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Spectral neighbor representation for vector fields: Machine learning potentials including spin
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We introduce a translational and rotational invariant local representation for vector fields, which can be
employed in the construction of machine learning energy models of solids and molecules. This allows us to
describe, on the same footing, the energy fluctuations due to the atomic motion, the longitudinal and transverse
excitations of the vector field, and their mutual interplay. The formalism can then be applied to physical systems
where the total energy is determined by a vector density, as in the case of magnetism. Our representation is
constructed over the power spectrum of the combined angular momentum describing the local atomic positions
and the vector field, and it can be used in conjunction with different machine learning schemes and data taken
from accurate ab initio electronic structure theories. We demonstrate the descriptive power of our representation
for a range of classical spin Hamiltonian and machine learning algorithms. In particular, we construct energy
models based on both linear Ridge regression, as in conventional spectral neighbor analysis potentials, and
the Gaussian approximation. These are both built to represent a Heisenberg-type Hamiltonian including a
longitudinal energy term and spin-lattice coupling.
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I. INTRODUCTION

The modeling of the structural, electronic, and magnetic
properties of materials at finite temperature requires the ex-
ploration of complex energy surfaces, a task that is usually
performed in the configuration space or through extensive
time-dependent simulations. The gold standard is set by
ab initio methods, where one solves directly an electronic
problem, for instance through density functional theory. The
accuracy of the method is then given by the accuracy of
the underline electronic structure theory, which often can be
determined by the level of approximation taken. Notably,
also the computational overheads are set by the electronic
structure theory, so that there is always a tradeoff between
the accuracy of the prediction, the duration of the simulation,
and the maximum size of the system to simulate. Real-time
time-dependent simulations of purely electronic quantities,
such as the dynamics of spins [1–3], are limited to a few
atoms and a few hundreds of femtoseconds, while ab initio
molecular dynamics (MD) simulations can reach well within
the picosecond range and may involve several hundreds of
atoms.

The general strategy for extending the range of dynamics
simulations across both the time and length scale is to abandon
completely the ab initio description and replace the solution
of the electronic problem with some parametric functions,
constructed to reproduce the ab initio potential energy surface,
namely classical force fields [4]. In their most canonical form,
one describes the interaction among the ions by introducing
energy contributions that account for the various physical
forces at play (covalent bond, dispersive forces, etc.). Once
the force field is defined, only the atomic positions determine
the total energy. A similar approach has been recently intro-

duced for spin-dynamics. In this case, one associates with
each atom a classical spin vector, Si, so that the total energy
is defined over a continuous vector field with values at the
atomic positions [5,6]. The total energy then takes the form of
a classical Heisenberg model and may include both anisotropy
and friction terms. Furthermore, the formalism can be ex-
tended to include spin-lattice coupling [7], longitudinal spin
fluctuations [8], and possibly the effects of a spin current [9].

In general, force fields constructed in this way have two
main drawbacks. On the one hand, their accuracy is signif-
icantly inferior to that of an ab initio electronic structure
theory, although this varies depending on the class of com-
pounds one wants to study. On the other hand, they tend to
be specific to the particular type of bond they describe. In
addition, spin-type force fields may not be able to describe
entire excitations types. For instance, magnetic Stoner exci-
tations are not part of the spectrum of a classical Heisenberg
model.

Recently, a new class of force fields, named machine learn-
ing force fields (MLFFs), have been shown to solve both the
accuracy and specificity issues. The general philosophy of
MLFFs is quite different from that of their classical coun-
terparts, since one does not pretend to construct an energy
function of the atomic coordinates with terms bearing a phys-
ical interpretation, but instead tries to reproduce extremely
accurately the ab initio potential energy surface. MLFFs com-
prise of two parts: an abstract representation of the atom
density distribution [10], and a machine learning model that
correlates such representation to the system’s total energy.
For the two parts to work together, the representation should
be translational, atom-permutational, and rotational invariant.
The first two conditions are usually met by local representa-
tions (also known as atomic-neighbor descriptions), where the
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energy is expressed in terms of atomic contributions, while the
last condition must be explicitly enforced in the descriptor’s
construction. Symmetry functions [11] and bispectra [12] are
two examples of such rotational invariant local representa-
tions.

Importantly, the spin degrees of freedom are not explicitly
included in the representation, which typically describes an
atomic density only. For this reason, MLFFs are currently
unable to describe the energy difference between inequivalent
magnetic phases, for instance between a ferromagnetic and
an antiferromagnetic ground state, unless the different phases
are also associated with different structures. This limitation
can be addressed by combining the MLFF with a classic
spin Hamiltonian in order to create a model that can pre-
dict energies dependent on both the atomic positions and the
spin order. This route was recently explored by Nikolov and
co-workers [13], who equipped a spectral neighbor analysis
potential (SNAP) with a classical Heisenberg Hamiltonian to
compute thermodynamic properties (e.g., the Curie tempera-
ture) of α-Fe.

