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We study the recently discovered even-odd effects in the normal state of single-electron devices manufactured
at strontium titanium oxide/lanthanum aluminum oxide interfaces (STO/LAO). Within the framework of the
number parity-projected formalism and a phenomenological fermion-boson model, we find that, in sharp
contrast to conventional superconductors, the crossover temperature T ∗ for the onset of number parity effect
is considerably larger than the superconducting transition temperature Tc due to the existence of a pairing gap
above Tc. Furthermore, the finite lifetime of the preformed pairs reduces by several orders of magnitude the
effective number of states Neff available for the unpaired quasiparticle in the odd-parity state of the Coulomb
blockaded STO/LAO island. Our findings are in qualitative agreement with the experimental results reported by
Levy and coworkers for STO/LAO-based single electron devices.
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I. INTRODUCTION

Number parity effects in superconductors were expected
as soon as the Bardeen-Cooper-Schrieffer (BCS) microscopic
model was developed [1]. Indeed, the BCS ground state corre-
sponds to a coherent superposition of pair states in which the
number of particles has even parity and the total number N is
not fixed. Under these circumstances, the charge displacement
operator exp(iφ) (canonically conjugate with the number op-
erator N̂) has a fixed expectation value, which leads to the
common notion that a macroscopic BCS superconductor has
a complex order parameter � with a rigid phase φ. As soon
as the BCS state is projected [2] onto fixed N, it becomes
clear that one has to differentiate between two cases: (a) if
the total number N = 2n is even, all particles can participate
in pair states and the ground state resembles the usual grand
canonical BCS ground state; (b) if N = 2n + 1 is odd, the
ground state will inevitably contain not only pairs, but also
an unpaired electron (more precisely, the ground state will
contain a Bogoliubov quasiparticle).

Intuitively, one would expect that the N vs N + 1
(even/odd) difference in a superconductor or any kind of
paired fermionic state must be experimentally observable only
if N is relatively small. Indeed, inspired by the success of
the BCS theory, Bohr, Mottelson, and Pines [3] were the first
of many who studied pairing and even-odd effects in nuclear
matter, with particle numbers around N ∼ 102. It was there-
fore, even more surprising, when Mooij et al. [4], Tinkham
and coworkers [5], as well as Devoret and his colleagues
[6,7] showed experimentally measurable difference between

Coulomb blockaded mesoscopic superconducting islands that
contain a billion, and a billion plus one electrons. As it turns
out, the magnitude of N was less important. Instead, the qual-
ity of the Coulomb blockade turned out to be crucial: The
superconducting islands had to be isolated from their envi-
ronment with ultrasmall tunnel junctions and highly resistive
electromagnetic environment, in order to ensure that N is a
fixed, good quantum number.

The pioneering experiments on number parity effects
in conventional superconductors were performed on single-
electron (SET) devices consisting of lithographically pat-
terned aluminum islands [8]. Even-odd effects emerged below
a crossover temperature T ∗ that was always much lower
than the superconducting transition temperature: T ∗ � Tc.
Rather than being directly correlated with Tc, T ∗ is set by the
experimentally measurable even-odd free energy difference
δFe/o ∼ �0 − kBT log Neff . Here �0 is the low temperature
energy gap, and Neff is the effective number of states [5–7,9]
available for the unpaired electron to explore in the odd-
number-parity state of the superconducting island. Within
this parity projected framework [5,9] T ∗ corresponds to the
temperature at which δFe/o becomes negligibly small: T ∗ ∼
�0/(kB log Neff ). For typical device parameters in these early
experiments, the crossover temperature was measured to be
around T ∗ ∼ 102 mK for aluminum island with Tc ∼ 1 K.
Consequently, the effective number of states was typically
around Neff ∼ 104.

