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A general problem of magnetic sensors is a trade-off between spatial resolution and magnetic-field sensitivity.
With decreasing sensor size its resolution is improved but the sensitivity is deteriorated. Obviation of such a
trade-off requires development of super-resolution imaging technique not limited by sensor size. Here we present
a proof of concept for a super-resolution method of magnetic imaging by a Josephson junction (JJ). It is based
on a solution of an inverse problem—reconstruction of a local magnetic-field distribution within a junction from
the dependence of the critical current on an external magnetic field, /.(H). The method resembles the Fourier-
transform holography, with the diffractionlike /.(H) pattern serving as a hologram. A simple inverse problem
solution, valid for an arbitrary symmetric case, is derived. We verify the method numerically and show that the
accuracy of reconstruction does not depend on the junction size and is only limited by the field range of the
I.(H) pattern. Finally, the method is tested experimentally using planar Nb JJs. Super-resolution reconstruction
of stray magnetic fields from an Abrikosov vortex, trapped in the junction electrodes, is demonstrated. Thus
our method facilitates both high field sensitivity and high spatial resolution, obviating the trade-off problem of
magnetic sensors. We conclude that the holographic magnetic imaging by a planar JJ can be used in scanning

probe microscopy.

DOI: 10.1103/PhysRevB.105.214513

I. INTRODUCTION

Magnetic scanning probe microscopy (SPM) has been
rapidly developing in recent decades. Magnetic force [1-7],
Superconducting Quantum Interference Device (SQUID)
[8-16], Hall-probe [17,18], and NV-center [19-23] mi-
croscopies achieved remarkable advances. However, many
magnetic sensors suffer from the trade-off problem between
spatial resolution and magnetic-field sensitivity. For example,
SQUIDs detect a fraction of the flux quantum, ®( [8,24].
Therefore their field sensitivity is inversely proportional to the
pickup loop area, while spatial resolution is determined by the
loop size. Thus miniaturization leads to the improvement of
the resolution at the expense of sensitivity.

In Ref. [25] it was proposed to use a single sandwich-type
Josephson junction (JJ) as an SPM sensor. This enables ul-
timate miniaturization and improves spatial resolution [13],
but the trade-off problem persists. In Ref. [26] it was argued
that planar JJs [27,28] would allow at least partial obviation
of the problem. The Josephson effect appears as a result of
electronic wave-function interference between two supercon-
ducting electrodes [29]. It leads to diffractionlike Fraunhofer
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modulation, I.(H), of the critical current as a function of
magnetic field. A local magnetic field, H*(x), induced in a JJ
by a small magnetic object, leads to a distortion of the I.(H)
pattern. In Ref. [30] it was argued that H*(x) is encoded in the
shape of I.(H ) and that a restoration of this information would
allow super-resolution imaging not limited by the JJ size. This
requires solution of an inverse problem—reconstruction of
unknown H*(x) from the known I.(H).

In this work we show both theoretically and experimentally
that magnetic-field distribution in a JJ can be reconstructed via
inverse Fourier transform of the I.(H) pattern. The method
resembles the Fourier-transform holography [31-33], with a
diffractionlike I.(H) pattern serving as a hologram. A simple
solution, valid for an arbitrary symmetric case, is derived. We
verify the method numerically and show that the accuracy
of reconstruction does not depend on the junction size and
is only limited by the field range of the I.(H) pattern. Fi-
nally, the method is tested experimentally using planar Nb JJs.
Super-resolution reconstruction of stray magnetic fields from
an Abrikosov vortex (AV), trapped in the junction electrodes,
is demonstrated. We conclude that the holographic imaging by
planar JJs facilitates both high field sensitivity and high spatial
resolution, thus obviating the trade-off problem in SPM.