Another possible strategy is to make the MLFF aware of
the spin configuration by including such information in the
input features of the model. This is a nontrivial task, since
such features need to retain the aforementioned symmetries in
order for the model to perform well. A recent attempt along
these lines consists in the introduction of a novel definition
of symmetry functions carrying spin information [14]. Such
reformulation was constructed for the spin-collinear case and
for fixed spin magnitude (no longitudinal spin information
is available). Similarly, the atomic-cluster expansion method
was recently extended to vector fields [15] in a way that
enables the description of noncollinear spin configurations.
Notably, by design both methods require a large number of
features for an accurate description of the magnetic envi-
ronment, so that their training needs large datasets. Thus,
a compact representation describing a vector field, which is
hence able to compute atomic and magnetic excitations on the
same footing, remains elusive. Our paper aims to fill that gap.

Here, we propose a local representation for vector fields,
which can be used with either linear and nonlinear machine
learning models. This is based on the power spectrum of
the combined angular momentum describing the local atomic
positions and the vector field. The representation is rota-
tionally invariant and can be further generalized to tensorial
densities. To test its descriptive power, such a representa-
tion is combined with either linear Ridge regression or the
Gaussian approximation to construct MLFFs describing the
potential energy surface of a Heisenberg model with longitu-
dinal fluctuations and spin-lattice coupling. Our results show
that extremely accurate energy predictions can be obtained
with a rather moderate number of training data.

II. METHODS

A. Density for a vector field

The starting point of any atomic-neighbor description of
solids and molecules consists in defining the local particle

density associated with the ith atom,

ρi(r) =
∑

rai<rcut

waha(r − rai ). (1)

Here, rai = ra − ri is the distance between the atoms at the
position ra and ri, rai = |rai|, so that the coordinates of the ith
atom define the origin of the local reference frame. The sum
in Eq. (1) runs over all the atoms inside a sphere of radius rcut

with the center at ri, while wa are weights usually associated
with the atomic species of the ath atom. In this expansion,
ha is a localization function, such as a Gaussian or a Dirac δ,
centered at ra, whose specific shape, in general, can depend
on the ath atom type. Atomic-neighbor descriptions are then
constructed by defining rotationally invariant combinations of
the coefficients of expansion of ha over an appropriate local
basis [10].

In the same spirit, we can now define a local vector density,
ρ(r), through Eq. (1) by associating a vector va with each
position ra, namely

ρ(r) =
∑

a

waha(r − ra)va, (2)

where for simplicity we have dropped the index i. In this
formulation, va may, for instance, represent the local moment
of the ions in a magnetic compound, so that ρ(r) describes the
local magnetization field. In Eq. (2), the vector va is defined
through its Cartesian components,

va = va,x êx + va,yêy + va,zêz =
∑

i=x,y,z

va,iêi, (3)

with êi being the unit vector along i = x, y, z. However, it is
convenient to replace the decomposition of Eq. (3) with one
using the spherical versors [16],

ê±1 = ∓ 1√
2

(êx ± iêy) and ê0 = êz, (4)

so va becomes

va =
∑

q=0,±1

va,qêq with

⎧⎨
⎩

va,±1 = ∓ 1√
2

(va,x ∓ iva,y),

va,0 = va,z.

(5)
This decomposition is a particular case of the more general
one for a tensor of order λ in its irreducible spherical com-
ponents. Therefore, the spherical components va,q transform
under rotations as the spherical harmonic Y q

1 [16,17].
To construct covariant descriptors for the local vector den-

sity of Eq. (2), one first needs to expand the spatial part,
ha, over an orthonormal radial basis. Here we use the prod-
uct between a radial basis, Rnl (r), and the three-dimensional
spherical harmonics, Y m

l (r̂), where as usual n, l , and m are,
respectively, the principal, the angular momentum, and the
third component of the angular momentum quantum numbers.
The local vector density then becomes

ρ(r) �
nmax∑
n=0

n∑
l=0

l∑
m=−l

∑
q=0,±1

cnlmqRnl (r)Y m
l (r̂)êq, (6)

where the equality holds only for a complete basis but not
for the one truncated at nmax, and where the coefficients of
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expansion are calculated as

cnlmq =
∑

a

wava,q

∫
dr d r̂ r2Rnl (r)Y m

l
∗(r̂)ha(r − ra). (7)

In this work, we choose the radial-basis set introduced for the
spherical-Bessel descriptors [18], namely Rnl (r) = gn−l,l (r).
These are orthonormal on the sphere and smoothly vanish at
the cutoff radius. Note that the choice of the radial basis set is
not unique or crucial, and an alternative basis can be selected.
The only practical criterion is that they should approximate
completeness with a relative small number of basis functions,
namely the convergence must be rapid. Note also that, in
what follows, we will always assume orthonormality within
the radial basis set, although the expressions derived could be
easily generalized to the nonorthogonal case.

