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We study transport phenomena through a ballistic ferromagnet-superconductor-ferromagnet (F/S/F) junction,
comparing the case in which the ferromagnetic order in the two F layers is of the standard Stoner type with
the case where it is driven by a spin mass mismatch (SMM). It is shown that the two mechanisms lead to a
different behavior in the charge and the spin conductances, especially when compared to the corresponding
nonsuperconducting ferromagnet-normal-ferromagnet (F/N/F) junctions. In particular, when the injected cur-
rent is perpendicular to the barrier, for high barrier transparency and large magnetization of the F layers, the
large mass mismatch gives rise to an enhancement of both low-bias charge and spin conductances of the F/S/F
junction, which is not observed in the equal-mass case. When all the allowed injection directions are considered,
the low-bias enhancement of the charge conductance for SMM leads still holds for high-barrier transparency
and large magnetization of the F layers. However, in the case of nontransparent interfaces, spin transport with
SMM ferromagnets exhibits an opposite sign response with respect to the Stoner case at high biases for all
magnetization values, also manifesting a significant amplification induced by superconductivity at the gap edge.
The above-mentioned differences can be exploited to probe the nature of the electronic mechanism underlying
the establishment of the ferromagnetic order in a given material.

DOI: 10.1103/PhysRevB.105.214501

I. INTRODUCTION

Heterostructures made of ferromagnetic (F) and supercon-
ducting (S) alternating layers exhibit a variety of peculiar
phenomena occurring at the nanoscale range of layer thick-
nesses [1–3]. Thanks to the great progress in the preparation
of high-quality hybrid F/S systems achieved in the last years,
their properties have been deeply investigated in view of the
design of new devices susceptible of relevant applications
in the field of electronics and spintronics [3,4]. The interest
in the above-mentioned systems is, however, not limited to
this context. Under specific conditions, their behavior may
provide relevant information on the type of ferromagnetism
characterizing the F layer as well as on the symmetry of the
order parameter in the superconductor, allowing to distinguish
among the various possible unconventional pairing states [5].

Most of the relevant effects arising in F/S structures, such
as the spatial oscillations of the electronic density of states or
the nonmonotonic dependence of the critical temperature on
the ferromagnet layer thickness, are ultimately related to the
damped oscillatory behavior characterizing the propagation
of the Cooper pair wave function from the superconductor
to the ferromagnet [6]. This is in turn due to the formation
of Cooper pairs with a finite center-of-mass momentum orig-
inating from the presence of the exchange field [7]. As far
as transport is concerned, it is well known that in a N/S
junction, where N denotes a normal metal, for energies below

the superconducting gap �, conduction is only possible via
Andreev reflection (AR) processes by which two electrons
with opposite spins, one above and the other one below the
Fermi energy, incident from the nonsuperconducting layer,
are transferred in the superconductor as a Cooper pair [8].
This leaves holes in the normal system which give rise to
a parallel conduction channel, in this way leading to a dou-
bling of the normal-state conductance for eV < � (V is the
applied voltage) [9]. When the normal metal is replaced by
a conventional Stoner ferromagnet, the relative shift of the
density of states for spin-up and -down electrons caused by
the exchange interaction (Fig. 1) can be large enough that an
electron with, say, spin-up incident on the interface finds no
spin-down partner to form a Cooper pair able to move to the
superconducting layer [10]. Andreev reflections at the inter-
face are then blocked so that only single-particle excitations
contribute to the conductance. As a result, the higher is the
exchange interaction in the ferromagnet, the stronger is the
conductance suppression in the subgap energy range [11].

In F/S junctions, Andreev reflections occur as local pro-
cesses at the superconductor interface and produce a Cooper
pair in the superconductor. In multiterminal F/S hybrid struc-
tures where the thickness of the S layer is of the order of the
BCS superconducting coherence length of the material, they
can also manifest themselves as a nonlocal process [12], re-
ferred to as crossed Andreev reflection (CAR). In such a case,
the retroreflection of the hole from an AR process, resulting
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from an incident electron at energies less than the supercon-
ducting gap at one lead, occurs in the second ferromagnetic
lead with the same charge transfer as in a normal AR process
of a Cooper pair in the superconductor. For CAR to occur,
electrons of opposite spin must exist at each nonsuperconduct-
ing electrode (so as to form the pair in the superconductor).
Therefore, such processes are expected to be strongly sup-
pressed in F/S/F junctions with parallel alignment of the F
polarizations, while they can survive even at strong polariza-
tion in the case of F layers having opposite magnetization
alignment. The reverse process of the CAR produces spatially
separated entangled states of electrons by splitting Cooper
pairs from the superconducting condensate into the two exter-
nal leads [13,14]. In trilayer structures, CARs usually compete
with other transport processes, such as the normal reflections,
the local Andreev reflections, and the elastic cotunneling, i.e.,
the quantum mechanical tunneling of electrons between the
external leads via an intermediate state in the superconductor.

Generally speaking, F/S/F trilayer structures offer a rich
playground to investigate the interplay between superconduc-
tivity and ferromagnetism. For instance, in such structures
theory predicts [15] that for parallel alignment of the magne-
tizations in the two ferromagnetic layers, the superconducting
critical temperature is lower than in the case of antiparallel
alignment, and can even be zero. The system can thus behave
as a spin valve where superconductivity can be switched on
and off by reversing the field direction in one of the two
magnetic layers. However, it has been experimentally verified
[16–19] that as soon as collinear, i.e., parallel or antiparallel,
configurations are considered, the critical temperature shift is
of the order of millikelvins, i.e., relatively small compared to
the theory predictions. The smallness of this spin-valve effect
has been supposed to be due to a nonoptimal choice of the
layer thickness and/or the selected layer material [20]. Actu-
ally, in the collinear case most of the experiments have been
performed on systems not satisfying the condition ξS/dS � 1,
ξS and dS being the coherence length and the thickness of
the superconducting layer, respectively, which has been the-
oretically demonstrated [15] to be a prerequisite for a large
spin-valve effect. On the other hand, differences arise when
noncollinear configurations are considered. In this case the
dependence of Tc on the angle α between the two magnetiza-
tion directions is nonmonotonic with a minimum for α = π/2
[6]. A good agreement between theory and experiments is
in this case obtained taking explicitly into account the odd
triplet correlations generated via proximity effect by the non-
collinearity of the magnetizations [21]. Interestingly, it has
been recently demonstrated that in F/S/F trilayers based on
d-wave superconductors, such as in particular YBa2Cu3O7−δ

(YBCO) sandwiched between insulating layers of ferromag-
netic Pr0.8Ca0.2MnO3, the critical temperature shift between
parallel and antiparallel configurations can approach the
very large value of 2 K, with oscillations driven by the
YBCO thickness over a length scale that is two orders of
magnitude larger than the superconducting coherence length
ξS [22].

However, the F/S/F heterostructures so far considered
have been theoretically investigated by assuming for the
ferromagnetic layers Stoner-type models where the bands as-
sociated with the two possible electron spin orientations have

FIG. 1. Density of states for spin-up and spin-down electrons in
the Stoner (a) and in the spin mass mismatch (SMM) case (b).

the same dispersion and are rigidly shifted in energy by the
exchange interaction [Fig. 1(a)]. Given the complexity of the
forms in which the phenomenon of ferromagnetism manifests
itself in metals, it may be relevant to perform the analysis of
the above systems referring to scenarios different from the
Stoner one. Among them, we will consider here a form of
itinerant ferromagnetism driven by a gain in kinetic energy
stemming from a spin-dependent bandwidth renormalization
[Fig. 1(b)] or, equivalently, from an effective spin mass mis-
match (SMM) between spin-up and -down electrons [23,24].
Such kind of ferromagnetism can be theoretically described
through microscopic approaches based on an extended Hub-
bard model, where the exchange and nearest-neighbor pair
hopping terms are explicitly taken into account. Indeed, when
treated within mean-field approaches, these contributions,
generally neglected in studies based on the Hubbard model,
lead to quasiparticle energies for the two spin species which
are not simply split, as in the Stoner picture, but acquire dif-
ferent bandwidths or, equivalently, different effective masses
[25]. For suitably low temperatures and in specific parameter
regimes, this spin-dependent mass renormalization can lead to
the establishment of a ferromagnetic order which arises from
a gain in kinetic energy rather than in potential energy as in
the usual Stoner scheme. This kind of ferromagnetism has
experimentally been shown to be at the origin of the optical
properties of the colossal magnetoresistance in manganites
[26], in some rare-earth hexaborides [27], as well as in some
magnetic semiconductors [28]. As far as theory is concerned,
this is predicted to substantially affect the coexistence of fer-
romagnetism and superconductivity [29] as well as proximity
[30] and transport [31–33] phenomena in F/S bilayers. It
may also play a role in the stabilization of the Fulde-Ferrell-
Larkin-Ovchinnikov phase in heavy-fermion systems [34].
Compared to the Stoner case, the interplay of this form of
ferromagnetism with superconductivity is expected to give
rise to different features in the behavior of several physical
quantities. In particular, this issue has been investigated for
F/S bilayer with anisotropic singlet superconductors, show-
ing that the different response predicted for the two kinds
of ferromagnets allows to discriminate among the possible
time-reversal symmetry-breaking states established in the su-
perconducting layer [32]. In that context it was also shown
that in a wide range of interface transparencies, a SMM ferro-
magnet may support spin currents significantly larger than a
standard Stoner one.