The paper is organized as follows. First, we present the
inverse problem solution, allowing accurate reconstruction of
the local field within the junction via inverse Fourier transform
of the I.(H) pattern. The solution is valid for any symmetric
with respect to the junction center, x = 0, local-field H*(x).
Next, we verify the solution numerically for various local-
field distributions and analyze the accuracy of reconstruction
as a function of the flux range of the I.(®) pattern. It is
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shown that the accuracy rapidly improves with increasing the
number of lobes in the I.($) pattern and that the maximum
flux range, @ ~ 5 — 10 &y, is sufficient for a quantita-
tively correct reconstruction. Finally, we verify the method
experimentally using planar Nb junctions. We demonstrate
a successful reconstruction of stray magnetic fields from an
Abrikosov vortex trapped in the junction electrodes. The
super-resolution ability to detect a local field, H*(x), with
a spatial resolution much better than the junction length is,
therefore, confirmed. In the Appendix, we provide additional
clarifications about the inverse problem solution and describe
image improvements by means of analytic continuation and
Fourier filtering.

II. RESULTS AND DISCUSSION

When a JJ is placed near a small magnetic object, the ob-
ject generates a local inhomogeneous magnetic field, H*(x),
within the junction. This distorts the I.(H) pattern. The cor-
responding direct problem, i.e., calculation of I.(H) for a
given H*(x), has been solved in Ref. [30]. Here we focus
on a solution of the inverse problem—reconstruction of the
unknown local field within the junction from the known I.(H)
pattern.

A. Inverse problem solution

We consider a “short” JJ with the length L < 4);, where
Ay is the Josephson penetration depth. In this case we can
neglect screening effects and other complications, associated
with Josephson vortices. The field H, (in the y-axis direc-
tion) induces a gradient of Josephson phase shift along the
junction (in the x-axis direction), d¢/dx = aH,, where a =
2ndess/ Do and degr is the effective magnetic thickness of the
JJ. The homogeneous external field H creates a constant gra-
dient, but a small magnetic object with a Gaussian-like local
field, H*(x), creates a steplike phase shift,

</>*(X)=Ol/0 H*(§)d§. ey

I, is obtained by maximization of the Josephson current,

L2
I. = / J.(x)sin [aHx + ¢*(x) + ¢oldx, 2)
—L)2

with respect to ¢p. Here J.(x) is the critical current density,
which may vary along the JJ [34,35].

To solve the inverse problem we must extract ¢*(x) from a
given I.(H). First, we note that

L2
il.(h) =/ Je(x) exp [i(hx + @™ (x) + @o(h))]dx,  (3)
L2

where h = oH. This follows from the Eulers formula taking
into account that

L2
[ g coste +9' @)+ antinas =0 @
—L/2
due to the maximization requirement dl./d¢py = 0. Consid-
ering Eq. (3) as the direct Fourier integral, we can perform
the inverse Fourier transform for solely x-dependent term

Je(x)e®" @

i

J(x)e? ™ = — / e =i (h)dh. (5)
—0o0

2
Imaginary and real parts of Eq. (5) lead to a system of two

equations for ¢*(x):

J.(x)sin[¢*(x)] = %f cos[axH + ¢o(H)I.(H)dH, (6)

Jo(x) cos[p* (x)] = % / sin[oxH + go(H)U.(H)dH. (7)

The unknown ¢y(H ) should be obtained from the extremum
condition, 3/, /d¢y = 0, which yields:

Hy="2 tan | ) 8

®o( )—E—arcan[B(H)], (8)

where A(H) = fﬁz Jo(x) sin[aHx + ¢*(x)]dx and B(H) =
L2

vy Jo(x) cos[aHx 4+ ¢*(x)]dx.

In the absence of the object, ¢* = 0, for a uniform JJ,
Jo(x) = I9/L, the term A vanishes because the integrand is
odd in x. In this case, Eq. (8) yields ¢y = 7 /2 and I.(f)
exhibits Fraunhofer modulation, I sin(r f)/m f, where f =
® /Py = H/H) is the normalized flux and H, is the flux quan-
tization field. Substitution of ¢y = 7 /2 and the Fraunhofer
I.(H) in Egs. (6) and (7) leads to sin(¢*) =0, cos(¢*) =
1, verifying reconstruction of the trivial case, as shown in
Fig. 1(a).

