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At sufficiently large transport currents Itr , a defect at the edge of a superconducting strip acts as a gate for
the vortices entering into it. These vortices form a jet, which is narrow near the defect and expands due to the
repulsion of vortices as they move to the opposite edge of the strip, giving rise to a transverse voltage V⊥. Here,
relying upon the equation of vortex motion under competing vortex-vortex and Itr-vortex interactions, we derive
the vortex jet shapes in narrow (ξ � w � λeff ) and wide (w � λeff ) strips [ξ : coherence length, w: strip width,
λeff : effective penetration depth]. We predict a nonmonotonic dependence V⊥(Itr ) which can be measured with
Hall voltage leads placed on the line V1V2 at a small distance l apart from the edge defect and which changes its
sign upon l → −l reversal. For narrow strips, we compare the theoretical predictions with experiment, by fitting
the V⊥(Itr, l ) data for 1-μm-wide MoSi strips with single edge defects milled by a focused ion beam at distances
l = 16–80 nm from the line V1V2. For wide strips, the derived magnetic field dependence of the vortex jet shape
is in line with the recent experimental observations for vortices moving in Pb bridges with a narrowing. Our
findings are augmented with the time-dependent Ginzburg-Landau simulations which reproduce the calculated
vortex jet shapes and the V⊥(Itr, l ) maxima. Furthermore, with increase of Itr , the numerical modeling unveils the
evolution of vortex jets to vortex rivers, complementing the analytical theory in the entire range of Itr .
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I. INTRODUCTION

The recent great interest in superconductor thin strips with
the critical current Ic approaching the depairing current Id is
caused by the required close-to-Id bias regime of microstrip
single-photon detectors [1–5], ultrafast vortex motion at large
transport currents Itr [6–11], and the phenomena of generation
of sound [12,13] and spin waves [14,15] at a few km/s vortex
velocities. In this context, the issue of high Ic is related to
blocking of the penetration of vortices via the strip edges
[16–18], its control via material and edge-barrier engineering
[18–20], and knowledge of the effects of various edge defects
on the penetration and patterns of Abrikosov vortices [21–26].

The penetration of vortices into a superconductor is ham-
pered by various types of surface and edge barriers [27],
among which the Bean-Livingston [28] and the geometrical
[29] barrier are most essential. The former arises due to the
attraction of a vortex to its image at distances of the order
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of the London penetration depth λ (in bulk superconductors)
from the sample surface [28]. The geometrical barrier orig-
inates from the shape of the superconductor and it appears
for samples different from an ellipsoid. In the case of super-
conductor thin strips with thickness d � λ, in which vortices
interact mostly via the stray fields in the surrounding space,
the vortex-vortex and vortex-image interaction length scale
is determined by the noticeably larger effective penetration
depth λeff = λ2/d [30,31] while effects of the geometrical
barrier are not essential [32].

The patterns of moving vortices are determined by their
mutual repulsion, interactions with the transport current,
and structural imperfections in the sample [27]. For weak-
pinning materials, such as amorphous MoSi thin strips used
in this work, the effects of volume pinning are not essen-
tial. Then, if the Lorentz force fL = φ0Jtr/c (φ0: magnetic
flux quantum) exerted on a vortex by the transport cur-
rent of sheet density Jtr exceeds the force of attraction of
the vortex to the sample edge, the edge barrier is sup-
pressed. This suppression can be local in the case of a local
increase of Jtr (current-crowding effect [33]), and it can
be realized, e.g., in strips with an edge defect [16,18,21–
24,34]. In this case, the defect acts as a gate [22] for vor-
tices entering into the superconductor strip and crossing
it under the competing action of the Lorentz and vortex-
vortex interaction forces. If the size of the defect is much
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larger than the coherence length ξ in the superconductor,
the defect can serve as a nucleation point for several vortex
chains [7,26]. Such chains form a vortex jet with the apex
at the defect and expanding due to the repulsion of vortices
as they move to the opposite film edge. If the defect size is
�ξ , the vortices will be entering into the strip consequentially.
However, in the presence of fluctuations and inhomogeneities
in the strip, the vortex chain will evolve into a diverging jet
because of the intervortex repulsion.

The presence of a vortex velocity component along the
superconducting strip gives rise to a transverse voltage
V⊥ �= 0, which is also known to appear in the different phys-
ical contexts of vortex guiding [35–40] and Hall [41–46]
effects. However, vortex guiding results in an even-in-field
transverse voltage V⊥(B) while the Hall voltage is odd with
respect to magnetic field B reversal. The appearance of a non-
monotonic V⊥(Itr ) was also predicted for the annihilation of a
vortex and antivortex entering into the strip via two displaced
defects at its edges [47] and confirmed experimentally for
thin films with a cross-shaped geometry [48]. The essential
differences of V⊥(Itr ) appearing because of the vortex jets in
the present work is that it is (i) local, i.e., it can only be
measured with voltage leads placed rather close to the edge
defect, (ii) appears also in zero external magnetic field, (iii)
changes its sign with the change of the coordinate l → −l of
the transverse voltage leads with respect to the edge defect,
and (iv) appears because of the repulsion of several (at least
two) vortices.

Here, we predict theoretically and corroborate experimen-
tally the appearance of the transverse voltage V⊥ in the vicinity
of an edge defect at zero external magnetic field. We use
the dynamic equation for vortices moving under competing
vortex-vortex and transport-current-vortex interaction con-
ditions to derive analytically the transverse current-voltage
curves V⊥(Itr, l ). The employed approach is justified at suf-
ficiently large transport currents Itr � Ic, i.e., when the edge
barrier is suppressed by Itr . The major theoretical results
are (i) the nonmonotonicity of V⊥ as a function of Itr and
l , and (ii) analytical expressions for the vortex jet shapes
in the cases of narrow (ξ � w � λeff , w: strip width) and
wide (w � λeff ) superconducting strips. Furthermore, we use
a series of 1-μm-wide MoSi strips with artificially created
edge defects (notches) milled by a focused ion beam (FIB) at
different distances l = 16–80 nm from the transverse voltage
leads to experimentally demonstrate the predicted nonmono-
tonicity of V⊥(Itr, l ). In addition, we augment the analytical
and experimental findings with the results of time-dependent
Ginzburg-Landau (TDGL) simulations. The obtained vor-
tex patterns reproduce qualitatively the calculated vortex jet
shapes and the maxima in V⊥(Itr, l ) and illustrate the evolution
of vortex jets to vortex rivers with increase of Itr , comple-
menting the analytical theory in the entire range of transport
currents.

