
PHYSICAL REVIEW B 105, 214502 (2022)
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It has been proposed that the superconducting transition temperature Tc of an unconventional superconductor
with a large pairing scale but strong phase fluctuations can be enhanced by coupling it to a metal. However,
the general efficacy of this approach across different parameter regimes remains an open question. Using the
dynamical cluster approximation, we study this question in a system composed of an attractive Hubbard layer in
the intermediate coupling regime, where the magnitude of the attractive Coulomb interaction |U | is slightly larger
than the bandwidth W, hybridized with a noninteracting metallic layer. We find that while the superconducting
transition becomes more mean-field-like with increasing interlayer hopping, the superconducting transition
temperature Tc exhibits a nonmonotonic dependence on the strength of the hybridization t⊥. This behavior
arises from a reduction of the effective pairing interaction in the correlated layer that outcompetes the growth
in the intrinsic pair-field susceptibility induced by the coupling to the metallic layer. We find that the largest Tc

inferred here for the composite system is comparable to the maximum value currently estimated for the isolated
negative-U Hubbard model.
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I. INTRODUCTION

An early and curious observation of the underdoped
cuprate superconductors is that they host a remarkably low
carrier density and correspondingly low superfluid stiffness;
yet, they have a large pairing scale characterized by the super-
conducting gap and correspondingly short coherence length
[1,2]. These properties give rise to a situation where Cooper
pairing and long-range phase coherence occur at different
temperatures, and the superconducting transition temperature
Tc is significantly lower than the corresponding mean-field
temperature scale T MF

c [2–7]. This behavior is in contrast to
metallic superconductors, where pairing and long-range phase
coherence happen simultaneously and T MF

c = Tc [3].
Kivelson [8] proposed that the Tc of a superconductor with

low superfluid stiffness could be raised closer to its mean-field
value by coupling it to a metallic system. Using a discon-
nected (i.e., no in-plane hopping t1; see Fig. 1) negative-U
Hubbard layer coupled to a metallic layer by single-particle
tunneling t⊥, this proposal was originally studied perturba-
tively [9] for |U | and t⊥ much smaller than the metallic
bandwidth W , and later using quantum Monte Carlo (QMC)
up to values of |U | larger than the bandwidth [10]. In this
model, the pairing layer has zero superfluid stiffness and the
corresponding critical temperature vanishes when the inter-
layer tunneling is switched off (i.e., t⊥ = 0). For small and
increasing t⊥, phase coupling between pairing sites is enabled
by Josephson tunneling through the metallic layer [9,10] and
Tc increases; however, Tc is eventually suppressed by the

same delocalization effects beyond intermediate values of t⊥.
The numerical results obtained by Watchel et al. [10] further
suggest that phase fluctuations exponentially suppress Tc for
small t⊥. Moreover, they found that the highest Tc that can
be achieved by varying t⊥ were quite modest. For example,
Tc is three to four times smaller than T MF

c for small and
intermediate |U |/t , where t is the hopping amplitude in the
metallic layer (t2 in our model). Moreover, Tc remains below
the highest Tc in the isolated 2D negative-U Hubbard model
for large |U |/t .

The intermediate coupling regime |U | ∼ W , where W is
the bandwidth in the negative-U layer, but with intraplane
hopping in the negative-U layer restored was later addressed
using QMC [11]. In that case, the correlated layer has a small
but nonzero superfluid stiffness, even when t⊥ = 0, and the
superconducting transition follows the Berezinskii-Kosterlitz-
Thouless (BKT) universality class of the XY model. For
increasing t⊥, Ref. [11] observed a proximity effect-induced
suppression of the pairing correlations in the correlated layer,
while the metallic layer exhibited nonmonotonic behavior
with a maximum in the pairing correlations at intermediate
t⊥. In other words, pairing is layer (or orbital) dependent
for small t⊥, an observation that is reminiscent of the orbital
selective behaviors seen in many multiorbital Hubbard models
[12,13]. Eventually, the pairing in both layers is suppressed
simultaneously beyond a critical value of t⊥.