214501-2



SPIN AND CHARGE TRANSPORT IN … PHYSICAL REVIEW B 105, 214501 (2022)

In this paper, the comparison between the role played by
Stoner and SMM ferromagnets is performed referring to a
clean F/S/F trilayer, in analogy with the study presented
in Refs. [31,32] for a bilayer structure. In particular, by
analyzing the behavior of the differential charge and spin
conductances, we show that when the F/S/F junction is based
on SMM ferromagnets, it behaves differently from junctions
with ordinary Stoner ferromagnets, both in the transparent and
in the tunnel limits. By comparing the transport properties
of the junction in the superconducting regime (F/S/F) with
those of the nonsuperconducting case (F/N/F), we find that
for the SMM mechanism the interplay between superconduc-
tivity and ferromagnetism is not detrimental to charge and
spin transport, as for the Stoner mechanism, but instead both
charge and spin conductances through the F/S/F junctions
get enhanced with respect to the F/N/F case in the bias
region where superconductivity is most effective. Moreover,
a distinctive feature of the SMM mechanism emerges in the
spin transport at large bias, at intermediate- and low-barrier
transparency: the sign of the spin current is opposite to the
sign of the lead magnetization, while in the Stoner case this
sign difference is not seen. We clarify the origin of this be-
havior, also showing that the presence of superconductivity is
able to amplify the magnitude of the spin current at the gap
edge both in the Stoner and in the SMM case.

Such results are presented in the paper as follows. In
Sec. II we formulate the microscopic model based on the
Bogoliubov–de Gennes (BdG) equations, written in each re-
gion of the junction. In this framework, we discuss how to
solve the scattering problem in order to derive the probability
coefficients associated with the relevant scattering processes.
Then we explain how to use such coefficients to calculate
the charge and spin conductance through the junction. The
obtained results are discussed in Sec. III, in connection to the
behavior of the scattering coefficients, both for fully trans-
parent interfaces and in the tunnel limit. Finally, Sec. IV is
devoted to the conclusions.

Additional details about the applied formal procedure are
provided in the Appendixes. In Appendix A we report the
expression of the wave functions for the injection processes
which are not reported in the main text; Appendix B con-
tains the derivation of the probability current conservation; in
Appendix C we derive the spin-dependent charge conductance
through the junction; Appendix D reports the behavior of
the critical injection angles below which the different scat-
tering processes are allowed; finally, Appendix E shows the
derivation of a symmetry property characterizing the scatter-
ing amplitudes in the SMM case for transparent barriers and
perpendicular injection.

II. MODEL

We consider a planar-symmetric trilayer junction in the
clean limit, made up of a superconducting layer of thickness
L, sandwiched between two identical semi-infinite itinerant
ferromagnets, as schematically shown in Fig. 2. The junction
lies in the xz plane; the superconducting layer is connected to
the two ferromagnetic electrodes by thin, insulating interfaces,
located at the positions z = 0 and L, respectively.

FIG. 2. Schematic representation of the considered symmetric
planar ferromagnet-superconductor-ferromagnet (F/S/F) junction. L
is the thickness of the superconducting layer. The two ferromagnetic
subsystems are assumed identical and semi-infinite.

The barrier potential at the two interfaces is modeled as

V (r) = Hδ(z) + Hδ(z − L), (1)

where H denotes the potential amplitude at each interface, and
δ(z) is the Dirac delta function. We also assume a rigid pairing
potential for the superconducting side, such that

�0(r) = ��(z)�(L − z), (2)

where �(z) is the Heaviside step function and �0 is the BCS
bulk gap.

Moreover, we assume that the effective mass of the system
is

m∗(r, σ ) = mσ�(−z) + mσ�(z − L) + mS�(z)�(L − z).

Here, mσ is the spin-dependent mass of electrons in each
ferromagnetic layer, while mS is the carrier mass in the super-
conducting one. In order to analyze the effects on the transport
across the junction which derive from the asymmetric mass
renormalization, in comparison with those due to the conven-
tional Stoner-induced ferromagnetism, we assume an equal
exchange field in the two ferromagnetic sides of the junction:

h(r) = Uθ (−z) + Uθ (L − z).

We will illustrate in the following the solution of the quantum
problem of the electron propagation from one side of the
junction to the other, then showing how to determine the
differential charge and spin conductances through the junction
in the ballistic limit.

A. Bogoliubov–de Gennes equations

The single-particle Hamiltonian for a given spin projection
σ =↑,↓ reads as

Hσ (r) = − h̄2

2 m∗(r, σ )
∇2 + V (r) − μ(r) − ρσ h(r), (3)

where ρ↑(↓) = +1 (−1) and we have defined the chemical
potential μ(r) as

μ(r) = EF
F θ (−z) + ES

F θ (z)θ (L − z) + EF
F θ (z − L),

(4)

with EF
F (ES

F ) being the Fermi energy in the ferromagnetic
(superconducting) side. We assume that there is no Fermi
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energy mismatch between the three subsystems, so that

EF ≡ EF
F = ES

F . (5)

In the absence of spin-flip scattering, the spin-dependent
four-component BdG equations for each subsystem can be
decoupled into two subsets of two-component equations, one
for the spin-up electronlike and spin-down holelike quasi-
particle wave functions (u↑, v↓), and the other one for the
corresponding quasiparticle wave functions having opposite
spin projection (u↓, v↑). The BdG equations for each subset
are then (

Hσ (r) �0(r)
�∗

0(r) −H σ̄ (r)

)
�σ = ε�σ , (6)

where σ̄ = −σ and �σ ≡ (uσ , vσ̄ ) is the energy eigenstate in
the electron-hole space associated with the eigenvalue ε. The
Hamiltonian invariance under translation along the x direction
allows to factorize the part of the eigenstates which corre-
sponds to the electron motion in the direction parallel to the
interface direction, i.e., �σ (r) = eik‖·rψσ (z), hence reducing
the BdG problem to the solution of effective one-dimensional
equations.

The solutions of the BdG equations for electrons (e) and
holes (h) propagating in each ferromagnetic side are

ψe
±,σ (z) =

(
1
0

)
e±iqe

σ zz, (7)

ψh
±,σ (z) =

(
0
1

)
e±iqh

σ zz, (8)

where qe (h)
σ z is the projection along the z direction of the

electron (hole) momentum, whose total amplitude is

qe
σ =

√
2 mσ

h̄2 (EF + ρσ U + ε), (9)

qh
σ =

√
2 mσ

h̄2 (EF + ρσ U − ε) (10)

with ρ↑ (↓) = +1 (−1). The plus sign in Eq. (7) refers to
electrons propagating from the left to the right side, while
the minus sign indicates electrons moving in the opposite
direction. Since holes have opposite group velocity direction
with respect to electrons, in Eq. (8) the plus sign refers to hole
motion from right to left while the minus one refers to hole
propagation from left to right.

In the superconducting side, solutions for electronlike and
holelike quasiparticles are given by

ψe
±,S(z) =

(
u0

v0

)
e±ike

z z, (11)

ψh
±,S(z) =

(
v0

u0

)
e±ikh

z z, (12)

where ke (h)
z are the z components of the electronlike (holelike)

quasiparticle momenta having amplitudes

ke =
√

2 mS

h̄2 (EF +
√

ε2 − �2), (13)

kh =
√

2 mS

h̄2 (EF −
√

ε2 − �2), (14)

and u0 and v0 are the coherence factors expressed as

u0 =
√

1

2

(
1 +

√
ε2 − �2

ε

)
, (15)

v0 =
√

1

2

(
1 −

√
ε2 − �2

ε

)
. (16)

We apply the quasiclassical Andreev approximation, as-
suming that the processes of interest in our analysis in-
volve quasiparticles which are close to the Fermi energy,
such that EF 	 (ε,�). As a consequence, qe

σ = qh
σ ≡ qσ =√

2 mσ

h̄2 (EF + ρσ U ). We keep the energy dependence in the

superconducting momenta occurring in the exponents of the
superconducting wave functions given by Eqs. (11) and (12),
in such a way to catch the interference effects in the S region.
Using the Fermi energy condition (5) and the relation ES

F =
h̄2(kS

F )2

2mS
, we can define the renormalized momentum amplitudes

in the ferromagnetic and in the superconducting layers as

q̃σ ≡ qσ

kS
F

=
√√

mσ

mσ̄

(1 + ρσ X ), (17)

k̃e ≡ ke

kS
F

=
√

1 +
√

ξ 2 − δ2, (18)

k̃h ≡ kh

kS
F

=
√

1 −
√

ξ 2 − δ2, (19)

respectively, having introduced the adimensional quanti-
ties X = U/EF, ξ = ε/EF, δ = �/EF, with the condition
m↑/mS = mS/m↓.