The paper is organized as follows. The vortex jet shapes
and the transverse I-V curves are derived in Secs. II B and
II D for the cases of narrow and wide strips, respectively. The
expression for the vortex velocity in a narrow strip is given
in Sec. II C and the vortex jet shape in a wide strip in the
presence of an external magnetic field is analyzed in Sec. II E.
The evolution of vortex jets to vortex rivers with increase of

FIG. 1. Geometry of the problem. The origin of coordinates is
associated with an edge defect acting as a gate for vortices penetrat-
ing into the strip. The Lorentz force induced by the large transport
current of density Jtr makes the vortices to move to the opposite
edge of the strip. The edges of the vortex jet in a narrow strip
are determined by the equations y = ±y0(x). The transverse voltage
V⊥ = V2 − V1 associated with the crossing of the line V1V2 by vortices
is measured with a pair of leads V1 and V2 located at a distance l apart
from the x axis going through the center of the edge defect.

the transport current is discussed in Sec. II F relying upon the
TDGL equation modeling. In Sec. III we present the experi-
mental data for thin MoSi strips, discuss them in comparison
with the theoretical predictions and the TDGL simulations in
Sec. IV, and summarize the major obtained results in Sec. V.

II. THEORY

A. Qualitative consideration

We first consider the problem qualitatively and then pro-
ceed to its rigorous theoretical treatment. Our task is to
elucidate the appearance of the transverse voltage V⊥ in a
superconducting strip with an edge defect, as schematically
shown in Fig. 1. To this end, we consider the following
scenario of vortex penetration into the strip with an edge
defect. At some current Itr = Ic the current density reaches the
depairing current density Jdep near the defect, the edge barrier
vanishes, and a vortex enters into the superconductor. The su-
percurrent circulating around the vortex is directed oppositely
to Jtr near the defect, resulting in a locally smaller Jdefect < Jtr

and a recovery of the edge barrier, thereby preventing the
penetration of other vortices. The recovery of the edge barrier
is temporary since the vortex moves toward the opposite edge
of the strip due to the transport current. The vortex motion is
accompanied by a redistribution of the transport current such
that Jdefect reaches Jdep again and another vortex enters into the
strip.

In principle, in a pure uniform strip in the absence of a
current density gradient and/or fluctuations, the second vortex
should move along the same trajectory as the first vortex since
the first vortex does not create a perpendicular component of
the driving force acting on the second vortex. Moreover, the
first vortex creates a wake behind it, i.e., some track with a
suppressed superconducting order parameter, which attracts
the second vortex. The strength of the wake is determined by
nonequilibrium effects, the time of flight of the vortex across
the strip and, hence, by the magnitude of the transport current.
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However, in the presence of fluctuations and inhomo-
geneities, which cannot be avoided even in high-quality
samples, the second vortex may escape from the wake and the
vortex repulsion (which is especially strong in narrow strips)
will deflect the trajectory of the second vortex away from
the trajectory of the first vortex. This deviation of the vortex
trajectories away from the transverse-to-strip direction (x axis)
will lead to the appearance of a vortex jet, as depicted in Fig. 1.
Accordingly, when the edge defect is located at a distance
l � ξ from the line V1V2, the crossing of this line by vortices
leads to the appearance of a transverse voltage V⊥ �= 0. In
particular, when Itr exceeds Ic by only a small amount, the
vortex-interaction-induced longitudinal velocity component
vy is relatively large in comparison with the Lorentz-force-
induced transverse velocity component vx. In this regime,
V⊥(Itr ) ∝ Itr since the number N of vortices crossing the
line V1V2 per unit of time increases as N ∝ Itr . By contrast,
the Lorentz-force-induced perpendicular velocity component
dominates the vortex dynamics at Itr � Ic. In this regime, for
the line V1V2 located not too close to the defect, though the
velocity of vortices is still increasing with increase of Itr , the
number of vortices crossing the line V1V2 is decreasing faster.
The competition between these two contributions leads to the
appearance of a maximum in V⊥(Itr ) and a decrease of V⊥ to
zero with a further increase of Itr .

In our hydrodynamic approximation with respect to the
density of vortices and their velocity field, which allows for
analytical expressions for the vortex jet shapes and the trans-
verse I-V curves, we will keep only the minimal number of
essential terms which provide a nonmonotonic dependence
V⊥(Itr ). Namely, these are the vortex-vortex and transport-
current-vortex interactions. In particular, we will neglect the
interaction of vortices with the strip edges which could lead
to quantitative corrections in the final expression, especially
in the case of narrow strips. Note, the hydrodynamic model
does not capture nonequilibrium effects associated with the
escape of unpaired electrons from the vortex cores at high
vortex velocities. For superconductor MoSi thin films used
in the experimental Sec. III, these effects become relevant at
vortex velocities of the order of 10 km/s [26] and they will
be discussed within a discrete approach based on the TDGL
equation modeling in Sec. II F.

B. Vortex jet in a narrow strip

In this subsection, we consider the case of a thin narrow
superconducting strip with thickness d � λ and width ξ �
w � λeff carrying a transport current Itr in the absence of an
external magnetic field. The geometry of the problem is shown
in Fig. 1. The origin of coordinates is associated with an edge
defect acting as a place of entry of vortices into the strip.
We consider the regime of sufficiently large transport currents
Itr � Ic, where Ic is the current at which the edge barrier is
suppressed.