While the work in Ref. [11] provided a finite-size analysis
of the pairing correlations above Tc, it did not determine Tc

as a function of t⊥. Estimating the latter is crucial, however,
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FIG. 1. A cartoon depiction of the two-layer (two-orbital) model
studied in this work. Each layer consists of a square lattice. The
dashed arrows exemplify the possible hoppings t1, t2, and t⊥, and
black arrows represent spin-up and -down electrons. Here we use
t2 = 2t1 and ε2 = 0.2t1 and treat t⊥ as a variable parameter and set
−|U | = −10t1.

because the strength of the pairing correlations at T > Tc can
be a poor indicator for the actual Tc realized in a system
[14,15]. We address this issue by studying a negative-U Hub-
bard model coupled to a noninteracting layer using a QMC
dynamic cluster approximation (DCA). Here, we focus on the
nature of the superconducting transition and determining Tc

as a function of t⊥ by solving the Bethe-Salpeter equation in
the particle-particle channel. Since the DCA incorporates long
range physics in the thermodynamic limit through a coarse-
graining of momentum space, it also provides a different
numerical perspective than finite cluster QMC methods. Our
results show that for large clusters, Tc is enhanced for finite
t⊥ beyond the system’s Tc when t⊥ = 0. That is, an increased
single-particle tunneling between the layers reduces the ef-
fects of phase fluctuations present in the negative-U layer and
thus leads to an increased Tc. We also discuss how the in-
creased interlayer coupling leads to an increase in the intrinsic
pair-field susceptibility, which competes with a reduction in
the effective pairing interaction, leading to a nonmonotonic
dependence of Tc on t⊥. These two quantities suggest signs of
crossover behavior similar to the BEC-BCS crossover found
in the pure negative-U Hubbard model [16–19].

II. MODEL AND METHODS

A. Two-component model

Our composite system consists of a correlated negative-U
Hubbard layer and a noninteracting metallic layer connected
through interlayer single-particle tunneling t⊥ (see Fig. 1).
Both layers have square lattice geometry with identical lattice
spacing. The associated bilayer Hamiltonian is defined as

Ĥ = −
∑

〈i j〉,�,σ
t� (ĉ†

i�σ ĉ j�σ + H.c.) − |U |
∑

i

n̂i1↑n̂i1↓

+
∑
i,�,σ

(ε2δ�2 − μ)n̂i�σ − t⊥
∑
i,σ

(ĉ†
i1σ ĉi2σ + H.c.), (1)

where ĉ†
i�σ (ĉi�σ ) creates (destroys) an electron on the ith

site of the � = 1 or 2 layers with spin σ (=↑,↓) and n̂i�σ =
ĉ†

i�σ ĉi�σ . The in-plane nearest-neighbor hoppings t� are fixed
such that t1 ≡ t = 1 and t2 = 2t , whereas the interlayer
tunneling t⊥ is a variable parameter. An attractive on-site
Coulomb interaction −|U | in the correlated layer (� = 1)
is responsible for the formation of local (s-wave) Cooper
pairs. Lastly, the noninteracting metallic layer (� = 2) has an
additional on-site energy term that is used to shift the van
Hove singularity slightly above the chemical potential μ (we
set ε2 − μ = 0.2t).

B. Methods

We studied the Hamiltonian in Eq. (1) using the DCA++
code [20], a state-of-the-art implementation of the DCA
method. In this formalism, the lattice problem is reduced to
a finite-size cluster embedded in a mean field that is self-
consistently determined to represent the system beyond the
cluster [21]. Our model is an effective two orbital model
resulting in a N = 2Nc-site cluster problem for an in-plane
cluster of size Nc, which is solved using a continuous-time
auxiliary-field QMC algorithm [22–24]. In this work, we ex-
amine several different in-plane cluster sizes including 4 × 4
(Nc = 16), 6 × 6 (Nc = 36), 8 × 8 (Nc = 64), and 10 × 10
(Nc = 100).

The QMC simulations utilized 6000 independent Markov
chains to collect 2 × 106 to 5 × 106 total measurements.
The model with negative-U interaction does not have a sign
problem but tends to produce long autocorrelation times. To
combat the latter, each of the contributing measurements was
made after skipping 50–100 Monte Carlo sweeps to further
ensure statistically independent sampling. A typical DCA
calculation for our model (i.e., for a single set of model pa-
rameters) converges in six to eight iterations depending on the
cluster size.