The experiments by Levy and his coworkers [10] on
SET devices constructed on STO/LAO provided experimental
evidence for a spectacular departure from the conven-

2469-9950/2022/105(21)/214509(8) 214509-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2982-6407
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.214509&domain=pdf&date_stamp=2022-06-10
https://doi.org/10.1103/PhysRevB.105.214509


YANG, LIU, AND JANKÓ PHYSICAL REVIEW B 105, 214509 (2022)

tional number parity effects described above. Levy and his
colleagues detected T ∗ ∼ 900 mK, much higher than the su-
perconducting transition temperature Tc ∼ 300 mK measured
for these devices. Even-odd effects remained detectable well
into the “normal” phase of the superconductor, and persisted
in magnetic fields B∗ ∼ 1 ∼ 4T, much higher than the upper
critical field of the device. Furthermore, the extracted Neff is
also drastically different: Neff ∼ 2−3.

A possible and relatively straightforward interpretation
of novel experimental developments suggest that preformed
pairs [11–13] persist into the normal state of STO-LAO well
above the superconducting transition temperature. Conse-
quently, fundamental changes must be made to the theoretical
description of the number parity effects in this novel pre-
formed pair phase. This paper is devoted to the presentation
of a phenomenological theoretical framework aimed at pro-
viding a description of number parity effects in the normal
phase of STO/LAO devices. Given the fact that the details
of the microscopic mechanism behind the superconducting
and preformed pair state of STO/LAO are not yet established,
we use a phenomenological fermion-boson model [14] that
allows us to describe a normal phase where both pairs and
unpaired particles are present. Furthermore, the model allows
pairs to decay into unpaired particles, and particles to form
pairs. This theoretical picture provides in a natural way a finite
pair lifetime [10] in the preformed pair state. We find, after
performing the number parity projection developed earlier by
Ambegaokar, Smith, and one of us [9], that the finite pair
lifetime has drastic effect on the magnitude of Neff . In fact,
as we will show in detail below, the theoretical framework we
develop in this paper can reproduce not only T ∗ � Tc, but also
Neff ∼ O(1).

Generally speaking, the materials for making the single-
electron devices can be separated into three categories (see
Fig. 1): metals, BCS, and unconventional superconductors.
Their density of states are shown, respectively, in panels (a),
(b) and (c) of Fig. 1. While the single electron transistors
with ultrasmall islands and discrete energy spectrum have
also been investigated extensively [15,16], we will not discuss
this regime here. According to our calculations, the density
of states at the Fermi level should be vanishingly small in
order to obtain a finite even/odd free energy difference. As
a result, the single electron transistors made from BCS su-
perconductors and unconventional superconductors [as shown
in panels (b) and (c)] are expected to show even-odd effects,
and a superconducting gap above Tc is necessary to cause
T ∗ � Tc. The effective excitation number for the unpaired
electrons in the odd-parity states is highly dependent on the
density of states at E = �, since the smallest excitation en-
ergy is assumed to be � [5–7]. In BCS superconductors [see
panel (b)], the density of states at E = � is known to have a
van Hove singularity, and this results in a large Neff ∼ 104.
In unconventional superconductors [see panel (c)], the van
Hove singularity is broadened by the presence of low energy
quasiparticles, which results in a small Neff ∼ O(1).

Several possible microscopic superconducting mecha-
nisms of the electron system at the STO/LAO interface have
been proposed recently by different groups. Ruhman and
Lee [17] suggested on the plasmon-induced superconducting
mechanism. A nonperturbative approach within the plasmon

FIG. 1. Qualitative sketch of the momentum space and density of
states for (a) the density of states in the metallic normal state; (b) a
conventional superconductor with a superconducting gap, and (c) an
unconventional superconductor with a zero-width gap at Fermi level.
For the cases (b) and (c), even-odd effect can be expected because of
the presence of the superconducting gaps.

model is being developed by Edelman and Littlewood [18].
Kedem et al. [19,20] related the mechanism to the ferroelectric
mode. Arce-Gamboa and Guzmán-Verri [21] discovered the
influence of strain on the ferroelectric mode and obtained
the dependence of superconducting transition temperature on
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cation doping. On the contrary, Wölfle and Balastsky [22]
proposed the transverse optical phonons may be the glue
for electron pairing. While these theories in STO/LAO may
be able to explain the origin of superconducting phase self-
consistently, some important experimental facts in remain
unexplained. First of all, the pairing gap should persist above
Tc. This is very important for the even-odd effects above Tc

in the single electron transistors [23]. Next, the van Hove
singularity in the density of states should be broadened out.
This will lead to a small Neff consistent with the experiments
of Levy et al. [10]. The detailed discussion of these results
will be presented in the sections below.