We assume that the force of interaction of a vortex located
at the point r (ξ � r � λeff ) with a vortex located at the
origin of coordinates is given by the expression [49,50]

F(r) = φ2
0

8π2λeff

r
r2

, (1)

where φ0 = hc/(2e) is the magnetic flux quantum. This force
can be expressed as a gradient of the interaction potential [51]

ϕ(r) = φ2
0

8π2λeff
ln r/λeff . For an ensemble of vortices located at

points ri, the total interaction potential is given by

ϕ(r) =
∑

i

φ2
0

8π2λeff
ln

|r − ri|
λeff

. (2)

With the two-dimensional vortex density n(r) =∑
i δ2(r − ri ) the interaction potential can be expressed

as

∇2ϕ(r) = φ2
0

4πλeff
n(r). (3)

A stationary flow of vortices in the strip implies div(nv) = 0.
The vortex trajectory can be found from the equation of the
balance of forces acting on the vortex

φ0

c
[Jtrez] + ∇ϕ = ηv, (4)

where Jtr is the two-dimensional transport current density, ez

the unit vector perpendicular to the strip plane, η the viscosity
coefficient, and v the vortex velocity. Note that in the consid-
ered case of a narrow strip with w � λeff the transport current
density is constant over the width of the strip. The width of the
vortex jet depends on the x coordinate and is equal to 2y0(x).

We assume that the vortex density n is constant over the jet
cross section, that is n = n(x, y) ≡ n(x). In this case, the flux
of vortices, which coincides with their frequency of penetra-
tion into the strip, is given by

fv = 2y0(x)n(x)v0, (5)

where v0 = φ0Jtr/cη. In what follows we consider rather
large transport currents which result in large vortex velocity
components along the x axis. This allows us to limit our
consideration by the case of narrow jets with ∂2ϕ/∂y2 �
∂2ϕ/∂x2 and to simplify Eq. (3) as

∂2ϕ

∂y2
= φ2

0

4πλeff

fv

2y0(x)v0
, (6)

from where

Fy ≡ ∂ϕ

∂y
= φ2

0

4πλeff

fvy

2y0(x)v0
. (7)

The equations of motion of the vortex Fy = η
dy
dt and dx

dt =
v0 yield the equation for the vortex trajectory

dy

dx
= φ2

0 fv

8πλeffηv2
0

y

y0(x)
. (8)

The trajectories of the vortices at the edges of the jet are de-
termined by the condition y = y0(x), from where one obtains

y0(x) = φ2
0 fv

8πλeffηv2
0

x ≡ α0x, (9)

where α0 is the divergence angle of the jet. The integration
constant is taken equal to zero since the size of the edge defect
is assumed to be much smaller than the width of the vortex jet
at x = w (see Fig. 1). It can be shown that the vortices inside
the jet move along straight lines with slopes |α| < α0. The
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above assumption ∂2ϕ/∂y2 � ∂2ϕ/∂x2 is justified in the case
of a narrow vortex jet, that is, when α0 � 1.

Let the voltage leads V1 and V2 be located in such a way
that their y coordinates are equal to l , and l is larger than the
y size of the edge defect (see Fig. 1). Then, if the trajectories
of vortices in the jet cross the dashed line V1V2, the transverse
voltage V⊥ ≡ V2 − V1 is induced between the leads V2 and V1.
The appearance of the transverse voltage follows from the fol-
lowing considerations. The longitudinal voltage V‖ ≡ V4 − V3

on the strip is determined by the average rate of change of the
phase difference of the order parameter at its edges

V = h̄

2e

dφ

dt
. (10)

As one vortex passes through the strip, the phase difference
of the order parameter taken at two points located on both
sides of the row of moving vortices evolves by 2π . Thus,
the longitudinal voltage V‖ is proportional to the vortex flux
V‖ = π h̄ fv/e. Accordingly, the transverse voltage V⊥ is de-
termined by the part of the flux of vortices that crosses the
line V1V2, namely, fV1V2 = fv(α0 − α)/2α0, where α = l/w
and α < α0. For the calculation of V⊥(Itr ) we make use of the
dependence fv ∝ (Itr − Ic) observed experimentally [7] for an
edge defect in the form of a narrowing of the film. Using
Eq. (9) for α0 and substituting v0 = φ0Itr/wcη, we obtain the
sought-for expression

V⊥(Itr ) = φ0kI

2c
(Itr − Ic)

(
1 − 8πλeff lI2

tr

c2w3ηkI(Itr − Ic)

)
, (11)

where kI is the coefficient of proportionality between fv and
(Itr − Ic) for sufficiently large Itr .

C. Vortex velocity in a narrow strip

In recent years, thin strips in which vortices can
move at high velocities have attracted great attention
[7,9,10,18,52–54]. This raises the problem of measuring the
velocity of vortices moving under the action of the Lorentz
force. We note that in a narrow strip, the x component of
the vortex velocity is inversely proportional to the divergence
angle of the jet α0. In experimentally measured quantities, the
expression for the vortex velocity reads as

v0 = c2dwV‖
8πλ2Itrα0

, (12)

where V‖ is the longitudinal voltage on the strip and Itr is the
current value at which V⊥ vanishes.

The vortex velocity in a narrow strip can, therefore, be
estimated from measurements of the transverse voltage V⊥.
Indeed, if a pair of voltage leads is located at a distance l
from the axis x, then with an increase of the transport cur-
rent, V⊥(Itr ) will become zero for a given α0 = α ≡ l/w. By
substituting α0 and Itr|V⊥=0 into Eq. (12), the velocity v0 can
be calculated.

D. Vortex jet shape in a wide strip

In this section, we consider the case of a thin wide su-
perconducting strip with thickness d � λ and width w �
λeff carrying a transport current in the absence of external

magnetic field. Instead of rederiving all the expressions com-
pletely, we rather outline the modifications of the results
presented in Sec. II B for the case of wide strips.

The distribution of the transport current density Jtr over the
width of a wide strip has the well-known form [55,56]

Jtr (x) = Itr

π
√

x(w − x)
, (13)

where Itr is the total transport current flowing in the strip.
Equation (13) is inapplicable at distances of the order of λeff

from the strip boundaries. However, this drawback is insignif-
icant for the subsequent analysis of strips with w � λeff .

In the case of wide strips, the velocity v0 in Eqs. (5)–(8) is
replaced by v(x), where (not too close to the strip edges)

v(x) = φ0Itr

πcη
√

x(w − x)
. (14)

Since the x component of the vortex velocity in wide strips
depends on the coordinate x, dx/dt = v(x), one obtains the
following equation for the vortex trajectory:

dy

dx
= φ2

0

8πηλeff

fvy

y0(x)v(x)2
. (15)

As in the case of narrow strips, the jet boundary is determined
by the condition y = y0(x), from where one obtains

y0(x) = πc2η fv

8λeff I2
tr

(
x2w

2
− x3

3

)
. (16)

The shape of the vortex jet is largely determined by the
Lorentz force. Near the edges of a wide strip, where the
current density and, hence, the Lorentz force are relatively
large, the curve y0(x) has a low inclination. Near the center of
the strip, where the Lorentz force decreases, the dependence
y0(x) becomes steeper. Thus, in a wide strip, the diverging
jet of vortices is bounded by the curves with inflection points
at x = w/2. The vortex jet shape determined by Eq. (16) is
in qualitative agreement with the shape of the vortex pat-
terns observed by scanning SQUID-on-tip microscopy [7] in
Pb bridges with a narrowing [see Fig. 2(a) and the inset in
Fig. 3(b) in Ref. [7]].

