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Nucleation of superconductivity in clean superconductor-ferromagnet hybrid
structures with Rashba spin-orbit interaction
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We study the influence of the inverse proximity effect on the nucleation of superconductivity in planar hybrid
structures consisting of a thin superconducting film proximity coupled to a material with a strong exchange or
Zeeman field and the Rashba spin-orbit interaction. Based on numerical simulations and analytical estimates
within the framework of the Gor’kov equations, we find the superconducting transition temperature of the
system and determine the spatial structure of the gap function. It is shown that the spin-orbit interaction partially
compensates the pair-breaking effect of the exchange or Zeeman field and stabilizes modulated superconducting
states, which can be traced to the Lifshitz invariant in the Ginzburg-Landau free-energy density. The suggested
approach provides a microscopic justification of this invariant for a large class of superconducting hybrid systems
and clarifies the validity range of the corresponding phenomenological models with terms linear in the spatial
gradients of the superconducting order parameter.
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I. INTRODUCTION

The influence of the spin-orbit interaction on the super-
conducting proximity effect in hybrid structures involving
conventional superconductivity and strong exchange or Zee-
man fields has been intensively studied in the past two
decades. First, the spin-orbit coupling represents one of the
key ingredients for engineering the topological superconduc-
tivity and realization of the Majorana zero modes [1–10].
Prominent examples of hybrid systems with predicted non-
trivial topology of the superconducting condensate include
proximized topological insulators [11–15] and semiconduct-
ing nanowires [16–22]. Second, the spin-orbit interaction
also gives rise to a variety of novel phenomena in su-
perconducting transport which can be used to expand the
functionalities of the devices of superconducting spintron-
ics [23,24]. In particular, it is responsible for the formation of
Josephson ϕ0 junctions with a spontaneous phase difference
in the ground state [25–36], the appearance of spontaneous
supercurrents [37–40], and the superconducting diode ef-
fect [26,28,31,33,41,42].

One of the central questions in the physics of the su-
perconducting proximity effect is whether the coupling to
the adjacent material can lead to the suppression of the par-
ent superconductivity (the so-called inverse proximity effect).
Existing theoretical studies point out that even for hybrid
structures with highly transparent interfaces this effect can
be vanishingly small if the normal-state electronic density
of states at the Fermi level in the superconducting (S) layer
is much larger than the one in the adjacent material [43].
Note that this reasoning does not include the effects of pos-
sible spin-dependent interactions in the adjacent layer. On
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the other hand, strong spin polarization in the adjacent layer
can suppress the parent superconductivity even if the corre-
sponding layer is an insulator [44–48]. The first theoretical
description of this effect for superconductor/ferromagnetic
insulator bilayers in the clean-limit regime was given by
Tokuyasu et al. [44]. The origin of the pair-breaking effect
stems from the fact that the quasiparticle wave functions ac-
quire spin-dependent phase shifts upon the reflection from
the spin-active interface (see also Ref. [23]). One can nat-
urally expect that the spin-orbit interaction being taken into
consideration should suppress the pair-breaking effect of the
exchange or Zeeman field and enhance the superconducting
transition temperature. Such an expectation is based on the
results of theoretical works which have studied this effect
in superconductors with an intrinsic or interfacial spin-orbit
interaction (see, e.g., Refs. [49–51]). However, to the best
of our knowledge, generalization of the approach used in
Ref. [44] for superconducting proximity-coupled systems fea-
turing both strong exchange or Zeeman field and the spin-orbit
interaction in the adjacent material is absent in the litera-
ture. Our work addresses this question and provides such a
generalization. Note that an analysis of the influence of spin-
dependent scattering phase shifts on the inverse proximity
effect is beyond the range of validity of the tunneling Hamil-
tonian approach which was previously used to analyze this
effect in hybrid systems with a nontrivial topology [52–56].
In this regard, the analysis of the scattering phase shifts can
be important for establishing the role of the inverse proximity
effect in proximized semiconducting nanowires and topologi-
cal insulators which a number of recent experiments [57–59]
claimed to observe.

