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The gap function �(ω) carries essential information on both, the pairing glue as well as the pair-breaking
processes in a superconductor. Unfortunately, in nearly localized superconductors with a nonconstant density of
states in the normal state, the standard procedure for extraction of �(ω) cannot be applied. Here we introduce
a model-independent method that makes it possible to extract �(ω) also in this case. The feasibility of the
procedure is demonstrated on the tunneling data for the disordered thin films of TiN. We find an unconventional
feature of �(ω) which suggests that the electrons in TiN are coupled to a very soft pair-breaking mode.
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I. INTRODUCTION

A prototypical example of a quantum phase transition is
provided by the quantum breakdown of superconductivity
(QBS) which may occur when a suitable external parameter
is changed [1]. In the special case when the QBS is due
to increasing disorder, which is the subject of this paper,
there exist at least three mechanisms which can drive the
transition: (i) Within the so-called fermionic scenario [2,3],
increasing disorder leads to an increase of the repulsive part of
the effective electron-electron interaction, thereby weakening
the tendency toward superconductivity. Moreover, interaction-
induced quantum corrections which lead to a suppressed
density of states in the normal state [4] further weaken the
Bardeen-Cooper-Schrieffer (BCS) instability. (ii) Whatever
causes the initial suppression of the superconducting criti-
cal temperature Tc, at some point the phase stiffness of a
dirty superconductor necessarily becomes small and the phase
fluctuations may destroy superconductivity. This mechanism
is emphasized within the so-called bosonic scenario of the
QBS [5,6]. (iii) Finally, the single-particle wave functions be-
come strongly inhomogeneous before undergoing Anderson
localization. Theories which concentrate on this aspect of the
QBS are known as the “emergent-granularity” scenario [7,8].

When the QBS occurs in homogeneously disordered sys-
tems, all three mechanisms are intertwined: (i) The relevance
of the fermionic scenario is documented most convincingly
by the recent observation of quantum corrections to optical
conductivity up to at least ∼4 eV [9]. (ii) The temperature
dependence of the resistivity indicates that phase fluctuations
definitely cannot be neglected in such systems [10,11]. (iii)
The measured spatial modulations of the tunneling density
of states strongly suggest that also electronic inhomogeneity
in structurally effectively homogeneous systems does play a
role [10,11]. Unfortunately, the combined effect of changing
interactions, phase fluctuations, and localization is presently
not understood [1].

The symptoms of the various mechanisms driving the QBS
can be further looked for, e.g., by studying the scaling of Tc

with the distance from the critical point, the magnitude of the
gap-to-Tc ratio, and the value of the critical resistivity [1].
However, a truly comprehensive picture of the transition
would be provided by the knowledge of the gap function
�(ω) which is known to carry information not only on the
pairing glue [12], but, as emphasized recently, also on the
pair-breaking processes [13,14] which occur in a supercon-
ductor. Equally important is also information on the spatial
dependence of the gap function �(ω).

In case of conventional superconductors the gap function
�(ω) can be routinely extracted from the tunneling density
of states in the superconducting state, Ns(ω) [12]. For nearly
localized superconductors, the tunneling data are in fact avail-
able from a series of recent papers [10,11,15], but all of them
find that the normal-state tunneling conductivity is not con-
stant, presumably due to interaction-induced corrections [4].

It should be noted that the energy dependence of the
tunneling conductivity might be influenced also by the tun-
neling process itself and in that case the extraction of the
density of states from conductivity data may be problematic.
One example of such extrinsic effects is provided by the
energy dependence of the tunneling matrix elements [16].
Alternatively, the tunneling process may be assisted by the
environment [17]. In principle, however, such effects can be
excluded, e.g., if the tunneling spectra do not depend on the
tip-to-sample distance. Therefore we do not take them into
account in the present work and, at low temperatures, we do
not distinguish between the tunneling conductivity and the
density of states.

Unfortunately, if the normal-state density of states Nn(ω)
is not constant, then the standard procedure for extraction of
the pairing glue [12] is not applicable. The goal of this paper
is to demonstrate that, provided also Nn(ω) is known from ex-
periment, the superconducting gap function �(ω) of isotropic
s-wave superconductors can nevertheless be determined, and
the proposed procedure does not rely on any particular micro-
scopic model.

The outline of this paper is as follows. In Sec. II we
show how the nontrivial energy dependence of Nn(ω) can be
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eliminated from the measured superconducting density of
states Ns(ω). The output of such elimination procedure is what
we call the dos-function n(ω), which can be thought of as
the density of states of a hypothetical superconductor which
is otherwise identical to the studied one, but its normal-state
density of states is constant.

Once the dos-function n(ω) is known, the next problem is
how to extract the gap function �(ω) from it. This task is
similar to the McMillan-Rowell inversion [12], but the crucial
difference has to do with experimental indications that the
classical Eliashberg theory does not apply to very dirty super-
conductors [18]. Therefore the inversion procedure should not
make use of the concept of the pairing glue as in the standard
approach [12], and our solution to this problem is presented in
Sec. III.

The feasibility of both steps of the procedure is demon-
strated by their application to the tunneling data for homoge-
neously disordered thin films of TiN, which are taken from
Ref. [10].

In Sec. IV we point out the limitations of our analysis
and we suggest how future experiments could remove the
ambiguities of the current results.

II. ELIMINATION OF THE NONTRIVIAL
NORMAL-STATE EFFECTS

It is well known that, in dirty systems at not-too-strong
coupling, interaction-induced corrections to the normal-state
density of states are present only if the electron self-energy de-
pends on the energy ε of the one-particle eigenstates [19–21].
On the other hand, in order to take into account the retarded
phonon-mediated pairing interactions, it is necessary to in-
clude also the frequency ω dependence of the self-energy.
Thus, in order to allow for both phenomena, a generalized
version of the Eliashberg theory with an ε- and ω-dependent
electron self-energy is needed for nearly localized super-
conductors. Such a theory has in fact been developed long
ago [22] and a model calculation of the superconducting
density of states Ns(ω) in that formalism became available
recently [23].