Note that in the approach used it is hardly possible to obtain
perfect agreement between theory and experiment since we
use Eq. (1) which quantitatively describes the interaction of
vortices in a narrow strip where the distance between vortices
r � λeff . At the same time, the use of our approach is not
unreasonable for the description of wide strips. An argument
in its favor is the small width of the vortex jet since in a jet
with a width of less than λeff , its expansion is mainly caused
by the repulsion between vortices located at distances less
than λeff . Equation (15) implies that the trajectories of vortices
inside the jet are given by the equality y(x) = βy0(x), where
parameter |β| < 1.

In the case of a wide strip, the transverse voltage is given
by

V⊥(Itr ) = φ0kI

2c
(Itr − Ic)

(
1 − 48λeff I2

tr

πc2w3ηkI(Itr − Ic)

)
. (17)

It is seen that V⊥(Itr ) has, again, a nonmonotonic behavior. At
large currents Itr , such that y0(w) � l , V⊥ is equal to zero.
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0

w

y0(x)

(a)

h = -0.75

h = 0.75

h = 0

(b)

Jtr

0 w/2 w

FIG. 2. (a) Vortex jet shape in a wide strip. The jet edges are
determined by Eq. (16). (b) Coordinate dependence of the upper
boundary of the vortex jet at three values of the reduced magnetic
field h, as indicated. Y0 is determined by the square brackets in
Eq. (19).

E. Vortex jet shape in a wide strip in a magnetic field

In this section we analyze the evolution of the vortex jet
shape in a wide strip in the presence of an external magnetic
field. Namely, when a magnetic field H is applied perpen-
dicular to the plane of a wide strip, a Meissner screening
current is induced in the superconductor, modifying the shape
of the vortex jet. In this section, for convenience, we assume
that the strip occupies the region −1 < x̃ < 1, where x̃ is the
dimensionless coordinate x̃ = 2x/w. Then, in the Meissner
state, the current density has the form [56]

J (x̃) = 4Itr − cHwx̃

2πw(1 − x̃2)1/2
, (18)

where H is the projection of the applied magnetic field onto
the z axis. If one introduces the dimensionless magnetic field
h = cwH/4Itr , then the dependence y0(x̃) reads as

y0 = πc2η fvw
3

64λeff I2
tr

[
2

h3
ln

(
1 + h

1 − hx̃

)
− 2(1 + x̃) − h(1 + x̃)2

h2(1 − hx̃)

]
.

(19)

Figure 2(b) shows the coordinate dependence y0(x̃) at three
values of the reduced magnetic field h. Note that the shape of
the vortex jet strongly depends on the polarity of the applied
magnetic field. Indeed, at h > 0, the direction of the screening
current coincides with the direction of the transport current
in the region x̃ < 0, which increases the Lorentz force acting
on the vortex. By contrast, the same currents are oppositely
directed at x̃ > 0, which leads to a decrease of the Lorentz
force. When h < 0, the situation changes to the opposite, since
now the currents flow in the same direction when x̃ > 0 and
in the opposite directions when x̃ < 0.

F. Vortex jet in the TDGL model

The theoretical consideration in Secs. II B–II E is based on
a hydrodynamic approach, wherein the vortex distribution is
described in terms of the vortex density. This model allows
for the analytical expressions for the vortex jet shapes and the
transverse I-V curves. However, the hydrodynamic approxi-
mation is connected with the unknown condition for the vortex
entry frequency via the edge defect. Besides, it is difficult to
take into account nonequilibrium effects associated with the
fast vortex motion at large transport currents.

As a complement to the analytical model introduced above,
one can take a discrete approach in which vortices enter the
strip via the defect one by one. This approach is based on the
TDGL equation which is solved in conjunction with the heat
conductance equation. Although no analytical expressions are
available for the vortex jet shapes and the transverse I-V
curves in this model, it takes into account both the condition
for the vortex entry frequency and nonequilibrium effects
[26]. In addition, it allows for analyzing the vortex patterns
relying upon the spatiotemporal evolution of the supercon-
ducting order parameter |�|.

Our model is valid at T ≈ Tc and for short electron-
electron scattering times τee. The latter condition implies that
at any time instant, electrons are thermalized among them-
selves and one may introduce an electron temperature Te

differing from the phonon temperature Tph and the substrate
temperature Ts. However, if τee is comparable with the inelas-
tic electron-phonon scattering time τep (even if τep is reduced
due to the electron-electron interaction) the used model can
give only qualitative predictions.

In the TDGL simulations, we consider a superconduct-
ing strip with dimensions 100ξc × 130ξc (x × y) where ξc =√

h̄D/kBTc = √
1.76ξ (0) ≈ 7.8 nm for MoSi thin strips.

Here, D is the electron diffusion coefficient and Tc is the
superconducting transition temperature. We use the normal
metal-superconductor boundary conditions at the ends of the
strip (along the y axis), which allow us to employ a simple
method for injecting the current into the superconductor, and
the boundary conditions with vacuum along the x axis. Details
on the considered equations and the numerical procedure were
reported elsewhere [26]. The edge defect was modeled as a
region (slit) with a local suppression of Tc. The size of the
defect was chosen as 15ξc × 2ξc (x × y), as shown in Fig. 3.

Figures 3(a) and 3(b) show the calculated V‖(Itr ) and V⊥(Itr )
curves for the superconducting strip in a weak magnetic field
B = 0.005Bc0, where Bc0 = φ0/2πξ 2

c . This magnetic field is
slightly below the field Bstop, at which there is one sparse
row of vortices at Itr < Ic for a strip of length L = 260ξc

while for a strip of length L = 130ξc there are two vortices
(see Fig. 3). The physical meaning of Bstop is half of the
magnetic field magnitude at which the edge barrier for vortex
entry is suppressed at Itr = 0. In the simulations, the weak
magnetic field is applied to increase the number of vortices
in the sample in the resistive state and to expand the range of
currents (Ic, I∗) of the low-resistive regime which precedes the
transition of the strip to the normal state. The application of
this small magnetic field allows us to illustrate better the main
results.

