sec. III.

B. Self-consistent equations for nematicity
and superconductivity

The self-consistent equations for � and � are obtained by
calculating the averages in (2) and (3), respectively [47]

� = Vnem

∑
k

fk

2

[
ξk + � fk

Ek
tanh

Ek

2T
− 1

]
, (8)

� = −Vsc�
∑

k

Y2
k

2Ek
tanh

Ek

2T
. (9)

The equation for � in the pure nematic phase is obtained
by setting � = 0 in Eq. (8) and leads to the following self-
consistent equation:

� = Vnem

∑
k

fk

2

[
tanh

ξk + � fk

2T
− 1

]
. (10)

The equation that determines the nematic transition tempera-
ture TN is obtained by setting � → 0 as T → TN in Eq. (10),
yielding

1 = Vnem

2

∑
k

f 2
k

2TN

[
sech2 ξk

2TN

]
. (11)

The superconducting transition temperature in the absence of
nematicity (T 0

c ) can be determined from Eq. (9)

1 = −Vsc

∑
k

Y2
k

2ξk
tanh

ξk

2T 0
c

. (12)

Note that in all the cases considered in this paper, T 0
c has been

set to 0.4TN . However, the superconducting transition temper-
ature (Tc) in the presence of the nematic order is different from
T 0

c as can be seen in Fig. 6.

1. Numerical solution of self-consistent equations

Equations (8) and (9) can be solved self-consistently. For
clarity, the parameters Vnem and Vsc are eliminated in favor of
TN and T 0

c using Eqs. (11) and (12). Similarly, �0(T ) (the
nematic order parameter in the absence of SC) can also be
solved self-consistently from Eq. (10) where Vnem was again
eliminated in favor of TN using Eq. (11). The solutions �(T )
and �(T ) for r = ±0.2 are shown in Fig. 6. It can be seen
that in the presence of SC, the nematic order parameter is
slightly diminished from its value in the absence of SC [i.e.,
�(T ) < �0(T ) when �(T ) �= 0]. The SC transition tempera-
ture is also lower in the presence of nematicity (Tc = 0.211TN

for r = 0.2, Tc = 0.317TN for r = −0.2, and T 0
c = 0.4TN ),

which is indicative of competing nematic and SC orders [47].
This was found to be the case for all parameter combinations
studied in this paper.
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FIG. 6. Self-consistent solutions for �(T ) and �(T ) on the
closed (μ = −4.8TN ) tight-binding Fermi surface when r = 0.2
(cyan curves), r = −0.2 (orange curves), and T 0

c = 0.4TN . Also pic-
tured is �0(T ), the nematic order in the absence of superconductivity
(black curve). The band parameters are t1 = 6TN and t2 = −TN .

C. Kinetic method for heat conductivity

We use the Boltzmann kinetic equation approach to calcu-
late the thermal conductivity for the system with intertwined
orders. This method was widely used to compute thermal con-
ductivity, both in s-wave superconductors [2,59], as well as
in unconventional superconductors [11,48,60,61]. The expres-
sion for the thermal conductivity for a superconductor in the
Boltzmann kinetic approach is given by the expression [60]

κi j = − 2

T

∫
d2k

(2π )2
E2

kvk,ivk, j
∂ f 0

k

∂E
τk, (13)

where f 0
k = 1

eEk/T +1
is the equilibrium Fermi-Dirac

distribution function. The quasiparticle velocity is defined as

vk = ∇kEk (14)

and the quasiparticle relaxation time is given by [11]

τ−1
k = Nimp

2π

h̄

∫
d2k′

(2π )2
|tk,k′ |2δ(Ek − Ek′ ) (15)

where tk,k′ is the amplitude for a single impurity to scatter a
quasiparticle from the state with momentum k and energy Ek
to the state with momentum k′ and energy Ek′ and Nimp is the
density of impurities.