The discussion of the present paper starts from the re-
sults obtained in Ref. [23]. There it was assumed that the
effective electron-electron interaction consists of two terms.
The first term, due to poorly screened Coulomb interac-
tions, is described by an ε-dependent pseudopotential μ(ε).
The second term, characterized by an ω-dependent cou-
pling function g(ω), describes the standard phonon-mediated
electron-electron interaction. Starting from this assumption,
one could show that the electron self-energy in the supercon-
ducting state is described by four functions: the two standard
frequency-dependent functions Z (ω) and �(ω) known from
the Eliashberg theory, plus two other functions χ (ε) and
ψ (ε), which describe the effect of the Coulomb pseudopoten-
tial [23]. The functions Z (ω) and χ (ε) quantify the diagonal
part of the self-energy, whereas �(ω) and ψ (ε) describe its
off-diagonal (i.e., superconducting) part. It is important to
point out that this result for the self-energy is fairly general
and does not depend on the particular form of the functions
μ(ε) and g(ω).

In Ref. [23], a particular but reasonable model of the cou-
pling functions μ(ε) and g(ω) has been studied. Two results
of that study are of direct relevance to the present work.
First, it was found that the self-energy χ (ε), which describes
the μ(ε)-induced change of the electron dispersion, does not
change appreciably between the normal and the supercon-
ducting state. Second, the ε-dependent part of the anomalous
self-energy ψ (ε) was found to be small with respect to the
ω-dependent part of the anomalous self-energy.

This leads us to assume that the weakly screened
Coulomb interactions can be always described by a single
temperature-independent self-energy χ (ε)—in other words,
the self-energy ψ (ε) can be neglected. It is obvious that, in
presence of a finite self-energy χ (ε), the density of ε levels
changes to an ε-dependent function N0(ε), and one should
expect that this function exhibits a minimum close to the
Fermi level [4].

At this point we depart from the discussion in Ref. [23]
and, instead of applying the formalism to a specific model of
the superconductor, we take a model-independent approach.
In particular, we assume that the density of ε levels is de-
scribed by an arbitrary function N0(ε) with a minimum close
to the Fermi level. We emphasize that we do not need to
specify the functional form of N0(ε) and we do not even have
to require that it is particle-hole symmetric. Then, in presence
of a finite electron-phonon coupling, the observable density of
states is by definition described by

Ni(ω) =
∫

dεN0(ε)Ai(ε, ω), (1)

where Ai(ε, ω) is the spectral function of an electron in a
one-particle eigenstate with energy ε. The index i = n, s dis-
criminates between the normal and superconducting states.

In order to proceed, in what follows we will evaluate
the spectral functions Ai(ε, ω) within the Eliashberg theory.
For future convenience it is useful to parametrize the two
complex Eliashberg functions, the wave-function renormal-
ization Z (ω) and the gap function �(ω), by four real functions
of frequency ω̃(ω), γ̃ (ω), �̃(ω), and 	̃(ω), defined as
follows:

Z (ω)ω = ω̃ + iγ̃ , Z (ω)
√

ω2 − �2(ω) = �̃ + i	̃.

Here and in what follows, the branch of the square root is
chosen in such a way that the sign of �̃ is the same as the sign
of ω. Furthermore, we assume that, with this sign convention,
	̃ > 0. As will become clear soon, �̃ is the energy of the
quasiparticle in the superconducting state and 	̃ is its lifetime.
The quantities ω̃ and γ̃ have a similar but less transparent
meaning.

Let us also introduce the following notation for a
Lorentzian with width 	̃:

δ	̃ (x) = 1

π

	̃

x2 + 	̃2
.

In Appendix C of Ref. [24] it has been shown that the spec-
tral function of a general Eliashberg superconductor, when
viewed as a function of energy ε at fixed frequency ω, takes
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the following simple form:

As(ε, ω) = Pδ	̃ (ε − �̃) + Qδ	̃ (ε + �̃)

+ R
4π�̃2

	̃
δ	̃ (ε − �̃)δ	̃ (ε + �̃), (2)

where the ω-dependent weights of the three terms are

P = 1

2

(
γ̃

	̃
+ 1

)
, Q = 1

2

(
γ̃

	̃
− 1

)
, R = 1

2

(
ω̃

�̃
− γ̃

	̃

)
.

In what follows, the product of the two Lorentzians which
appears in Eq. (2) will be approximated by the function

δ	̃ (ε − �̃)δ	̃ (ε + �̃) ≈ 1

4π

	̃

�̃2 + 	̃2

× [δ	̃ (ε − �̃) + δ	̃ (ε + �̃)].

Note that the areas under the curves of ε on both sides of this
approximate equality are the same for all ratios of �̃ and 	̃.
As pointed out in Ref. [24], the approximation is very good
in the case when �̃ � 	̃. In the opposite case �̃ � 	̃ the
approximation is still reasonable, although not perfect.

Plugging this approximation into Eq. (2), after some alge-
bra we find the following simplified expression for the spectral
function

As(ε, ω) = 1
2 [n(ω) + 1]δ	̃ (ε − �̃) + 1

2 [n(ω) − 1]δ	̃ (ε + �̃),

according to which the spectral function consists of just two
Lorentzians with weights determined by the function

n(ω) = Re

[
ω̃ + iγ̃

�̃ + i	̃

]
= Re

ω√
ω2 − �2(ω)

. (3)

Now let us insert the simplified spectral function into the
defining Eq. (1) for the density of states. If we take into
account that the width of the Lorentzians is 	̃, then we find
immediately that

Ns(ω) = 1
2 [n(ω) + 1]N0(�̃) + 1

2 [n(ω) − 1]N0(−�̃),

where N0(ε) is an appropriately smoothened version of the
auxiliary function N0(ε).