The evolution of the vortex patterns with increase of the
transport current is presented in Fig. 3(c). Namely, we find
that at Itr > Ic two vortex rays are formed: one is deflected
toward positive y values and another one in the direction of
negative y values with respect to the edge defect. With an
increase of Itr the points, where vortices exit the strip at the
opposite edge, are displaced toward y = 0 so that the two
vortex rays approach each other. Once the vortex ray stops
passing through the line V1V2, V⊥ decreases to zero. Overall,
the most essential features of the transverse I-V curves in
Fig. 3(b) can be summarized as follows: V⊥(Itr ) = 0 for l = 0.
The V⊥(Itr ) curve exhibits a maximum in the current range
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FIG. 3. Longitudinal (a) and transverse (b) I-V curves for a strip containing an edge defect, as calculated by the numerical solution of the
TDGL equation. The voltage is in units of V0 = kBTc/(2e) and the current in units of the depairing current Idep calculated in the dirty limit
within the framework of the Usadel model [26]. (c) Snapshots of the modulus of the superconducting order parameter |�|(x, y) for a series of
current values, as indicated, in the close-to-defect strip region with sizes 95ξc × 45ξc (x × y). Once the transport current Itr exceeds the critical
current Ic, the vortices begin to enter via the edge defect (slit) and, with a further Itr increase, form a divergent jet because of the repulsive
interaction between them. At sufficiently large Itr , the opening angle of the jet is decreasing because of the Itr-vortex interaction dominating the
vortex dynamics. When Itr is approaching the instability current I∗, the vortex jets evolve to a vortex river, with the order parameter suppressed
along the trajectory of the vortex motion. The horizontal dashed lines indicate the location of the transverse voltage leads with respect to the
edge defect for l/ξc = 10.

(Ic, I∗). The magnitude of the maximum in V⊥(Itr ) decreases
with increase of l . The voltage V⊥ changes its sign upon
l → −l reversal.

Qualitatively, the same results were obtained for smaller
and zero magnetic fields. The only quantitative difference is
that the number of vortices and the divergent angle between
the vortex rays is smaller than that shown in Fig. 3. For
instance, at B = 0 only two vortices (one in each ray) are in
the strip, but the shape of V⊥(Itr ) is similar to that shown in
Fig. 3(b). By contrast, with increase of the magnetic field, the
number of vortices increases, which leads to a wide vortex jet
instead of just two vortex rays. In this regime, the vortices may
exit at different points on the opposite edge of the strip and this
regime is realized already at B = 0.007B0. At larger magnetic
fields, when Itr exceeds some further threshold value, vortices
may enter not only via the edge defect but also at other points
along the sample edge because of the suppression of the edge
barrier. This regime requires further investigations which are
beyond the scope of this work.

III. EXPERIMENT

A. Samples

The theoretical predictions for narrow strips were exam-
ined for a series of 15-nm-thick 1-μm-wide MoSi strips
differing by the location of an artificially created edge

defect (notch) with respect to the perpendicular voltage leads
(see Fig. 1 for the geometry). MoSi was chosen as an amor-
phous superconductor with a high structural uniformity and
a very weak intrinsic (volume) pinning, as previously con-
cluded from the structural characterization of the strips by
transmission electron microscopy and the magnetic field de-
pendence of the critical current [26]. The MoSi films were
deposited by dc magnetron cosputtering of Mo and Si targets
onto Si/SiO2 wafers, on top of a 5-nm-thick Si buffer layer,
and covered with a 3-nm-thick Si layer to prevent the strip
oxidation.

For electrical resistance measurements the films were pat-
terned into six-probe geometries (Fig. 1), with a strip length
L = 10 μm and width w = 1 μm. The voltage leads, with
a width of about 20 nm, were milled by FIB in a dual-
beam high-resolution scanning electron microscope (SEM:
FEI Nova NanoLab 600). FIB milling was done at 10 kV/10
pA with a pitch of 8 nm. In our previous study of the edge-
barrier effects on the vortex dynamics in wide MoSi strips
[26] we revealed that FIB milling allows for the realization of
very smooth strip edges. Specifically, the rms edge roughness
in the y direction was less than 0.5 nm, as deduced from the
inspection of the strips by atomic force microscopy over a
distance of 500 nm along the edge. The milling of the edges
was accompanied by stopping of Ga ions within a region
of width ∼10 nm along the edges, as inferred from SRIM
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FIG. 4. SEM images of the close-to-notch regions of (a) sample
16 and (b) sample 32. (c) Tilted-view SEM image of sample 32 in the
region of the transverse voltage lead at the opposite-to-notch edge.

simulations and seen as lighter regions along the strip edges
in the SEM images in Fig. 4.

The strips have a superconducting transition temperature
Tc = 6.43 K, resistivity ρ7 K ≈ 148 μ� cm, upper critical
field Bc2(0) ≈ 10.2 T, and dBc2/dT = −2.23 T/K near Tc,
yielding the electron diffusion coefficient D ≈ 0.49 cm2/s,
the coherence length ξ (0) = √

h̄D/1.76kBTc = 5.9 nm, the
penetration depth λ(0) = 1.05 × 10−3√ρ7K/Tc ≈ 495 nm,
and λeff (0) = λ2(0)/d ≈ 16.3 μm. Thus, the investigated
strips are thin and narrow, with d � λ and ξ � w � λeff .
With the temperature dependence of the effective penetration
depth [57], we make an estimate for λeff (0.78Tc) ≈ 74 μm in
our experiments at 5 K. Hence, the large λeff in conjunction
with the weak intrinsic pinning ensures that the dynamics of
vortices entering via the edge defects is dominated by the
transport-current-vortex, vortex-edge, and vortex-vortex inter-
actions. Altogether, this renders the MoSi strips as a suitable
experimental system for the examination of the theoretical
predictions of Sec. II B.

