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The band structure of noninteracting fermions in the honeycomb lattice exhibits the Dirac cones at the corners
of the Brillouin zone. As a consequence, fermions in this lattice manifest a semiconducting behavior below
some critical value of the on-site attraction U.. However, above U,, the superconducting phase can occur. We
discuss an interplay between the semiconductor-superconductor transition and the possibility of realization of the
spin-polarized superconductivity (the so-called Sarma phase). We show that the critical interaction can be tuned
by the next-nearest-neighbor (NNN) hopping in the absence of the magnetic field. Moreover, a critical value of
the NNN hopping exists, defining a range of parameters for which the semiconducting phase can emerge. In
the weak-coupling limit case, this quantum phase transition occurs for the absolute value of the NNN hopping
equal to one third of the hopping between the nearest neighbors. Similarly, in the presence of the magnetic field,
the Sarma phase can appear but only in a range of parameters for which initially the semiconducting state is
observed. Both of these aspects are attributed to the Lifshitz transition, which is induced by the NNN hopping

as well as the external magnetic field.
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I. INTRODUCTION

The realization of the honeycomb lattice in graphene draws
a lot of attention of the scientific community [1-6]. The ex-
traordinary properties of the honeycomb lattice are mainly
associated with massless Dirac fermions, which are located
in the corners of the Brillouin zone [7]. This lattice exhibits
also topological properties manifested by the existence of
zero-energy edge states [8—10] or in the quantum Hall effect
[11-13], associated with the finite Berry curvature in these
systems [14]. The electronic properties of the honeycomb
lattices (in graphene or in related two-dimensional materials)
has opened new avenues of research in which applications
play a very important role, i.e., spintronics [6] or valleytronics
[15].

The relatively simple way of manipulating real honeycomb
layers (e.g., in graphene or transition-metal dichalcogenides)
enabled progress in realization of the Moiré twisted bilayer
lattices [16]. The most interesting phenomena observed in
these systems are, among other things, unconventional super-
conductivity [17-23] as well as an insulating phase [21-24],
the topological edge states [25-28], or fractional quantum
Hall effect [29].

Motivation. The presence of the Dirac points in the hon-
eycomb lattice band structure has important consequences
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related to the physical properties of the systems. One of them
is the realization of the semiconducting phase at half-filling,
below some critical interaction |U,|/t ~ 2.1-2.3 [30-32]. In
this case, the semiconducting behavior is related to: (i) van-
ishing density of states at the Fermi level and (ii) two bands
(the conduction and valence bands), which touch each other
at some points in momentum space (i.e., the Fermi surface
shrinks to the Dirac points). However, above the critical at-
traction, the superconducting phase is stable. Hence, one can
observe a semiconductor-superconductor transition, which
does not take place away from half-filling [30]. However,
including the next-nearest-neighbor (NNN) hopping leads to
a changed value of U, [32].

Here, we study the predominant role of the NNN hop-
ping in the semiconductor-superconductor phase transition.
These studies give important knowledge about physics of
systems in which the Dirac fermions are realized. Relevant
examples of such systems are superconductors containing
the honeycomb sublattices (e.g., FePSes [33], CrPSy [34],
CrSiTes [35], SnPS5 [36], or CuyI,Seq [37]) as well as certain
transition-metal dichalcogenides [38]. However, also inter-
faces between Dirac semimetals and superconductors can
reveal similar properties [39—43]. Moreover, recent progress
in the experimental realization of artificial lattices, e.g., the
artificial honeycomb lattice created within optical lattices
[44—46] or by atomic nanostructures [47], leads also to great
opportunities of studying the described unique phenomena.
Finally, we discuss also the influence of the semiconductor-
superconductor transition on possible stabilization of the
spin-polarized superconducting phase (Sarma phase) [48]. We
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FIG. 1. (a) The schema of the honeycomb lattice. The positions of nearest- and next-nearest sites are indicated by solid red and dashed
red arrows, respectively. The role of the on-site attraction on the stabilization of the superconducting phase at half-filling for (b) negative and
(c) positive t'. (d) The semiconductor-superconductor phase diagram presenting the dependence of the critical interaction U, (solid red line) on
the next-nearest-neighbor hopping (¢') and revealing the existence of the critical values |¢| = /3. For |¢'| > |t/| the semiconducting behavior
disappears. The results are obtained in the absence of the magnetic field at half-filling (n = 1) and T = 0.

conclude that both properties can be explained by the Lifshitz
transition induced by the NNN hopping or the magnetic field.