More formally, the above expression for Ns(ω) can be
obtained as follows. First, let us introduce an analytic function
N (z) in the upper half-plane of complex energy z whose real
part reduces to the function N0(ε) at the real axis, Re[N (ε +
i0)] = N0(ε). Next we complete the ε integral in Eq. (1) by
a semicircle at infinity in the upper half-plane, obtaining a
closed path C. Since As(z, ω) ∝ z−2 at the semicircle, Eq. (1)
can be rewritten as

Ns(ω) = Re
∫

C
dzN (z)As(z, ω).

Making use of the residue theorem one can check readily that
our expression for Ns(ω) is valid and N0(ε) can be calculated
as N0(ε) = N (ε + i	̃).

The same set of arguments applied to the normal state
would lead to the expression Nn(ω) = N0(ω̃), since n(ω) = 1
in this case. Strictly speaking, in the normal state the width of
the Lorentzians is γ̃ and not 	̃ as in the superconducting state,
and therefore we should introduce two different functions
N0(ε) for the normal and superconducting states. However, in

what follows we will neglect this difference. An a posteriori
check of the quality of our approximations will be presented
in Appendix D.

Finally, in the low-energy limit (with respect to the phonon
energy) we can write ω̃ ≈ (1 + λ)ω where λ is the electron-
phonon coupling constant. Therefore the auxiliary function
N0(ω) can be expressed in terms of the observable density
of states in the normal state, Nn(ω), as N0(ω) = Nn( ω

1+λ
).

In what follows it will be useful to split the density
of states Ni(ω) in the normal and superconducting states,
i = n, s, into even and odd components. To this end, we
write Ni(ω) = Nie(ω) + Nio(ω), where Nie(−ω) = Nie(ω) and
Nio(−ω) = −Nio(ω). Rewriting the expression for Ns(ω) in
terms of the observable normal-state density of states Nn(ω),
it can be finally written as

Nse(ω) = n(ω)Nne(�), Nso(ω) = Nno(�), (4)

where � = �̃/(1 + λ). But once it is established that the
superconducting density of states at energy ω depends on
the normal-state density of states at energy � via Eq. (4),
the conservation of the total number of states implies that
n(ω) = d�/dω must hold, since the odd part of the density
of states does not contribute to the total number of states.
Therefore we can finally write

Nse(ω) = d�

dω
Nne(�). (5)

The result Eq. (5) simply means that the density of states
in the superconducting state at energy ω is determined by the
normal-state density of states at a single ω-dependent energy
�(ω), to be determined later. If we introduce the total num-
ber of states Hi(ω) = ∫ ω

0 dνNi(ν) in the phases i = s, n with
energies less than ω, then Eq. (5) can be reinterpreted as the
requirement Hs(ω) = Hn(�). It is the obvious that the equality
of two different growing functions Hi has to be realized via a
change of the scale � = �(ω).

The function n(ω) = d�/dω will be called the dos-
function in what follows, since Eq. (3) demonstrates that it
plays the role of the density of states of a hypothetical super-
conductor with a constant density of states in the normal state.

A. Application to model data

Before proceeding, let us first investigate how Ns(ω) de-
scribed by Eqs. (4) and (5) depends on the form of the
normal-state density of states Nn(ω). In order to deal with a
simple instructive model, we assume that the function �(ω) is
given by �(ω) = Re

√
(ω + i	)2 − �2, which implies that the

dos-function acquires the Dynes form [14] n(ω) = Re[(ω +
i	)/

√
(ω + i	)2 − �2].

In Fig. 1 we start by showing the superconducting density
of states Ns(ω) calculated for a simple particle-hole symmetric
model of the normal state Nn(ω) = (|ω|/�)αN (0) and several
values of the exponent α. Note that while the apparent gap
essentially does not depend on α, the magnitude of the “co-
herence peaks” in the vicinity of ±� quickly decreases with
increasing α.

On the other hand, in Fig. 2 we study a model system with
a normal state that is not particle-hole symmetric. In this case
we find that the asymmetry of Ns(ω) is comparable to that of
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FIG. 1. Prediction of Eq. (5) for the superconducting density of
states Ns(ω) of a Dynes superconductor with a small pair-breaking
rate 	 = 0.03 �. The normal-state density of states is described
by the particle-hole symmetric model Nn(ω) = (|ω|/�)αN (0) with
several values of the exponent α.

Nn(ω) only at energies much larger than the gap, while inside
the gap it is substantially reduced, as was to be expected.

The emergent granularity scenario emphasizes that both
the normal and the superconducting densities of states, Nn(ω)
and Ns(ω), are position dependent. If we interpret Eqs. (4)
and (5) as a relation between position-dependent quantities,
then one can study also the spatial variations of the dos-
function n(ω). One of the important questions which can be
asked within such approach has to do with the origin of the ob-
served spatial modulations of Ns(ω): Are they predominantly
caused by the spatial modulations of n(ω), as is routinely
assumed [8], or is the spatial modulation of Nn(ω) more im-
portant?

As shown in Fig. 1, the frequently observed spatially con-
stant gap coexisting with spatially modulated coherence peaks
(see, e.g., Fig. 3 in Ref. [10]) may in fact be caused by

FIG. 2. Prediction of Eq. (5) for the superconducting density of
states Ns(ω) of Dynes superconductors with several values of the
pair-breaking rate 	. The normal-state density of states Nn(ω), which
is not particle-hole symmetric, is shown by the dashed line.

the latter mechanism, namely by the spatial modulation of
Nn(ω). Also note that the suppressed coherence peaks do not
necessarily imply the presence of localized Cooper pairs as is
sometimes claimed [25].