It should be noted that the condition d/./d¢y = 0, used
in derivation of Eq. (5), defines an extremum, i.e., it pro-
vides either a minimum or a maximum. Direct substitution
of ¢o =m/2 in Eq. (2) for the trivial case ¢* =0 yields
Losin(m f)/m f. It changes sign at every consecutive lobe,
i.e., if at one lobe it corresponds to the maximum, /., ; at
the next, it would be the minimum, /._. For short JJs they
are always correlated /., (H) = —1._(H), as can be seen from
Fig. 3 in Ref. [30]. Therefore in order to apply the inverse
Fourier transform to the experimental /., (H ) pattern, it should
be first prepared by flipping the sign at odd lobes:

I.(H) = I+ (H)(—1)", €))

where 7 is the lobe number counted in both directions from the
central, n = 0, lobe. More discussion about sign alternation
procedure can be found in Appendix A.

For H* # 0, ¢y may depend both on H and on H*, prevent-
ing a straightforward solution. As usual, the inverse problem
requires additional knowledge about the object. In SPM we
are primarily interested in the imaging of small magnetic
objects, such as vortices or domain walls, with spatially sym-
metric H*(x). When a symmetric object is placed in the
middle of a JJ with a symmetric J.(x), the term A(H) in
Eq. (8) vanishes again, so that ¢y = 7 /2 and the inverse
solution, Egs. (6) and (7), remain unambiguous. The most
accurate reconstruction is achieved using tan[¢*] obtained by
solving both Egs. (6) and (7). Mutual division of Egs. (6) and
(7) eliminates the J.(x) term. This is important for practical
application when J,.(x) is not confidently known. All solutions
presented below are obtained this way.
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FIG. 1. Calculated characteristics (a) without a vortex (z, = 00) and (b, ¢) with local stray fields from an antivortex placed (b) at a moderate
distance, z, = 0.5 L and (c) close to the JJ, z, = 0.05 L. Top panels represent the /. versus flux modulation, middle panels represent the local
phase shifts ¢*(x), and bottom panels represent the local magnetic fields, H*(x), normalized by the flux quantization field Hy. Red lines
represent actual characteristics obtained from Eq. (10). Black lines in the middle and bottom panels represent ¢*(x) and H*(x) obtained by the

holographic reconstruction of the I.(H) patterns from the top panels

Our approach bears a certain resemblance to the seminal
work by Dynes and Fulton [34], in which the inverse Fourier
transform of I.(H) was employed for determination of J.(x)
distribution. However, there are several key differences. First,
we solve a different problem. Dynes and Fulton considered in-
homogeneous JJs in a uniform field, leading to the integrand,
Je(x)exp(hx 4+ ¢p), in Eq. (3) with an unknown prefactor
J.(x). To the contrary, we consider JJs in an inhomogeneous
field, leading to the integrand, J. exp[hx + ¢y + ¢*(x)], with
unknown ¢*(x) under the exponent. Mathematically this is a
different problem, which is more complicated due to its essen-
tial nonlinearity. It leads to a system of two Fourier integrals
[our Egs. (6) and (7)] as opposed to one {Eq. (3) in [34]}.
Second, the aims of the two works are different. The objective
of Ref. [34] is to characterize the internal junction prop-
erty, J.(x), while we are aiming to develop super-resolution

magnetic imaging of external objects. For us the intrinsic J,.(x)
inhomogeneity is an unwanted artifact. Luckily, J.(x) cancels
out upon division of Eqgs (6) and (7) and does not hinder the
reconstruction.