It is remarkable that the vast majority of the physical
phenomena arising due to the interplay of superconductiv-
ity, spin-splitting fields, and the spin-orbit interaction can
be described phenomenologically within the framework of
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the modified Ginzburg-Landau (GL) theory with the term
linear in the gradient of the superconducting order pa-
rameter ∼(n × nh)(∇�)�∗ (the so-called Lifshitz invariant)
[25,37–41]. Here ∇ = (∂x, ∂y, ∂z ), n (nh) is the unit vector
along the axis with broken inversion (spin rotation) symmetry,
and � is the superconducting order parameter. The develop-
ment of a microscopic description of the inverse proximity
effect is of particular importance since it should justify the
appearance of the Lifshitz invariant in commonly used phe-
nomenological models and should also clarify their validity
range. Although the GL functional was derived from a micro-
scopic theory for superconductors with the intrinsic spin-orbit
interaction in both the clean and diffusive limits [60–66], justi-
fication of the Lifshitz invariant in proximity-coupled systems
is an unsettled problem. Note that a similar problem arises
for superconducting hybrid structures in which the adjacent
layer possesses a textured magnetization. In particular, the
GL free energy of a conventional superconductor coupled to a
helimagnet was microscopically derived in Ref. [67].

In this paper, we study the influence of the inverse
proximity effect on the nucleation of superconductivity in
three-dimensional superconductor-ferromagnet hybrid struc-
tures with Rashba spin-orbit interaction. Using the exact
normal-state solutions of the Gor’kov equations, we derive
the linearized self-consistency equation and determine the
superconducting transition temperature of the system and the
spatial structure of the gap function. The suggested micro-
scopic approach addresses the clean-limit regime and takes
into account the effects of strong hybridization between quasi-
particle states in both layers. It is shown that the spin-orbit
coupling partially compensates the pair-breaking effect of
the exchange field and stabilizes modulated superconducting
states with a finite center-of-mass Cooper pair momentum
which can be traced to the Lifshitz invariant in the GL free-
energy density. We demonstrate the tunability of the resulting
pair momentum as a function of the chemical potential in
the adjacent material and the reentrant behavior of the pair
momentum versus the spin-splitting field and the energy of
the spin-orbit interaction. All the spin-dependent effects under
consideration are explained using qualitative band structure
analysis, and an approximate analytical expression governing
the behavior of the critical temperature with respect to the
energy of the spin-orbit interaction is given.

It is important to note that the validity of our results
is restricted to the case when the density of states at the
Fermi level in the normal-metal state of the S layer is much
larger than the one in the adjacent material. Nevertheless, our
results are applicable for a large class of hybrid structures
with the spin-orbit interaction, including superconductor/
semiconductor, superconductor/ferromagnetic metal (insula-
tor), and superconductor/completely spin-polarized metal (the
so-called half metal [68,69]) hybrids. Superconductor/half-
metal systems are of special interest for superconducting
spintronics. The full spin polarization for the electrons in half
metals makes such hybrid systems a convenient platform to
study the long-range triplet Josephson transport [70,71] and
the triplet spin-valve effect [72,73].

Our results for the spin-orbit-enhanced superconducting
critical temperature and the behavior of the spontaneous
Cooper pair momentum qualitatively agree with the results of

+ SO

FIG. 1. Schematic picture of the superconducting film placed in
contact with a material with the exchange or Zeeman field h and the
Rashba spin-orbit interaction with a unit vector n aligned along the z
axis (not shown). Here ds (df ) is the thickness of the superconducting
(adjacent) layer.

recent works which have considered similar effects in three-
dimensional diffusive [74] and two-dimensional ballistic [75]
superconductor-ferromagnet heterostructures as well as in
superconductor-ferromagnet bilayers on top of a topological
insulator [76].

This paper is organized as follows. In Sec. II we intro-
duce the model and basic equations. In Sec. III we present
linearized self-consistency equations and explain how the
suggested microscopic approach can be used to deduce the
structure of the relevant phenomenological description. In
Sec. IV we provide qualitative arguments regarding the joint
effect of the exchange field and the spin-orbit interaction on
the superconducting critical temperature and the spatial struc-
ture of the gap function. In Sec. V the results of numerical
simulations are presented and discussed. Finally, the results
are summarized in Sec. VI.