This paper is organized as follows. In Sec. II, two impor-
tant physical quantities, the even/odd free energy difference
and the effective excitation number for the unpaired electron
in the odd-parity state, are related to the density of states
within the phenomenological Dynes formula. In Sec. III, the
boson-fermion model is introduced, and the analytic form of
its electron Green’s function is provided. The density of states
and the physical quantities of the even-odd effect predicted by
the model are calculated in Sec. IV. Finally, we present our
conclusions in Sec. V.

II. EVEN/ODD FREE ENERGY DIFFERENCE
AND EFFECTIVE EXCITATION NUMBER

FOR THE UNPAIRED ELECTRON

A. Even/odd free energy difference

The electron system of the quantum dot at the STO/LAO
interface is described by a general Hamiltonian Ĥ . Within
the number parity projection formalism [9], the canonical
partition function with even/odd number parity is:

Ze/o = Tr

{
1 ± (−1)N̂

2
e−β(Ĥ−μN̂ )

}
(1)

where the symbol e/o corresponds to the even/odd parity, N̂
is the electron number operator, while β = 1

kBT where kB is
Boltzmann constant and T is the temperature.

From Eq. (1), the difference between the free energy of a
system with an odd and even number of particles is

Fo − Fe = 1

β
ln

[
1 + 〈(−1)N̂ 〉
1 − 〈(−1)N̂ 〉

]
, (2)

where 〈...〉 ≡ Tr{e−β(Ĥ−μN̂ )...}/Z and Z = Tr{e−β(Ĥ−μN̂ )}. ln
is the natural logarithm with base e. The expectation value
〈(−1)N̂ 〉 is the parameter that signals the presence or absence
of even-odd effects. When 〈(−1)N̂ 〉 = 0, even-odd effects will
not be observable. Let us assume that the Hamiltonian can
be expressed in a more compact form Ĥ = ∑

k,σ ekĉ†
k,σ ĉk,σ .

Using the relation (−1)N̂ = e(iπN̂ ) and the above equations,

〈(−1)N̂ 〉 = Tr{e(iπN̂ )e−β(Ĥ−μN̂ )}
Tr{e−β(Ĥ−μN̂ )]}

= Tr{e−β(Ĥ−μN̂ )+iπN̂ }
Tr{e−β(Ĥ−μN̂ )]}

= Tr
{∏

kσ e−β(ek n̂kσ −μn̂kσ )+iπ n̂kσ
}

Tr
{∏

k′σ ′ e−β(ek′ n̂k′σ ′−μn̂k′σ ′ )]
}

=
∏

kσ Tr{e−β(ek n̂kσ −μn̂kσ )+iπ n̂kσ }∏
k′σ ′ Tr{e−β(ek′ n̂k′σ ′−μn̂k′σ ′ )]}

=
∏

k

(1 − e−β(ek−μ) )2

(1 + e−β(ek−μ) )2

=
∏

k

tanh2

(
β(ek − μ)

2

)
. (3)

The Baker-Campbell-Hausdorff formula and the relation that
[Ĥ , N̂] = 0 and [n̂kσ , n̂k′σ ′] = 0 are used in deriving the sec-
ond and third equality. In the fifth equality, it is assumed that
the momentum k and k′ have the same range. The trace is
calculated in the particle number representation, in which the
particle number n̂kσ has two possible values, 0 and 1. It is
also assumed that the spin σ has two possible values due to
the fermionic nature of the particles, which produces the two
squares in the fifth equality. If A is defined as eA ≡ 〈(−1)N̂ 〉,
then