B. Application to thin TiN films

Let us turn back to our main goal of extracting the gap
function �(ω) from experimental data. Our key observation
is that Eq. (5) can be regarded as a first-order differential
equation for the unknown function � = �(ω):

d�

dω
= Nse(ω)

Nne(�)
, (6)

with initial condition �(0) = 0. Of course, in order to deter-
mine the right-hand side of Eq. (6), both the normal and the
superconducting densities of states will have to be known.
Once the function �(ω) is found, the dos-function can be
determined easily from n(ω) = d�/dω.

In order to demonstrate the feasibility of this procedure,
in what follows it shall be applied to the data for a homo-
geneously disordered thin film of TiN reported in Fig. 12 of
Ref. [10]. Since the experiment is performed at low temper-
atures, we can neglect the difference between the measured
tunneling conductance and the density of states. This assump-
tion is supported also by our preliminary attempt to explicitly
eliminate the effect of the finite value of the temperature
which leads to only very minor changes of our results.

Our crucial assumption, supported by Fig. 2 of Ref. [10],
is that the nontrivial form of the normal-state density of states
Nn(ω) is not caused by superconducting fluctuations. In fact,
the normal-state corrections reported in Ref. [10] are slightly
larger in the field of 7 T than in 4 T, while both fields are much
larger than the estimated critical field of 2.65 T. Therefore it
is very unlikely that the corrections are due to superconduct-
ing fluctuations. The extraction of the normal-state density
of states at zero field from the data presented in Fig. 12 of
Ref. [10] is described in detail in Appendix A.

The next subtle point has to do with the fact that tunneling
determines the density of states only up to a multiplicative
constant, and therefore the relative normalization of the func-
tions Nse(ω) and Nne(ω) is unknown in general. These two
functions should merge in the limit of energies which are
much larger than the superconducting gap, but since experi-
mental data is available from Ref. [10] only up to |ω| = � =
1.1 meV, a different procedure has to be used instead.

In this work, the relative norm of Nse(ω) and Nne(ω) is cho-
sen so that the dos-function n(ω) = d�/dω which is implied
by the solution of Eq. (6) satisfies the constraint∫ ∞

−∞
dω[n(ω) − 1] = 0, (7)

which requires that the superconducting transition conserves
the total number of states. Moreover, this constraint guaran-
tees that, as ω increases, the difference between �(ω) and ω

vanishes.
In order to estimate the contribution to the integral in

Eq. (7) of the region |ω| > � where no data is available,
in this region we assume that n(ω) = 1 + a/ω2 + b/ω4. The
two fitting parameters a and b are determined by requiring (i)
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FIG. 3. The dos-function n(ω) determined by solving the sym-
metric part of Eq. (5). Nse(ω) is determined by symmetrization of the
experimental data from Ref. [10] and Nne(ω) is taken from Fig. 6 in
Appendix A. The relative normalization of Nse(ω) and Nne(ω) has
been determined as described in the text. The high-energy prolon-
gation by n(ω) = 1 + a/ω2 + b/ω4 with a ≈ 0.104 meV2 and b ≈
−0.132 meV4 is plotted as well. Also shown is κ (ω), the Kramers-
Kronig partner of n(ω).

that n(ω) is continuous at ω = � and (ii) that the constraint
Eq. (7) is satisfied. It turns out that a and b can be found in a
finite range of relative normalizations of the functions Nse(ω)
and Nne(ω), see Appendix B. The optimal normalization is
then chosen by requiring that also the derivative of n(ω) is
continuous at ω = �.

The resulting dos-function n(ω) is plotted in Fig. 3. It
looks much more BCS-like than the superconducting density
of states Ns(ω). In particular, the coherence peaks are sub-
stantially amplified. Note that this should have been expected
already based on the results of the model calculation presented
in Fig. 1.

However, the extracted dos-function n(ω) is not com-
pletely BCS-like. The largest qualitative difference with
respect to the BCS prediction is related to the presence of
broad local minima of n(ω) at |ω| = ω∗ ≈ 1 meV. We find
that this is a robust feature which is present in a finite
range of relative normalizations of Nse(ω) and Nne(ω), see
Appendix B.

In what follows, it will be useful to view the dos-function
n(ω) as the real part of a complex function n(ω) + iκ (ω)
where κ (ω) is the Kramers-Kronig partner of n(ω), since
the continuation of the function n(ω) + iκ (ω) to the upper
half-plane of complex frequencies is an analytic function. The
imaginary part κ (ω) can be easily found by integration and
the result is shown in Fig. 3. Note that close to the same en-
ergies |ω| ≈ ω∗ where the local minima of n(ω) are situated,
there exist also peaks of |κ (ω)|, as required by the Kramers-
Kronig relations. Again, these features are present in a finite
range of relative normalizations of Nse(ω) and Nne(ω), see
Appendix B.

III. EXTRACTION OF THE GAP FUNCTION

Our next goal is to invert Eq. (3) and to determine the com-
plex gap function �(ω) = �1(ω) + i�2(ω) from the already

known dos-function n(ω). We assume that �(−ω) = �∗(ω)
as in the standard Eliashberg theory, although we empha-
size that the self-consistent Born approximation on which the
Eliashberg theory is based might not be sufficient to describe
the nearly localized superconductors [26]. A similar conclu-
sion regarding the validity of the Eliashberg theory has been
reached long ago also on purely experimental grounds [18].