Theoretical background. In this paper, we investigate an
s-wave superconductivity on a honeycomb lattice with NNN
hopping [Fig. 1(a)]. The system is described by the following
Hamiltonian: H = Hy;, + H,., where

Hin = Y _[~t;j — (1t + o h)8i;]c), cjo ()
ijo

describes the kinetic part (cf. also the Appendix). Here, c;,
(c:fa) denotes the annihilation (creation) operator of a fermion
with spin o in the ith site, u is the chemical potential, whereas
h is the external magnetic field. In our consideration, we
assume that the particles can hop between nearest neighbors
(with hopping integral t;; =¢ > 0 as the energy unit) and
next-nearest neighbors (with hopping integral ;; = ¢’ as a free
parameter).

In turn, the source of the superconducting phase is the pair-
ing interaction in the form of the Coulomb term U ), njyn;,
(where n;;, = cjaci(, is the particle number operator), which
after the mean-field decoupling leads to the BCS-like term,

He=U Z(A,-cjlc; +Hec)-U Z NI )

where U < 0 describes the on-site attraction between par-
ticles with opposite spins on the same site, whereas A; =
(ciycip) is the superconducting order parameter (here, we
assume A; = A due to the consideration of a spatially ho-
mogeneous system). The ground state can be found from
minimization of the grand canonical potential Q2 = Q(A) =
—kpT In{Tr[exp(—H/kgT)]} with respect to A for fixed
parameters u, t’, and U. This allows us to find the supercon-
ducting order parameter (from the gap equation 92/dA = 0),
the total number of particles (n = —3€2/d ), and the magneti-
zation (m = —d<2/dh). All details of the analytical derivation
can be found in Ref. [31].

II. RESULTS

Semiconductor-superconductor transition. As mentioned
above, the increase in the pairing interaction U leads to a
phase transition from the semiconducting to the superconduct-
ing phase [30-32]. This transition is manifested by a change
in the A = A(U) functional form [cf. Figs. 1(b) and 1(c)].
When the semiconducting phase can be realized, A drops to

zero at some finite value of U = U, (for |¢'| < |t/]) [49]. Oth-
erwise, A decays exponentially to zero with decreasing |U |
(for |¢'| > |£/]) [50]. This change in the A(U) behavior leads
to the phase diagram presented in Fig. 1(d). For |¢'| < |¢/], the
semiconductor-superconductor phase transition exists and U,
(marked by solid red line) has a finite value. However, for |¢'|
above some critical value of the NNN hopping [i.e., #/, marked
by the dashed line in Fig. 1(d)], this transition does not oc-
cur and only the superconducting phase exists (for [¢'| > |£/],
U. = 0). The U dependence of the order parameter A gives
information about the type of semiconductor-superconductor
phase transition [see Figs. 1(b) and 1(c)]. This transition is
of the second order because A changes continuously at the
transition boundary, although there could be a discontinuous
change in U, with the change in #’. Described properties show
the crucial influence of the ¢’ parameter on the semiconductor-
superconductor transition. Indeed, in the next paragraph, we
will show that the existence of 7/ has important impact on
physical properties of the system both with and without the
external magnetic field.