A = 2
∑

k

ln

∣∣∣∣ tanh
βek

2

∣∣∣∣ = 2
∫ +∞

−∞
D(E ) ln

∣∣∣∣ tanh
βE

2

∣∣∣∣dE ,

(4)

where D(E ) is the density of states. Notice that the factor
ln | tanh βE

2 | in the integrand is divergent when E = 0. This
suggests that an energy gap is necessary for a system to
show even-odd effects. In the absence of a pairing gap A is
a large negative number and eA ≈ 0. The value of δFe/o will
be approximately zero if the gap closes. This can be used to
define the critical temperature of the onset of the even-odd
effect, T ∗. At the interface of STO/LAO, the even-odd effects
appear above the superconducting transition temperature Tc.
This implies the existence of a pairing gap above Tc. Scanning
tunneling spectroscopy experiments also show that an energy
gap persists above Tc [23]. This is one of the requirements for
a system showing number-parity effects. Moreover, the factor
ln | tanh βE

2 | turns to be zero when E � EF . This suggests the
part with the high energy does not contribute to the integral
A. On the other hand, the density of states near Fermi level
(gap states) can increase the value of |A| greatly, and the even-
odd effect parameter 〈(−1)N̂ 〉 = eA = e−|A| � 1 is reduced
accordingly. In this sense, the emergence of the gap states can
weaken even-odd effects.

B. Effective excitation number for the unpaired electron

With the assumption that the smallest excitation energy
for electrons is �, we can calculate the effective excitation
number for the unpaired electron as follows [5–7]:

Neff =
∫ ∞

�0

D(E ) exp (−β(E − �))dE . (5)

In Eq. (5), the density of states at E = � contributes most
to the effective excitation number for the unpaired electron
in the odd-parity states. If it is assumed that the van Hove
singularity in D(E ) exists, it can easily produce a large Neff ∼
104 or more in BCS superconductors. However, the experi-
ments [10] at the interface of STO/LAO discover a very small
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FIG. 2. � vs the even/odd free energy difference δFe/o and the
number of the effective excitation states for the unpaired quasiparti-
cles Neff .

Neff ∼ 1. This indicates that the van Hove singularity was
broadened out in the density of states.

C. Even-odd effect phenomenology with the Dynes formula

As we can see in the above discussion, the even-odd ef-
fects are related to the density of states of the small island
in the single electron transistors. In order to reproduce the
experimental results, the van Hove singularity should, at least,
be broadened. This can be provided by the lifetime effects of
electron pairs. Here we adopt the phenomenological Dynes
formula and calculate the even/odd free energy difference
δFe/o and the effective excitation number for the unpaired
electron Neff

To be explicit, we will use the following form for the
density of states [24]

Dd (E ) = Dn(0)Re
|E − i�|√

(E − i�)2 − �2
(6)

where Dn(0) is the density of states in the normal state, �

is the phenomenological imaginary part of the single-particle
self-energy, and � is the superconducting energy gap. With
Eqs. (2)–(5), the even/odd free energy difference δFe/o and
the effective excitation state number for the unpaired electron
Neff are calculated and plotted in Fig. 2. As we can see, with
increasing �, Neff reduces to ∼1. The even/odd free energy
difference is finite provided that the superconducting gap �

does not close. This result is independent of any microscopic
model of the superconducting state. In order for the pairing-
induced even-odd effect to be experimentally observable, the
density of states at the Fermi level must vanish, and broaden-
ing � has to be small compared to the gap �0.

III. THE BOSON-FERMION MODEL

As mentioned in Sec. I, there is no consensus yet on the
microscopic theory of superconductivity in STO. In order
to reproduce a Dynes-like density of states, we turn to the
phenomenological boson-fermion model. For a single-band

FIG. 3. The density of states D(ω) is plotted along with the vari-
ation of Vc. D(ω) and Vc are plotted in atomic units at the temperature
∼ 63 mK.