The use of the spherical components of a tensor has already
been exploited in the construction of covariant kernels for
vectorial and tensorial properties related to an atomic envi-
ronment [19–21]. Here, we follow the same basic idea and
formalism, which stems from the decomposition of a tenso-
rial object into spherical components. The main difference
is that we cannot just associate a tensorial object with our
density, since the density itself is the vectorial field. As such,
we will avail ourselves of the same concepts and methods
that are typically used to describe the coupling of angular
momenta and vector fields in atomic physics [16]. Another
difference with existing literature is that our primary target
is the construction of invariant quantities instead of covariant
ones. A similar goal was already pursued in Ref. [15], where
a vector field was described using the same strategy employed
in dealing with the atomic positions. More explicitly, in [15]
the magnetic vectors are encoded in Dirac’s δ distributions,
which are then expanded on a suitable basis set and coupled
with the analogous expansion arising from the positions of the
atoms. Here, however, we will preserve the vectorial nature of
the field at each step in the derivation, a strategy that results in
a simpler coupling scheme, as will be shown in detail below.
With this in mind, we will first proceed with deriving an
invariant power spectrum for the vector density of Eq. (2), and
then we will implement a linear regression to fit such a power
spectrum. This second step is similar to what is commonly
done with the formalism of the spectral neighbor analysis
potentials (SNAPs) [22].

For the remainder of the paper, we will develop the for-
malism by using a conventional Dirac notation, which allows
one to appreciate better the structure of the representation.
In fact, as shown in Ref. [23], the Dirac notation gives us a
natural tool for dealing with local atomic densities. In this
way, the expansion of the vector density defined in Eq. (6)
can be written in a compact form as

|ρ〉 =
∑
nlmq

cnlmq|nlmq〉, (8)

where

〈r|nlm〉 = gn−l,l (r)Y m
l (r̂) and |q〉 ≡ êq. (9)

We can then express all the relevant quantities over the the
basis, |nl1JM〉, of the combined angular momenta, L + 1 =

J, by using the standard addition scheme [17],

|nl1JM〉 =
l∑

m=−l

1∑
q=−1

CJM
lm1q|nlmq〉, (10)

where CJM
lm1q are the Clebsch-Gordan coefficients. As usual,

J and M, are the quantum numbers for the total angular
momentum and its projection, while “1” refers to the angular
momentum of 1, describing the vector nature of the field.
Hence, we have

|l − 1| � J � l + 1 and − J � M � J. (11)

The states |nlJM〉, when projected over the position repre-
sentation, are the products of vector spherical harmonics and
radial functions. By inverting Eq. (10),

|nlmq〉 =
∑
JM

CJM
lm1q|nlJM〉, (12)

we can write the vector density as

|ρ〉 =
∑
nlJM

unlJM |nlJM〉 (13)

with

unlJM = 〈nlJM|ρ〉 =
∑
mq

CJM
lm1q〈nlmq|ρ〉 =

∑
mq

CJM
lm1qcnlmq.

(14)
The last equality follows from the fact that the Clebsch-
Gordan coefficients are real and from the orthonormality of
the gn−l,l functions. The form of |ρ〉 given by Eq. (13) con-
tains the expansion of the vector density over the combined
angular-momenta basis. It should be noted that the presence
of the Clebsch-Gordan coefficients imposes that the values of
J and M must satisfy the conditions (11). The Clebsch-Gordan
coefficients impose also that the nonzero terms in the double
sum of (14) are such that M = m + q.

B. Invariant power spectrum for a vector field

In this section, we are going to introduce an invariant power
spectrum for the density given in Eq. (13). Let us initially
restrict our formulation to the case in which we ignore the
atom at the origin of the local reference frame, i.e., we assume
that the magnitude of the vector field is zero at the origin.
One way to obtain the power spectrum, pnlJ , is through the
construction of the following inner product:

〈ρ|ρ〉 =
∑
nlJ

pnlJ , (15)

which explicitly reads

pnlJ =
∑

M

|unlJM |2, (16)

where we have used the orthogonality of the |nlJM〉 basis.
Since the vectors |nlJM〉 correspond to the coupled angular
momenta, they transform under system rotation, R̂, as the
spherical harmonics Y M