Role of the Lifshitz transition. The occurrence of the tran-
sition from the semiconducting to the superconducting phase
(for fixed U) is strongly associated with the band dispersion at
the high-symmetry points of the Brillouin zone. The nonzero
hopping ¢’ leads to the modification of the dispersion relation
of the bands, presented in Fig. 2(a). For [¢'| = |¢/|, the Lifshitz
transition takes place [51] and the Dirac point (located at the
K point), does not separate the valence band (fully occupied)
from the conduction band (fully empty) at half-filling (n = 1).
In general, the Lifshitz transition is characterized by changes
in the Fermi surface (FS) topology due to the variation of
the Fermi energy or/and the band structure. In this particular
case, the Lifshitz transition is associated with the crossing
of the Fermi level by the band at the I" point [marked by
dots in Fig. 2(a)] and emergence of the new FS. Hence, the
exact value of . can be found analytically as =+¢/3 (for all
the details of the analytical derivation see the Appendix). This
value of [t/| does not change for the weak-coupling limit [see
Fig. 1(d)].

The Lifshitz transition is also reflected in the DOS prop-
erties in the normal state [Fig. 2(b)]. For simplification of the
DOSs comparison, we define the Fermi level (Ef) related to
the half-filing to be at zero energy. The DOS of the honey-
comb lattice at " = 0 (dashed black line) exhibits a symmetric
form with respect to the center of the bandwidth (i.e., the
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FIG. 2. (a) Band structure along high-symmetry-point paths in the Brillouin zone and (b) density of states of the noninteracting system
presenting the emergence of the Lifshitz transition near the critical value of the hopping between the next-nearest neighbors ¢’ (as labeled).
Black arrows show jumps of density of states (DOS) indicating the Lifshitz transition induced by #’, whereas blue arrows show positions of the
van Hove singularities. (c) The dependence of the superconducting gap on the filling n and on the next-nearest-neighbor hopping #’ and (d) for

fixed parameters (as labeled, details in the text).

Dirac points). The increase in || < |t/| causes that DOS is
asymmetric without destroying the Dirac points. However, for
|#’| = |z/|, the Lifshitz transition leads to a nonzero value of
the DOS at the Fermi level for half-filling. Black arrows in
Fig. 2(b) denote the jump of DOS associated to the local
maximum at the I point [marked by circles in Fig. 2(a)]. At
the same time, the position of the van Hove singularity [cf.
blue arrows in Fig. 2(b)] is only slightly affected.

In the weak-coupling limit, |#/| does not depend on the
pairing interaction and is equal to 7/3 [cf. Fig. 1(d)]. With
increasing |U|, the suppression of the semiconducting phase
is observed, and there are deviations from ¢, calculated ana-
Iytically for the noninteracting system. For instance, at fixed
pairing interaction |U|/t =2 and |t'| < |t/|, two supercon-
ducting domes can be distinguished [blue line in Fig. 2(c)].
The dependence of the superconducting order parameter on
the filling is reflected in the DOS asymmetry for ¢’ # 0. Here,
the semiconducting behavior at half-filling is manifested by
the vanishing of A. Fort" around ¢/, the superconducting phase
exists in the whole range of particle concentration. Finally, for
stronger couplings, i.e., for |U| > |U.|, the semiconducting
phase is unstable. The suppression of the semiconducting state
is associated with the BCS-BEC crossover [30].

Typically, the Lifshitz transition leads to the modifica-
tion of the critical parameters of the superconducting phase
[52,53]. This is related to the occurrence of additional peaks
in the DOS. For relatively small |U |, when transition from the
semiconducting to the superconducting phase takes place at
|t'| = |t.], no significant change in the superconducting gap
is observed [Fig. 2(d)]. However, when the superconducting
phase exists for ¢" around the critical value t (e.g., |U|/t = 2.0
indicated by the blue solid line), an increase in the supercon-
ducting order parameter is observed. The emergence of the
superconducting phase for [t'| = |¢/| is allowed by the nonzero
DOS at the Fermi level. At the same time, the maximum value
of the superconducting order parameter A occurs for || > |t/
[marked by black arrows in Fig. 2(d)]. Similar behavior of the
critical magnetic-field 4. in some range of ¢’ around ¢/ is also
observed [Fig. 3(a)]. In this case, the critical magnetic field
exhibits the maximum value for ¢’ close to /.