In what follows we restrict ourselves to the simplest case
with symmetric local fields. This is done for two reasons.
First, because it leads to very simple mathematics, which is
pedagogical for the proof of concept. We do confirm the exis-
tence of a more general solution for an arbitrary asymmetric
case, but we leave it for a later occasion in view of its com-
plexity. Note, however, that the described simple procedure
can be applied to any symmetric case because the integrand
in A(H) from Eq. (8) remains odd with respect to x, leading
to A(H) =0 and ¢y = 7w /2. The second reason is that the
symmetric case is relevant for SPM, which commonly deals
with small separated objects. To achieve it the sensor should
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FIG. 2. Examples of reconstructions of stray field distributions from (a) two, (b) three, and (c) four Abrikosov antivorices placed
symmetrically along the junction at a distance, z, = 0.1 L. Top panels show /.(®) modulation patterns. Middle and bottom panels represent
local phase and field distributions. Red dashed lines represent actual distributions obtained from Eq. (10). Black lines represent results of

reconstruction from I.(®) patterns in the top panels.

be centered on top of the object. This can be easily done
by maximization of the detected flux {see, e.g., Fig. 3(a) in
Ref. [26]}.

B. Numerical verification

To verify the method, first we consider the well-calibrated
case of AV. Vortex stray fields induce the Josephson phase
shift [36,37],

X — X )
|zl .

Here V is the vorticity, and x,, z, are AV coordinates. When
the vortex approaches the JJ along the middle line, x = O,
the total phase shift, Ap* = ¢*(L/2) — ¢*(—L/2), and the
induced flux, A®* = (Ap™*/27)®d, increase. This is shown
by red dashed lines in the middle panels of Fig. 1, which are

@*(x) = —V arctan ( (10)

calculated from Eq. (10) with V = —1 (antivortex) and for (a)
Zy = 00, (b) z, = 0.5L, and (c) z, = 0.05 L. Red lines in the
top panels represent the direct problem solution: Calculated
I.(H) modulation, Eq. (2), for given ¢*(x) (red dashed lines
in the middle panels). It is seen that the increase of A¢™* upon
approaching the vortex to the junction leads to a progressive
shift and distortion of I.(H) patterns [30,36-38]. Solid black
lines in middle and bottom panels of Figs. 1(a)—1(c) represent
the inverse problem solutions, ¢*(x) and H*(x), reconstructed
from I.(H) patterns from the top panels. They coincide with
the actual profiles, shown by red dashed lines, confirming the
successful image reconstruction.

As mentioned above, ¢y = /2, remains well defined for
any symmetric H*(x) allowing a straightforward integration
of Eqgs. (6) and (7). This facilitates unambiguous recon-
struction of more complex multipeak states. In Figure 2 we
demonstrate this for multivortex states with (a) two, (b) three,
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FIG. 3. Development of image reconstruction for the case of Fig. 1(c) on successive truncation of I.(®). (a) ¢*(x) and (b) H*(x) obtained
by integration of Eqs. (6) and (7) in a limited flux range [—®.x, Pmax] With the maximum flux range @,/ Py =1, 2, 3, 5, 10, 20, and
50. Black lines in (a) and (b) represent the actual dependencies. (c) The relative accuracy of reconstruction versus the inverse flux range
(/D ax. Blue and olive symbols show the relative errors of the width at half maximum, Ao /o, and the height of the maximum AH*/H*(0),
respectively, normalized by the actual values ¢ and H*(0). It can be seen that the accuracy of reconstruction rapidly improves for @, /®¢ > 5

and that the error practically vanishes at @, /Py > 10.

and (c) four vortices placed symmetrically along the junction
length.