In order to determine the amplitude tk,k′ , we first write the
impurity scattering Hamiltonian in the same Nambu basis as
Eq. (4):

Himp = vimp

∑
k,k′,σ

c†
k′σ ckσ = 1

2

∑
k,k′

�̂
†
k′σ v̂�̂kσ ,

v̂ = vimpτ̂3, (16)

where τ̂3 is the Pauli matrix in Nambu space and vimp is a
nonmagnetic isotropic impurity potential. The operators c†

k,σ

and ck,σ , which create and destroy normal state particles, are
related to the superconducting state quasiparticles a†

k,σ
and

ak,σ by the Bogoliubov transformation

�̂k,σ = B̂(σ )
k Âk, (17)

B̂(σ )
k =

(
uk −vk
vk uk

)
, (18)

where uk = Ek+ξk√
(Ek+ξk )2+�2

k

, vk = σ�k√
(Ek+ξk )2+�2

k

, and Â†
k =

(a†
k,σ ′ , a−k,−σ ′ ). Upon performing the Bogoliubov transforma-

tion (18) on the Nambu vectors, we get

Himp = 1

2

∑
k,k′

Â†
kD̂k,k′ Âk, (19)

where the matrix D̂k,k′ is given by

D̂k,k′ = (
B̂(σ )

k′
)†

v̂B̂(σ )
k . (20)

Using this formalism, we can now determine some impor-
tant terms. From the ordering of the A†

k vector, the amplitude
tk,k′ in the Born approximation is given by

tk,k′ = (D̂k,k′ )11. (21)

To get the amplitude in the unitary limit, we replace v̂ in
Eq. (20) by the T matrix for impurity scattering

D̂k,k′ = (
B̂(σ )

k′
)†

T̂ B̂(σ )
k . (22)

The T matrix can be obtained from [11] the Lippmann-
Schwinger equation

T̂ = v̂ + v̂
∑

k

Ĝk(E )T̂ (23)

where Ĝk(E ) is the single-particle Green’s function for the
superconductor in the absence of impurities, and is given by

Ĝk(E ) = 1

E2 − E2
k

(
E + ξk σ�k
σ�k E − ξk

)
. (24)

Using Eq. (24) in Eq. (23), we get

T̂ = vimpτ̂3 + iv2
impÑ0(gÎ2×2 + hτ̂1)

1 + v2
impÑ2

0 (|g|2 − |h|2)
. (25)

The functions g(Ek ) and h(Ek ) are given by

g(Ek ) = − i

Ñ0

∑
k′

Ek

E2
k − E2

k′
, (26)

h(Ek ) = − i

Ñ0

∑
k′

�k′

E2
k − E2

k′
, (27)

where Ñ0 ≡ N (ξ̃k = 0) is the density of states on the FS de-
formed due to nematicity and therefore depends on �(T ). As
T → TN , Ñ0 = N0 where N0 ≡ N (ξk = 0), which is the den-
sity of states on the original tight-binding FS. When � → 0,
g(Ek ) = 1 and h(Ek ) = 0. The functions g(Ek ) and h(Ek ) are
the normal and anomalous part of the quasiparticle self-energy
respectively [60]. The real part of the function g(Ek ) is propor-
tional to the quasiparticle density of states and the imaginary
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part corresponds to dispersive corrections to the quasiparticle
self-energy.

The function h(Ek ) goes to zero for all superconducting
states with the order parameters corresponding to nonidentity
representations of the crystal symmetry group (for example,
the dx2−y2 and dxy pairing states [11,60]). In our case h(Ek ) �=
0 due to the feedback from the symmetry broken nematic state
on the SC order. The T matrix in Eq. (25) is directly parame-
terized in terms of the strength of the impurity potential vimp,
however it can also be equivalently parameterized in terms of
the normal state scattering phase shift δN [11]. In this paper
we only consider two limiting cases: weak impurity potential
(vimpÑ0 � 1 ⇒ δN � π/2), which puts us in the limit where
the Born approximation is valid, whereas a strong impurity
potential (vimpÑ0 � 1 ⇒ δN = π/2) puts us in the unitary
limit. In the Born and unitary limits, the T matrix in Eq. (25)
reduces to