II. BASIC EQUATIONS

Hereafter, we consider planar hybrid structures consisting
of a thin superconducting film placed in contact with a mate-
rial with a strong exchange or Zeeman field and the Rashba
spin-orbit interaction (see Fig. 1). We assume that the condi-
tions of the clean-limit regime are fulfilled in both layers. In
the present work we consider the case λF � ds � ξs, where
ds is the thickness of the S layer, λF is the Fermi wavelength
in the normal-metal state of a superconductor, and ξs is the
zero-temperature superconducting coherence length. The con-
dition ds � ξs allows us to neglect spatial variations of the
gap function over the thickness of the S layer. On the other
hand, the condition λF � ds ensures that the effects asso-
ciated with the size quantization of the quasiparticle energy
spectrum in the superconducting film (see, e.g., Refs. [77–79])
are vanishingly small. Our focus is on the back-action of
spin-dependent interactions in the adjacent layer on the super-
conducting critical temperature of the system [80]. Thus, we
neglect the intrinsic paramagnetic effect for the electrons in
the S layer and the orbital effects in both layers. Hereafter we
use the units kB = h̄ = 1, where kB is the Boltzmann constant
and h̄ is the Planck constant. The Hamiltonian of the system
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reads

Ĥ =
∑
σσ ′

∫
d3r ψ†

σ (r)[Ĥ (r)]σσ ′ψσ ′ (r)

+
∫

d3r[�(r)ψ†
↑(r)ψ†

↓(r) + �∗(r)ψ↓(r)ψ↑(r)]. (1)

Here ψ†
σ (ψσ ) is the electron creation (annihilation) operator,

the indices σ, σ ′ =↑,↓ denote spin degrees of freedom,

[Ĥ (r)]σσ ′ = H0(r)δσσ ′ + [Û (r)]σσ ′, (2a)

H0(r) = p
1

m(r)
p − μ(r) + U0δ(z), (2b)

p = −i∇ = (px, py, pz ) is the momentum operator, m(r) is
the spatially varying effective mass, μ(r) is the chemical
potential profile, and the parameter U0 > 0 describes an ad-
ditional spin-independent potential barrier for quasiparticles
at the interface. The spin-dependent potential Û (r) is nonzero
only in the adjacent layer,

Û (r) = 
(−z)[hσ̂x + α(pxσ̂y − pyσ̂x )], (3)

where 
 denotes the Heaviside function, σ̂i (i = x, y, z) are
the Pauli matrices acting in the spin space, h is the ex-
change (or Zeeman) field, and α is the spin-orbit constant.
The superconducting order parameter �(r) is nonzero only
in the S layer (0 � z � ds). Throughout this paper we use the
following profile of the gap function (see the corresponding
discussion in Sec. I):

�(r) = |�|eiq(n×nh )r. (4)

In the above expression q(n × nh) is the center-of-mass
Cooper pair momentum in the direction given by the cross

product of the Rashba vector n and the unit vector nh = h/|h|
(see Fig. 1).

Our analysis is based on the Gor’kov equations for the
Matsubara Green’s functions. In the Matsubara frequency-
coordinate representation they read

Ǧ−1(r)Ǧ(r, r′) = δ(r − r′), (5a)

Ǧ−1(r) =
[

iωn − Ĥ (r) �(r)
�∗(r) iωn + σ̂yĤ∗(r)σ̂y

]
. (5b)

Here ωn = 2πT (n + 1/2) is the Matsubara frequency, T is
temperature, and n is an integer. The 4 × 4 matrix Ǧ(r, r′)
has the following block structure:

Ǧ(r, r′) =
[

Ĝ(r, r′) F̂ (r, r′)
F̂ †(r, r′) ˆ̄G(r, r′)

]
, (6)

and the pairing potential is determined from the self-
consistency equation

�∗(r) = V T

2

∑
|ωn|<�

Tr[F̂ †(r, r)], (7)

where V denotes the strength of the effective electron-electron
interaction and � is the BCS cutoff frequency.

For the derivation of the linearized self-consistency equa-
tion we perform the perturbation expansion of Eqs. (5) with
respect to the superconducting order parameter using stepwise
profiles for the chemical potential and the effective mass. In
the following section we present and discuss our analytical
results, and the details of the derivation are given in the
Supplemental Material [81].