B. Longitudinal I-V curves

The I-V curves were taken in the current-driven regime.
The absolute value of the magnetic field in the vicinity of the
sample was always smaller than 7 μT, as controlled by using
a calibrated Hall sensor and representing zero-field conditions
in our experiment. In what follows, we present the data for
four samples, in which the middle of the notch was located
at the distances 16, 32, 48, and 80 nm from the line V1V2

between the transverse voltage leads. The samples are labeled
as sample 16, sample 32, sample 48, and sample 80, corre-
sponding to the parameter α ≡ l/w = 0.016, 0.032, 0.048,
and 0.080, respectively. Also, an additional sample A without
an artificial defect was used for reference purposes. Due to
the small distances between the notch and the voltage lead
V1 (close to the resolution limit for Ga FIB milling) multiple
nominally identical structures were fabricated. SEM images
of the close-to-notch regions of the strips chosen as samples
16 and 32 for transport measurements are shown in Fig. 4.

Figure 5(a) presents the longitudinal I-V curve for sample
A and sample 48. The latter I-V curve, within deviations of
less than the symbol size, is representative for the I-V curves
of all samples containing a notch. Both I-V curves in Fig. 5(a)
exhibit a zero-voltage plateau up to some critical current Ic,

FIG. 5. (a) Longitudinal I-V curves for sample 48 and sample
A in zero magnetic field. Dashed line indicates the 0.1-μV voltage
criterion used for the determination of the critical current Ic. (b) Sym-
bols: field dependence of the critical current Ic(B) for sample 48
and sample A. Solid lines: fits to the expression Ic(B) = Ic(0)(1 −
B/2Bstop ) with Bstop = 12 mT and IA

c (0) = 265 μA for sample A. In
all panels T = 5 K.

which is 153 μA for sample 48 and 265 μA for sample A.
The Ic values were determined by using the 0.1-μV voltage
criterion, as illustrated in Fig. 5(a). Suppression of the edge
barrier at Ic enables the penetration of vortices into the strips,
resulting in rapid onsets of the low-resistive regime up to the
abrupt jump to the highly resistive state. These jumps occur
in consequence of the flux-flow instability (FFI) [58–60] at
the current I∗ = 261 ± 3 μA for all samples with a notch.
The instability current for sample A is by about 15% higher,
I∗
A = 302 μA, and the instability voltage V ∗

A for sample A is
also higher by about 17%. These findings are in line with our
previous observations for 1-μm-wide superconducting Nb-C
strips with and without edge defects [18].

C. Critical current and its field dependence

Figure 5(b) shows the field dependencies of the critical
current for sample A and sample 48. The presence of a notch
leads to a reduction of the critical current at B = 0 and to a
shift of the maximum in the originally symmetric IA

c (B) under
B reversal to about +12 mT. At negative fields, the notch
locally suppresses the edge barrier and thereby facilitates the
entry of (anti)vortices. This leads to a small reduction of
I48
c (B) up to |B| ≈ 50 mT at which the role of the volume
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pinning increases. At positive fields, when the vortices enter
the microstrip from the opposite side, the notch does not affect
the vortex entry and this is why I48

c (B) is not affected by the
presence of the notch at B � 15 mT.

The linear dependence I48
c (B) at B → 0 is indicative for a

vortex-free (Meissner) state. Hence, with increase of Itr the
penetration of vortices is controlled by the locally suppressed
edge barrier at the notch. In particular, for sample A, IA

c (B) fits
the dependence IA

c (B) = IA
c (0 T)(1 − B/2Bstop) with Bstop =

φ0/[2
√

3πξ (T )w] ≈ 12 mT, above which IA
c (B) decreases as

IA
c (B) ∝ B−1. We note that for our microstrip a current Itr �

265 μA induces a self-field Bself = 0.5μ0Itrw
−1 ln(2w/d ) �

0.8 mT which is much smaller than Bstop and, hence, the
contribution of possible self-field effects to the observed
crossover in Ic(B) at B ≈ 12 mT is negligibly small.

With the temperature dependence of the depairing
current Idep(T ) = Idep(0)[1 − (T/Tc)2]3/2, where Idep(0) =
0.74w[�(0)]3/2/(eR�h̄D) for dirty superconductors
[26,61,62] [�(0): superconducting gap at zero temperature,
R�: sheet resistance] and the BCS ratio �(0) ≈ 1.76kBTc we
obtain Idep(0) ≈ 1.27 mA and Idep(5 K) ≈ 316 μA for our
MoSi strips. This yields I48

c /Idep ≈ 0.5, attesting to a strong
local reduction of the barrier for vortex entry in the strips
with an edge defect in comparison with sample A, for which
IA
c = 265 μA yields Ic/Idep ≈ 0.84. Sample A has likely

intrinsic edge defects because its critical current is smaller
than the theoretically expected depairing current. Moreover,
we expect that the largest single defect suppresses I∗ as
well since V ∗

A is close to V ∗
48. This is representative for all

samples with notches, for which we assume the simultaneous
motion of several vortices across the strip. Importantly, for all
samples with a notch, the instability current I∗ = 261 ± 3 μA
is smaller than the critical current IA

c = 265 μA for sample
A. This ensures that in the entire range of currents of our
interest (150–250 μA) the penetration of vortices occurs via
the notch, as considered in the theoretical model.

D. Transverse I-V curves

The transverse I-V curves for all samples are presented
in Fig. 6(c). The transverse voltage V⊥ is zero in the same
range of currents Itr � Ic as V‖ in Fig. 6(a), and it exhibits
a maximum in the regime of linear dependence V‖(Itr ). The
maximum magnitude of V⊥ is by about a factor of 2 smaller
than the magnitude of V‖. The V⊥(Itr ) curves for samples 80,
48, and 32 exhibit a zero plateau above some threshold current
Iα [indicated in Fig. 6(c)], which shifts toward larger currents
with decrease of α ≡ l/w. For sample 16, the dependence
V⊥(Itr ) attains a maximum followed by a jump of V⊥ to 55 μV
upon the transition of the sample to the highly resistive state.