T̂Born = tBorn
N τ̂3, (28)

T̂Unitary = tUnitary
N

|g|2 − |h|2 (gÎ2×2 + hτ̂1), (29)

where tBorn
N = vimp and tUnitary

N = i/Ñ0. Using Eqs. (21), (22),
(28), and (29) we can compute the amplitude tk,k′ in the Born
and unitary limits, respectively:

|tk,k′ |2 =
∣∣tBorn

N

∣∣2

2

(
1 + ξkξk′ − �k�k′

EkEk′

)
, (30)

|tk,k′ |2 =
∣∣tUnitary

N

∣∣2

2

[
a

(
1 + �k�

′
k

EkE ′
k

)

+ b
ξkξ

′
k

EkE ′
k

+ 2c

(
�k

Ek
+ �′

k

Ek
′

)]
, (31)

where a, b, and c are defined as

a = |g|2 + |h|2
||g|2 − |h|2|2 , (32)

b = |g|2 − |h|2
||g|2 − |h|2|2 , (33)

c = Re(gh∗)

||g|2 − |h|2|2 . (34)

Using Eqs. (30) and (31) in Eq. (15), the scattering rates in
both the Born and unitary limits respectively are found to be

τ−1
k = τ−1

NF

(
Re(g(Ek )) − �k

Ek
Re(h(Ek ))

)
, (35)

τ−1
k = τ−1

NF

{
a

[
Re(g(Ek )) + �k

Ek
Re(h(Ek ))

]

+ 2c

[
�k

Ek
Re(g(Ek )) + Re(h(Ek ))

]}
, (36)

where τ−1
NF is the scattering rate on the nematically deformed

FS in the absence of the SC order and is defined as τ−1
N (ξ̃k ) =

2π
h̄ Nimp|tN |2Ñ (ξ̃k ), τ−1

NF = τ−1
N (ξ̃k = 0). In the Born and uni-

tary limits tN has been defined after Eq. (29) as tBorn
N and

tUnitary
N . Note that when � = 0, a = b = 1, and c = 0, and we

find τ−1
k = τ−1

N in both the Born and unitary limits. Further,

FIG. 7. Heat conductivity components [κN
i j (T )] of the nemati-

cally deformed closed FS with band parameters t1 = 6TN , t2 = −TN ,
and μ = −4.8TN in the absence of SC order. κN

i j (T ) is normalized
by the conductivity [κn(T )] of the normal state (originalFS,� = 0).
The normal state conductivity is T linear, κn(T ) = constant × T .

when � → 0 ⇒ r → 0 ⇒ �k = � and Ñ0 = N0, τN = τn,
Re(g(Ek )) = Nsc(Ek )/N0, h(Ek ) = �

Ek
g(Ek ), where Nsc(Ek ) is

the quasiparticle DOS in the superconducting state. This re-
duces the quasiparticle scattering rate in Eq. (35) to τ−1

k =
τ−1

n
Nsc (Ek )

N0
(1 − �2

E2
k

), which is the usual expression for an s-

wave superconductor in the Born limit [2,60]. Again in the
case when � → 0 ⇒ r → 0 and �k has dx2−y2 symmetry,
h(Ek ) = 0, which implies a = 1/|g|2 and c = 0. Therefore
Eq. (35) reduces to the well-known expression [11,60], τ−1

k =
τ−1

n
Nsc (Ek )

N0
, for the scattering rate of the dx2−y2 pairing state

in the Born limit. Furthermore Eq. (36) reduces to, τ−1
k =

τ−1
n

Nsc (Ek )
N0

1
|g(Ek )|2 , which is the scattering rate for the dx2−y2

pairing state in the unitary limit [11,60]. Using Eqs. (35) and
(36) we numerically compute the thermal conductivity tensor
κi j (T ) from Eq. (13) in both the Born and unitary limits.
We also compute the conductivity in the purely nematic state
κN (T ) by setting � = 0 in Eq. (13), thus eliminating the un-
knowns Nimp and vimp in favor of the nematic state relaxation
time τN .