Realization of the spin-polarized superconducting phase.
The transition from the semiconducting to the superconduct-
ing phase can be also driven by the pairing interaction U. For
instance, as we mentioned above, in the absence of the NNN
hopping (' = 0), the semiconducting phase is stable below

the critical interaction U, [cf. Fig. 1(d)]. However, even for the
pairing interaction above U, where the superconducting phase
is stable independently from #’, the critical value of the NNN
hopping ¢/ plays an important role in the physical properties
of the system (e.g., in the presence of the external magnetic
field).

In general, the magnetic field can act on the system in
two different ways: by the orbital and paramagnetic effects.
The orbital (diamagnetic) effect leads to the occurrence of the
Abrikosov vortex state [54]. The paramagnetic (Pauli) pair-
breaking effect originates from the Zeeman splitting of the
electron energy levels. The relation between these two, above
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FIG. 3. (a) The h-t’ phase diagram presenting the transition from
the superconducting to the normal state for |U|/t = 2.5 at half-
filling. The phases are labeled as NO:- normal state; SCy: BCS-like
phase; SCy: spin-polarized superconducting phase; and PS: phase
separation. Panels (b) and (c) present 4-U phase diagrams for fixed
t'. The inset in the panel (a) shows the band structure of the noninter-
acting system in the presence of the external magnetic-field & # 0.
Red and blue lines correspond to the spin 1 and | of the electrons,
respectively.

214510-3



CICHY, KAPCIA, AND PTOK

PHYSICAL REVIEW B 105, 214510 (2022)

mentioned contributions is described by the Maki parameter
o= \/EHCOZ‘b/HC}; [55], where H%® and HE are the critical
magnetic fields at 7 = 0, derived from the orbital and diamag-
netic effects, respectively. Typically, the diamagnetic effect is
responsible for destroying the superconducting state (type-II
superconductors), which corresponds to a < V2. However,
there exists some class of materials for which the diamag-
netic effect is negligible and the paramagnetic effect plays
the crucial role (i.e., o > ﬁ). These systems are called the
Pauli systems and exhibit the Chandrasekhar-Clogston limit
[56,57]. Such a limit is realized, e.g., in the heavy-fermion
systems [58], organic superconductors [59], or iron-based
superconductors [60-62] (i.e., typically layered compounds
with a weak coupling between the layers). Nevertheless, the
role of the orbital effects can be reduced (or even negligible)
when the magnetic field is directed on the plane of the layer.
Moreover, an existence of an interface between superconduc-
tor and ferromagnetic material [63—-66] can lead to the similar
effect. In our paper, we are focused only on the paramagnetic
effects introduced by the Zeeman magnetic field.

Let us start with a discussion of the influence of the
magnetic field on the superconducting phase (Fig. 3). For
|U| = 2.5t > |U,|, the BCS-like superconducting phase (SCy)
is stable in the whole region of ¢’ [see Fig. 1(d)]. On the
other hand, in the presence of a magnetic field, the system
undergoes a discontinuous phase transition from the supercon-
ducting to the normal phase. However, around this transition, a
superconducting spin-polarized phase (SCyp), i.e., the Sarma
phase [48], has been found as well as the phase separation
(PS) region between the superconducting and the normal state.
The SCy state is the spatially homogeneous superconductivity
which has a gapless spectrum for the majority spin species
[67]. Moreover, the boundary between SCy; and PS is re-
stricted by |t'| = |¢/|. In fact, the Sarma phase can be stabilized
only in a range of ¢’ for which the semiconducting state is
realized for the lower values of attractive interactions. For
|| < |t| [Fig. 3(b)], the SCy exists below some value of
|U| around h.. However, for |¢'| > |¢/| [Fig. 3(c)], the phase
separation region exists between the NO and the SC phases.
This behavior suggests an important role of ¢" in the realization
of the spin-polarized superconducting phase.