B. Scattering problem

The total wave function of the F/S/F trilayer is obtained as
a linear combination of the solutions of the BdG equations for
each individual region. Here we extend to the F/S/F trilayer
the Blonder-Tinkham-Klapwjik (BTK) scattering theory [35]
originally formulated for a N/S bilayer junction and then
extended to a F/S one, in the case of a Stoner ferromagnet
[6] or a SMM one [36]. This kind of approach has also been
used to investigate a F/S/F junction, but only in the case of
ferromagnetic order of the conventional Stoner type [37–39].
Rather, here the approach will also be applied to a trilayer with
ferromagnetic layers of the SMM type.

When a carrier with spin σ and momentum amplitude qσ

is injected from the left ferromagnetic side with an injection
angle θσ , its propagation gives rise to eight possible scattering
processes at the interfaces, as shown in Fig. 3. Within the
left F layer they include (i) Andreev reflection, converting
the incident electron (hole) with spin σ into a hole (electron)
with opposite spin σ̄ , which propagates with a momentum
amplitude qσ̄ along a direction forming an angle θA

σ̄ with
the normal to the interface (apσ̄ in Fig. 3), and (ii) normal
reflection as an electron (hole) having spin σ , momentum
amplitude qσ , and moving along a direction forming an angle
−θσ with the normal direction to the interface (bpσ in Fig. 3).
Then, in the S layer, close to the first interface, there occur (i)
the transmission of an electron in the superconducting side,
propagating with momentum amplitude ke at an angle θS

eσ
with respect to the normal to the interface (αpσ in Fig. 3), and
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FIG. 3. Schematic representation of the scattering processes of a
carrier (p = e, h for electrons and holes, respectively) injected from
the left ferromagnetic side with spin projection σ at an angle θσ with
respect to the direction perpendicular to the interfaces. The processes
are described in detail in the text.

(ii) the transmission of a hole, propagating with momentum
amplitude kh and negative momentum component along the
z direction, at an angle θS

hσ with respect to the normal to the
interface (βpσ̄ in Fig. 3). In proximity of the second barrier,
the relevant processes are (i) the reflection of an electron
with momentum amplitude ke forming an angle θS

eσ with the
normal direction to the interface (γpσ in Fig. 3), and (ii) the
reflection of a hole having momentum amplitude kh and angle
θS

hσ measured from the normal to the interface (ηpσ̄ in Fig. 3).
Finally, in the right F lead there occur (i) the transmission
of an electron with spin σ , momentum amplitude qσ along a
direction forming an angle θT

eσ with the normal to the interface
(cpσ in Fig. 3), and (ii) the transmission of a hole with spin σ̄ ,
momentum amplitude qσ̄ along a direction forming an angle
θT

hσ̄ with the normal to the interface (dpσ̄ in Fig. 3). Due to the
symmetry of the junction, if quasiparticles are injected from
the right F side, identical processes will occur, with reversed
sign for all propagation velocities.

The scattering angles associated with the above-listed
processes depend on the injection angle θσ of the incident par-
ticles. They can be calculated by using the conservation of the
momentum components which are parallel to the interfaces:

qσ‖ ≡ qσ sin θσ = qσ̄ sin θA
σ̄ = ke(h) sin θS

e(h)σ

= qσ sin θT
σ = qσ̄ sin θT

σ̄ . (20)

The scattering processes happening due to the injection of
a quasiparticle p = e, h from one of the two ferromagnetic
sides in general occur with different probabilities, depending
on the excitation energy ε, the superconducting energy gap
�, the polarization of the ferromagnetic leads, and the barrier
strength H . Consequently, the scattering processes enter the
total wave-function expression with some unknown ampli-
tudes to be determined by imposing the matching conditions
for the wave functions at the interfaces.

Taking into consideration the above-listed scattering pro-
cesses, the wave function for an electron which is injected
from the left F side at energy ε, angle θσ , and with spin σ

can be written as

ψF
eσL(z) =

(
1
0

)
eiqσ z cosθσ + aeσ̄

(
0
1

)
eiqσ̄ z cosθA

σ̄

+ beσ

(
1
0

)
e−iqσ z cosθσ (21)

in the left F side (z < 0), as

ψS
eσ (z) = αeσ

(
u0

v0

)
eikez cosθS

σe

+ βeσ̄

(
v0

u0

)
e−ikhz cosθS

σh

+ γeσ

(
u0

v0

)
e−ikez cosθS

σe

+ ηeσ̄

(
v0

u0

)
eikhz cosθS

σh (22)

in the S side (0 < z < L), and as

ψF
eσR(z) = ceσ

(
1
0

)
eiqσ z cosθT

σ

+ deσ̄

(
0
1

)
e−iqσ̄ z cosθT

σ̄ (23)

in the right F side (z > L). The corresponding wave functions
for the injection of a hole from the left F lead are reported in
Appendix A.

The coefficients corresponding to the scattering processes
occurring at the two interfaces are determined by imposing
the following boundary conditions: the continuity conditions
of the wave functions at the two interfaces,

ψF
pσL(0) = ψS

pσ (0),

ψF
pσR(L) = ψS

pσ (L), (24)

and the discontinuity of the wave-function first derivative
with respect to the z spatial coordinate at the interface loca-
tions due to the local barrier potentials. Such conditions are
derived by integrating the BdG equations in Eqs. (6) over the
z variable in a very narrow range around each barrier, and
read as

d

dz
uS

σ

∣∣∣∣
z=0

− mS

mσ

d

dz
uF

σL

∣∣∣∣
z=0

= ZuS
σ (0),

d

dz
vS

σ̄

∣∣∣∣
z=0

− mS

mσ̄

d

dz
vF

σ̄L

∣∣∣∣
z=0

= ZvS
σ̄ (0),

mS

mσ

d

dz
uF

σR

∣∣∣∣
z=L

− d

dz
uS

σ

∣∣∣
z=L

= ZuS
σ (L),

mS

mσ̄

d

dz
vF

σ̄R

∣∣∣∣
z=L

− d

dz
vS

σ̄

∣∣∣∣
z=L

= ZvS
σ̄ (L). (25)

Here (uS
σ , vS

σ̄ ) are the components of the superconducting
wave function ψS

eσ (z), whose explicit expression is given in
(22), whereas (uF

σα, vF
σ̄ α ) with α = L, R are the components of

the ferromagnetic wave functions ψF
eσL(R)(z) in the left (L) and

right (R) side, respectively. Their explicit expressions have
been provided in Eqs. (21) and (23). Finally, we have defined
Z = 2mSH

h̄2kS
F

.

The probability amplitudes associated with each scatter-
ing process are obtained from the solution of the system
in Eqs. (25). This is done by using the conservation of the
current probability, in the form derived in Appendix B. For a
carrier p = e, h injected from left with energy ε = ξ̃� along
a direction forming an angle θσ with the direction normal
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to the interface, we find that the probabilities Apσ for local
Andreev reflections, Bpσ for the specular reflection, Cpσ for
the transmission with the same charge in the right F lead and
Dpσ for the transmission with opposite charge in the right F
lead are given by

Apσ = mσ

mσ̄

qσ̄ cos θA
σ̄

qσ cos θσ

|apσ̄ (ξ̃ , θσ )|2, (26)

Bpσ = |bpσ (ξ̃ , θσ )|2 , (27)

Cpσ = cos θT
σ

cos θσ

|cpσ (ξ̃ , θσ )|2 , (28)

Dpσ = mσ

mσ̄

qσ̄ cos θT
σ̄

qσ cos θσ

|dpσ̄ (ξ̃ , θσ )|2 . (29)

In the case of injection from the right side, the expressions
are exactly the same as Eqs. (26)–(29), due to the mirror
symmetry of the junction.