III. NUMERICAL RESULTS AND DISCUSSION

A. Pure nematic phase: � �= 0, � = 0

We begin our discussion by calculating the thermal con-
ductivity of the pure nematic state for our tight-binding model
with an initially closed Fermi surface. The components of
the thermal conductivity tensor are normalized by the normal
state (� = 0 and � = 0) conductivity [κn(T )]. The results are
shown in Fig. 7, where we have treated the impurity scattering
within the Born approximation.
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It can be seen that the κN
xx and κN

yy components of the
thermal conductivity tensor are no longer equal, as is the
case for the original (� = 0) tight-binding Fermi surface (i.e.,
κn

xx = κn
yy = κn in the normal state). This is due to the fact

that the nematic deformation has enhanced the quasiparticle
velocities in the y direction while diminishing the velocities
in the x direction (see Fig. 10). This results in κN

yy always
being greater than κN

xx. Despite these modifications to the
quasiparticle velocities, the κN

xy components still vanish due to
the symmetry inherent in the velocities on the deformed FS.

While the effect of the nematic deformation on the Fermi
velocities is an important characteristic, it cannot explain all
the features of the thermal conductivity in Fig. 7. If the ne-
matic deformation only impacted the velocities as explained
above, it would cause κN

yy to increase by the same amount that
κN

xx decreases from κn, leading to a symmetric splitting in the
κN

xx and κN
yy components.

The asymmetric splitting in Fig. 7 is due to the fact that
the particle lifetimes in the nematic state are different from
the normal state. The particle lifetime in the nematic state is
τN (ξ̃k ) ∝ 1/Ñ (ξ̃k ) [defined below Eq. (36)]. In Fig. 5 it can
be seen that as the van Hove singularities approach the Fermi
level, Ñ (ξ̃k ) near the Fermi level increases, which causes
τN (ξ̃k ) near the Fermi level to decrease. Thus, near TN (the van
Hove singularities cross the Fermi level when T = 0.97TN )
κN

xx decreases much more quickly than κN
yy increases. However

after the van Hove singularity passes through the Fermi level,
the DOS Ñ (ξ̃k ) near the Fermi level begins to decrease (see
Fig. 5), causing τN to increase. This results in long-lived, high
velocity quasiparticles, which conduct heat more efficiently,
forcing κN

yy to increase rather rapidly.
Simultaneously, although the velocity of the quasiparti-

cles moving in the x direction are reduced, the lifetimes are
increased (which more than compensates for the velocity re-
duction), causing κN

xx to also increase, but at a much slower
rate than κN

yy. Finally, near T = 0, �(T ) has reached saturation
and remains at a constant value resulting in both the particle
velocities and lifetimes becoming nearly constant at low T .
This results in the usual metallic state with a conductivity that
is linear in T . Thus, van Hove singularities crossing the Fermi
level [58] (due to FS deformations caused by nematicity) have
a significant effect on the heat transport properties properties
of the system when it is in the pure nematic phase.

B. Pure superconducting phase: � = 0, � �= 0

In Fig. 8 we have calculated the thermal conductivity of
the pure SC states for our tight binding model. For the vari-
ous pairing states, namely, s, dx2−y2 , the values of �(T ) are
obtained by self consistently solving the weak coupling gap
equation. In the Born limit, we see the characteristic expo-
nential fall in the thermal conductivity of the isotropic fully
gapped s-wave superconductor [2].