J , namely

R̂Y M
J =

∑
M ′

DJ
M ′M (R̂)Y M ′

J , (17)

where DJ
MM ′ (R̂) is the Wigner D-matrix associated with the

rotation R̂. It must be noted that, when one considers the
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FIG. 1. The invariant power spectrum (right-hand side panel) for a pyramid-shaped set of atoms, where a vector field is associated with each
atom (left-hand side image). The power spectrum is evaluated with respect to the shown center of rotation (red dot) and it is invariant against
the simultaneous rotation of the system and the vectorial field around that center. We chose the value nmax = 6 for this example. The number of
independent power-spectrum components is given by (nmax + 1)(3nmax + 2)/2 = 70. The x-axis labels the power-spectrum components, while
the y-axis shows their actual value.

original angular momentum basis, the rotation R̂ appears as
a simultaneous rotation of both the positions of the atoms and
the vector field. By applying this rotation to the density in
Eq. (13), we obtain

R̂|ρ〉 =
∑
nlJM

unlJMR̂|nlJM〉

=
∑
nlJM

unlJM

∑
M ′

DJ
M ′M (R̂)|nlJM ′〉

=
∑

nlJM ′
u′

nlJM ′ |nlJM ′〉, (18)

from which we can infer the transformation rule for the ex-
pansion coefficients,

R̂ : unlJM →
∑
M ′

unlJM ′DJ
MM ′ (R̂). (19)

Therefore, under rotation R̂, the power spectrum, pnlJ =∑
M u∗

nlJMunlJM , transforms as

R̂ : pnlJ →
∑

M ′M ′′
u∗

nlJM ′unlJM ′′
∑

M

(
DJ

MM ′
)∗

DJ
MM ′′

︸ ︷︷ ︸
=δM′M′′

=
∑
M ′

u∗
nlJM ′unlJM ′ = pnlJ , (20)

where we have used the unitarity of the Wigner D-matrices
[note that we have shortened the notation DJ

MM ′ (R̂) into
DJ

MM ′ ]. This proves that the power spectrum obtained from
Eq. (16) is rotationally invariant for simultaneous rotations of
the atomic positions and the vector field. Such invariance is
shown numerically in Fig. 1, where the power spectra com-
puted for different rotations are shown to overlap perfectly. In
the Appendixes, we will briefly discuss the generalized power
spectrum connecting different radial channels. Furthermore,
we will also extend our construction to the more general case
of a tensorial density.

If we now take a localization function of the form

ha(r − ri ) = δ(r − ra), (21)

namely a Dirac-δ function centered on the ath atom, then the
local vector density reads

ρ(r) =
∑

a

waδ(r − ra)va. (22)

In this case, the expansion coefficients of Eq. (14) are readily
evaluated by using Eq. (7) as

unlJM =
∑

a

wagn−l,l (ra)
∑
mq

CJM
lm1qY m∗

l (r̂a)va,q. (23)

In what follows, we will use this expression to explicitly
evaluate the power spectrum.

If we now consider a vector field having a vector-bearing
atom at the origin, it can be proven (see the Appendixes) that
the power spectrum is not generally invariant under rotations.
We can interpret this rotational-symmetry breaking by noting
that a vector field at the origin introduces an inner preferential
direction for the local reference frame. One pragmatic solution
to recover the invariance is to always rotate the system so
that the vector field at the origin points along the z-axis.
After such alignment, we obtain a power spectrum, which is
invariant under rotations around the z-axis. Another possible
solution is to choose a suitable radial basis set so that all the
noninvariant terms are automatically removed. As shown in
the Appendixes, we proved that the spherical Bessel func-
tions have this property. In the following, we will always
consider power spectra with a central atom. As an example
of its explicit evaluation, it is useful to obtain the complete
expression for the pn0J power spectra. The component un0JM

is proportional to

un0JM ∝ δJ1

∑
a

wagn0(ra)va,M, (24)

where we used the equalities q = M and J = 1 enforced
through the Clebsh-Gordan coefficients CJM

0010, and we did not
carry over the spherical harmonics values and the Clebsh-
Gordan coefficients, which, in this case, are unessential
constants. The power spectrum is then proportional to

pn0J ∝ δJ1

∑
ab

wawbgn0(ra)gn0(rb)
∑

M

va,Mv∗
b,M

∝ δJ1

∑
ab

wawbgn0(ra)gn0(rb)va · vb. (25)
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It is interesting to note that if the vector field is made of
local spins, the pn0J power spectrum component will have a
structure similar to that of a Heisenberg model, i.e., it depends
on the inner product between the spins with distances-only-
dependent coefficients.

Having derived a set of invariant power spectra also for the
case of an atom at the origin, we can now introduce the models
used to test our formalism and the machine learning scheme
that implements the power spectrum.