C. Charge and spin conductances

The knowledge of the coefficients (26)–(29) allows to ob-
tain the expression of the charge and the spin conductances,
again referring to the extension of the BTK approach to the
case of F/S/F trilayer. As for the case of the single F/S
junction [36], the conductance can be more conveniently cal-
culated into the left ferromagnetic side of the junction, where
the current flow does not include supercurrents. In the pres-
ence of an applied bias V between the left and right sides of
the junction, four injection processes can occur, as graphically
shown in Fig. 4: the injection of an electron with spin σ from
the left side of the junction [Fig. 4(a)], the injection of a hole
with spin σ from the left side [Fig. 4(b)], the injection of an
electron with spin σ from the right side [Fig. 4(c)], and the
injection of a hole with spin σ from the right side [Fig. 4(d)].
As derived in detail in Appendix C, by properly taking into
account all these processes [38], the charge and spin currents
Jc and Js, respectively, flowing normally to the interfaces due
to the application of a voltage bias V , can be written as

Jc(s) = J↑ ± J↓ (30)

where the spin-dependent current Jσ is

Jσ = eh̄
∑

ε,θ∈F1

qσ

mσ

cos θ

[
f

(
ε − eV

2

)
− f

(
ε + eV

2

)]

× (Aeσ + Ceσ + Ahσ + Chσ ). (31)

Starting from this expression, one can show (see Appendix C)
that the spin-dependent angle-averaged differential conduc-
tance for an applied bias V can be written as

Gσ (E) = dJσ

dV
=

∫ θ c
σ

0
dθ Gσ (E, θ ) (32)

with E = eV and

Gσ (E, θ ) = G0 q̃σ cos θ (Aeσ + Ceσ + Ahσ + Chσ )| E
2 ,θ .

(33)
Here, G0 = e2qF

π h̄ is the conductance of the junction when the
three layers are all in the normal state, qF is the Fermi mo-
mentum in the normal state, and q̃σ = qσ /qF . The definition

FIG. 4. Processes involved in the calculation of the charge and
spin conductance through the junction: (a) injection of an electron
with spin σ from the left side of the junction; (b) injection of a hole
with spin σ from the left side; (c) injection of an electron with spin σ

from the right side; (d) injection of a hole with spin σ from the right
side.

(32) of Gσ takes into account that the experimentally mea-
sured conductance takes contributions from a limited range
of injection angles, depending on the experimental condi-
tions. This is specified by the value of θ c

σ , which is the
critical incidence angle for electrons with spin σ injected from
the left ferromagnet, above which transmission processes
to the right ferromagnet do not occur. An explicit evaluation
of the critical angles characterizing the scattering processes
taking place within the junction is presented in Appendix D.

In terms of Gσ the charge and the spin conductance are
defined as

Gc(E) = G↑(E) + G↓(E), (34)

Gs(E) = G↑(E) − G↓(E). (35)

III. RESULTS AND DISCUSSION

We assume a superconducting layer having thickness
L = 5000/kF , which is of the order of the superconducting
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FIG. 5. Density plot of the magnetization for a two-dimensional
ferromagnetic system where both Stoner and SMM mechanisms
are responsible for the ferromagnetic state. Isomagnetic curves
are shown: continuous, small dashed, dotted, dotted-dashed, and
large dashed lines correspond to M = 0, 0.25, 0.5, 0.75, 0.95, re-
spectively. The parameter values associated with each marked point
are given in Fig. 6. Point H lies far away on the horizontal axis and
cannot be properly shown in the figure.

coherence length ξS = 2000/kF . In order to compare the ef-
fects due to the two microscopic mechanisms responsible for
the ferromagnetism, we fix the magnetization amplitude in
the F leads, and then we choose pairs of states where the
same value of magnetization is obtained either via a pure
Stoner-type mechanism or via the mass splitting one only.
Referring to Fig. 5, showing the magnetization as a function of
X and of the mass ratio Y = m↑/m↓, a given pair of such states
is represented by two points lying on the same isomagnetic
curves (small dashed, dotted, dotted-dashed, and large dashed
lines for M = 0.25, 0.5, 0.75, 0.95, respectively). Points such
as A, C, E, and G correspond to m↑ = m↓ and thus are repre-
sentative of ferromagnetic states of pure Stoner origin, while
points such as B, D, F along the horizontal axis correspond to
pure SMM ferromagnetic states. The different cases analyzed
in the following correspond to the values of X , Y , and M
reported in the table of Fig. 6.

By using Eqs. (30)–(33), we have calculated the charge
and the spin conductance through the double junction at dif-
ferent values of the applied bias, of the polarization of the
ferromagnetic leads, and of the barrier transparencies. The
charge and spin conductances of the F/S/F junction have both
been normalized to the charge conductance of the correspond-
ing ferromagnetic-normal-ferromagnetic (F/N/F) junction, in
order to better visualize the effects induced by the supercon-
ducting state.

A. Charge conductance

The charge conductance of the F/S/F junction for par-
ticles injected perpendicularly to the barriers is shown in
Fig. 7 in the Stoner case [Figs. 7(a)–7(c)] and in the SMM

FIG. 6. Chosen values of the magnetization and correspond-
ing microscopic parameters used to investigate separately the pure
Stoner case and the SMM one.

case [Figs. 7(d)–7(f)], for three different values of the bar-
rier transparency. The most appreciable differences between
the junction behavior in the presence of the two different
mechanisms for ferromagnetism appear for fully transparent
interfaces (Z = 0) and high values of the magnetization. In-
deed, in this regime, while in the Stoner case the charge
conductance is significantly suppressed at low bias with

FIG. 7. Voltage bias (E = eV ) dependence of the charge conduc-
tance at normal incident angle (θ = 0) in the Stoner case [(a)–(c)]
and in the SMM case [(d)–(f)] at different values of the barrier
transparency Z: (a) and (d) refer to Z = 0, (b) and (e) to Z = 2,
(c) and (f) to Z = 4. The chosen values of the magnetization are
M = 0, 0.25, 0.5, 0.75, 0.95 (red, green, cyan, violet, and magenta
lines, respectively).
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FIG. 8. Energy dependence of the probability coefficients for
Andreev reflections (A) and transmission in the right ferromagnet
as electrons (C), for spin-up and -down injected carriers [(a), (b) and
(c), (d), respectively]. Here we have considered the case of Stoner
ferromagnetic layers and high-transparent barriers (Z = 0). The val-
ues of M and the related color lines are the same as those used in
Fig. 7.

respect to the F/N/F case, on the contrary in the SMM case it
is enhanced when the value of the mass mismatch is increased.

This effect can be understood by taking into account the
expression of Gσ (E, θ ), which explicitly depends on the car-
rier linear momentum [Eq. (33)]. Since a large magnetization
directly affects the linear momentum of carriers involved in
the transmission processes [see Eq. (17)] in a more sizable
way in the SMM case than in the Stoner one, a large mass
mismatch, such as the one occurring for the parameter choice
corresponding to the point H listed in the table of Fig. 6, is
expected to induce a strong contribution to the charge conduc-
tance. Correspondingly, at lower values of the magnetization,
where the mass mismatch in SMM ferromagnets is reduced,
carrier momenta for spin-up and -down electrons assumes
more comparable values, which makes the SMM charge con-
ductance more similar to the Stoner one.

Aside from the magnetization-driven enhancement of the
particle linear momentum, another effect generally con-
tributes to determine the observed differences between the
SMM and the Stoner charge conductance, and it is linked to
the Andreev reflections which occur when superconductivity
is switched on. They directly contribute to the conductance
according to Eq. (33), and, in particular, they play the major
role in the scattering process for applied bias below the en-
ergy gap at large barrier transparencies [see Figs. 8(a), 8(c),
and 9(a)]. The occurrence of Andreev scattering due to the
superconducting state counterbalances the detrimental effect
that ferromagnetism has on the charge conduction. Indeed,
both mechanisms responsible for ferromagnetism generally
disadvantage the charge transport through the junction. The
Stoner mechanism, via the energy shift between the opposite
spin electrons [Fig. 1(a)], reduces the available states for mi-
nority carriers; the SMM mechanism induces an unbalance
between the velocities of carriers with opposite spin, such
that at positive magnetization values, spin-up electrons be-
come slower than spin-down ones, thus providing a reduced
contribution to the conductance. Therefore, in the presence of

FIG. 9. Energy dependence of the probability coefficients for
(a) Andreev reflections, (b) transmission into the right ferromagnet
as electrons for spin-up injected carriers, in the case of SMM ferro-
magnetic layers and for perfectly transparent barriers (Z = 0). The
same coefficients for spin-down electrons are not shown because, as
proved in Appendix E, they coincide with those for spin-up ones. The
values of M and the related color lines are the same as those used in
Fig. 7.

superconductivity, the lack of the energy shift between op-
posite spin density of states in the SMM case allows strong
Andreev reflections, which are instead suppressed by increas-
ing the magnetization in the Stoner case, due to a reduction
of accessible states for spin-down holes. Therefore, the more
robust Andreev reflections, together with a sizable linear mo-
mentum amplification at large magnetization in the SMM
case, can explain the very different behavior of the charge
conductance of the F/S/F junctions in the Stoner and in the
SMM case for transparent barriers [Figs. 7(a) and 7(d)].