The general behavior of κ (T )/T in the Born limit, for the
dx2−y2 state also agrees with earlier calculations [11,16,62],
where the low-T regime is dominated by the nodal quasi-
particles, producing a finite residual κ/T . The dx2−y2 pairing
has nodes on flat parts of the FS with large Fermi veloc-
ity and smaller DOS. By gapping the corners of the FS
with large DOS, the scattering rate is significantly reduced,

FIG. 8. Thermal conductivity components of the closed FS with
band parameters μ = −48Tc, t1 = 60Tc, and t2 = −10Tc in the pure
dx2−y2 and s-wave superconducting states in both the Born and uni-
tary limits.

producing longer-lived high-velocity nodal quasiparticles that
result in heat conductivity exceeding that of the normal state.
The scattering rate in the pure s-wave state is given by
the expression [60] [see discussion below Eq. (36)], τ−1

k =
τ−1

N
Nsc (Ek )

N0
(1 − �2

E2
k

). However, in the case of the pure dx2−y2

state [60], τ−1
k = τ−1

N
Nsc (Ek )

N0
.

Comparing the coherence factors for various states, one
can notice that near their transition temperatures the effective
relaxation time for the s-wave state is greater than the dx2−y2

state. This results in the observed different slopes near Tc in
Fig. 8 for the Born limit.

In Fig. 8 we have also plotted thermal conductivity in the
the unitary limit for both s and dx2−y2 pairing states. Again
the general behavior of κ (T )/T in the unitary limit agrees
with previously published results [11,16]. The unitary limit
result for the dx2−y2 pairing state is in better agreement with
experimental data for cuprates, than the Born approximation
result. It has been found experimentally that at low temper-
atures κ (T ) has a power-law like temperature dependence
with an exponent greater than unity and that κ (T ) > κn(T )
for intermediate temperatures [63,64].

C. Coexistence phase: � �= 0, � �= 0

In this section and what follows, to study the effects of SC
order emerging from a nematic background, we discuss the
components of the thermal conductivity tensor and thermal
transport in the coexistence phase, where the SC order and
the nematic order are simultaneously nonzero. To illustrate
important aspects of our results and emphasize the fact that
κyy is always greater than κxx when � �= 0, we have cho-
sen to normalize κyy(T ) and κxx(T ) by the nematic state
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FIG. 9. Thermal conductivity components (κxx and κyy) in the coexistence phase in both the Born (blue curves) and unitary (red curves)
limits normalized by the κN

yy(T ) component in the pure nematic phase when (a) r = 0.2 with Tc = 0.211TN , (b) r = 0.45 with Tc = 0.158TN ,
(c) r = 0.6 with Tc = 0.140TN , (d) r = −0.2 with Tc = 0.317TN , (e) r = −0.55 with Tc = 0.332TN , and (f) r = −0.7 with Tc = 0.323TN . The
parameters used are μ = −4.8TN , t1 = 6TN , t2 = −TN , and � = 1.34TN . The critical r values are r+

c ≈ 0.52866 and r−
c ≈ −0.61447. Thus the

FS (at T = 0) in the coexistence phase corresponds to the green curve in Fig. 1).

thermal conductivity component κN
yy(T ), as a result of which

κyy(T ) = 1 at T = Tc. Apart from the the distortion of the
FS, the nematic order parameter �(T ) has another important
consequence, which pertains to the coexistence phase. As
previously discussed, the feedback from the symmetry broken
nematic phase on the SC order leads to the mixing of the
s-wave and d-wave channels. The degree of this mixing is
determined by the parameter r ∝ �(T ). Therefore, we cat-
egorize our study of thermal transport into three cases: weak
mixing (|r| � |r±

c |), moderate mixing (|r| � |r±
c |), and strong

mixing (|r| > |r±
c |), all displayed in Fig. 9. As before, we

have computed the thermal conductivity using the Boltzmann
transport equation method and treated the impurity scattering
in both the Born and unitary limits (as outlined in Sec. II C).