C. Accuracy of reconstruction

Local-field reconstructions, presented in Figs. 1 and 2,
are essentially perfect. They are obtained by integration of
Egs. (6) and (7) in the flux interval [—50®, 50], i.e.,
from the I.(H) patterns with ~100 lobes. Of course, in
practical cases, the I.(H) pattern is usually measured in a
narrower limit. In Fig. 3 we demonstrate how the recon-
structed pattern is deteriorated on successive truncation of
the integration range [—® .y, Pmax] for the case of Fig. 1(c).
Black lines in (a) and (b) represent actual ¢*(x) and H*(x).
The accuracy of H*(x) reconstruction in Fig. 3(b) can be
quantified by analyzing the height of the maximum, H*(0),
and the width at half maximum, o. Figure 3(c) shows
corresponding relative errors as a function of the inverse
flux range ®(/P.x. Here the olive symbols represent the
relative error of the height, AH*/H*(0) = [H*(0, ®pax) —
H*(0, 00)]/H*(0, 00), and the blue symbols represent the rel-
ative error of the width, Ao /o = [6(Pax) — 0(00)]/0(00),
with o (c0) and H*(0, co) being the actual parameters corre-
sponding to the black curve in Fig. 3(b). It can be seen that the
accuracy of reconstruction rapidly improves for @,/ P > 5
and that the error practically vanishes at @, /P > 10.

From Figs. 3(a) and 3(b) it can be seen that truncation of
inverse Fourier integrals Eqs. (6) and (7) leads to spurious
oscillations, which have the wavelength 1 = (©¢/ P, )L. In
Appendix B we discuss two ways of image improvements
using analytic continuation of truncated I.(H) patterns and
Fourier filtering of spurious oscillations.

Our method resembles the Fourier-transform hologra-
phy [31-33], with diffractionlike I.(H) patterns serving as
holograms. In holography the image quality increases with
increasing the size of the hologram, i.e., with increasing the
number of stored interference fringes. In our case the number
of fringes corresponds to the number of lobes, i.e., to the flux
range ®,.x/ Po. However, the specifics of our case are that the
hologram is created by interference of the object with elec-

tronic wave functions of the condensate. In this respect it has
a connection with electronic quantum holography [39], which,
however, occurs at a macroscopic scale in superconductors.

D. Experimental verification

For experimental verification we use planar Nb-CuNi-
Nb JJs. Figure 4(a) shows a scanning electron microscope
(SEM) image of the sample. Several devices were studies,
each containing one or two JJs with the lengths L ~ 5.4 um
and a vortex trap in the middle of the electrode, x, = 0, at
different distances, z,, from the JJs. For this sample, z, =
0.36 um. Variable thickness-type planar junctions are made
by cutting CuNi(50 nm)/Nb(70 nm) bilayers by a focused ion
beam (FIB). The bilayer is deposited by magnetron sputter-
ing. Films are first patterned into L ~ 6-pum-wide bridges by
photolithography and reactive ion etching and subsequently
cut by FIB to create JJs. Finally, a vortex trap (a hole with
diameter ~50 nm) is made by FIB. Measurements are done in
a closed-cycle “*He cryostat. The field is applied perpendicular
to the junction plane. Details regarding device fabrication,
characterization, and the experimental setup can be found in
Refs. [26,28,36,37].

The black symbols in Fig. 4(b) show measured I.(H) pat-
terns at 7 2~ 6.6 K in the absence of a vortex. It has a regular
Fraunhofer-like shape with some minor beatings indicating
steplike inhomogeneity of the critical current density [34,35].
The red line in (b) represents a fit to the I.(H) pattern with a
steplike J,.(x), shown in Fig. 4(c).

The black symbols in Fig. 4(d) show the measured I.(H)
after trapping a vortex. The vortex is introduced by a current
pulse, as described in Refs. [36,37]. The red line represents
a fit (direct problem solution) using ¢*(x) from Eq. (10)
with the actual L, x,, and z, and the prefactor V as the only
fitting parameter. The red lines in Figs. 4(e) and 4(f) show
the corresponding expected ¢*(x) and H*(x) obtained from
such a fit. The black lines in Figs. 4(e) and 4(f) represent
reconstructed profiles (inverse solutions) obtained from the
experimental I.(H) pattern from Fig. 4(d). The quantitative
agreement with anticipated profiles (red lines) is apparent.
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FIG. 4. (a) SEM image of a planar Nb-CuNi-Nb junction with a vortex trap. (b) I.(H) pattern of the junction in the vortex-free case. Black
symbols represent experimental data, the red line is a fit, using the steplike J.(x) distribution, shown in (c). (d) Measured I.(H ) pattern with a
trapped vortex. Black symbols represent experimental data, the red line is the fit, using Eq. (10). Panels (e) and (f) show spatial distributions of
(e) the phase shift and (f) the vortex stray fields. Back lines represent the holographic reconstruction from the experimental I.(H ) pattern from
(d). Red lines in (e) and (f) show expected distributions obtained from the fit by Eq. (10) in (d).