Throughout this work, we allow the chemical potential μ to
vary such that the filling in the correlated layer remains fixed
at n1 ≡ 〈n̂i1〉 = 0.75, where n̂i1 = n̂i1↑ + n̂i1↓. The filling of
the metallic layer is allowed to take whatever value is neces-
sary to satisfy thermodynamic equilibrium as a result. This
choice of filling avoids any complications that might stem
from a perfectly nested Fermi surface as seen at half filling
and it still gives us access to the superconducting transition in
the negative-U model.

For the isolated (t⊥ = 0) 2D negative-U Hubbard model
away from half filling, the system has an s-wave supercon-
ducting ground state [16–19,25–27]. When |U |/t 	 1, the
system adopts a weak coupling BCS state and eventually
crosses over to a Bose-Einstein condensate (BEC) of hard-
core on-site bosons for |U |/t 
 1 [16–19]. Consequently, Tc

is a nonmonotonic function of |U |/t that peaks at intermediate
|U |/t ≈ 4 − 6 and gradually tapers off in the presence of
increasingly stronger phase fluctuations at larger values of
|U |/t [18,26,27]. We are interested in the question of whether
the reduction in Tc due to phase fluctuations can be reversed in
the composite system. We therefore set −|U | = −10t in the
correlated layer and vary the interlayer hopping t⊥ to study its
effects on the Tc of the composite system.
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We estimate Tc by solving the Bethe-Salpeter equation [28,29] as an eigenvalue problem:

− T

Nc

∑
k′

∑
�3,�4,�5,�6

�
pp
�1�2�3�4

(k, k′)G�3�5 (k′)G�4�6 (−k′)φα
�5�6

(k′) = λαφα
�1�2

(k). (2)

Here the eigenvalues and corresponding eigenvectors are
given by λα and φα

��′ , respectively; G��′ (k) is the dressed
single-particle propagator and �

pp
�1�2�3�4

(k, k′) is the irreducible
particle-particle vertex, both obtained from the DCA and writ-
ten compactly using the notation k ≡ (k, iωn), where k is
the momentum and iωn is a fermionic Matsubara frequency
ωn = (2n + 1)πT . The index α ranges over the entire set of
eigensolutions, but we will limit our discussion to the solution
corresponding to the largest eigenvalue denoted λs. A su-
perconducting transition occurs when the leading eigenvalue
λs(Tc) = 1. In our case, we find that the leading eigenvector
has s-wave symmetry for all the values of t⊥ we consider.

III. RESULTS

A. Temperature dependence of the pairing correlations

We first examine the temperature dependence of 1 − λs(T )
for several values of t⊥ plotted in Fig. 2 for Nc = 16. Starting
from high-temperature (T/t = 2), we cool the composite sys-
tem down to T � Tc, which is identified by the temperature
at which 1 − λs(T = Tc) = 0. The family of curves plotted in
Fig. 2 represents different values of the interlayer hopping be-
tween 0 and 2.5t but with all other model parameters identical
(except μ, which varies as to fix n1 = 0.75). All curves for
t⊥/t � 1 are denoted by filled circles and solid lines (to guide
the eye) and the remaining curves with t⊥/t > 1 are depicted
with filled squares and dashed lines.
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FIG. 2. Temperature dependence of 1 − λs(T ) for the composite
bilayer system on a Nc = 16 site cluster for several different val-
ues of the interlayer hopping in the interval t⊥/t ∈ [0, 2.5]. Filled
circles (squares) with solid (dashed) lines depict results for t⊥/t
� 1 (t⊥/t > 1).