Figure 6(d) presents the transverse I-V curve for sample
A. While for all samples with an edge defect V⊥(Itr ) exhibit
a maximum in the regime of linear dependence V‖(Itr ), the
transverse voltage for sample A fluctuates around the instru-
mental noise level in our setup up until the sample transition to
the highly resistive state at I∗. Accordingly, the occurrence of
the maxima in V⊥(Itr ) can be clearly attributed to the presence
of the milled notches rather close to the line V1V2 in samples
16, 32, 48, and 80. The transverse voltage below 100 nV in

FIG. 6. Longitudinal I-V curves in the low-resistive regime for
sample 48 (a) and sample A (b). Inset in (a): the same I-V curve for
sample 48 with a transition to the normal state. (c) Transverse I-V
curves for all samples with an edge defect. Symbols: experiment;
lines: fits to Eq. (11). (d) Transverse I-V curve for the reference
sample A without an edge defect. The voltage is multiplied with a
factor of 40. In all panels T = 5 K and B = 0.

Fig. 6(d) also suggests that possible intrinsic edge defects are
far away from the transverse potential leads in sample A.

IV. DISCUSSION

A. Applicability of the model

In Secs. II B and II D we have analyzed the shape of vortex
jets in narrow and wide strips and phenomena that arise due
to the difference between the vortex jet and the vortex chain.
It should be noted that the case of a superconducting strip
in the Meissner state under consideration is different from
the often studied case of vortex penetration into a strip that
is in the critical state, where vortex avalanches (dendrites)
are observed [63–70]. The considered regime is also different
from the case of strips with rather strong intrinsic pinning at
low magnetic fields, where the flux does not penetrate with a
smooth advancing front, but instead as a series of irregularly
shaped protrusions, resulting in v∗ → 0 at B → 0 [71].

It is natural to assume that in the superconducting strip with
one edge defect and zero applied magnetic field the vortices
penetrate into the superconducting strip sequentially one after
another via defect and form a vortex chain moving from one
edge of the strip to another. Indeed, vortices move perpen-
dicular to the edge of the strip due to transport current and
there is no perpendicular component of the force (along the
strip) due to other vortices (all vortices move along the same
straight line connecting opposite edges of the strip). However,
in the presence of fluctuations or inhomogeneities, this regime
is unstable at not very large velocities, i.e., when there is no
channel with a suppressed order parameter, which appears
either due to a finite relaxation time of the superconducting
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order parameter or due to heating. Due to the vortex-vortex
repulsion, even small deviations of the trajectory of one vortex
from the straight line lead to an instability of the whole vortex
chain and the formation of a vortex jet.

Previously, it was shown that in the case of vortex flow in a
narrow region across the superconducting strip (vortex river),
the effects of self-heating play an important role [72]. When
the vortices are injected through an edge defect, the heating
of the vortex jet region leads to a decrease of the absolute
value of the order parameter in this region and, therefore, to
the lateral thermal pinning of the vortex jet. Such a thermal
pinning justifies the assumption about the constancy of the
vortex density in the cross section of the jet.

Note that splitting of vortex chains was revealed in the past
for fast-moving vortices when one vortex river splits up into
several rivers at a large current density gradient across the
bridge/strip width [7,73]. By contrast, in the system consid-
ered in this work, the current crowding near the small defect
at the edge of a straight strip is localized near the defect
and the current gradient near the edge has a small impact
on the vortex dynamics. In particular, it was impossible to
reproduce vortex jets in TDGL simulations (at zero or very
weak magnetic fields) in the absence of fluctuations while
vortex jets appeared in weak magnetic fields. In the latter case,
the vortices already present in the strip lead to the instability
of the vortex chain. A further distinctive feature of our work
from the wide bridges with narrowing considered in Ref. [7] is
that in the regime of high-vortex velocities, vortex jets appear
in Ref. [7], whereas vortex jets vanish evolving to vortex rivers
in our work.

One of the conditions for the applicability of the analytical
model is the smallness of the intervortex distances in com-
parison with the characteristic scales of the problem. This
means that the vortex density must satisfy the following strong
inequality: n(w/2) � 1/y2

0(w/2). Substitution of the density
of vortices and the width of the jet into this inequality yields
f 2
v � φ0I3

trλeff/(c3η2w4). Thus, for the model to be valid, the
frequency of penetration of vortices into the strip must be
sufficiently high. At the same time, it turns out that at a current
Itr = 255 μA, due to the small width of the film, the average
distance between the vortices is of the order of the coherence
length. This means that the condition for the applicability of
Eq. (1) is not satisfied, and only a qualitative description of
the experiment on 1-μm-wide films can be expected from the
presented model.

B. Evaluation of the experiment

In the theoretical model of Sec. II B, the edge-barrier ef-
fect on the vortex motion was neglected. This effect is most
profound in narrow strips, leading to Ic � Id in high-quality
samples. Phenomenologically, it can be accounted for by as-
suming that the average (over the strip width) vortex velocity
〈v0〉 ∝ fv ∝ (Itr − Ic), as observed experimentally for an edge
defect in the form of a narrowing of the film [7]. Indeed, the
attraction of vortices to the edges can be described mathemat-
ically via the introduction of vortex images [27]. We note that
one can neglect the influence of the strip edges in Eq. (4) when
Itr ∼ Id since the vortex-vortex interaction decays with the
distance r as ∼1/r already at r > 10ξ [27]. However, the edge

barrier strongly affects the time of flight t of the vortex across
the strip since near the edge where it enters the vortex moves
very slowly and t diverges when Itr → Ic while 〈v0〉 → 0.

Thus, we used the dependence v0 ∝ (Itr − Ic) for fitting
the experimental data [symbols in Fig. 6(c)] to the expres-
sion V⊥ = A(Itr − Ic) − αB(Itr − Ic)2 following from Eq. (11),
varying the coefficients A and B as two empirical parameters.
The best fits were obtained for A = (0.75 ± 0.03) V/A and
B = (225 ± 5) mV/mA2. The fits shown by solid lines in
Fig. 6(c) reproduce well the dome-shaped maxima in the
experimental dependencies V⊥(Itr ) for all samples. Note that
the agreement of the experimental V⊥(Itr ) with the parabolic
dependence following from the theory indicates that, in our
case, the edge defect injects an expanding jet of vortices rather
than a chain of vortices.