model, electrons are assumed to have a Bogoliubov quasi-

particle dispersion Ek =
√

ε2
k + �2, where εk = h̄2k2

2m∗ − μF .
Other factors including external gate voltage, doping, tem-
perature dependence, etc. can change the values of electrons’
effective mass m∗, which are in the range of 0.9 me − 1.4 me

where me is the free electron mass in vacuum [25]. In our
analysis, for the convenience of the calculations, we assumed
that the effective mass of the quasiparticle is me. Since the
carrier density can be tuned over a very large regime, the
value of Fermi energy can vary from 0.1 meV to 20 meV,
from which the corresponding Fermi velocity is approxi-
mately from 103 m/s to 105 m/s [26,27]. In the present paper,
the Fermi velocity is assumed to be approximately 104 m/s.
Although these parameters indeed have a wide experimental
range, reasonable values can generate the fermion density of
states shown in Fig. 3. The Hamiltonian of the electrons can
be written as:

Ĥ0e =
∑
k,σ

Ekĉ†
k,σ ĉk,σ . (7)

The superconducting gap of the 2D electron system at the
interface of STO/LAO, � vanishes at Ts ∼ 300 mK, and it
turns into superconducting state at Tc ∼ 190 mK [23]. This
suggests that between Tc and Ts the superconducting phase
is destroyed, but the superconducting gap is preserved. This
regime corresponds to the preformed pair state. The present
model is devoted to studying the preformed pair state and
superconducting state. Notice that the coherence length of
pairs is ∼70–100 nm in (001)-STO/LAO and 40−75 nm
for (011)-STO/LAO [28]. In order to give an approximate
description of small-sized preformed pairs, we introduce a
bosonic field b̂q with elementary charge unit −2e. For a small
momentum q, the dispersion of the pairs is approximated [2]
as ξq = ξ0 + h̄v|q| − μb. The bosonic velocity v represents
the speed of the electron pairs, and it has not been measured
in the current experiments. The choice of the values of v, ξ0

and μb is discussed in the Appendix A. The Hamiltonian for
the bare bosonic field is:

Ĥ0p =
∑

q

ξqb̂†
qb̂q (8)
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where b̂†
q and b̂q are defined to commute with ĉ†

k,σ and ĉk,σ .
The interaction Hamiltonian between the fermions and bosons
is assumed to be

Ĥ1 =
∑
k,q

V1(q)√
n0

b̂†
qĉ−k+ q

2 ↓ĉk+ q
2 ↑ + H.c. (9)

From the above, the total Hamiltonian is

Ĥ = Ĥ0 + Ĥ1 (10)

where

Ĥ0 = Ĥ0e + Ĥ0p. (11)

The total particle number is defined as N̂ =∑
k,σ ĉ†

k,σ ĉk,σ + 2
∑

q b̂†
qb̂q, and it can be proven that

[N̂, Ĥ ] = 0. The first-order approximation of the self-energy
is

�(k, ω) = L

2π h̄2

∫ |V1(q)|2dq
n0

1

ω − (ξq−Eq−k )
h̄ + iη

×
(

1

eβξq − 1
+ 1

eβEq−k + 1

)
(12)

where L is the length of the quantum dot in the middle of the
single electron transistor, and n0 is the total number of quasi-
particles in the quantum dot. n0 ∼ 500 [10]. Notice that the
superconductivity of the STO/LAO system is considered to be
one-dimensional [10], which makes our proposed theory to be
one-dimensional as well. Let us now introduce a momentum
dependent interaction kernel V1(q) as an example interaction
that reproduces a Dynes-like density of states:

V1 = Vc

√
(ξq − Eq−k )2

(ξq − Eq−k )2 + �2
0

(13)

where Vc is the strength of the coupling. Notice that the factor
ξq − Eq−k in fact is equivalent to the frequency of the electron
in Green’s function ω. The calculation of the self-energy is
presented in Appendix A.

IV. EVEN-ODD EFFECT WITHIN
THE BOSON-FERMION MODEL

With Eqs. (A2) and (A3), the one-particle Green’s function
can be written as:

G(k, ω) = 1

ω − εk − �′ − i�
(14)

where εk =
√

�2 + ( h̄2(k2−k2
F )

2m∗
)2 ≈

√
�2 + (

h̄v∗
F (k − kF )

)2
,

v∗
F ≡ h̄kF

m∗ , �′ = �′
k(ω)|k=kF , � = �k(ω)|k=kF . Numerical

calculations show that �′ � � at low temperature and
consequently �′ is negligible.