As noted, the superconducting transition in this model is
expected to follow the BKT universality class. Since the DCA
embeds the finite-size cluster in a mean field, the calculated
temperature dependence will cross over to mean-field behav-
ior when the correlation length exceeds the cluster size [21].
But at higher temperatures, when the correlations are still con-
tained within the cluster, the DCA results will exhibit the true
temperature dependence of the system in the thermodynamic
limit. For small t⊥/t < 1, the curves display convex behavior,
indicating the presence of phase fluctuations and BKT behav-
ior [7]. For larger t⊥/t > 1, the temperature dependence of
1 − λs(T ) changes qualitatively to a more BCS-like behavior,
exhibiting logarithmic ln(T/T MF

c ) dependence. The change in
curvature around t⊥ = 1 is similar to what is observed for the
repulsive Hubbard model with increasing hole doping [7]. It
reflects a change in the nature of the superconducting phase
transition and the decreasing strength of phase fluctuations
as t⊥ increases. The results in Fig. 2, therefore, suggest that
coupling to the metallic layer makes the superconducting tran-
sition more mean-field-like.

B. Transition temperature vs interlayer coupling

Figure 3 plots the estimated Tc values for Nc = 16, 36, 64,
and 100. Unfortunately, the long autocorrelation times affect-
ing the small t⊥ calculations prevent us from obtaining Tc

estimates for larger clusters. Moreover, we observe significant
cluster size dependence in the extracted values of Tc, par-
ticularly when t⊥/t < 1. This occurs because larger clusters
are needed to account for the long-range spatial fluctuations
that suppress Tc in this regime. (This observation agrees with
recent DQMC studies, which found that large clusters were
needed to accurately estimate Tc for the negative-U Hubbard
model [26,27].) Despite these limitations, we are able to draw
some general conclusions about the pairing tendencies in the
model, which we now address.

The results from the two smallest cluster sizes (Nc = 16,
36) are qualitatively similar in that the coupling t⊥ to the
metallic layer suppresses Tc in this parameter regime. For
Nc = 64, however, Tc(t⊥) displays nonmonotonic behavior
with a maximum Tc near t⊥/t = 1.5. Interestingly, the max-
imum occurs near the crossover between the BEC and the
BCS behaviors observed in the temperature dependence of
λs(T ) in Fig. 2. We will further discuss this point in Sec. D
below. This result suggests that Tc can indeed be optimized
by adjusting the interlayer coupling; however, to determine
the precise magnitude of this enhancement, we must contend
with the finite-size effects in the small t⊥ regime.

The most recent estimates for the negative-U Hubbard
model [27], based on DQMC and extrapolated to the thermo-
dynamic limit, place Tc/t ≈ 0.12 for our model parameters, as
indicated in Fig. 3. We therefore expect the estimated Tc from
DCA to continue to decrease for larger cluster sizes (Nc > 64)
and t⊥/t 	 1 until it is on par with this value. Conversely,
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FIG. 3. Superconducting critical temperature Tc/t as a function
of interlayer tunneling t⊥/t for Nc = 16, 36, 64, and 100. For Nc = 16
and 36, Tc is a monotonically decreasing function of t⊥, but with
strong indications of a cluster size dependence for small t⊥. However,
when Nc = 64, Tc is nonmonotonic as a function of t⊥, suggesting
that large cluster sizes are required to capture the effects of phase
fluctuations on Tc for small t⊥. We include two points for Nc = 100 to
demonstrate that Tc is well captured by smaller clusters when t⊥/t >

2. The red star indicates the estimate for Tc(t⊥/t = 0) as Nc → ∞
stemming from a recent DQMC study (Ref. [27]) of the 2D negative-
U model. The solid lines are intended to guide the eye.

we do not observe such a strong cluster size dependence for
larger t⊥ values. For example, the results for Nc = 100 and
t⊥ � 2 almost lay on top of the corresponding Nc = 64 data
points. We therefore believe that our results are relatively well
converged for larger t⊥/t . Combined, the results in Fig. 3 then
indicate that the Tc of the composite system is indeed larger
than the t⊥ = 0 case in the |U | � W regime, with the largest Tc

values occurring for t⊥ ≈ 1.5t − 2t . Moreover, given the rate
of convergence observed in Fig. 3, it is clear that the maximum
value of Tc(t⊥) is comparable to the maximum Tc ≈ 0.16t
value obtained in the negative-U model [27]. This Tc value
is relatively constant across a range of |U |/t from 4 to 6 and
electron filling 〈n̂〉 between 0.70 and 0.88.