Differently from what happens in the regime of highly
transparent barriers, for finite transparency differences be-
tween the Stoner and the SMM case tend to become less and
less appreciable as Z is increased, regardless of the magnetiza-
tion value in the F layers. This can be explained in terms of the
behavior of the Andreev reflections, which at low bias become
strongly suppressed by increasing Z (see for instance Figs. 10
and 11 for the case Z = 2). The small contribution provided
by the Andreev reflections makes less and less effective the
role played by the large-momentum values associated with a

FIG. 10. Energy dependence of the probability coefficients in the
Stoner case for Andreev reflections (A) and transmission to the right
ferromagnet as electrons (C), for spin-up injected electrons [respec-
tively (a) and (b)] and spin-down injected electrons [respectively
(c) and (d)], in the low-transparency limit (Z = 2). The values of
M and the related color lines are the same as those used in Fig. 7.
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FIG. 11. Energy dependence of the probability coefficients in the
SMM case for Andreev reflections (A) and transmission to the right
ferromagnet as electrons (C), for spin-up injected electrons [respec-
tively (a) and (b)] and spin-down injected electrons [respectively
(c) and (d)], in the low-transparency limit (Z = 2). The values of
M and the related color lines are the same as those used in Fig. 7.

high value of the mass mismatch, thus leading to a similar
behavior of the Stoner and the SMM charge conductance at
any value of M.

Similar results are obtained in the case of the charge
conductance integrated over all possible injection angles, as
shown by Fig. 12. Again, we see a much larger low-bias
weight in the SMM case than in the Stoner one for Z = 0
and large magnetization, this difference tending to disappear

FIG. 12. Voltage bias dependence of the charge conductance in-
tegrated over all the allowed injection angles in the Stoner (a)–(c) and
in the SMM case (d)–(f) at different values of barrier transparency:
(a) and (d) for Z = 0, (b) and (e) for Z = 2, (c) and (f) for Z = 4. The
values of M and the related color lines are the same as those used in
Fig. 7.

FIG. 13. Voltage bias dependence of the spin conductance at
normal incident angle (θ = 0) in the Stoner (a)–(c) and in the SMM
case (d)–(f) at different values of barrier transparency: (a) and (d) for
Z = 0, (b) and (e) for Z = 2, (c) and (f) for Z = 4. The values of M
and the related color lines are the same as those used in Fig. 7.

at any M when a lower and lower barrier transparency is
considered.

B. Spin conductance

The behavior of the spin conductance is shown in Fig. 13
in the case of electron incidence normal to the interfaces. The
results obtained for full transparency are shown in Fig. 13(a)
for the Stoner case and in Fig. 13(d) for the SMM one. In
particular, the spin conductance increases at all energies with
increasing magnetization, this effect being at low bias much
more pronounced in the SMM case than in the Stoner one.
This can be explained noting that while with Stoner ferro-
magnets this trend comes from the asymmetrization of the
probability coefficients and Fermi momenta of particles with
opposite spin, in the SMM case the probability coefficients at
θ = 0 and Z = 0 are equal for spin-up and -down electrons,
so that the amplitude of the spin conductance is positive and
determined by the difference between the Fermi momenta
of opposite spin electrons. As already pointed out, such a
momentum difference becomes very significant in the SMM
case for high-magnetization values, due to the strong mass
renormalization driving the ferromagnetic order. Furthermore,
below the energy gap, the Andreev reflections are very strong
and almost insensitive to polarization, thus allowing a mag-
nitude of the spin conductance much larger in the SMM case
than in the Stoner one, in particular at low bias.

In the presence of nontransparent barriers and in partic-
ular in the tunnel limit, while the spin conductance of the
F/S/F junction in the Stoner case systematically increases
as a function of the ferromagnetic polarization [Figs. 13(b)
and 13(c)], in the SMM case there are ranges of the applied
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FIG. 14. Voltage bias dependence of the spin conductance inte-
grated over all the allowed injection angles in the Stoner (a)–(c) and
in the SMM (d)–(f) case at different values of barrier transparency:
(a) and (d) for Z = 0, (b) and (e) for Z = 2, (c) and (f) for Z = 4. The
values of M and the related color lines are the same as those used in
Fig. 7.

voltage bias where the spin conductance becomes negative,
with an absolute value which slightly increases with the mag-
netization [Figs. 13(e) and 13(f)]. Such feature comes from
the asymmetry in the effective mass of opposite spin par-
ticles which leads to a larger velocity, and thus to a better
transmission, of spin-down electrons compared to the spin-
up ones [Figs. 11(b) and 11(d)], thus reversing the role of
majority-spin electrons in the transmission process with re-
spect to the Stoner case [Figs. 10(b) and 10(d)]. It emerges
especially at bias values above the superconducting gap and
at large barrier values since in such regime this effect does
not compete anymore with the occurrence of Andreev reflec-
tions, and transport through the junction is fully dominated
by the transmission of normal, nonsuperconducting quasipar-
ticles.

More pronounced differences between the Stoner and the
SMM case are found when one considers the spin conductance
integrated over all possible incidence directions (see Fig. 14).
In the Stoner case the spin conductance is always positive,
for all values of the applied bias, the barrier transparency,
and the F layer magnetization. At low bias it almost vanishes,
then becomes finite above the energy gap, with a magnitude
which increases with the spin polarization [Figs. 14(a)–14(c)].
Below the gap, the spin conductance is negligible also in the
case of SMM ferromagnetic layers, but differently from the
Stoner case, at Z = 0 and larger bias values it is positive at
small M [Fig. 14(d)], then becoming more and more negative
as increasing values of M are considered [Figs. 14(e) and
14(f)]. For finite values of Z we find a similar behavior, the
only difference being that at large bias the spin conductance

in the SMM case is always negative, regardless of the value
of M.

In order to understand this behavior, it is important to take
into account that, according to the critical angle dependence
on lead magnetization (see Appendix D), while the injection
cone of spin-up electrons is strongly suppressed by the mag-
netization, spin-down electrons can enter the junction at any
injection angle. Consequently, in the integrated spin current,
there is a strong competition between the contribution due to
injected spin-up electrons, which is dominant at θ = 0 but
restricted to a very limited angle range at increasing magneti-
zation, and the contribution due to the injection of spin-down
electrons, which is finite and sizable at all injection angles, in
particular in the SMM case. Such competition gives also rise
to very small values of the total spin conductance at bias lower
than 2�.

We also notice that above 2�, the most significant con-
tribution to the conductance comes from the excitation of
normal quasiparticles, so that the sign of the spin conductance
is dictated by the unbalance between the normal transmission
of opposite spin particles. In the Stoner case one always gets
positive values, increasing with the polarization, since at any
magnetization, spin-up electrons have in the right ferromag-
netic layer more accessible energy states than spin-down ones,
due to the positive sign of the lead magnetization. On the
contrary, the negative values found in the SMM case [see
Figs. 14(d)–14(f)] come from the mass unbalance between
spin-up and spin-dpwn electrons, which favors the transmis-
sion of the faster down-spin electrons. On the other hand, in
the bias regime below 2�, Andreev reflections counterbal-
ance this tendency since they have an approximately equal
weight for spin-up and -down electrons, thus giving rise to
a negligible spin current. Summarizing, while at biases below
the gap the superconducting effects dominate via the Andreev
scattering, above that value the dominant role is played by
the ferromagnetic order which in the SMM case allows the
spin-down current to dominate.

Nevertheless, the presence of superconductivity induces an
enhanced DOS at the gap edge, thus amplifying the spin cur-
rent for bias values of the order of 2�: around that value, the
total charge and spin conductance are characterized by a peak,
which is tunable through the polarization of the ferromagnetic
leads, both in the Stoner and in the SMM case [see Figs. 14(c)
and 14(f)].