C. Training a machine learning model

The machine learning model used here is a linear regres-
sion constructed over the power spectrum {pnlJ}, following
the same philosophy of SNAP [22]. Thus, let us assume to
have a system of N atoms, each one of them bearing a local
spin. Let us also define the power spectrum vector, p, as the
one-dimensional vector, whose entries are the pnlJ compo-
nents describing a specific local neighborhood. Specifically,
the ith power spectrum vector p(i) is the vector obtained by
centering the local reference frame on the ith atom, and then
by evaluating the ith power spectrum set {p(i)

nlJ} with respect
to that frame. Thus, given our N-atoms system, we obtain N
power spectrum vectors, p(i).

Our main working hypothesis is that the energy, or any
other quantity that we wish to represent, can be written as
the sum of short-ranged contributions, εi(qi ), located on each
atom [12], namely

E =
∑

i

εi(qi ), (26)

where qi is a vector describing the local environment of the ith
atom. Then, following the same idea behind the SNAP [22],
we further assume that the power spectrum vectors p(i) form
a suitable set of descriptors to represent such decomposition,
so that the local energies can be expressed as a linear combi-
nation of power spectrum vectors,

E � θ ·
∑

i

p(i) =
∑
nlJ

θnlJ

∑
i

p(i)
nlJ . (27)

Here {θnlJ} is an appropriate set of weights. The validity of
these assumptions cannot be determined from the outset and
must be tested on a case-by-case base. Within our formalism,
the power spectrum vectors can be seen as the descriptors of
a linear regression problem, where the target is the energy of
the system.

In what follows, we will first calculate the energies of
several atomic and spin configurations obtained by displacing
the position of the atoms and the direction and magnitude
of the magnetic vectors. Then, we will evaluate the power
spectrum vectors for each atom and for each of the config-
urations considered. Finally, we will train a Ridge regression
and optimize the weights vector, θ, to predict the total energy.
This will allow us to investigate the descriptive power of our
vectorial representation and of the full method proposed. In
the next section, we describe the different models investigated.

FIG. 2. The physical system investigated in the present work: a
tetrahedral cluster of bcc iron. The system is made of seven stacked
square-shaped layers of five or six atoms per side, as shown in the
inset. The total number of atoms is 219.

D. The physical system investigated

In this work, we consider a rectangular cluster of sites
arranged over a bcc lattice, containing 219 atoms of the same
species. The cell is rectangular with a six-atom-wide square
base and no periodic boundary conditions, as shown in Fig. 2.
Each atom bears a local spin and can be displaced from
the ideal high-symmetry bcc site. The training data, namely
the atomic and spin configurations and their associated total
energies, may come from a suitable total energy theory. This
is usually some ab initio method such as spin-polarized den-
sity functional theory or a quantum-chemistry wave-function
scheme. Since the generation of such a dataset is rather time
consuming, and our objective here is simply that of introduc-
ing our vector field representation, we use instead a range of
analytical energy models.

In particular, we assume that the total energy is determined
by the Hamiltonian

H = HH + HL, (28)

where

HH = −1

2

∑
〈i, j〉

Ji j (ri j )Si · S j,

HL =
∑

i

(
AS2

i + BS4
i + CS6

i

)
. (29)

Here, HH describes a Heisenberg model, where the exchange
parameter between the pair of atoms 〈i, j〉, bearing spin Si

and S j , depends on the atom distance ri j . Note that the spin
vectors are in units of h̄, so that Si = Mi/geμB, with Mi being
the ith local magnetic moment and μB the Bohr magneton.
In particular, in this work we choose the following functional
form [24] for Ji j :

Ji j (ri j ) = Jn(1 − �ri j/rn)3 with �ri j = ri j − rn, (30)

where the index n indicates that the atoms i and j form
an nth-neighbor pair. The distance rn is that between two
nth-neighbor atoms in the undistorted bcc lattice (the nth-
neighbor equilibrium distance). Similarly, the constants Jn are
the Heisenberg coupling elements between two nth neighbors
at equilibrium. It should be noted that HH describes coupling
between the position and the spin degrees of freedom by
means of the coupling constants, Ji j (ri j ). The Hamiltonian
is then completed by a Landau-like term, HL, which de-
scribes the dependence of the energy on the longitudinal local
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magnetization (the magnitude of local spins) [8], where A, B,
and C are constants to be determined.

In this work, we set the various parameters to describe bcc
iron [8]. Thus, the Heisenberg exchange interaction extends
to second nearest neighbors with J1 = 22.52 meV and J2 =
17.99 meV, while the Landau parameters are chosen to be A =
−440.987 meV, B = 150.546 meV, and C = 50.769 meV. We
will now proceed to show how our descriptors are able to
capture the potential energy surface of the Hamiltonian of
Eq. (28).