Small oscillatory deviations are due to the limited field range
of the experimental I.(H). From Fig. 4(f) it is seen that the

1/,

FIG. 5. Demonstration of the sign-alternation procedure for the
image reconstruction. The red line represents the 1.(®/®y) curve
from Fig. 1(c). The black line represents the same curve in which the
sign of I, is sequentially flipped every time the I.(f) crosses zero. It
is this black line that has to be used in the inverse Fourier integral,
Egs. (6) and (7), with ¢y = 7 /2.

width at half maximum of the reconstructed vortex stray field
is ~500 nm <0.1 L, confirming the super-resolution ability of
the method.

III. DISCUSSION

Finally, we discuss advantages of the planar geometry.
Although the holographic method is applicable to any type
of JJs, good resolution requires 5—10 lobes of I.(H) and the
field range £5 — 10 Hy. This field should be small enough to
be noninvasive for both the object and the sensor. Therefore
JJs with a high field sensitivity (small Hp) are preferred. In
this respect, planar JJs with inherently small H, [26,28] have a
major advantage compared with conventional overlap JJs. For
our JJs, H = 6 — 8 Oe, see Figs. 4(a)-4(c), is sufficient for
achieving nanoscale spatial accuracy. Furthermore, as demon-
strated earlier, see Figs. 4(e) and 4(f) in Ref. [26], the planar
geometry allows simple implementation of a control line for
producing a homogeneous magnetic field locally in the JJ.
This facilitates acquisition of many I.(H) lobes without dis-
turbance of the object. The ultimate field resolution of such
a sensor is determined by the flux noise. For our JJs it is
~10’7CI>0/«/H_Z at T = 4.2 K [26]. Taking into account the
flux quantization field Hy ~ 1 Oe, it translates to the ultimate
field sensitivity of 10~''Oe/+/Hz. It is remarkable that, con-
trary to conventional imaging techniques, which suffer from
the trade-off problem between sensitivity and resolution, in
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using the continuation Eq. (B3). It can be seen that both types of analytic continuation improve image reconstruction with a certain advantage

for symmetric truncation with respect to the central peak (b).

the discussed holographic method the high field sensitivity is
accompanied by the high spatial resolution.

IV. CONCLUSIONS

To conclude we derived theoretically and verified exper-
imentally a method of magnetic image reconstruction by a
single JJ. It resembles holography, with the diffractionlike
I.(H) pattern serving as a hologram. The method allows
super-resolution image reconstruction with nanoscale spatial
resolution not limited by the junction size. Thus it can obviate
the trade-off problem between the field sensitivity and the
spatial resolution, typical for many imaging techniques, which
directly probe the total flux or field in a sensor. We demon-
strated that utilization of planar JJs for such holographic
imaging facilitates both high field sensitivity and high spatial
resolution, which is beneficial for SPM.

ACKNOWLEDGMENTS

We are grateful to V. V. Dremov, S. Yu. Grebenchuk, and
V. S. Stolyarov for stimulating discussions.