The results we got show the emergence of peculiar effects
within the context of superconductor-based magnetic double
junctions. In this framework, many studies have been per-
formed addressing spin and charge conductance in F/N/F
structures, mainly in the context of spin-valve effects [40–44],
as well as in F/S/F double junctions, where the effects of
the relative orientation of the two ferromagnetic leads have
been investigated. However, to our knowledge, no systematic
study has been done in symmetric junctions on the spin re-
sponse neither for F/N/F systems nor for F/S/F junctions
as a function of the amplitude of the magnetization of the
ferromagnetic leads, exploring the role of different metallic
ferromagnets. In particular, we are not aware of measurements
demonstrating a sign reversal for the spin conductance as a
function of the ferromagnet polarization for normal incidence,
or negative values of the integrated spin conductance, in sym-
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FIG. 15. Integrated spin conductance at Z = 2 for two represen-
tative cases of F/N/F junctions, together with the corresponding
F/S/F ones, where both ferromagnetic mechanisms occur with dif-
ferent polarizations (a) or different relative weights (b). Here pSMM

is the weight of the SMM mechanism with respect to the Stoner
one. The yellow-shaded region marks the energy window where
distinctive features emerge in the F/S/F junction.

metric F/N/F junctions. We argue that this may be ascribed to
the fact that in realistic materials the mechanism responsible
for ferromagnetism could be a combination of both magnetic
exchange (Stoner) and kinetic (mass mismatch) modifica-
tions of the spin-dependent electronic structure. Since the
two mechanisms give rise to opposite spin currents, their
simultaneous presence in a given material can be responsible
in the corresponding F/N/F junction for a spin conductance
that, on the average, is vanishing or difficult to detect. In
Fig. 15, we show the results of the integrated spin conductance
at Z = 2 for two representative cases of F/N/F junctions,
together with the corresponding F/S/F ones, where both fer-
romagnetic mechanisms are active with different polarizations
[Fig. 15(a)] or different relative weights [Fig. 15(b)]. We have
denoted by pSMM the weight of the spin mismatch mechanism
with respect to the Stoner one, and calculated the total spin
conductance as

GS = (1 − pSMM) GStoner
S + pSMM GSMM

S .

We observe that in the F/N/F case, the spin conductance is
substantially featureless with incoherent oscillations in en-
ergy. On the other hand, the use of the superconductor allows
to exploit its characteristic energy scale, associated with the

superconducting gap �, and focus on a specific energy win-
dow in the analysis of the transport properties. In our case,
the latter corresponds to the yellow-shaded region in Fig. 15,
where the energy dependence of the spin conductance is
marked by distinctive features around E = 2�. In particular,
we find that when the SMM mechanism is predominant, the
spin conductance exhibits a dip-peak structure developing
from negative to positive values that tends to evolve towards
a positive single peak as the weight of the Stoner mechanisms
gradually increases. Based on that, we expect that a measure-
ment of the spin conductance of a F/S/F junction may provide
relevant hints on the extent to which the two mechanisms
compete between each other.

IV. CONCLUSIONS

We have presented a study of the transport phenomena in a
clean F/S/F junction with parallel magnetization in the two F
layers, making a comparison between the case of Stoner-type
ferromagnetic layers with the one where ferromagnetism is
driven by an asymmetric mass renormalization of carriers with
opposite spin. We have shown that charge and spin transport
in this junction exhibits different features depending on the
mechanism which is responsible for the ferromagnetism, in
the case of perpendicular injection as well as when consid-
ering the integrated behavior over all the allowed injection
directions.

In particular, for transparent barriers, Andreev reflections
are more robust in the SMM case than in the Stoner one as the
magnetization in the F layers is increased. As a consequence,
with SMM ferromagnets transport through the junction is
characterized by a significant amplification of the charge
conductance with respect to the F/N/F case, which is not
observed in the Stoner case. Then, the spin conductance of
the SMM junction monotonously increases with the ferro-
magnetic exchange for particles injected perpendicularly to
the barriers, in opposition to the nonmonotonous behavior
versus magnetization found in the Stoner case. Finally, in the
tunnel limit, while the charge conductance assumes values
which weakly depend on the ferromagnetic mechanism, the
spin conductance exhibits opposite signs in the SMM and
in the Stoner case at large applied bias. In both cases, the
superconducting pairing enhances the amplitude of the spin
current close to the gap edge.

So far, several magnetic materials have been found to ex-
hibit properties that cannot be framed exclusively within a
Stoner scenario [26,27,45]. This often happens in the cases
of half-metal ferromagnets, where the almost full degree of
spin polarization develops in regimes where a mass mismatch
is clearly distinguishable and high-polarization values cannot
be explained in terms of the Stoner mechanism only [46]. For
these systems, a theoretical analysis where the role played
by spin-dependent electron masses is explicitly taken into ac-
count is likely to be required. Within this context, the different
behavior predicted in the Stoner and in the SMM cases may
provide useful indications on the nature of the mechanism
originating the ferromagnetic order in a given ferromagnetic
material. Given the usual limitations in the experimental re-
alization of heterostructures, the possibility of selecting the
magnetization mechanism, in this way controlling the spin of
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the carrier responsible for transport, may turn out to be useful
in the design of electronics and spintronics devices. In this
context, it may also be interesting to investigate to what extent
the use of SMM ferromagnets, instead of Stoner-type ones,
affects the behavior of a F/S/F junction when treated as a
spin valve.

We finally point out that in the present analysis the three
subsystems are all considered in the clean limit. Concerning
the dependence of the results on the sample purity, we expect
that in the regime of weak disorder and in the absence of
spin-flip scattering in the superconductor, disorder is mainly
affecting the coherence length, which becomes ξD ∼ √

h̄D/�

with D being the diffusion constant and � the superconduct-
ing gap. This renormalization implies that, with respect to the
investigated clean configuration, similar results are expected
by scaling the thickness L of the superconductor. However,
when the disorder introduces strong energy relaxation pro-
cesses and spin-flip scattering, our results are no longer valid
and a different approach is required to deal with the spin
diffusion in the superconductor. For instance, the analysis
performed in Ref. [47], involving Stoner-type ferromagnets
and spin-flip scattering in the superconductor, showed that the
spin current is suppressed at bias below the superconducting
energy gap, and a massive spin flip occurs at energies close
to the gap. These processes can of course modify the ob-
tained results near the gap edge. A complementary approach
including an inelastic transport regime has been proposed in
Refs. [44,48], where it is shown that in a F/S/F structure
the superconductor becomes a low-carrier system for spin
transport, due to the opening of the gap, and thus the ac-
cumulation spin signal is greatly enhanced with respect to
a nonsuperconducting layer. On the basis of this result, we
argue that inelastic processes can help to distinguish the spin
signal when going from the normal to the superconducting
phase, and that might be applicable for both Stoner and SMM
ferromagnets.

Along this line, we point out that to the best of our knowl-
edge, all the performed studies in the presence of disorder deal
with Stoner ferromagnetic leads, while an investigation of the
effects of disorder in the case of SMM-based ferromagnets is
still lacking. This problem goes beyond the scope of this work
and will be considered in future investigations.

APPENDIX A

In this Appendix we complement Eqs. (21)–(23) reporting
the expression of the wave functions in the three regions of
the junction for injections other than the one of electrons with
spin σ from the left F side.

For the injection of a hole with energy ε and spin σ from
the left F side, the wave functions in the three regions of the
junction are

ψF
hσL(z) =

(
0
1

)
e−iqσ z cosθσ + ahσ̄

(
1
0

)
e−iqσ̄ z cosθA

σ̄

+ bhσ

(
0
1

)
eiqσ z cosθσ (A1)

FIG. 16. Density plot of the critical angle for the local Andreev
reflections of spin-up electrons (and holes) injected from the left side
(or equivalently from the right side since we have considered the two
ferromagnetic leads fully identical), as a function of the microscopic
parameters X = U/EF and Y = m↑/m↓, which are assumed to be
the same in the two ferromagnetic leads. Isomagnetization lines for
different values of the magnetization are reported. Each of these lines
also corresponds to a fixed critical angle value. No limitation to the
injection direction of spin-down electrons (holes) holds when the
magnetization is assumed positive.

for z < 0;

ψS
hσ (z) = αhσ

(
u0

v0

)
eikez cosθS

σe

+ βhσ̄

(
v0

u0

)
e−ikhz cosθS

σh

+ γhσ

(
u0

v0

)
e−ikez cosθS

σe

+ ηhσ̄

(
v0

u0

)
eikhz cosθS

σh (A2)

for 0 < z < L;

ψF
hσR(z) = chσ̄

(
0
1

)
e−iqσ̄ z cosθT

σ

+ dhσ

(
1
0

)
eiqσ̄ z cosθT

σ̄ (A3)

for z > L.
The expressions of the wave functions corresponding to the

injection of an electron with energy ε and spin σ from the right
F side can be obtained from Eqs. (21)–(23) by reversing the
sign of all wave vectors. The same substitution can be applied
to Eqs. (A1)–(A3) to get the wave functions corresponding to
the injection of a hole with energy ε and spin σ from the right
ferromagnet. Due to the symmetry of the problem with respect
to the superconducting layer, the probability amplitudes of the
scattering processes corresponding to particle injection from
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the right side are equal to those of the corresponding processes
for the same particle injection from the left side.