III. NUMERICAL SIMULATIONS

The Hamiltonian given in Eq. (28) consists of two qual-
itatively different terms, HH and HL. The first describes
transverse energy excitations and spin-lattice coupling, while
the second accounts for longitudinal excitations. To inves-
tigate the descriptive power of the power spectrum and of
our linear energy model over these two different types of
excitation, we first consider only the Heisenberg term with
fixed magnetic momenta lengths, Mi = 2.2μB, and later the
full model.

A. Representing the Heisenberg model with spin-lattice
interaction

The dataset has been built by displacing the atomic posi-
tions from the ideal equilibrium bcc structure and by choosing
different orientations of the local magnetic moments. For
the atomic positions, we have chosen three sets presenting a
different maximum displacement of 5%, 10%, and 20% of
the lattice constant, respectively. The sampling of the dis-
placements is uniform in space. In contrast, we have used
two different strategies to define the spin structure. In the
first one, we align the majority of the spins along the z-axis,
while the remaining magnetic moments point in a random
direction. More specifically, out of the available 219 mag-
netic moments, we randomly choose always more than 200
spins (the actual number is between 200 and 219, and it
also randomly selected), to be aligned along the z-axis, thus
forming an almost ferromagnetic structure (this training set is
called the “ferromagnetic” one). The second strategy, instead,
consists in assigning to all the magnetic moments a random
orientation (“random” training set). Considering the three dif-
ferent choices for the maximum atomic displacement, and the
two for the spin alignment, we have thus built a total of six
datasets, each consisting of 100 configurations.

To test the predictions made by our fitted spin potentials,
we build three additional test sets for each of the six datasets
explored. The first set consists of 219 configurations, with
the nth configuration having n randomly chosen spins aligned
along the z-axis, while the remaining ones are randomly ori-
ented in space. In this case, the lattice is chosen to be pristine
bcc (no atomic displacements) so as to test independently the
vectorial character of the potential. In contrast, the second and
the third test sets are designed to investigate also the atomic
displacements. They consist of 50 configurations each, and
the atomic displacement has the same maximum magnitude
as that of the dataset used to train the model. The spin con-
figuration of the second test set has 200 randomly chosen

FIG. 3. Predicted against actual energies for a Ridge linear re-
gression trained on the ferromagnetic dataset with 10% maximum
atomic displacement. The actual energies are from the Heisenberg
model with spin-lattice coupling. The results are tested against three
different test sets. The red dots represent the configurations with
undistorted bcc atomic positions and progressively z-aligned mag-
netic moments. The other dots represent different displacements of
the atoms for near to ferromagnetic and paramagnetic configurations,
respectively. The figure demonstrates the good agreement of the
potential also for configurations, which are energetically far from that
used in the training (blue region). Zoom-ins around different energy
regions are displayed in the insets.

spins aligned along the z-axis while the remaining ones are
randomly oriented in space. The third test set, instead, has all
the spins randomly oriented in space. As such, these sets have
been designed to test the predictions in a mostly ferromagnetic
environment and in a paramagnetic one, respectively.

In Fig. 3 we show the results for the ferromagnetic-trained
potential with a 10% maximum atomic displacement, for
which we explicitly report the procedure and the results.
The results on the other training sets are reported in the
supplemental material [25]. The optimal potential parame-
ters are found to be nmax = 4, corresponding to 35 features
only, and rcut = 1.4 (lattice units), while the regularization
constant of the Ridge regression is α = 3.2 × 103. In the
cross-validation procedure, we split the dataset in training and
test sets five times with an 80:20 ratio with respect to the
total dataset. We obtain an energy mean absolute error (MAE)
of (4.83 ± 0.15) × 10−5 eV/at on the training set, and of
(6.8 ± 0.7) × 10−5 eV/at on the test one, which roughly cor-
responds to an error smaller than 0.1%. When looking more
specifically at the model predictions, the analysis on the first
test set (red points in Fig. 3) returns us a MAE of 5.6 × 10−4

eV/at (∼1%). Notably we find that the MAE of configura-
tions with an energy above −0.01 eV/at, namely those that
are further away from the energy range of the training set,
is 8.2 × 10−4 eV/at. This means that the prediction of the
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model is still effective also in the portion of the configuration
space far from that of the training. The MAEs on the second
(green points in Fig. 3) and third test sets (blue points in the
figure) are, respectively, 1.9 × 10−4 and 6.0 × 10−4 eV/at.
This suggests that the model can extrapolate rather well across
the configuration space.