The density of states is given by

D(ω) = L
∫ ∞

−∞
A(k,w)dk (15)

where A(k, ω) = − 1
π

Im(G(k, ω)) and L ≈ 500 nm is the
length of the small island in the middle of the single electron
transistor. Notice that only εk is dependent on the momentum
k in the spectral weight function A(k, ω). This allows us to

FIG. 4. The even-odd free energy difference and the effective
excitation number for the unpaired electron versus Vc. It is plotted in
atomic units also at the temperature ∼ 63 mK. m∗ = me, n0 = 500,
L = 530 nm, v∗

F = 8.8×103 m/s and v = 0.073c, where c is the
speed of light in vacuum.

deduce an exact result in the mathematical expression of D(ω)
with the residue theorem (see Appendix B).

As shown in Fig. 3, the decay and formation of the electron
pairs produces many gap states and broadens the van Hove
singularity in the density of states. The effects can reduce the
even/odd free energy difference δFe/o, and the effective exci-
tation number for the unpaired electron in the odd-parity state
Neff , and this can be measured in experiments. In addition, a
zero superconducting gap makes a finite spectral function at
the Fermi level, and in that case, the density of states, D(ω), is
finite at εF . This can destroy the even-odd effects. As shown
in Fig. 4, the results on the even-odd effects calculated by
the boson-fermion model is very similar to those we obtained
from Dynes’ model density of states. This indicates that the
shape of the density of states is particularly important in our
deductions. However, it is only determined by three parame-
ters, the Fermi velocity of electrons, the length of the quantum
dot and the decay rate of electron pairs. In contrast, the other
microscopic parameters are less important.

Note that the even-odd free energy difference is positive
definite as it compares the free energies of an electronic
system with 2N + 1 and 2N particles, respectively. In the
low-temperature limit, keeping only the leading terms, we
get δF ∼ � − kBT ln Neff . This limit is useful to estimate
the temperature scale Teven/odd where the energy difference �

becomes comparable to the entropic contribution kBT ln Neff .
In this temperature range, higher-order terms in the expansion
of δF become significant. However, around this temperature,
as shown in the early experiments [5–7] the even-odd free
energy difference becomes immeasurably small.

It would of course be desirable to provide a theoreti-
cal explanation for the experimentally observed temperature
dependence of the even-odd effects. In the absence of a self-
consistent microscopic theory of the superconducting and the
preformed pair state of STO/LAO, a fully theoretical analysis
of the temperature dependence is not yet possible. In contrast,
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there is plenty of experimental data on the temperature de-
pendence of single particle spectral properties, the spectral
gap in particular. Indeed, Richter [23], suggested that the
temperature dependence of the spectral gap can be modeled
phenomenologically by a simple expression that depends only
on the low temperature value � of the gap and the temper-
ature T ∗ when the gap closes. In Appendix C we present a
phenomenological calculation of temperature dependence of
the density of states, the broadening, and the even-odd free
energy by using the temperature dependence of the pairing
gap extracted by Richter [23].

V. CONCLUSIONS

In the present paper, we argue that the even-odd effects
seen in the normal state of STO originate from superconduct-
ing preformed pairing. This in turn imposes severe constraints
on the density of states and consequently any microscopic
model aimed at explaining the superconducting and normal
state of STO/LAO. First, the density of states at Fermi level
should be zero below and above Tc. Next, the gap states are
necessary to reduce the even/odd free energy difference and
weaken the even-odd effects. Finally, the van Hove singularity
needs to be broadened out in order to obtain a small Neff .
These constraints for the density of states are not immediately
satisfied by most current microscopic theories.

The broadening of the van Hove singularity in the density
of states may be a fingerprint of the lifetime effects of electron
pairs. Single-electron transistor experiments are very sensitive
in detecting lifetime effects, as well as the existence of the
superconducting gap, the gap states and the broadening of
the van Hove singularity. Moreover, compared to the difficult
experimental conditions to perform reliable scanning tunnel-
ing spectroscopy, single electron devices can be relatively
easy to operate in some strongly interacting electron sys-
tems. Furthermore, the decay and formation of electron pairs
may widely exist in many different types of superconductors,
including BCS superconductors. The application of the single-
electron transistor devices to study novel superconductors is
therefore very promising.