A. Model gap function

Before proceeding with the actual extraction of �(ω) from
n(ω), we point out that both of the main qualitative deviations
of the observed complex dos-function from the BCS predic-
tion, i.e., the local minima of n(ω) at |ω| ≈ ω∗ and the peaks
of |κ (ω)| close to the same energy, can be explained by a
simple model gap function �(ω).

In fact, let us assume that the real part of the gap func-
tion is similar to a simple two-value function, with a smaller
gap �1(ω) ≈ �0 at small energies |ω| < ω∗ and a larger
gap �1(ω) ≈ �∞ for |ω| > ω∗. Making use of the results of
Ref. [27], a smooth complex function with these properties
can be found, which satisfies also the Kramers-Kronig rela-
tions. The result reads as

�(ω) = �∞ + (�0 − �∞)F (ω),

F (ω) = i

π

[
�

(
1

2
+ ω + ω∗

2π i�

)
− �

(
1

2
+ ω − ω∗

2π i�

)]
, (8)

where �(z) is the digamma function and � measures the
width of the transition regions around |ω| = ω∗.

As shown in Fig. 4, this model gap function does pro-
duce the qualitative features of the measured dos-function
n(ω) + iκ (ω). Thus we should expect that the numerical so-
lution for �(ω) exhibits at least some similarity to the model
Eq. (8).

B. Direct extraction

Let us proceed by extracting the gap function �(ω) directly
from the measured data. To this end, we will make use of
a procedure proposed in Ref. [28], slightly modified for the
case of gapless superconductors. The crucial observation is
that the complex gap function �(ω) can be obtained from the
algebraic expression

�2(ω) = ω2[1 − 1/(n + iκ )2]. (9)

In fact, when continued from ω to the upper half-plane of
the complex frequencies z, the right-hand side of Eq. (9) can
be easily seen to be analytic, since n + iκ is analytic and
the inequality n(z) > 0 holds in the whole upper half-plane.
Therefore Eq. (9) is compatible with the requirement that �(z)
is analytic in the upper half-plane.

The result of the direct inversion via Eq. (9), where the
complex dos-function is taken from Fig. 3, is shown in Fig. 5.

The potentially troublesome point of the presented analysis
is that, at a fixed frequency ω, the complex number �(ω) is
determined only up to an overall sign. Therefore the choice of
signs at two different frequencies is completely independent
of each other.

Fortunately, in regions where the absolute value |�(ω)|
is large, this does not cause any problems. In fact, having
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FIG. 4. Upper panel: The model gap function �(ω) described by
Eq. (8) for �0/�∞ = 0.5, ω∗/�∞ = 1.8, and �/�∞ = 0.1. Lower
panel: The complex dos-function implied by this �(ω). In both
panels, the black (red) lines correspond to the real (imaginary) parts
of the functions.

fixed the signs of the real and imaginary parts �1 and �2 at
some frequency, due to the expected continuity of �(ω) we
have to take the same sign convention also at the neighboring
frequency.

Problems therefore arise only in regions where |�(ω)| is
small, because in these regions continuity does not tell us
how to match the sign conventions at neighboring frequencies.
Thus, if such regions are present, then we are not guaranteed
that the function �(ω) is reconstructed correctly.

There does exist a tool, however, which makes it possible to
decide whether the signs have been chosen correctly. Namely,
the complex function �(ω) should obey the Kramers-Kronig
relations. We have checked that our choice of signs presented
in Fig. 5 does satisfy these relations.

It is worth pointing out in passing that, when calculating
�1(ω) from �2(ω) using the Kramers-Kronig relations, we
had to add by hand the asymptotic value of �∞ = √

2a im-
plied by the functional form of the prolongation of n(ω) to
large frequencies. For completeness let us also add that at
high energies we find �2(ω) ∝ ω−1 which is consistent with
κ (ω) ∝ ω−3.

Yet another remark is in place at this point. Although
formally our solution for the gap function stays finite as ω

grows to large values, this is only an artifact. Since experi-
mental data are available only up to �, we cannot make any
conclusions on the behavior of �(ω) at energies much larger
than �.

FIG. 5. Real and imaginary parts of the gap function extracted
from the dos-function plotted in Fig. 3. Blue (orange) line: Result
of the direct inversion (inversion by expansion with N = 35 and
E = 0.1 meV).

C. Extraction by expansion

As is obvious from the comparison of Fig. 3 with Fig. 5, the
direct extraction of �(ω) using Eq. (9) strongly amplifies the
noise which is inevitably present in the dos-function. Unfortu-
nately, one cannot simply smoothen the functions �1(ω) and
�2(ω), since the result would not be guaranteed to satisfy the
Kramers-Kronig relations. Therefore an alternative method
for the extraction of �(ω) would be useful which can partly
eliminate the relatively large noise of the direct extraction.

To this end, we make use of an expansion of the gap
function in terms of the rational functions [29]

ρn(x) = (1 + ix)n

(1 − ix)n+1
, n = 0,±1,±2, . . . ,

which form a complete basis in the space of complex square-
integrable functions on the real axis. The functions ρn(x)
satisfy the orthogonality relations∫ ∞

−∞
dxρ∗

n (x)ρm(x) = πδnm,

which imply that the coefficients in the expansion of the
function f (x) = ∑

n anρn(x) can be calculated as

an = 1

π

∫ ∞

−∞
dxρ∗

n (x) f (x).

The first few functions ρn(x) are shown in Appendix C.
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The crucial point to observe is that ρn(x) are eigenfunctions
of the Hilbert transform, i.e., they satisfy

1

π
P

∫ ∞

−∞

dxρn(x)

x − y
= isgn(n)ρn(y),

where P
∫

dx denotes the principal value integration [29].
Making use of the relations ρ−n−1(x) = ρ∗

n (x) = ρn(−x)
and of the symmetry �(−ω) = �∗(ω) we then find that the
gap function can be written as

�(ω) = �∞ + 2
∞∑

n=0

anρn

(ω

E

)
, (10)

where E is an arbitrary energy scale and an are real coeffi-
cients. One can check readily that the gap function given by
Eq. (10) is analytic in the upper half-plane and satisfies the
Kramers-Kronig relations.