In the context of the above analysis, it is worth mentioning
that the Lifshitz transition can be induced by the external
magnetic field [68,69]. A similar situation takes place in the
system under consideration. It becomes clear when we an-
alyze the behavior of the band structure in the presence of
the magnetic-field % [cf. inset in Fig. 3(a)]. For relatively low
values of &, the splitting of the band for particles with opposite
spins is observed (red and blue lines, respectively). The Fermi
level (the horizontal line) is located at the energy where the
bands for spin 1 and | are crossed (for momenta k near the
K point). However, when the magnetic field is large enough,
the band at the I' point plays an important role. Indeed, for
some magnetic field, the band of electrons with spin | starts
crossing the Fermi level at the I" point. Then, the spin imbal-
ance can be realized in the system due to the emergence of the
third fully spin-polarized Fermi surface pocket which plays a
key role in the occurrence of the Sarma phase in the system.
This fact shows again that not only semimetal-superconductor
transition is needed to make SCy; phase stable but also ¢’ # 0,

which, in the presence of magnetic field, generates the extra
FS pocket in the system.

It is worth mentioning that, according to some previous in-
vestigations [70-73], at T = 0, the Sarma phase is unstable in
the weak-coupling limit for the s-wave pairing symmetry, both
for the continuum model with contact attraction [70,71] and
for the spin-polarized attractive Hubbard model for different
lattice geometries [72,73]. Hence, both the unique properties
of the honeycomb lattice and the NNN hopping are crucial to
stabilize the Sarma phase.

III. SUMMARY AND OUTLOOK

The honeycomb lattice exhibits unique physical properties
because of its band structure in which two bands touch each
other in the Dirac cones. Hence, if we take only the nearest-
neighbor hopping ¢ into account (' = 0), there is a quantum
phase transition at some critical pairing interaction U, [30].

In this paper we have discussed and revealed the influence
of the next-nearest-neighbor hopping ¢’ on the semiconductor-
superconductor quantum phase transition. We found that there
exists some critical value of ¢’ for which the semiconduct-
ing behavior disappears and only the superconducting phase
becomes stable. The existence of the additional critical pa-
rameter which describes the semiconductor-superconductor
transition is related to the Lifshitz transition, which takes
place when |¢'| increases. The Lifshitz transition is associated
eith the part of the band which crosses the Fermi level at the
I" point. Therefore, the exact value of the critical ' can be
found analytically in the case of relatively low values of pair-
ing interaction (weak-coupling limit), and its absolute value
is t/3. Additionally, we have found that the spin-polarized
superconducting Sarma phase occurs in the presence of an
external magnetic field. We have also attributed this phe-
nomenon to the Lifshitz transition which is induced by the
external magnetic field, and it leads to the emergence of an
extra fully spin-polarized Fermi surface pocket around the I"
point. The Sarma phase can be stable at half-filling and only
for |¢'| smaller than the critical value |¢/| =¢/3.

The presented results explain basic properties of the
systems on the honeycomb lattice and directly establish con-
ditions necessary for realization of the Sarma phase. In fact,
the stability of the Sarma phase is still under debate. In this
context, experiments with ultracold atoms as quantum simu-
lators [74] give great opportunities to confirm our predictions
of the Sarma phase realization in the honeycomb lattice with
the next-nearest-neighbor hopping.
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APPENDIX: EXACT VALUE OF ¢, FOR
THE WEAK-COUPLING LIMIT

In the U — O limit, the value of #. can be deter-
mined from the band-structure analysis of the noninteracting

system. In this case, the dispersion relation is found as 5;; =
+t|gk| — 1'fi — (1t + oh), where g¢ = Y_;_, exp(ik - ;) and
fe = Z?:l exp(ik - §), whereas §; and §; denote the real-
space vectors describing the position of NN and NNN sites,
respectively [see Fig. 1(a)]. More precisely, |gx| = /3 + f&,
and fi = 2 cos(v/3k,) + 4 cos(v/3k,/2) cos(3k,/2). The sign
in the first term corresponds to the upper (+4) and lower
(—) bands. Therefore, the energy value at the high-symmetry
points can be found as & =3t —p and % = +3r —
6t — . The condition for the Lifshitz transition is 5%0 =
&=, which gives directly the critical value of |t/] =1/3.
This value of [¢/| does not change for the weak-coupling
limit.
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