The remaining trained models show us MAEs similar to
that reported above, when the training is performed over
the ferromagnetic datasets. In contrast, when training on the
three training sets denoted as “random” spin configurations,
we notice a significantly larger MAE for large atomic dis-
placements. Explicitly, the MAE is 1.3 × 10−4 eV/at for the
random training set with 5% maximum atomic displacement,
but this already increases to 2.5 × 10−3 eV/at for 10% max-
imum displacement and reaches up to 0.01 eV/at for 20%
maximum displacement. The failure for the largest maximum
displacement can be attributed to the fact that the random
dataset explores a much smaller portion of the energy land-
scape of the model. This is because the random configurations
are all characterized by a small total magnetization and hence
rather similar energies. For all the other cases, the good
agreement obtained between our model and the true poten-
tial energy surface demonstrates that the Heisenberg model,
including spin-lattice coupling, is accurately described by
our potential, which is able to extrapolate the entire energy
landscape. It is crucial to remark at this point that we did not
introduce any prior knowledge of the functional dependence
of the coupling constant on the pairwise distance between
the atoms, i.e., the model and the descriptors are able to au-
tonomously interpolate the spin-phonon coupling. Moreover,
given the modest size of the dataset, we found it quite remark-
able that when using a small dataset and a reduced number of
features simultaneously, we are able to reach the accuracies
reported here.

Next we will consider the full Hamiltonian, including HL,
describing both transverse and longitudinal spin excitations.

B. Heisenberg model with longitudinal excitations

The investigation of the model described by the complete
Hamiltonian of Eq. (28) follows the same approach used for
the analysis on the Heisenberg part. In this case, we build a
dataset corresponding only to one maximum displacement of
the atomic positions, namely 10% of the lattice constant. The
spin configurations correspond to the “ferromagnetic” case
described in the previous section. However, having to deal
with longitudinal excitations as well, we also vary the mag-
netic moment’s length. In particular, the magnetic moments
aligned along the z-axis are chosen to be 2.25μB, while the
randomly oriented ones have a length randomly chosen in the
range 1.8–2.3μB.

When testing the predictions, we build an additional test
set, corresponding to the first one presented in the previous
section, namely containing an increasing number of aligning
spins. In this case, the length of the z-aligned magnetic mo-
ments is again fixed to 2.25μB, while the randomly oriented
ones have a length in the range 1.9–2.3μB. Also the cross-
validation procedure is similar to the one employed before
with a five-time split of the dataset into training and test sets,

FIG. 4. Predicted against actual energies for both a Ridge linear
regression (red circles) and a GAP (blue triangles) constructed to pre-
dict the potential energy surface of the full Hamiltonian of Eq. (28)
(Heisenberg model with spin-lattice coupling and longitudinal spin
fluctuations). Results are presented for the test set. While the ac-
curacy of the two models is similar for energies in the training set
region, this becomes significantly different for the high-energy data
points. In particular, the linear model accurately predicts energies
up to about −0.26 eV/at, but then significantly deviates from the
parity line (dashed black line). In contrast, the GAP, while it appears
to slightly underestimate the actual energies, outperforms the linear
model at extrapolating away from the training set region.

with an 80:20 ratio. The parameters chosen are then nmax = 4,
rcut = 1.4 (lattice constant), α = 2 × 105.

The MAEs obtained in this case are (4.9 ± 0.1) × 10−4

and (6.0 ± 0.5) × 10−4 eV/at, respectively, for the training
and test set. These values are about one order of magni-
tude larger than those obtained previously for the Heisenberg
model with spin-lattice coupling. We can understand such
accuracy loss by noticing that the descriptors are quadratic
in the spin magnitude, as is evident from Eqs. (16), (23),
and (25). Therefore, a linear machine learning model, such
as that employed here, will not be able to capture the energy
contributions to the fourth and sixth power in the magnetiza-
tion, which defines the longitudinal part of the Hamiltonian,
HL. In fact, it may be surprising that the model still performs
accurately even in this case. This is because we are exploring
a region of the potential energy surface relatively close to the
minimum, where the energy contributions in S4 and S6 remain
modest.

To corroborate this hypothesis, we evaluate the model pre-
dictions on a test set containing progressively aligned spins,
for which we obtain a MAE of 6.0 × 10−3 eV/at. These
results are shown as red dots in Fig. 4, where it is clear that the
Ridge regression performs poorly as we progressively explore
energy regions away from the training range. Such behavior
must be associated with the limit of the machine learning
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linear model constructed over our description. In more detail,
we find that the low-energy regions are still well described,
with an MAE of 7.1 × 10−4 eV/at for energies less than
−0.32 eV/at (in the training range). In contrast, the potential
rapidly departs from the parity line at higher energies, where
we compute an MAE of 1.0 × 10−2 eV/at for data above
−0.26 eV/at.