III. LINEARIZED SELF-CONSISTENCY EQUATION

In the case of a homogeneous pair potential the linearized
self-consistency equation reads

ln

(
T

Tc0

)
= πT

∑
ωn>0

[
− 2

ωn
+ Re

∑
η,η′=±

〈
δηη′wintra + (1 − δηη′ )winter

ωn + iρηη′

〉
k

]
. (8)

Here Tc0 is the critical temperature of the bulk superconductor,
η and η′ are the indices of the spin-split helical subbands,
〈· · · 〉k denotes the averaging over the Fermi surface of the S
layer in the normal-metal state,

〈X (k)〉k = 1

4π

∫ 1

−1
du

∫ 2π

0
dϕ X (k), (9)

k = (k|| cos ϕ, k|| sin ϕ, kF u), k|| = kF

√
1 − u2, and kF (vF ) is

the Fermi momentum (velocity) in the normal-metal state of a
superconductor. The depairing factors

ρηη′ = vF

2ds
u tan (φ̄η − φη′ ) (10)

describe the suppression of the interband (ρ+−, ρ−+) and
intraband (ρ++, ρ−−) spin-singlet superconducting correla-
tions in the S layer [82]. The effects of hybridization between
electronic states in both layers are described by the scattering

phase shifts

tan (φη ) = 1

Z + (msk f η/m f ks) cot(k f ηd f )
, (11)

which contain the information about the spectral properties of
both layers,

k2
f η

2m f
= iωn + μ f ⊥ − η

√
(h − αky)2 + (αkx )2, (12a)

k2
s

2ms
= iωn + μs⊥, (12b)

and the spatial extent of the electronic wave function inside
the ferromagnet. Here μs and ms (μ f and m f ) are the chem-
ical potential and the effective mass in the superconductor
(ferromagnet), respectively, μs( f )⊥ = μs( f ) − k2

||/2ms( f ), and
Z = 2msU0/ks is the barrier strength parameter. The scattering
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phase shifts for holes φ̄η are obtained from Eq. (11),

φ̄η(ωn, h) = φη(−ωn,−h). (13)

The weighting functions

winter = cos2(β ), (14a)

wintra = 1 − wintra, (14b)

with β = (β+ + β−)/2 and tan(β±) = αkx/(h ± αky), deter-
mine the distribution for the fraction of the spin-singlet
interband (intraband) Cooper pairs on the Fermi surface.

To compare our results with the ones in Ref. [44], one
should exclude from consideration the spin-orbit coupling and
frequency dependences of the scattering phases, which results
in the following relations:

winter = 1, (15a)

ρ+− = −ρ−+. (15b)

Using Eqs. (15), the self-consistency equation (8) can be writ-
ten in the form

ln

(
T

Tc0

)
= −πT

∑
ωn

∫ 1

0
du

ρ2(u)

|ωn|
[
ω2

n + ρ2(u)
] , (16a)

ρ(u) = vF

2ds
u tan [φ+(u) − φ−(u)], (16b)

which is Eq. (33) in Ref. [44].
For a nonuniform profile of the gap function (4) with q �= 0

the resulting self-consistency equation has the form (8) with
the replacements

φ̄η(kx, ky) → φ̄η(kx, ky − q/2), (17a)

φη(kx, ky) → φη(kx, ky + q/2), (17b)

β+(kx, ky) → β+(kx, ky − q/2), (17c)

β−(kx, ky) → β−(kx, ky + q/2) (17d)

and modified depairing factors

ρηη′ (q) = qvF

2
sin(ϕ)

√
1 − u2 + vF

2ds
u tan[φ̄η(q) − φη′ (q)].

(18)
In the presence of the spin-splitting field and the spin-orbit
coupling we determine both the superconducting transition
temperature

Tc = max
q

[Tc(q)] (19)

and the Cooper pair momentum q = Q corresponding to a
maximal Tc.