The coefficients an for n = 0, 1, . . . , N which appear
in Eq. (10) can be determined by minimization of the
cost function which is given by the distance, at energies
|ω| < �, between the measured complex dos-function and
n(ω) + iκ (ω) calculated from Eq. (10) using the inverse of
Eq. (9). The value of �∞ is also taken as a variational
parameter.

The energy scale E which appears in Eq. (10) can be cho-
sen arbitrarily. With the aim to keep the order of the expansion
N small, we take E = 0.1 meV. The choice of the optimal
value of N for this value of E is described in Appendix C.

In Fig. 5 we plot �(ω) calculated making use of the
expansion Eq. (10), and compare it with the result of the
direct inversion. The mutual agreement between these two
very different methods is seen to be very good, giving us
further confidence in the results.

D. Discussion

As demonstrated in Appendix C, the gap functions which
describe the studied TiN sample are essentially identical in
the low energy region ω � 0.3 meV for all acceptable relative
normalizations of Nn(ω) and Ns(ω). Therefore our analysis in
this energy range should be quantitatively accurate.

It is well known that in the extreme low-energy limit
ω → 0, the gap function should be generically described by
the Dynes formula

�(ω) ≈ �0ω

ω + i	
.

This formula takes into account the presence of the pair-
breaking processes and describes them by a frequency-
independent scattering rate 	. Both elastic [14], and, at finite
temperatures, also inelastic [30] processes were shown to
contribute to the finite value of 	.

A strong argument supporting our results presented in
Fig. 5 is provided by the observation that, in agreement with
general expectations, for ω < 0.02 meV the Dynes formula
with �0 ≈ 0.151 meV and 	 ≈ 0.008 meV does in fact de-
scribe our gap function �(ω).

At higher energies, two robust qualitative features of �(ω)
are present for all acceptable relative norms of Nse(ω) and
Nne(ω), see Fig. 5 and Appendix C: (i) a steep increase of

�1(ω) around ω∗ ≈ 1 meV and (ii) a concomitant sharp nega-
tive peak of �2(ω) at the same energy. As shown by the simple
model calculation, these two features are a direct consequence
of the local minimum of n(ω) close to ω∗, which in turn is
caused by the unusual suppression of Ns(ω) with respect to
Nn(ω) at energies above the gap, see Appendix B.

As already pointed out, the Eliashberg theory is most likely
not applicable to the strongly disordered TiN thin films. In
what follows we will therefore present a tentative comparison
of our results with an extended version of the Eliashberg
theory which takes into account not only the attractive but also
the repulsive boson-mediated interactions [13,31]. The latter
type of pair-breaking forces can be due to current-current in-
teractions, as suggested in Ref. [13], but also due to exchange
of magnetic excitations [31], etc. In principle, whether a given
interaction is repulsive or attractive is governed by the type
of the Pauli matrix which enters the electron-boson scattering
vertex in the Nambu-Gorkov formalism.

When interpreted within such extended Eliashberg theory,
the features (i) and (ii) of the extracted gap function �(ω)
close to ω∗ can be seen to imply a finite coupling of the elec-
trons to a pair-breaking mode with energy ω∗, see Fig. 1(b)
in Ref. [13]. However, even if this interpretation is correct,
the physical nature of the pair-breaking mode in TiN is cur-
rently unclear. The mode could be generated by the dynamical
screening of the electron-electron interaction if the fermionic
scenario applies, but it could also be a phase fluctuation mode
of the bosonic scenario.

IV. CONCLUSIONS

In this paper we have introduced a methodology which
allows one to extract the gap function �(ω) of an s-wave
superconductor, even if the normal-state density of states ex-
hibits complicated structure due to quantum corrections and
the standard inversion procedure [12] therefore does not apply.
As an input, our procedure requires that the tunneling conduc-
tance is known in both, the normal and the superconducting
states, and in a sufficiently broad range of energies.

The proposed procedure consists of two steps: First, we
extract, by means of a numerical integration of Eq. (6), the
dos-function n(ω). In the second step, the gap function �(ω)
is calculated from n(ω). This latter step can be dealt with by
a suitable modification of the approach in Ref. [28], but also
by a very efficient expansion method making use of the com-
plete set of rational eigenfunctions of the Hilbert transform,
introduced some time ago in the mathematical literature [29].

Unfortunately, in experimental papers on strongly disor-
dered superconductors, the authors only very rarely present
both, the normal and the superconducting densities of states.
For instance in the influential early paper on planar tunneling
into strongly disordered thin Pb films [18], only the ratio of the
(thermally smeared) superconducting and normal densities of
states has been presented. Many later planar tunneling studies
have shown essentially the same kind of information.

Similarly, scanning tunneling data are often reported either
only in the superconducting state, or in a narrow energy range,
or both. In order to demonstrate that our method does work,
we have chosen to apply it to the published data for dirty TiN
thin films [10], since they provide, in our opinion, the best
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compromise between both of the mentioned requirements.
Moreover, tunneling data are available in Ref. [10] also at
two different magnetic fields above Hc2, which enables us to
estimate the (hypothetical) normal-state density of states in
the limit of low temperatures and zero field.

Applying our methodology to Ref. [10], we have demon-
strated that both the dos-function n(ω) and the gap function
�(ω) can be succesfully extracted from the experimental data.
As expected, we find that the gap function exhibits the generic
Dynes form in the limit of small energies. Moreover, our
results can be interpreted in terms of the coupling of the
electrons to a very soft pair-breaking mode at approximately
ω∗ ∼ 1 meV.