There are certain common features in all the plots shown in
Fig. 9. The conductivity components in the Born limit either
fall to zero [Figs. 9(a), 9(b), 9(d), and 9(e)] or to a residual
value [Figs. 9(c) and 9(f)]. These changes occur significantly
more slowly than the corresponding components in the uni-
tary limit due to the fact that, in the unitary limit (which
corresponds to strong scattering centers), the quasiparticles
are significantly more short-lived than the Born limit (which

corresponds to weak scattering centers). These longer-lived
quasiparticles in the Born limit conduct heat more efficiently
than those in the unitary limit at lower temperatures.

Another common feature in Fig. 9 is that when r > 0,
κBorn

yy (T ) falls roughly at the same rate as κBorn
xx (T ) as T de-

creases from Tc relative to the conductivity in the pure nematic
phase [see Figs. 9(a)–9(c)]. The slight difference in slope is
because the Fermi velocity in the x and y directions are not
equal. For the case when r < 0, κBorn

xx (T ) falls noticeably more
slowly than κBorn

yy (T ) for T < Tc [see Figs. 9(d)–9(f)] due to
the correlation between the locations of the low-energy excita-
tions in the BZ (when r > 0 as compared to when r < 0) and
the Fermi velocities (ṽF,x and ṽF,y) in the x and y directions
along the nematically deformed FS.

When r > 0, the low-energy excitations are located near
(±π,±k∗

y ) whereas they are located near (0,±k∗
y ) for r < 0

[compare Fig. 4(a) with Fig. 4(b)]. These low-energy excita-
tions are primarily responsible for carrying the heat current
in the coexistence phase. The quasiparticle velocities in the
coexistence phase are vk ≈ ṽF

ξ̃k
Ek

, where ṽF is the Fermi
velocity corresponding to the nematically deformed FS. In
the regions around low-energy excitations for both r > 0 and
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FIG. 10. Quasiparticle velocity in the pure nematic state plotted
along the nematically deformed FS (ṽF = ∇k ξ̃(kx ,k∗

y )) when T = 0
with band parameters μ = −4.8TN , t1 = 6TN , and t2 = −TN .

r < 0, ṽF,y are roughly equal and greater than ṽF,x resulting in
κBorn

yy being always greater than κBorn
xx with the slope of κBorn

yy
being roughly equal for both r > 0 and r < 0. However, as
seen in (see Fig. 10) the Fermi velocities in the x direction
are greater around the point (0,±k∗

y ) compared to (±π, k∗
y ),

resulting in faster quasiparticles for r > 0 values compared to
when r < 0. This results in κBorn

xx (T ) to decrease more slowly
near Tc for r < 0 when compared to r > 0.

1. Weak mixing: |r| � |r±
c |

At low values of r the SC gap is weakly anisotropic
(for r = 0.2: |�k|min/|�k|max = 0.46 and for r = −0.2:
|�k|min/|�k|max = 0.48 and) and thus differs only slightly
from the case of the uniformly gapped s-wave superconductor
[see Figs. 2(a) and 2(d)]. Therefore, in the case of weak
mixing [r = ±0.2, see Figs. 9(a) and 9(d)] the thermal con-
ductivity profiles for both the components κxx and κyy are
similar to the well known results for s-wave pairing [2,60]
[compare Figs. 9(a) and 9(d) to Fig. 8]. Since 0.2 � r+

c and
−0.2 � r−

c for our chosen band parameters, no nodes exist
in these cases and the FS is fully-gapped by the SC order.
Therefore, there are only gapped excitations in the coexistence
phase, leading to an exponential reduction at low T for both
the Born and unitary limits in Figs. 9(a) and 9(d).