The analysis of the resulting Q(α, h) dependences provides
important information about the structure of the relevant phe-
nomenological description. In particular, such an analysis can
be used to justify the appearance of the Lifshitz invariant in
the GL free-energy density and can reveal the validity range of
such a description. The idea is as follows [83]. Substituting the
order parameter profile (4) into the free-energy density with
the Lifshitz invariant

f (r) = −a(T̃c − T )|�|2 + β

2
|�|4 + γ |p�|2

+ ε(n × nh)[�∗(p�) + c.c.], (20)

we get the free energy without the Lifshitz invariant but with
shifted critical temperature

Tc(q) = T̃c − γ

a

(
q + ε

γ

)2

+ ε2

aγ
. (21)

Here a, β, and γ are the standard GL coefficients, and T̃c =
Tc(q = 0). The resulting pair momentum Q determines the
value of the Lifshitz invariant, and the shift in Tc is quadratic
in Q,

ε = −γ Q, (22a)

δTc(Q) ≡ Tc(Q) − Tc(0) = γ

a
Q2. (22b)

Deviations of the resulting δTc(Q) behavior obtained from a
microscopic model from the one given in Eq. (22b) signal the
breakdown of the initial assumption (20), and thus, the terms
involving higher-order spatial gradients have to be included in
the phenomenological theory for the correct description of the
inverse proximity effect.

IV. CRITICAL TEMPERATURE AND THE PAIR
MOMENTUM: QUALITATIVE CONSIDERATION

Here we provide qualitative arguments regarding the joint
effect of the spin-splitting field and the spin-orbit interaction
on the superconducting critical temperature and the emerging
pair momentum. A lot of insights can be gained from the fact
that under the conditions of the inverse proximity effect both
the exchange field and the spin-orbit coupling are induced
in the S layer. Schematic plots of the Fermi surfaces for
two-dimensional spin-split subbands confined in the direction
perpendicular to the plane of the layers are shown in Fig. 2.

For simplicity, we discuss the behavior of Tc for a ho-
mogeneous gap function. Figure 2(a) illustrates that in the
absence of the spin-orbit coupling the spin-singlet Cooper
pairs are formed by the electrons from different spin-split
subbands. This regime corresponds to winter = 1 in Eq. (8).
The spin dependence of the scattering phase shifts results
in a rather strong suppression of Tc upon the increase in h
which is accompanied by the appearance of the odd-frequency
spin-triplet superconducting correlations in the S layer with
zero spin projection in the direction of the exchange or Zee-
man field [23]. On the contrary, for h = 0, α �= 0 there is
only the intraband spin-singlet pairing in the S layer [see
Fig. 2(c)], and the corresponding scattering phase shifts are
spin independent. In this case, the spin-orbit coupling results
in an increase in the density of states at the Fermi level in
the adjacent material due to the increase in μ f by the amount
m f α

2. In a typical experimental situation m f α
2 � μs, and the

separate effect of the spin-orbit interaction on Tc should be
negligibly small.

For finite h and α there are both intraband and interband
spin-singlet Cooper pairs in the S layer, and their overall
fractions on the Fermi surface

Winter = 〈winter〉k, (23a)

Wintra = 1 − Winter (23b)

are determined by the ratio h/αkF . Thus, in the limit h � αkF

(h � αkF ) the interband (intraband) pairing dominates in the

214508-4



NUCLEATION OF SUPERCONDUCTIVITY IN CLEAN … PHYSICAL REVIEW B 105, 214508 (2022)

)b()a( (c)

FIG. 2. Schematic plots of the normal-state two-dimensional Fermi surfaces for spin-split subbands confined in the direction perpendicular
to the plane of the layers. (a)–(c) correspond to the limits h � αkF , h ∼ αkF , and h � αkF , respectively, and arrows show the spin polarization.
Here kF is the Fermi momentum in the normal-metal state of a superconductor. Vectors Qη, with η = ±, in (b) highlight the difference in the
Cooper pair momenta within each spin-split subband.

system. Qualitative analysis of Eqs. (10), (11), (12a), and (13)
shows that the exchange field suppresses both the intraband
and interband spin-singlet superconducting correlations and
such suppression is stronger for the interband Cooper pairs.
This particular observation allows us to expect that the spin-
orbit interaction should partially compensate the effect of the
exchange field Tc(αkF � h, h) � Tc(α = 0, h). Rather simple
formulas describing Tc(αkF , h) behavior can be derived from
Eq. (8) by decoupling the Fermi surface averages,〈

wintra

ωn + iρηη

〉
k

≈ Wintra

〈
1

ωn + iρηη

〉
k

, (24a)

〈
winter

ωn + iρηη̄

〉
k

≈ Winter

〈
1

ωn + iρηη̄

〉
k

, (24b)

and neglecting the spin-orbit coupling in the scattering phase
shifts as αkF varies from zero to αkF � h. Here η̄ = −η. As
a result, we get the following expression:

Tc(αkF , h)

Tc0
=

[
Tc(α = 0, h)

Tc0

]Winter
[

Tc(αkF � h, h)

Tc0

]Wintra

,

(25)

which is in good qualitative agreement with the results of our
numerical simulations.