C. Effective pairing interaction and pair mobility

Thus far we have demonstrated that Tc follows a non-
monotonic dependence on t⊥ when the DCA cluster size is
sufficiently large. We now turn to the question of what drives
this nonmonotonicity by examining the t⊥ dependence of the
effective pairing interaction and the intrinsic pair-field suscep-
tibility, both of which determine the leading eigenvalue λs of
the Bethe-Salpeter equation.

The s-wave pair-field susceptibility Ps is given by

Ps(T ) =
∫ β

0
dτ 〈Tτ �̂(τ )�̂†(0)〉, (3)
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FIG. 4. Effective interaction Vs(t⊥) and intrinsic pair-field sus-
ceptibility Ps0(t⊥) evaluated at T = 0.2t . Results were obtained on a
cluster size of Nc = 64. The solid lines are included to guide the eye.

with �̂† = 1√
N

∑
i,� ĉ†

i�↑ĉ†
i�↓. Its leading-order term

Ps0(T ) = T

N

∑
k

∑
�1,�2,�3,�4

G�1�3 (k)G�2�4 (−k) (4)

defines the intrinsic pair-field susceptibility Ps0(T ). With these
two quantities, we can then define an effective pairing interac-
tion Vs through

Vs(T ) = P−1
s0 (T ) − P−1

s (T ). (5)

We note that using this definition for Vs, we find that the prod-
uct VsPs0 gives values very similarly to those for the leading
eigenvalue λs with a difference of at most 5%. Figure 4 plots
Vs and Ps0 at a fixed temperature T/t = 0.2 across the range
of t⊥/t spanning the Tc “dome” in Fig. 3. As the interlayer
tunneling t⊥ increases, the effective pairing interaction Vs

decreases monotonically. Conversely, the intrinsic pair-field
susceptibility increases as the coupling to the metallic layer
grows. The enhancement of Ps0 would raise λs and therefore
Tc, but it competes with the decrease in in the pairing interac-
tion, leading to a nonmonotonic dependence of Tc on t⊥. Since
Ps0(t⊥) is a measure of the states available to form s-wave
pairs, it provides an indirect measure of the superfluid phase
stiffness. We can, therefore, conclude that the increase in Tc

is indeed being driven by enhanced superfluid phase stiffness
but that this is ultimately counteracted by a decrease in the
effective pairing interaction.

We note that Vs and Ps0 have been defined here using
contributions from the entire system, i.e., the sum over � in
Eqs. (3) and (4) runs over both layers. Although not shown,
we have repeated the analysis above but restricting the sums
separately over just the correlated or the metallic layer. In this
case, the behavior of Vs and Ps0 for the correlated layer is
qualitatively identical to that shown in Fig. 4; however, for
the metallic layer, the trends are swapped with Vs increasing
and Ps0 decreasing.
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D. Discussion

While our DCA calculations provide direct access to
the thermodynamic limit, they are also considerably more
expensive than finite cluster determinant QMC (DQMC) cal-
culations. Because of this, a shortcoming of our analysis
is that it considers a narrow range of model parameters.
However, a survey of the most relevant results from previ-
ous studies suggests that many of the qualitative trends we
observe are likely insensitive to minor variations in model
parameters. For instance, Ref. [11] examined other filling
factors (n1 = 0.6, 0.8, 1.0) and attractive interaction strengths
(U/t = −4,−6,−10). The authors found that smaller values
of n1 are only marginally better for inducing pairing cor-
relations in the metallic layer and that less negative values
of U decrease pairing significantly in both layers. Thus we
expect our results to be representative of the regime where
the size of the interaction and the bandwidth are comparable
and pairing is more significant. Although a direct comparison
with Ref. [11] is not possible, their calculations (for similar
parameters) show that the static pair structure factor decreases
monotonically with increasing t⊥ in the correlated layer and
peaks at finite t⊥ in the metallic layer. However, the strength
of the induced correlations in the metallic layer is small com-
pared with the correlated layer and not representative of a
superconducting transition over the temperatures they studied.
It may be, therefore, necessary to compare our results directly
with those from a method like DQMC in the future. There
we could better gauge the role of the mean field in the DCA
method in situations where phase fluctuations are strong.