APPENDIX A: ALTERNATION OF THE SIGN
OF I.(®) MODULATION

As described in Eq. (9), for reconstruction with a fixed
@o = /2, the sign of the I.(®) pattern has to be flipped
every time the I, crosses zero. In Figure 5 we show 1.(®/dg)
modulation for the case from Fig. 1(c). Here the red line rep-
resents the “experimental” |I.(®/®P()| pattern and the black
line represents the curve with the sequentially flipped sign,
which has to be used for reconstruction via Egs. (6) and (7). It
is seen that flipping of the sign should be made only when the
1.(®/®P() vanishes. For example, on the negative side, the first
maximum does not fall to zero and, therefore, the sign of the

(a) (b) (€)
04 T T T T T T
= = =actual
— reconstructed
—— Low Pass filtered 04 | 04 H ]
=} . N
I 3 S
s g g
I <C o2f {1 < 02f ]
-0.4 -0.2 0.0 0.2 0.4 0 10 20 30 40 50 60 0 10 20 30 40 50 60
x/L L/A L/A

FIG. 7. (a) Reconstructed field for the case of Fig. 1(b) middle panel. The red dashed line shows the actual H*(x). The blue line shows
directly reconstructed image from 7.(®) truncated at ®,,,, /Py = 50. Short wavelength oscillations, caused by the truncation, are clearly seen.
The black line shown is the same curve after Fourier filtering with low-pass filtering of parasitic oscillations. (b) FFT spectrum of the blue
curve from (a). A small maximum can be seen at L/A = /Py = 50. (c) The low-pass filtered spectrum, used for reconstruction of the

black curve in (a).
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next lobe is preserved. Such flipping procedure has to be done
in all cases prior to inverse Fourier transform.

Experimental I.(H) characteristics can deviate from the
ideal Fraunhofer modulation. In particular, from Figs. 4(b)
and 4(d) it can be seen that the 1. does not completely vanish
at minima. Although, the nonvanishing /. can be caused by
inhomogeneity [34], we believe that the primary reason in
our case is the finite length of the JJ with respect to A,;. This
follows from the temperature dependence of I.(H ), studied in
Ref. [26], for a similar JJ: The lower is T'; the shorter is A;;
the larger is the relative junction length, L/A;; and the more
nonvanishing are I.(H ) minima. To avoid this, one should use
short JJs with smaller /. and larger A ;. However, in the pristine
case, H* = 0, the I, flipping procedure remains unambiguous
even for nonvanishing I.: the . should be flipped between
odd-even lobes. Fortunately, the image reconstruction is not
sensitive to a modestly nonvanishing 1., as demonstrated by
the successful reconstruction in Figs. 4(e) and 4(f).

Note that Dynes and Fulton [34] instead flipped ¢, pre-
serving the sign of I. (the sawtooth-like dependence ®(H)
in their case corresponds to the steplike 4 /2 variation in
our case because their ® is determined at the edge of the
1), x = —L/2). The two approaches, flipping I. or ¢g, are
identical. We have chosen to flip /. because it allows explicit
operation with integral sine a cosine functions, as described in
Appendix B.

APPENDIX B: IMAGE IMPROVEMENT METHODS
The integral in Egs. (5)—(7) is taken in the infinite field
range. However, in experimental situation the field range is
|

£(x) = sin (2nqu;:0> (2n _si (7‘[(1 _ 2x)%

0

always finite. This inevitably leads to distortions in the recon-
structed image. As can be seen from Fig. 3(b), the agreement
with the actual ¢*(x) variation (black line) becomes satis-
factory only when there are at least five lobes in I.(®) for
each field direction. For more than 10 lobes the agreement
becomes very good, but this is not always feasible in experi-
ment. Therefore methods for improving image reconstruction
from truncated I.(H ) pattern are required. We tested two such
methods, as described below.