Let us now discuss the behavior of the center-of-mass
Cooper pair momentum near the superconducting critical tem-
perature with respect to the band structure parameters of the
adjacent material. In our qualitative considerations we address
only the intraband pairing assuming that the interband super-
conducting correlations should affect the spatial structure of
the gap function at much lower temperatures. First, one can
see from Fig. 2(b) that for h ∼ αkF each helical subband with
η = ± favors an inhomogeneous superconducting state with
a finite Cooper pair momentum Qη in the opposite directions
η(n × nh). The resulting pair momentum originates from the
competition between two helical subbands, and their differ-
ence in the densities of states in the normal-metal state of
the S layer at the Fermi level is crucial in order to obtain a
nonvanishing result [66]. In particular, this implies that for
fixed h and αkF the pair momentum should be highly sensitive

to the value of the chemical potential in the adjacent layer
μ f . Second, the transformations h → −h and α → −α corre-
spond to ky → −ky in Fig. 2, from which we get the following
symmetry relations:

Q(α, h) = −Q(−α, h), (26a)

Q(α, h) = −Q(α,−h). (26b)

Third, Figs. 2(a) and 2(c) demonstrate that the pair mo-
mentum Q vanishes in the limits h � αkF and h � αkF .
Therefore, one can expect reentrant Q(h) and Q(αkF ) depen-
dences with max |Q| at h ∼ αkF .

V. RESULTS AND DISCUSSION

We proceed to the discussion of the results of numerical
simulations. The appearance of the spin-dependent effects
under consideration is illustrated for m f /ms = 1 and U0 = 0.
The effects of the adjacent layer on the superconducting crit-
ical temperature obviously diminish with the increase in the
thickness of the superconducting film and/or with the decrease
in the coupling strength. The latter can be provided by in-
troducing strong spin-independent scattering at the material
interface and/or large effective mass mismatch.

Typical behavior of the superconducting critical tempera-
ture with respect to the spin-dependent fields in the adjacent
layer is shown in Fig. 3. The parameters are μs/Tc0 = 104,
μ f = 0, dsTc0/vF = 0.01, and d f = 5ds. Note that for the
chosen μ f the results for weak (h � Tc0) and strong (h � Tc0)
spin-splitting fields refer to superconductor/semiconductor
and superconductor/half-metal heterostructures, respectively.
Several Tc(αkF ) plots for different spin-splitting fields h are
shown in Fig. 3(a). One can see that in the absence of the
exchange field the spin-orbit coupling has almost no effect on
the superconducting critical temperature. Increasing h from
zero results in a rather strong suppression of Tc which is
partially compensated by the spin-orbit coupling. Thin solid
lines in Fig. 3(a) show the results of Eq. (25). Typical Tc(h)
plots for several energies of the spin-orbit coupling shown
in Fig. 3(b) reveal the decrease in the slopes of Tc(h) depen-
dences upon the increase in αkF . As explained in the previous

214508-5



A. A. KOPASOV AND A. S. MEL’NIKOV PHYSICAL REVIEW B 105, 214508 (2022)

(a) (b)

FIG. 3. (a) Superconducting critical temperature Tc versus the energy of the spin-orbit coupling αkF for h/Tc0 = 0, 100, 200, 300, 400.
Thin solid lines show the results of Eq. (25). (b) Tc(h) plots for αkF /Tc0 = 0, 500, 1000, 1500. The parameters are μs/Tc0 = 104, μ f = 0,
dsTc0/vF = 0.01, and df = 5ds. Here vF is the Fermi velocity in the normal-metal state of a superconductor, and Tc0 denotes the critical
temperature of the bulk superconductor.

section, such a compensation effect originates from the ap-
pearance of the intraband spin-singlet pairing correlations in
the superconducting layer for which the depairing effect of
the exchange field is weaker. For both Figs. 3(a) and 3(b) we
find that |Q|vF /2Tc0 < 0.05 and the shift in Tc for a modulated
superconducting state δTc(Q)/Tc0 < 10−3.