APPENDIX B

In this Appendix we derive the probability current con-
servation through the junction, showing where the mass
asymmetry condition enters, and how it affects the expression
of the probabilities associated with the scattering processes
occurring in the junction.

Denoting by Pσ (r, t ) = |�σ (r, t )|2 the probability density
to find a particle at a given time t in the volume element dr
around the position r, we have

d

dt

∫
dr Pσ (r, t ) = 0, (B1)

with the integrals extended to the whole space. Using the
Schrödinger equations for the spinors �σ (r, t ) and �∗

σ (r, t ),

ı h̄
∂

∂t
�σ (r, t ) = HBdG

σ �σ (r, t ) (B2)

− ı h̄
∂

∂t
�∗

σ (r, t ) = HBdG
σ �∗

σ (r, t ) (B3)

and taking into account that, due to the independence of the
Hamiltonian of the time coordinate, the time dependence of
the wave function can be factorized, we finally get

∂Pσ (r, t )

∂t
= 2

h̄
Im{u∗

σ (r)Ĥσ (r)uσ (r) − v∗
σ̄ (r)Ĥ∗

σ̄ (r)vσ̄ (r)}

= h̄ Im

(
u∗

σ (r)
p̂2

mσ

uσ (r) − v∗
σ̄ (r)

p̂2

mσ̄

vσ̄ (r)

)
. (B4)

In the absence of magnetic field, the momentum operator is
p̂ = −ı h̄∇ so that one finally gets the continuity equation

∂

∂t
Pσ (r, t ) + ∇ · Jσ (r) = 0 (B5)

with the probability density current Jσ (r) given by

Jσ (r) = Im

[
h̄

mσ

u∗
σ (r)∇uσ (r) − h̄

mσ̄

v∗
σ̄ (r)∇vσ̄ (r)

]
. (B6)

The expression of Jσ clearly shows that an asymmetry in
the effective mass of electrons with opposite spin also enters
the formal expression of the probability density current. Such
expression can be used to derive the probability coefficients
associated with the scattering processes taking place in the
junction. In particular, from the probability density current
conservation it follows that the total current flowing through
a surface enclosing the whole system is zero. By considering
the probability density current flowing through the interfaces,
and thus along the z direction, there are the following con-
tributions: the probability density current JI

σ for the incident
particles with spin σ , and the associated reflected and trans-
mitted currents JR

σ and JT
σ , respectively. They are related by

the following equation:

JI
σ + JR

σ = JT
σ . (B7)

By using the wave functions defined in each region of the
junction in the representative case of injected electrons with

spin σ , we have that the projections of the currents in the
direction perpendicular to the interfaces are

JI
σ = h̄

mσ

qσ cos θσ , (B8)

JR
σ = − h̄

mσ

|beσ |2qσ cos θσ − h̄

mσ̄

|aeσ̄ |2qσ̄ cos θA
σ̄ , (B9)

JT
σ = h̄

mσ

|ceσ |2qσ cos θT
σ + h̄

mσ̄

|deσ̄ |2qσ̄ cos θT
σ̄ . (B10)

By applying Eq. (B7) and dividing all the terms by the injected
current, we get the relation

1 = Aσ + Bσ + Cσ + Dσ (B11)

which allows to define the probability coefficients for generic
injected particles p: Apσ , Bpσ , Cpσ , Dpσ (being p = e, h for
electrons and holes, respectively) as reported in Eqs. (26)–
(29).

APPENDIX C

In this Appendix we present the detailed derivation of the
junction conductance, following an extension of the original
BTK approach [35] to the case of a F/S/F double junction
with Stoner ferromagnets [38].

As for the case of the single junction, we calculate the
conductance in the left ferromagnetic side, where the current
flow does not include supercurrents and the calculation is
therefore more convenient. Taking into account the results
presented in Appendix B, the charge current flowing in the
presence of an applied bias V from the left to the right side of
the junction can be calculated as

Jσ = h̄ Im
∑
l,σ,ε

Ql

[
fε

mσ

u∗
lσ

∂

∂z
ulσ

+ (1 − fε )

mσ̄

v∗
lσ

∂

∂z
vlσ

]
. (C1)

Here fε is the Fermi distribution function and the subscript
l = 1, 4 refers to the four possible injection processes de-
scribed in the main text and graphically shown in Fig. 4. We
thus have Q1 = Q3 = e and Q2 = Q4 = −e, e (< 0) being the
electron charge.

When a bias potential V is applied between the two F leads,
by taking into account that the summation on the energies
involves the energy levels of the side where particles are in-
jected, we can write the following expressions for the normal
components of the spin-dependent currents in the left F side:

Jσ = eh̄
∑

θ,ε∈F1

{
qσ

mσ

cos θ (1 − |beσ |2) f

(
ε − eV

2

)

− qσ̄

mσ̄

cos θA
σ̄ |aeσ̄ |2

[
1 − f

(
− ε − eV

2

)]}

− eh̄
∑

θ,ε∈F1

{
− qσ̄

mσ̄

cos θA
σ̄ |ahσ̄ |2 f

(
ε − eV

2

)

+ qσ

mσ

cos θ (1 − |bhσ |2)

[
1 − f

(
− ε − eV

2

)]}
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+ eh̄
∑

θ,ε∈F2

{
− qσ

mσ

cos θT
σ |c̃eσ |2 f

(
ε + eV

2

)

− qσ̄

mσ̄

cos θT
σ̄ |d̃eσ̄ |2

[
1 − f

(
− ε + eV

2

)]}

− eh̄
∑

θ,ε∈F2

{
qσ

mσ

cos θT
σ |c̃hσ |2

[
1 − f

(
− ε − eV

2

)]

+ qσ̄

mσ̄

cos θT
σ̄ |d̃hσ̄ |2 f

(
ε − eV

2

)}
. (C2)

Taking into account that 1 − f (ε) = f (−ε) and assuming that
the two ferromagnets are identical, so that the probability am-
plitudes of scattering processes due to particles injected from
the right side are equal to those for the same particle injection
from the left side (in particular c̃pσ = cpσ , and d̃pσ̄ = dpσ̄ ), it
is possible to write the current as

Jσ = Jeσ + Jhσ

with

Jeσ = eh̄
∑

θ,ε∈F1

qσ

mσ

cos θ

[
f

(
ε − eV

2

)(
1 − |beσ |2

− qσ̄

qσ

mσ

mσ̄

cos θT
σ̄

cos θ
|deσ̄ |2

)
− f

(
ε + eV

2

)
(C3)(

|aeσ̄ |2 qσ̄

qσ

mσ

mσ̄

cos θA
σ̄

cos θ
+ |ceσ |2

)]

= eh̄
∑

θ,ε∈F1

qσ

mσ

cos θ

[
f

(
ε − eV

2

)(
1 − Beσ − Deσ

)

− f

(
ε + eV

2

)
(Aeσ + Ceσ )

]
(C4)

and

Jhσ = −eh̄
∑

θ,ε∈F1

qσ

mσ

cos θ

[
f

(
ε + eV

2

)(
1 − |bhσ |2

− qσ̄

qσ

mσ

mσ̄

cos θT
σ̄

cos θ
|d̃hσ |2

)

− f

(
ε − eV

2

)(
|ahσ̄ |2 qσ̄

qσ

mσ

mσ̄

cos θA
σ̄

cos θ
+ |c̃hσ |2

)]

= −eh̄
∑

θ,ε∈F1

qσ

mσ

cos θ

[
f

(
ε + eV

2

)
(1 − Bhσ − Dhσ )

− f

(
ε − eV

2

)
(Ahσ + Chσ )

]
. (C5)

From the conservation of the probability current, we finally
get

Jσ = eh̄
∑

θ,ε∈F1

qσ

mσ

cos θ

[
f

(
ε − eV

2

)
− f

(
ε + eV

2

)]

× (Aeσ + Ceσ + Ahσ + Chσ ). (C6)

FIG. 17. Density plot of the critical angle for transmission to
S of spin-up electrons (and holes) injected from the left side (or
equivalently from the right side since we have considered the two
ferromagnetic leads identical), as a function of the microscopic
parameters X = U/EF and Y = m↑/m↓. Isomagnetization lines for
different values of the magnetization are also reported. No limitation
to the injection direction of down-spin electrons (holes) holds when
the magnetization is assumed positive.