1. Analytic continuation

The continuation method is aiming to add an analytic
continuation to the truncated I.(®). At large fields H > H*,
the effect of local field becomes insignificant and the I.(®)
modulation resumes the Fraunhofer shape. However, since the
local field introduces a certain flux, ®*, in the JJ, the I.(®)
modulation is shifted by —®*. Therefore the truncated pattern
must be complemented by the shifted Fraunhofer function
I = |h[’;§f+l’)}§’]]| Here ® = BL®H is the flux induced
by applied-field H. If the truncated I.(H ) pattern is measured
in the interval [H_, H, ], then

Hy
Je(x)sin[g*(x)] = B cos(axH + ¢o(H))I.(H)dH

H_

1
+ Z—f(x)~ (BI)
T

For ®* <0 and &, > ®*, the complementary function is
equal to

) _ Si(n(l + 2x)%) - Si(n(l _ 2x)q)+L—+cD*)

0 )

sif (142 )q>++c1>* N 5 ol Cifn(1 42 )|<I>_+<I>*I Ci (1 -2 )|c1>_+q>*|
— D1\ T R COS TX—— 1| T _— — Q1| T — —_—
o, Lo YT Lo, T Lo,

0

Here Si and Ci are integral sine and cosine functions,
respectively. Equation (B2) may contain singularity points be-
cause lim,_, o Ci(x) — oo. To avoid problems associated with
the singularity it is advisable to introuce a symmetric trunca-
tion with respect to the central maximum at ® = —®*: |d_ +
®*| = |, 4+ d*|. Furthermore, this makes sense because the
major part of information about H*(x) is concentrated around
the central maximum. In this case the complimentary term in
Eq. (B2) is simplified to

foym(x) = sin (2 "\ (2r — 2si a 2)®++®*
sym(X) = sin nchDO T 1| X Loy

. D, + O
— 28 14+2x)—— .
1(”( 2, ))

(B3)

To investigate how the proposed continuation affect the
quality of reconstruction, in Figs. 6(a) and 6(b) we show

—Ci<n(l+2x)q)+T—£q)*> +Ci(7r(l —2x)q)*L—+¢*)). (B2)

(

the reconstructed sin(¢*) profiles for the same conditions as
in Fig. 3, using analytic continuations (a) Eq. (B1) and (b)
Eq. (B2). Note that the reconstruction significantly improved
when ¢* is calculated from tan ¢*. For this the same method
of continuation should be applied for cos ¢* as well. It can
be seen that both types of continuation improve the recon-
struction. However, a truncation symmetric with respect to the
central maximum, Eq. (B3) provides the best result.

2. Fourier filtering

From Figs. 3(a) and 3(b) it is seen that truncation of
1.(®) patterns leads to the appearance of parasitic oscillations
in the reconstructed image. The corresponding two wave-
lengths can be deduced from the correction function f(x)
in Eq. (B3). The long wavelength, 1| = L®,/d*, is repre-
sented by the sin(2rx®*/®d() term. The short wavelength,
Ay = LOy/(DPrax + D), is associated with the Si terms. The
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wave number of the latter is proportional to the total flux
interval. Such behavior can be seen in simulations shown
in Figs. 3(a) and 3(b), which also indicates that the short
wavelength oscillations at the edges of the JJ remain even
for large flux ranges. However, such shortwave oscillations
can be very effectively removed by low pass or band block
filtering.

Figure 7(a) shows the H*(x) dependency for the case
of Fig. 1(b), middle. Here the red dashed line shows the
actual H* and the blue curve—directly reconstructed using
Egs. ins(6) and (7) for @,/ P = 50. Parasitic short wave-
length oscillations are clearly seen. Figure 6(b) shows the

Fourier spectrum of the reconstructed image. A peak at L/A =
®ax /Do = 50 is clearly seen. Since it is well separated from
the low wave number part, which represents the actual H*(x)
variation, it can be simply removed by proper band pass
filtering. The result of such filtering is shown in Fig. 7(c).
The black line in Fig. 7(a) shows the H*(x) profile obtained
from the Fourier filtered spectrum from (c). The agreement
with the actual dependence (dashed red line) is perfect. The
success of Fourier filtering method depends on the spectral
separation of the informative peak at L/A — 0 and the artifact
peak at L/A = P,/ Po. This again requires a large enough
flux range with ®,x/ Do > 5.
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