Let us now briefly discuss the opposite case h = hzσ̂z

(nh||n). It can be shown that the equation for Tc has the
form (8) with the weighting function

wintra (k||) = α2k2
||/

(
h2

z + α2k2
||
)

(27)

and modified scattering phases due to a different spatial dis-
persion of the quasiparticle states in the ferromagnet

k2
f η = 2m f

(
iωn + μ f ⊥ − η

√
h2

z + α2k2
||
)
. (28)

We observe that the behavior of Tc in the regime nn||n qualita-
tively agrees with the above-described case nh ⊥ n. However,
the compensation effect of the spin-orbit coupling is more
significant for the out-of-plane exchange field nh||n. This
quantitative difference originates from the fact that the de-
pairing factors ρηη (η = ±) which determine the pair-breaking
effect of the exchange field for the intraband Cooper pairs and
the resulting enhancement of the critical temperature appear to
be sensitive to the relative orientation between nh and n. Qual-
itative analysis of Eqs. (10), (11), (12a), (13), and (28) reveals
that ρηη are generally lower for the out-of-plane exchange
field than for the in-plane one. We provide a comparison
between our numerical simulations for both system configu-
rations nh || n and nh ⊥ n in the Supplemental Material [81].

Before we proceed further, let us note that our qualitative
arguments regarding the behavior of Tc are also valid for thin
superconducting films under the influence of a strong Zeeman
field and the induced spin-orbit coupling. In this regard, our
results also clarify the quench of the paramagnetic effect for
the electrons in thin superconducting films coupled to heavy
metals with a strong spin-orbit interaction. Note that this
effect was analyzed in the context of the superconducting
proximity effect in semiconductor-superconductor hybrids in

a recent experiment [84] in which it was demonstrated that
InSb nanowires strongly coupled to Al/Pt films can maintain
superconductivity up to 7 T.

We continue with a discussion of the behavior of the
center-of-mass Cooper pair momentum. The resulting pair
momentum Q, indeed, appears to be highly sensitive to the
chemical potential in the adjacent material. Typical Q(μ f )
dependences for several h are shown in Fig. 4(a). We use the
following parameters to produce the plots in Fig. 4: μs/Tc0 =
103, dsTc0/vF = 0.05, d f = 4ds, and αkF /Tc0 = 200. The
parameter regime |μ f | < h refers to the superconductor/half-
metal heterostructures, and μ f < −h (μ f > h) corresponds
to the superconductor/ferromagnetic insulator (superconduc-
tor/ferromagnetic metal) hybrids. We can see that for a fixed
exchange splitting the resulting Q(μ f ) curves are nonmono-
tonic and |Q| is maximal when the lower spin-split subband
in the ferromagnet crosses the Fermi level and the bottom of
the higher spin-split subband is above the Fermi level. Such
behavior reflects the competition between the spin-split heli-
cal subbands which favor modulated superconducting states
with finite Cooper pair momenta of different magnitudes and
in opposite directions. As mentioned in Sec. IV, a nonzero
difference in the spin-resolved density of states in the normal-
metal state of the S layer at the Fermi level νsη (η = ±) is
required in order to obtain a nonvanishing result. Using the
approach developed in the present work, we can show that
this difference is proportional to the Fermi surface average of
the following quantity:

|δνs| ≡ |νs+ − νs−| ∝
〈

sin(2φ+) − sin(2φ−)

kzds

〉
k
. (29)

Typical behavior of |νs+ − νs−| with respect to μ f is shown
in Fig. 4(b). We can clearly see that nonmonotonic |δνs(μ f )|
curves tracing the features in the density of states in the
ferromagnet provide a qualitative explanation for the non-
monotonic Q(μ f ) behavior shown in Fig. 4(a).