Although the microscopic mechanism of the supercon-
ductivity in STO is still under development, the BCS-BEC
crossover theory is remarkably helpful. Throughout the
crossover from the BCS to BEC limit, a mean field like
transition to the superfluid can indeed be defined. In the
weak coupling BCS regime, as shown by Patton [29],
the spectroscopic changes in the single particle density of
states are restricted to the so-called critical regime, where
fluctuations in the superconducting order parameter are
significant. We found, however, that in the intermediate cou-
pling regime, the gradual loss of spectral weight in the
single particle density of states around the Fermi level oc-
curs at considerably higher temperature scales (which we
interpreted as the emergence of a pseudogap due to resonant
pair scattering [30]).

Within the BCS-BEC framework, it seems that STO/LAO
is in the intermediate coupling regime [31]. In Levy’s ex-
periments [10], the electron pairing is observed above the
superconducting transition temperature. The gradually in-

creasing density of states around the Fermi level is another
evidence STO stays between BCS and BEC limits [32].
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APPENDIX A: CALCULATIONS OF THE SELF-ENERGY

The decay rate of quasiparticles is defined to be � =
Im(�(k, ω)). In order to facilitate the calculations, it is as-
sumed that �(k, ω) = �(k, ω)||k|=kF

. From Eq. (A3) and with
the above approximations, the decay rate of electron pairs is

�(ω) = 1

h̄2

∫
L|V1(q)|2dq

2n0
δ

(
ω − (ξq − Eq)

h̄

)

×
(

1

eβξq − 1
+ 1

eβEq + 1

)
. (A1)

When q is very small and h̄v∗
F q � �, the equa-

tion ω − (ξq − Eq) = 0 becomes ω − (ξ0 + v|q| − μb) +
� ≈ 0 where h̄ is assumed to be unity. This leads to the
solution that ω ≈ v|q|. The frequency of the electrons ω is in
the order of ∼ �. This self-consistently proves that q is very
small and v∗

F q � �. With the results, we obtain

�(ω) ≈ L
∣∣V1

(
ω
v

)∣∣2

vn0

(
1

eβ(�+ω) − 1
+ 1

eβ� + 1

)
. (A2)

The inequation v∗
F q � � indicates that the temperature is

below 800 mK, and this indicates the theory will fail above
800 mK. The Ginzburg number of the 2D electron system
Gi ∼ 0.02, which suggests that the mean field approach will
fail in the temperature regime above 800 mK. Our theory does
not violate the Ginzburg criterion. Since the bosonic speed v

can be absorbed into the electron-boson matrix element Vc in
the calculations of decay rates of electrons [see Eq. (A2)], the
value of v is not important. We will be using Vc as the only
parameter to reduce the number of parameters present in the
paper. The estimated values of ξ0 and μb are from the con-
servation of energy h̄ω = ξq − Eq during the formation and
decay of electron pairs. If ξ0 − μb is larger than �, the δ func-
tion in Eq. (A1) will be zero, which results in that the density
of states in the regime 0 < h̄ω < ξ0 − μb − � is zero. This
contradicts with the density of states measured in scanning
tunneling spectroscopy experiments [23]. For convenience,
the value of ξ0 − μb is set to the �, while the evaluation has no
influence on the conclusions. Moreover, with the particle-hole
parity symmetry and Kramers-Krönig relation, the real part of
the self-energy is

�′(ω) = Re(�(k = kF , ω)) = 2ω

π
P

∫ ∞

0

�(ω′)
ω′2 − ω2

dω′

(A3)

Numerical calculations show that the real part of the self-
energy has a negligible effect in generating the predicted
density of states.
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APPENDIX B: CALCULATIONS
OF THE DENSITY OF STATES

The denominator of the spectral weight function is

(w −
√

�2 + (h̄v∗
F (k − kF ))2 − �′)2 + �2. If the denomina-

tor equals to zero, there are four solutions of the momentum
k that two solutions are in upper half-plane of the com-
plex plane of k and two solutions are in the lower half.
Furthermore, there are four different cases. If we set a =
(ω − �′)2 − �2 − �2, b= 2�(ω − �′)

a > 0, b > 0...................I

a > 0, b < 0...................II

a < 0, b > 0...................III

a < 0, b < 0...................IV.