By considering that the sum over the allowed energies and
injection angles can be written as

∑
θ,ε ∈F1

=
∫ π/2

0
dθ

∫
dε NF

σ (ε)

and that the spin-dependent density of states NF
σ (ε) in the two

equivalent ferromagnets in the 2D case is constant and equal
to NF

σ (ε) = mσ /(2π h̄2), the spin-dependent charge conduc-
tance can be written as

Gσ (E) = dJσ

dV
=

∫ π/2

0
dθGσ (E, θ ), (C7)

where E = eV and

Gσ (E, θ ) = G0q̃σ cos θ (Aeσ + Ceσ + Ahσ + Chσ )| E
2 ,θ .

Here q̃σ = qσ /qF and G0 = e2qF

π h̄ is the conductance of the
junction when the three layers are all in the normal state.

APPENDIX D

It is known that the measured conductance takes contri-
butions from a range of incidence angles which depends on
the conditions under which experiments are performed. For
electrons and holes injected from the left side, two limiting
angles have to be considered: (a) the incident angle above
which local Andreev reflections can not occur, and (b) the
limiting angle of incidence for the transmission into the su-
perconductor. Such limiting angles can be derived from the
application of the conservation law given by Eq. (20).

In the case where the two ferromagnets are identical, and
assuming that the magnetization amplitude is positive, we
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find that in the case of spin-down injected particles, both
local Andreev reflections and particle transmissions into the
S layer can occur independently of the injection direction.
Indeed, according to Eq. (20), the scattering angles defining
the direction of the Andreev reflections and the transmission
in S are

θA
↑ = arcsin

[
q↓
q↑

sin θ↓

]
, (D1)

θT
↓ = arcsin

[
q↓
kS

F

sin θ↓

]
, (D2)

where θσ is the angle of the particles which are injected with
spin σ . When the lead magnetization is assumed positive, q↓
is less than q↑, and is also less than kS

F . Consequently, in the
right side of Eqs. (D1) and (D2), the argument of the arcsine
functions is always less than 1, and this implies that both the
scattering angles θA

↑ and θT
↓ are well defined at all the injection

angles θ↓.
On the other side, when injecting spin-up particles, An-

dreev reflection and transmission in the superconducting layer
can occur provided that the injection angle is less than the
following critical values, respectively:

θ cA
↓ = arcsin

[√
1 − X

Y (1 + X )

]
, (D3)

θ cT
↑ = arcsin

[√
1√

Y (1 + X )

]
. (D4)

In the considered two-dimensional limit, the magnetization
of each ferromagnetic lead, defined as M = (n↑ − n↓)/(n↑ +
n↓), with n↑ (↓) being the number of spin-up (spin-down)
electrons in the ferromagnetic layer, can be expressed as a
function of the microscopic parameters X and Y defined in
the main text as [31]

M = (X + 1)Y − (1 − X )

(1 + Y ) + X (Y − 1)
. (D5)

Using this expression, it is possible to write the limiting angle
for the Andreev processes as

θ cA
↓ = arcsin

[√
1 − M

1 + M

]
. (D6)

This implies that the limiting angle for the Andreev reflec-
tions of spin-up electrons (and holes) does not depend on
the mechanism responsible for the ferromagnetic order, but
only depends on the value assumed by the magnetization,
as we plot in Fig. 16. On the other hand, the critical angle
for the transmission in S crucially depends on the value of
X and Y , as shown in Fig. 17. For any fixed value of the
magnetization, it takes a smaller value in the case of the pure
SMM mechanism compared to the Stoner one. However, the
comparison between the critical angle for transmission into
S with that for the Andreev reflection shows that the actual
limit to the injection cone of particles from one ferromagnetic
lead to the other comes from the Andreev reflections since the
corresponding limiting angle is systematically smaller than
that for the transmission into the S side, both for the Stoner

FIG. 18. Critical injection angles for the Andreev reflections
of spin-up electrons (and holes) entering from the left side (or
equivalently from the right side since we have considered identical
ferromagnetic leads) as functions of the microscopic parameters
X = U/EF and Y = m↑/m↓, in the Stoner case (a) and in the SMM
case (b). The dotted line in the two panels indicates the magnetization
value M = 0.75.

[Fig. 18(a)] and for the SMM mechanism [Fig. 18(b)]. In prin-
ciple, virtual Andreev reflections characterized by imaginary
momenta could also be allowed for injection angles above θ cA

↓ ,
but in this case we have found no solution to our system of
equations.

APPENDIX E

Here we show that, differently from the Stoner case, for
SMM ferromagnetic layers the probabilities corresponding
to the different scattering processes at transparent interfaces
(Z = 0) and perpendicular injection direction (θσ = 0) are
independent of the spin orientation of the injected particles.
This feature comes from a symmetry between spin-up and
-down carriers exhibited by the system of coupled linear equa-
tions (25), which only holds in the SMM case at Z = 0 and
θσ = 0. In the following we demonstrate it in the case where
carriers are electrons, but it also holds in the hole case. To this
purpose, we note that system (25) can be written in a compact
form as

M̂eσ Xeσ = Yeσ , (E1)

where Xeσ is the vector of the unknown variables Xeσ =
(aeσ̄ , beσ , ceσ , deσ̄ , αeσ , βeσ̄ , γeσ , ηeσ̄ ). In the case of injected
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electrons with spin σ , the matrix M̂eσ and the vector Yeσ are

M̂eσ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 u0 v0 u0 v0

−1 0 0 0 v0 u0 v0 u0

0 0 −eiq̃σ l 0 u0 �+
e v0 �−

h u0 �−
e v0 �+

h
0 0 0 −e−iq̃σ̄ l v0 �+

e u0 �−
h v0 �−

e u0 �+
h

0 iZ + q̃σ /
√

Y 0 0 u0 −v0 −u0 v0

−q̃σ̄

√
Y + iZ 0 0 0 v0 −u0 −v0 u0

0 0 eiq̃σ l (q̃σ /
√

Y + iZ) 0 −u0 �+
e v0 �−

h u0 �−
e −v0 �+

h
0 0 0 −e−iq̃σ̄ l (q̃σ̄

√
Y − iZ) −v0 �+

e u0 �−
h v0 �−

e −u0 �+
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Yeσ = (1, 0, 0, 0, q̃σ /
√

Y − iZ, 0, 0, 0),

having defined �±
e,h = e±ik̃e,hL, l = LkF .

For Z = 0 and θσ = 0, the above matrices for the two
spin species are related to each other through the following
relations:

SM̂e↑ = M̂e↓ U, (E2)

SYe↑ = Ye↓. (E3)

Here S is an off-diagonal block matrix S = ηxγ0, γ0 being
one of the 4 × 4 Dirac matrices, and ηx is an 8 × 8 matrix
defined as

ηx =
(

0 I4
I4 0

)
, (E4)

I4 is the 4 × 4 unit matrix, and U is a diagonal matrix defined
as

U = diag(s2,−1, eıl�,−s2 eıl�, s,−s,−s, s), (E5)

with � = −1+s2

s , and s = Y 1/4. From Eqs. (E2) and (E3) it
follows that the unknown vector for injected spin-down elec-
trons is linked to that for the injected spin-up ones through
the relation Xe↓ = UXe↑. Moreover, in the SMM case the
probability vector defined as Pσ = (Aeσ , Beσ , Ceσ , Deσ ), can

be expressed in terms of the unknown coefficients vector
X̃σ = (aeσ̄ , beσ , ceσ , deσ̄ ) as reported in Eqs. (26)–(29). In
matrix form, we have

Pσ = X̃
†
σ Rσ X̃σ (E6)

with

R↑ =

⎛
⎜⎜⎝

s2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 s2

⎞
⎟⎟⎠ (E7)

and R↓ = (R↑)−1.
Using Eqs. (E1)–(E3), we can write

P↓ = X̃
†
↓ R↓ X̃↓ (E8)

= (U X̃↑)†R↓(U X̃↑) (E9)

= X̃
†
↑(Ũ

†
R↓Ũ) X̃↑ (E10)

= X̃
†
↑ R↑X̃↑ = P↑ (E11)

with Ũ
†
Ũ = (R↑)2. This demonstrates the equality of the

probability amplitudes for the injection of spin-up and -down
electrons in the SMM case. The same holds also in the case of
injected holes with opposite spin states.
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