The circumstance that the characteristic energy scale ω∗
which we find is very close to the upper cutoff � up to which
the experimental data is available [10] is definitely unfortu-
nate. We are convinced, however, that further measurements in
a broader energy range and in more finely sampled magnetic
fields, both achievable with current instrumentation, can sub-
stantially eliminate the uncertainties of the present analysis.

To conclude, we believe that our method for extracting
the gap function can provide crucial information on possi-
ble changes of the pairing glue and/or of the pair-breaking
processes as the QBS critical point is approached. Moreover,
spatial variations of the gap function can be studied by the
very same procedure as well. For these reasons, we believe
that our methodology can be used to clarify the role played by
the three main scenaria for QBS.
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APPENDIX A: EXTRACTION OF Nn(ω)

According to Fig. 12 of Ref. [10], the normal-state density
of states of TiN thin films is magnetic-field dependent. How-
ever, what we need to insert into Eq. (6) is the (hypothetical)
normal-state density of states at zero field. In other words,
what we need is the extrapolation of the normal-state data
back to B = 0 T.

In order to solve this problem, we are led by the obser-
vation made in Ref. [15] that the normal-state data for MoC
films in different fields merge at an energy of the order of
2μBB. Assuming that the same physics applies also to the TiN
films studied in Ref. [10], we proceed as follows.

In the first step, we choose the relative normalization of
the normal-state data in 4 T and 7 T in such a way that
their smooth prolongations merge at an energy outside the
measured window, see Fig. 6. In the second step, assuming
furthermore that Nn(ω, B) = Nn(ω, 0) + a(ω)B2, we obtain
an estimate of the B = 0 density of states Nn(ω, 0) from
the appropriately normalized 4 T and 7 T data, which were

FIG. 6. Even part of the normal-state density of states (in arbi-
trary units) extrapolated from the data for 4 T and 7 T in Fig. 12 of
Ref. [10] to B = 0 T. Dashed lines show smooth prolongations of the
measured data which merge at ≈1.4 meV.

obtained in the first step. The result of this extrapolation
procedure for the even part of Nn(ω, 0) is shown in Fig. 6.

APPENDIX B: RELATIVE NORM OF Nse(ω) and Nne(ω).

As mentioned in the main text, there is some freedom
in choosing the normalization of the normal-state density of
states Nne(ω), if the norm of the superconducting density of
states Nse(ω) is kept fixed. In Fig. 7 we show three nor-
malizations of Nne(ω), all of which generate dos-functions
n(ω) which satisfy the constraint Eq. (7) and are continu-
ous at |ω| = �. The optimal choice called Nne(ω) in Fig. 7
(and considered in the main text) leads to a solution where
also the derivative dn(ω)/dω is smooth at |ω| = �, whereas
the choices N<

ne(ω) and N>
ne(ω) correspond to extremal solu-

tions where the discontinuity of dn(ω)/dω at |ω| = � is still
acceptable.

FIG. 7. The optimal choice Nne(ω) of the normal-state density
of states together with two extremal acceptable choices N<

ne(ω) and
N>

ne(ω), see text. The norm of the superconducting density of states
Nse(ω) is kept fixed.
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FIG. 8. Upper panel: The optimal dos-function n(ω) and two ex-
tremal acceptable dos-functions n<(ω) and n>(ω) corresponding to
the choices Nne(ω), N<

ne(ω), and N>
ne(ω) from Fig. 7. Only the ω > 0

part of these even functions is plotted. The inset shows the dos-
functions in the vicinity of the energy ω = � = 1.1 meV (indicated
by the vertical dashed line). For energies ω < � where data extracted
from experiments are available, the prolongations 1 + a/ω2 + b/ω4

are shown by dotted lines. Lower panel: The Kramers-Kronig part-
ners κ (ω) of the three dos-functions n(ω) from the upper panel. Only
the ω > 0 part of these odd functions is plotted.

The three dos-functions n(ω), n<(ω), and n>(ω) extracted
from the three normalizations Nne(ω), N<

ne(ω), and N>
ne(ω) are

shown in the upper panel of Fig. 8. The inset shows how
the numerically determined dos-functions for ω < � merge
with their prolongations to ω > �. Note that the function
n(ω) is essentially smooth at ω = �, while n<(ω) and n>(ω)
exhibit small upward and downward kinks, respectively. The
coefficients describing the prolongations are a ≈ 0.069 meV2

and b ≈ −0.071 meV4 for n<(ω) and a ≈ 0.142 meV2 and
b ≈ −0.204 meV4 for n>(ω).

The imaginary part of the complex dos-function n(ω) +
iκ (ω), shown in the lower panel of Fig. 8, is calculated by
using the Kramers-Kronig relations from the three sets of data
for n(ω) in the upper panel. Remarkably, all κ (ω) curves look
quite BCS-like and they exhibit a weak structure in the vicin-
ity of ω∗ ≈ 1 meV, where n(ω) exhibits a minimum. Thanks
to Eq. (7), at large energies the functions κ (ω) decay as ω−3.
We have also checked that, starting from κ (ω) and applying
the Kramers-Kronig relations in the reverse direction, we do
reproduce the dos-functions n(ω) − 1.

FIG. 9. Real and imaginary parts of the gap functions extracted
using Eq. (9) from the dos-functions plotted in Fig. 8. The same
color coding has been used as in Fig. 8. Only the ω > 0 part of the
functions is shown.