For case I, four solutions of the momentum k in the upper
half-plane are

k1 = kF − 1

v∗
F

√
Re

−θ i
2 (B1)

k2 = kF + 1

v∗
F

√
Re

θ i
2 (B2)

where θ = arctan b
a , R = √

a2 + b2. For case II,

k1 = kF + 1

v∗
F

√
Re

−θ i
2 (B3)

k2 = kF − 1

v∗
F

√
Re

θ i
2 . (B4)

For case III,

k1 = kF − 1

v∗
F

√
Re

−(θ+π )i
2 (B5)

k2 = kF + 1

v∗
F

√
Re

(θ+π )i
2 . (B6)

For case IV,

k1 = kF − 1

v∗
F

√
Re

(θ−π )i
2 (B7)

k2 = kF + 1

v∗
F

√
Re

(−θ+π )i
2 . (B8)

After applying Jordan’s lemma and the residue theorem,
we obtain the density of states, for case I,

D(ω) = 2L

v∗
F

[
ω − �′

√
R

cos

(
θ

2

)
+ �√

R
sin

(
θ

2

)]
. (B9)

For case II,

D(ω) = −2L

v∗
F

[
ω − �′

√
R

cos

(
θ

2

)
+ �√

R
sin

(
θ

2

)]
. (B10)

For case III,

D(ω) = 2L

v∗
F

[
ω − �′

√
R

cos

(
θ + π

2

)
+ �√

R
sin

(
θ + π

2

)]
.

(B11)

For case IV,

D(ω) = −2L

v∗
F

[
ω − �′

√
R

cos

(
θ − π

2

)
+ �√

R
sin

(
θ − π

2

)]
.

(B12)

APPENDIX C: TEMPERATURE DEPENDENCE
OF THE BOSON-FERMION MODEL

The empirical temperature dependence of the pairing gap
at the STO/LAO interface was extracted by Richter [23,32]:

�(T ) = δ
kBT ∗

e
tanh

π

δ

√
c

(
T ∗

T
− 1

)
(C1)

with δ = 1.61, T ∗ = 1 K, c = 0.61 as the best fit parameters.
Richter attributes the phase transition around the temperature
Tc where the sheet resistance becomes zero to the Kosterlitz
Thouless transition [23,32]. Furthermore, Levy et al. demon-
strated that electron pairs exist between Tc and T ∗ [10]. It is
noteworthy that the gap closes at approximately 900 mK as
in Levy’s experiments [10], and 300 mK in Richter’s exper-
iments [23,32]. The value of T ∗ may vary from sample to
sample, but we argue the gap closes as in Eq. (C1) as long as
the value 300 mK of T ∗ is replaced with 900 mK. The relation
between the gap and temperature is plotted as Fig. 5.

With these relations, we can proceed to calculate the den-
sity of states and the even-odd free energy difference. First,
the density of states is generated and plotted in Fig. 6 with the
same parameters in the above section.

The experimental fact that Neff ∼ O(1) can be reproduced
by calculating the slope of the function δFe/o, which is shown
in Fig. 7.

More importantly, the parameters are set in the specific
regime mentioned from the above sections. This leads to a
reasonable explanation of the experimental data. Outside of
the chosen parameter regime, the calculated value of the even-
odd free energy difference will be problematic. This, on the
other hand, is another evidence that the model is not forced to
fit the experimental data.

FIG. 5. Relation between the pairing gap � and the temperature T .
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FIG. 6. Relation between the density of states and the electron
energy when � is set to be different values. The case with von Hove
singularity corresponds to the situation in low temperatures.

FIG. 7. The relation between the free energy difference δFe/o

and temperature T .
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