The rise and fall of Tc with t⊥ suggest that this composite
bilayer model provides a route to enhancing Tc as discussed
in Refs. [8] and [9], even for this nonperturbative case where
t1 �= 0 and |U | � W . However, the Tc enhancement we ob-
serve is modest relative to the cases examined in previous
works [9,10], which focused on models where the corre-
lated layer has virtually no superfluid stiffness when t⊥ = 0.
Our model has small phase stiffness in the correlated layer
by tuning the interaction into a regime of increasing phase
fluctuations and allowing comparable hopping amplitudes in
both layers. These results suggest that the details of both the
correlated and the metallic layers can play a crucial role in
determining the Tc values ultimately achieved in a composite
system. While this result calls for a more exhaustive study
of the model space, it also indicates that opportunities for
additional engineering of the layers exist.

The evolution of the superconducting transition from KT-
like to BCS-like is reminiscent of the BCS-BEC crossover
[30,31] discussed in the context of the 2D negative-U Hub-
bard model [16,17]. In the latter scenario, one goes from
BEC to BCS superconductivity by systematically lowering
|U | from the intermediate-strong coupling regime to the weak
coupling regime. Importantly, Tc(|U |) is found to have a max-
imum for |U | ∼ W . In the bilayer model, although |U | is
kept constant, we find that the pairing interaction is effec-
tively reduced through an increase in the interlayer tunneling
amplitude t⊥. Interestingly, like the purely 2D case, we find
that Tc in the composite system also has a maximum with
decreasing pairing interaction, i.e., when t⊥ is increased, near
the crossover between the BEC and the BCS regimes. Based

on this observation, one may speculate that the results for the
composite system can be rationalized in terms of an effective
single-layer negative-U model, in which the hopping ampli-
tude has been enhanced effectively by the hopping through
the metallic layer. Additional calculations are needed to de-
termine to what extent this is indeed the case and will be the
subject of future studies.

IV. SUMMARY AND CONCLUSION

We have examined a composite negative-U
Hubbard/noninteracting metallic bilayer system using
DCA-QMC calculations to study the relationship between
the superconducting Tc and the interlayer single-particle
tunneling. Our work expands on previous studies [9,10] by
focusing on a regime where the magnitude of the attractive
interaction is comparable to the bandwidth (|U | � W ), and
both layers have finite bandwidth (i.e., nonzero intralayer
hopping). Moreover, we complement Ref. [11] by estimating
Tc directly and computing the system’s effective pairing
interaction and superfluid stiffness as a function of t⊥.

We found that Tc displays nonmonotonic behavior and
reaches a maximum at a finite value of the interlayer tunneling
t⊥, a trend that emerges when the DCA cluster size becomes
sufficiently large (i.e., when Nc � 64) to capture the necessary
spatial fluctuations. For smaller clusters, phase fluctuations
are suppressed by the mean field and the Tc is overestimated,
especially for small tunneling values. The effective pairing
interaction in the correlated layer decreases monotonically
with increasing t⊥, thereby lowering the pairing scale. How-
ever, we see a competing increase in the intrinsic pair-field
susceptibility up to a finite value of t⊥, which acts to increase
Tc over the same range. Our results suggest that the peak Tc

may correspond to a crossover between tightly formed BEC
pairs and longer range BCS pairs, much like in the negative-U
Hubbard model.

For small interlayer tunneling, the superconducting tran-
sition displays signs of strong phase fluctuations. As the
interlayer tunneling increases, we observe a shift toward a
BCS-like logarithmic temperature dependence. Interestingly,
this confirms that the superconducting transition in the com-
posite system does inherit a more mean-field-like character
through the interlayer hybridization. However, this partial
recapture of the mean-field pairing scale produces only a
modest enhancement of Tc relative to the isolated layer. We
speculate that this enhancement could be further increased by
considering metallic layers that can retain some degree of the
large pairing interaction. For example, coupling to a metal
with strong electron-phonon coupling could help counteract
the reduction in Vs.

The Department of Energy (DOE) will provide public
access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan [32].
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