2. Moderate mixing: |r| � |r±
c |

As the magnitude of s-wave and d-wave mixing is al-
lowed to increase to r = 0.45 (|�k|min/|�k|max = 0.08) and
r = −0.55 (|�k|min/|�k|max = 0.05), the SC gap develops
deep minima on the FS [see Figs. 2(b) and 2(e) and Fig. 4]
with the resulting thermal conductivity profiles are displayed
in Figs. 9(b) and 9(e). The d-wave component in the SC

order parameter becomes stronger as we transition from weak
(r = ±0.2) to moderate (r = 0.45, r = −0.55) mixing, re-
sulting in the effective relaxation time to decrease near Tc

in the Born limit, as explained previously in Sec. III B. This
change is reflected in the slopes near Tc in Fig. 9 (for the Born
limit). Further, as the nonuniformity in the order parameter
increases, the Fermi surface is no longer efficiently gapped
by the SC order, which results in the presence of excitations
with lower energy than in the weak mixing case. Thus both
thermal conductivity tensor components fall to 0 at much
lower temperatures compared to the weak mixing case. Unlike
the d-wave state, κi j components eventually fall to 0 at low
T in the Born limit. This is a direct consequence of the fact
that the system is still fully-gapped by the SC order (because
|r| � |r±

c |).
In the unitary limit (see Fig. 11), the lifetime τk at the

FS begins to increase at low energies due to the stronger
anisotropy in the SC gap and κi j has a slight upturn before
falling to zero at low T . Since the real part of g(E ) cor-
responds to the density of states in the coexistence phase,
Re(g(E )) = 0 for E < |�k|min, as there can be no excitations
below the minimum value of the energy gap. Further, there
is a coherence peak in the density of states at E = |�k|max.
As E → |�k|min both the Re(g(E )) and Re(h(E )) decrease,
whereas Im(g(E )) and Im(h(E )) increase, causing the param-
eters a and c to increase [see Eq. (34)]. This results in a
reduction τ−1

k [see Eq. (36)] and a consequent increase in the
quasiparticle lifetime in the unitary limit as E → |�k|min.

3. Strong mixing: |r| > |r±
c |

Finally, as |r| > |r±
c |, the SC gap collapses at the nodal

points on the FS. The nonuniformity of the gap results in
smaller secondary SC gap maxima |�k|max,(−) on the FS
(see Figs. 4 and 2), corresponding to the negative sign of
the SC gap function. The corresponding thermal conductivity
profiles are presented in Figs. 9(c) and 9(f). In comparison
with the moderate mixing case [Figs. 9(b) and 9(e)], there
is now a residual thermal conductivity at T = 0 (an obvious
consequence of the existence of zero-energy excitations at the
nodes).

Furthermore, in both the Born and unitary limits, the resid-
ual κyy values are roughly the same for r < 0 and r > 0, (see
Figs. 9(c) and 9(f)]. This is again because the y velocities
of the quasiparticles are roughly the same at the locations of
the nodes. However, in both the Born and unitary limits, the
residual values of κxx when r < 0 are greater than when r > 0.
When r < r−

c < 0 the nodes appear around (0,±k∗
y ) whereas

when r > r+
c > 0, the nodes appear around (±π, k∗

y ) [see
Fig. 3(b)]. As seen in (see Fig. 10) the Fermi velocities in the
x direction are greater around the point (0,±k∗

y ) compared to
(±π, k∗

y ), resulting in faster nodal quasiparticles for negative
r values, which conduct heat more efficiently.

Unlike the pure nodal dx2−y2 pairing state (see Fig. 8),
the components of κi j in the unitary limit no longer go to 0
as T → 0 because the quasiparticle lifetimes on the Fermi
surface diverge at low energies (see Fig. 12). In addition, the
real part of g(E ) and h(E ) go to zero as E → 0 causing the
lifetime τk to diverge as E → 0 for both the Born and unitary
limits.

214515-10



THERMAL TRANSPORT IN TWO-DIMENSIONAL NEMATIC … PHYSICAL REVIEW B 105, 214515 (2022)

FIG. 11. (a) Quasiparticle lifetimes in the coexistence phase in
the Born (blue curves) and unitary (red curves) limits on the nemat-
ically deformed FS, normalized by the quasiparticle lifetimes on the
FS (τNF ) in the pure nematic state. The inset is an expanded display
of the lifetime in the unitary limit. E ranges from zero to |�k|max, the
maximum value of the gap amplitude on the FS. The black dotted
line indicates the minimum value of the gap amplitude on the FS,
|�k|min. (b) The real and imaginary parts of g(E ) and h(E ) plotted
over the same energies to illustrate their effects on the quasiparticle
lifetimes.