The behavior of the pair momentum with respect to the
spin-splitting field in the adjacent layer is shown in Fig. 5(a).
We use the following parameter set to produce the results in
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FIG. 4. (a) The Cooper pair momentum Q versus the chemical
potential in the adjacent layer μ f for several spin-splitting fields
h/Tc0 = 50, 100, 150. (b) Absolute value of the difference between
the spin-resolved densities of states in the normal-metal state of the
S layer at the Fermi level νsη (η = ±) versus μ f for h/Tc0 = 50, 100,
150. The parameters are μs/Tc0 = 103, dsTc0/vF = 0.05, df = 4ds,
and αkF /Tc0 = 200.

Fig. 5: μs/Tc0 = 103, μ f /Tc0 = −120, dsTc0/vF = 0.05, and
d f = 4ds. We can see from Fig. 5(a) that for small h the pair

momentum scales linearly with h and the slope of Q(h) curves
varies linearly with the spin-orbit constant. Such behavior is
consistent with the presence of the Lifshitz invariant ∝αh in
the Ginzburg-Landau free-energy density. In accordance with
our qualitative arguments in Sec. IV, the resulting Q(h) depen-
dences exhibit a reentrant behavior, and maxh |Q(h)| shifts to
stronger fields as the spin-orbit energy increases. Figures 5(b)
and 5(c) show corresponding log10[Q2(h)] dependences and
log10-log10 plots of δTc versus Q2 for the chosen field range
h/Tc0 ∈ [−200, 200]. According to Eqs. (22), for the GL
functional (20) log10[δTc(Q)] should be a linear function of
log10(Q2). The plots in Figs. 5(b) and 5(c) demonstrate that
the shift in the critical temperature for a modulated super-
conducting state is, indeed, quadratic in Q for small h and
deviates from quadratic dependence for rather large h val-
ues. Therefore, the results in Figs. 5(a) and 5(c) provide a
microscopic justification of the phenomenological descrip-
tion (20) and point out the range of the exchange fields in
the adjacent layer within which such a description is valid.
Our numerical calculations also reveal that the considered
superconducting heterostructures can possess nonreciprocal
properties. In particular, for rather large spin-splitting fields h
we observe the appearance of the antisymmetric component
of the function Tc(Q + q) with respect to q, which indi-
cates the possibility of the superconducting diode effect in
the system, namely, the in-plane anisotropy of the critical
current [85–87].

Note, in conclusion, that within the parameter range con-
sidered in our work the shift in critical temperature due to
a modulated superconducting state is rather small δTc/Tc0 <

10−3. In this regard, in the presence of the exchange
field and the spin-orbit interaction nonreciprocal supercon-
ducting properties should manifest themselves within the
low-temperature regime, which is beyond the scope of the
present work. Nevertheless, our calculations suggest that for
the enhancement of nonreciprocal effects the following con-
ditions should be satisfied. First, the ferromagnetic layer
should feature a large difference in the spin-resolved densities
of states at the Fermi level. This is a typical situation in
superconductor/half-metal systems. Second, an optimal value
of the spin-orbit energy αkF ∼ h is required.

(a) (b) (c)

FIG. 5. (a) and (b) The dependences of the pair momentum Q and log10(Q2) on the spin-splitting field h in the adjacent layer for several
spin-orbit energies, αkF /Tc0 = 50, 100, 150, 200. (c) Corresponding parametric log10-log10 plots of δTc versus Q2. The parameters are μs/Tc0 =
103, μ f /Tc0 = −120, dsTc0/vF = 0.05, and df = 4ds. Here δTc(Q) ≡ Tc(Q) − Tc(0).
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VI. SUMMARY

To sum up, we have developed a microscopic theory of the
inverse proximity effect for planar hybrid structures consist-
ing of a thin superconducting film placed in contact with a
material with a strong exchange or Zeeman field and Rashba
spin-orbit interaction. It has been shown that the spin-orbit
interaction partially compensates the pair-breaking effect of
the exchange field. This effect originates from the appearance
of the intraband spin-singlet pairing correlations in the su-
perconductor for which the depairing effect of the exchange
or Zeeman field becomes weaker. It has been demonstrated
that the spin-orbit interaction stabilizes modulated supercon-

ducting states which can be traced to the Lifshitz invariant
in the Ginzburg-Landau free-energy density. Our results pro-
vide a microscopic justification of the GL functional with the
Lifshitz invariant for a large class of superconducting hybrid
systems and clarify the validity range of the corresponding
phenomenological models.
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