APPENDIX C: EXTRACTION OF �(ω) FROM n(ω) + iκ(ω)

1. Direct extraction

In Fig. 9 we show the results of the direct extraction of
the gap functions from the complex dos-functions plotted in
Fig. 8. Note that up to ω ≈ 0.3 meV the gap functions are
essentially independent of the relative norm of Nse(ω) and
Nne(ω) for all acceptable values of this norm, but also at higher
energies the qualitative features are the same in all solutions: a
steep rise of �1(ω) and a negative peak of �2(ω), both taking
place around ω = ω∗. These are precisely the features of the
simple model gap function Eq. (8), as expected.

2. Extraction by expansion

For the sake of completeness, in Fig. 10 we plot the first
six basis functions ρn(x) of the complete orthogonal basis
introduced in Ref. [29]. Note that this basis is well suited
for expansion of functions which have a complicated small-x
behavior, but at large values of x they are relatively smooth.
This has implications for the optimal choice of the energy
scale E in Eq. (10). In order to describe well the Dynes-like
features close to the Fermi level, we have chosen to take
E = 0.1 meV.

In order to fix the optimal value of N for this choice of
E , we study how the cost function varies with N . The result
of this calculation is shown in Fig. 11. As expected, the
cost function decreases monotonically with N . In the limit of
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FIG. 10. Real (upper panel) and imaginary (lower panel) parts of
the basis functions ρn(x) for n = 0, . . . , 5. Note that, with increasing
n, the frequency of oscillations at small x increases and, at the same
time, the largest nodes xn of both components grow.

large N the cost function should vanish, because in that limit
Eq. (10) reproduces exactly the direct solution.

What we are after is a solution with the least possible N
which does reproduce faithfully the measured complex dos-
function. Based on Fig. 11, we have chosen to take N = 35,
since the decay of the cost function for N > 35 is slow,
indicating that inclusion of further basis functions in the ex-
pansion Eq. (10) improves only the agreement with noise-like
features in n(ω) + iκ (ω).

FIG. 11. Dependence of the cost function on the order N of the
expansion for E = 0.1 meV.

)a(

)b(

)c(

FIG. 12. Test of the inversion procedure using model data, see
text for more details. The auxiliary function N0(ε) is parametrized by
α/�∞ = 1.76 and V/�∞ = 1.2. The gap function is parametrized
by �0/�∞ = 0.5, ω∗/�∞ = 1.8, �/�∞ = 0.1, and 	/�∞ = 0.02.
(a) Exact densities of states in the normal and superconducting
states, Nn(ω) and Ns(ω). (b) Exact (solid) and extracted (dashed)
dos-functions n(ω) + iκ (ω). (c) Exact (solid) and extracted (dashed)
gap functions �(ω).

APPENDIX D: TEST OF THE EXTRACTION PROCEDURE

Our analysis is based on Eq. (5) which is valid only ap-
proximately. In order to check the quality of our procedure,
finally we perform the following test with parameters chosen
so as to resemble the experimental data.

We consider a conductor with a suppressed density of
states in the vicinity of the Fermi level, described by a model
auxiliary function N0(ε) ∝ 1 − αδV (ε). The parameters α

and V measure the depth and the width of the suppression,
respectively.
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For the gap function of the superconductor, we take

�(ω) = �∞ + (�0 − �∞)F (ω) − i	�D

ω + i	
.

The first two terms reproduce the gap function Eq. (8) char-
acterized by two gap values �0 and �∞, with a crossover
between the two characterized by its position ω∗ and width
�. In order to produce results which are similar to the ex-
perimental ones, we take �∞ ≈ 0.456 meV, as required by
the prolongation parameter a ≈ 0.104 meV2. The last term,
in which we take �D = �∞ + (�0 − �∞)F (0) ≈ �0, gener-
ates at low energy a Dynes-like feature in �(ω) characterized
by the parameter 	. Also for the wave-function renormaliza-
tion we take a Dynes-like expression Z (ω) = 1 + i	/ω.

Once the functions �(ω) and Z (ω) are known, we can
calculate the spectral functions via Eq. (2). The densities of
states in the normal and superconducting states of the test
model, Nn(ω) and Ns(ω), can be found by numerically taking

the integral in Eq. (1), since the auxiliary function N0(ε)
is also known. The results are shown in Fig. 12(a). Note
the qualitative resemblance to experimental data shown in
Fig. 7.

Next, applying the numerical inversion procedure based
on Eqs. (5) and (3) and taking Nn(ω) and Ns(ω) as input
data, we determine the function � = �(ω) and, consequently,
also the complex dos-function n(ω) + iκ (ω). In Fig. 12(b)
we compare the obtained result with the exact dos-function
calculated directly from the gap function �(ω) using Eq. (3).
Note that the agreement of our procedure with the exact data
is very good.

Finally, from the complex dos-function we extract the gap
function using Eq. (9). In Fig. 12(c), the result of this extrac-
tion is compared with the original gap function �(ω). One can
observe that, while the agreement is not perfect, all features of
the gap function are reproduced correctly. This completes our
test of Eqs. (5) and (3).

[1] B. Sacépé, M. Feigel’man, and T. M. Klapwijk, Nat. Phys. 16,
734 (2020).

[2] P. W. Anderson, K. A. Muttalib, and T. V. Ramakrishnan, Phys.
Rev. B 28, 117 (1983).

[3] For a review, see A. M. Finkel’stein, Physica B: Condens.
Matter 197, 636 (1994).

[4] B. L. Altshuler and A. G. Aronov, Solid State Commun. 30, 115
(1979).

[5] S. Doniach, Phys. Rev. B 24, 5063 (1981).
[6] M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
[7] M. Ma and P. A. Lee, Phys. Rev. B 32, 5658 (1985).
[8] M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas,

Ann. Phys. 325, 1390 (2010).
[9] P. Neilinger, J. Greguš, D. Manca, B. Grančič, M. Kopčík, P.
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