The singularity in the quasiparticle lifetime in the Born
limit in Fig. 12(a) occurs due to the coherence peak in the SC
DOS [see Fig. 12(b)] that appears at the energy corresponding
to the smaller secondary SC gap maxima |�k|max,(−) on the

FIG. 12. (a) Quasiparticle lifetimes in the coexistence phase in
the Born (blue curves) and unitary (red curves) limits on the ne-
matically deformed FS, normalized by the quasiparticle lifetimes
on the FS (τNF ) in the pure nematic state. E ranges from zero to
|�k|max,(+), the maximum value of the gap amplitude on the FS. The
black line indicates the secondary, negative gap maximum on the FS
|�k|max,(−). (b) The real and imaginary parts of g(E ) and h(E ) plotted
over the same energies to illustrate their effects on the quasiparticle
lifetimes.

FS (see Figs. 2 and 4). Finally, at E = |�k|max,(−), |g| ≈ |h|,
which causes τ−1

k to diverge and therefore the quasiparticle
lifetime τk vanishes at that energy in the unitary limit.

In closing, we mention that for each of the cases studied
above, the lifetimes for the anisotropic pairing states with
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positive values of r are the roughly the same as those with
negative values of r because the spectrum of low-energy exci-
tations of the quasiparticles are nearly the same for both (see
Fig. 4). At the location of these low-energy excitations (i.e.,
near the gap minima or nodes), the magnitude of the Fermi
velocities are roughly the same, implying that the local density
of states at those locations are also nearly equal. As a result the
quasiparticle lifetimes corresponding to SC pairing states with
either positive or negative values of the anisotropy parameter
r do not differ much from one another. We have therefore not
included the lifetime plots for negative values of r.

IV. CONCLUSIONS

We have considered a single band electronic system where
a spin singlet superconducting order appears inside a nematic
phase. In the above analysis we do not consider effects arising
from multiplicity of bands and hence the results are more
applicable to cuprates rather than the iron pnictide supercon-
ductors. We treat both the orders at the mean-field level in a
tight-binding square lattice with the nematic order being mod-
elled as a d-wave Pomeranchuk-type instability. The feedback
from the symmetry-broken nematic phase on the SC order was
accounted for through a mixing of the s-wave and d-wave
channels, which is controlled by a constant, phenomenolog-
ical anisotropy parameter r. Depending on the value of r,
the gap function can display a deep minima (in the case of
moderate mixing) or nodes (in the case of strong mixing).

By determining the amplitudes of the SC and the nematic
orders self-consistently for all temperatures, the nature of
the low-energy excitations could be analysed showing that
for r > r+

c (�) or r < r−
c (�), the spectrum has nodes, which

create a nonuniformity in the SC gap (a direct outcome of the
interplay of the FS distortion due to nematicity). This nonuni-
formity results in inequivalent gap maxima at |�k|max,(−) and
|�k|max,(+).

Temperature dependence of the electronic heat conduc-
tivity in the mixed SC and Nematic system was computed
using the Boltzmann transport equation method, where the
impurity scattering collision integral and quasiparticle life-
time were determined in both the Born and unitary limits.
We conclude that the nematic deformation of the FS results
in κxx(T ) �= κyy(T ) and that there are significant differences
in the thermal conductivity behavior in the coexistence phase
that can distinguish between deep minima or nodes in the
anisotropic SC gap structure. In the case of the SC gap having
deep minima on the FS, κ → 0 as T → 0 in both the Born
and unitary limits. In the case when the SC gap function has
nodes, low-energy excitations lead to a finite residual κ/T in
the T → 0 in both the Born and unitary limits.
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