Figure 6(a) presents the longitudinal I-V curve for sam-
ple 48, emphasizing that the maximum in V⊥(Itr ) occurs in
the quasilinear regime of V‖(Itr ) and there is some range of
currents (223–255 μA) in which V⊥(Itr ) ≈ 0 while V‖(Itr ) ∝
(Itr − Ic). Thus, indeed, at sufficiently large V‖ corresponding
to sufficiently large vortex velocities v0, the trajectories of
vortices do not pass through the line V1V2. Finally, we note
that the maximal magnitude of V⊥ is decreasing with increase
of the distance between the edge defect and the line V1V2. This
attests to a local character of V⊥, as predicted by the theory.

The Iα values in Fig. 6(c) were also used to make estimates
for the vortex velocity, as suggested theoretically in Sec. II C.
Using Eq. (12), in which Itr is replaced by (Itr − Ic), we obtain
for Itr = 255 μA the vortex velocity v0 � 100 km/s. This
value is an order of magnitude greater than the maximal vor-
tex velocities in Refs. [7,26]. We attribute the overestimation
of the vortex velocity to the specific dynamics of the order
parameter. Namely, a rapidly moving vortex leaves behind a
region with a suppressed order parameter for some time, and
this region attracts subsequent vortices [47]. As a result, the
vortex jet narrows, and this narrowing is interpreted [based on
Eq. (12)] as an increase in the vortex velocity.

The TDGL simulations suggest that in the broad range of
transport currents Ic � Itr � I∗ corresponding to V⊥ �= 0, the
number of vortices moving in the strip at each time instant is
almost the same (see Fig. 3). Herewith, the constancy of the
average number of vortices in the strip at a given Itr means
that the penetration of vortices into the strip (at the frequency
fv) occurs with the same frequency as the inverse of the time
of flight t = 1/ f ≡ w/v0 needed for a vortex moving with
velocity v0 to cross the strip of width w [74]. Accordingly, if
one assumes the motion of a single vortex and uses the Joseph-
son relation V‖ = π h̄ fv/e, then the relation v∗

0 = V ∗
‖ w/(π h̄e)

and the experimentally measured V ∗
‖ = 81 μV at I∗ yield

v∗
0 ≈ 40 km/s if V ∗

‖ were associated with the motion of only
one vortex. However, it is obvious that a vortex jet cannot be
formed by one vortex. In particular, for our MoSi strips at
B = 0 the TDGL model predicts the presence of three vortices
as I → I∗. However, this model also predicts I∗ ∼ 0.6Idep

while in the experiment I∗ ∼ Idep. For three vortices mov-
ing in the strip, the instability velocity can be estimated as
v∗

0 ≈ 13 km/s.
There are two arguments in favor of this estimate: (i)

Instability velocities v∗ of about 13 km/s were recently

214507-9



A. I. BEZUGLYJ et al. PHYSICAL REVIEW B 105, 214507 (2022)

deduced at 5 mT for 182-μm-wide MoSi thin strips which
exhibit an instability current of I∗

w=182 μm ≈ 50 mA [26]. At
this field the number of vortices could be estimated via mag-
netic flux passing through the strip, from the standard relation
v∗ = V ∗

‖ /(BcL). The scaling of the instability currents at zero
field with the strip width within the framework of the edge-
controlled FFI model [8,18] suggests to expect I∗

w=1 μm =
(50/182) mA = 275 μA, which is indeed rather close to I∗ =
302 μA for the reference 1-μm-wide MoSi sample A without
an edge defect. (ii) The vanish of V⊥ at Itr � 255 μA for sam-
ple 32 implies that, at close-to-instability currents, the angle
of deviation of the vortex trajectories from the line V1V2 is
less than arctan(0.032) ≈ 1.8◦. This means that at such large
currents the vortices move in a chain which then develops into
a vortex river, a chain of vortices with the depleted vortex
cores because of the retarded relaxation of quasiparticles out-
side the vortex cores. If one makes an estimate for the energy
relaxation time τε of quasiparticles (normal electrons) left
by fast-moving vortices, then three vortices in a vortex river,
whose development into a normal domain mediates the onset
of FFI, would have a separation a of about 330 nm. In this case
τε ≈ a/v∗ would yield 25 ps which is in line with τε ≈ 32 ps
[26] deduced within the framework of the FFI theory [58–60],
generalized by Doettinger et al. [75], for the 182-μm-wide
strips made from the same MoSi strips.

V. CONCLUSION

To sum up, we have predicted theoretically and corrobo-
rated experimentally the appearance of the transverse voltage
V⊥ in the vicinity of an edge defect in superconducting strips
at rather large transport currents in zero magnetic field. This
voltage is local, i.e., it can be measured with transverse volt-
age leads placed at a rather small distance l apart from the
edge defect and it changes its sign upon l → −l reversal.
The physical origin of V⊥ is related to the motion of vortices
penetrating via the edge defect into the superconducting strip
and forming a diverging vortex jet as they move to the oppo-
site edge of the strip. Due to the different distribution of the
transport current over the width of the strip, the shape of the jet
of vortices in a wide strip [Eq. (16) and Fig. 2] is qualitatively
different from the shape of the vortex jet in a narrow strip
[Eq. (9) and Fig. 1].

The developed analytical model relies upon the dynamic
equation for vortices moving under competing vortex-vortex

and transport-current-vortex interactions and it is justified at
sufficiently large transport currents when the edge barrier is
already suppressed. The major theoretical results obtained in
this work are (i) the analytical expressions (9) and (16) for the
vortex jet shapes in narrow and wide superconducting strips,
respectively, and (ii) the transverse I-V curves V⊥(Itr ) for the
cases of narrow [Eq. (11)] and wide [Eq. (17)] superconduct-
ing strips. For wide strips, the derived vortex jet shape is in
qualitative agreement with the recently observed patterns of
fast-moving vortices in Pb bridges with a narrowing [7].

For narrow strips, the theoretical predictions were com-
pared with experiment, by fitting the V⊥(Itr, l ) data for
1-μm-wide MoSi strips with artificially created edge defects
(notches) milled by FIB at different distances from the trans-
verse voltage leads. The analytical and experimental findings
have been further augmented with the results of TDGL simu-
lations which reproduce qualitatively the calculated vortex jet
shapes and the maxima in the V⊥(Itr, l ) curves. In addition, the
TDGL equation modeling results have allowed us to illustrate
the evolution of vortex jets to vortex rivers with increase of
Itr , complementing the analytical theory in the entire range of
transport currents.
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