We can improve on the error and go beyond the quadratic
nature of our descriptors by combining the power-spectrum
representation of the atomic and vector field with a nonlin-
ear machine learning model. In particular, we consider here
a Gaussian approximation potential (GAP) [26]. The GAP
expresses the atomic energy of the ith atom as

εi =
Ntrain∑
t=0

θt S(pi, pt ) =
∑

t

θt e
− 1

2σ
(pi−pt )2

, (31)

where the sum is extended over all the atoms in the training
set, and where pi and pt are the power spectrum, respectively,
of the ith atom and of the training set. The nonlinearity
of the similarity kernel, S, allows us to describe energy
contributions going beyond the quadratic order in the spin
magnitude.

The GAP predictions obtained over the test set are shown
in Fig. 4 as blue triangles. We notice that the MAE asso-
ciated with the configurations having energy smaller than
−0.32 eV/at remains very close to that obtained with Ridge
regression. However, the total MAE decreases to 4.5 × 10−4

eV/at, and, most importantly, the MAE for energies larger
than −0.26 eV/at is now reduced to 5.8 × 10−3 eV/at, i.e.,
it is halved. In fact, the figure clearly shows that the non-
linear GAP improves the ability of the model to extrapolate
away from the training set range. Since the actual potential
energy surface for a spin system, such as the one obtainable
from density functional theory, is expected to include energy
contributions going beyond a quadratic dependence on the
magnetization, we conclude that the best use of our represen-
tation will be in conjunction with nonlinear machine learning
models.

IV. CONCLUSION

In this work, we have introduced an invariant power spec-
trum representation for vectorial fields. After having presented
an in-depth analysis of its rotational invariance and basic
properties, we have designed a linear energy model, closely
following the SNAP [22] approach. Such spin SNAP was
then put to the test against a bcc iron model described
by a Hamiltonian containing spin-lattice coupling and both
transverse and longitudinal energy excitations. Spin-lattice
coupling is introduced by mean of a Heisenberg model
with exchange parameters depending on the interatomic dis-
tance, while the longitudinal spin excitations are described
by a simple Landau term containing even powers of the
magnetization.

We then trained a first potential, linear in the power
spectrum, for the situation in which the longitudinal spin exci-
tations are neglected. This was trained over a dataset obtained
by displacing the atomic positions and the orientations of the
atomic-magnetic moments, comprising a total of only 100
different configurations. Our results showed that the power

spectrum is able to describe the entire energy surface by
accurately extrapolating far beyond the energy range covered
by the training set. This proves that a linear model using the
power spectrum is sufficient to describe both the Heisenberg
model and the spin-lattice coupling, already from a small
dataset. Crucially, no prior information on the dependence of
the exchange constants on the atomic position was used by the
model.

We then repeated the exercise for the complete Hamil-
tonian, containing also the Landau term, by training over a
dataset containing spins of different magnitude. Our results
are highly accurate for configurations with energies within
the range explored by our training set, but the model does
not perform well in extrapolating. We have attributed this
result to the inability of the power spectrum, combined with
a linear machine learning model, to describe energy contri-
butions scaling beyond a quadratic dependence on the spin
magnitude. Such a shortcoming can be overcome by employ-
ing a nonlinear model. Thus, we have investigated a Gaussian
approximation potential and shown that extrapolation over
a much larger portion of the energy landscape is indeed
possible.

All in all, our analysis has shown that a power spectrum
representation of the magnetization field can be used, together
with nonlinear machine learning models, as an efficient de-
scriptor of spin potential energy surfaces. This can now be
used in conjunction with training sets obtained from accurate
electronic structure theory to predict finite-temperature prop-
erties of magnets.
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APPENDIX A: ATOM-CENTERED POWER SPECTRUM

Let us prove that, if the vector field has an atom at the
origin, the power spectrum of (16) will not be generally ro-
tationally invariant. For simplicity, we can consider first the
trivial case in which our system is made of just a single atom,
e.g., there are no other atoms inside the cutoff radius. The
component un100 of the coefficients of Eq. (23) reads

un100 = w0Rn1(0)
∑
mq

Y m∗
1 (0)C00

1m1qvq

∝ Rn1(0)
∑

q

C00
101qvq

∝ Rn1(0)v0, (A1)

where in the first step we have used the fact that the spher-
ical harmonics along the z-axis vanish unless m = 0, and in
the second step we have considered the equality q = M − m
implemented through the Clebsch-Gordan coefficients (for
simplicity, we do not carry over an unessential constant). The
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power spectrum component for this case then is simply

pn10 ∝ |Rn1(0)v0|2. (A2)

Equation (A2) establishes that the n10 component of the
power spectrum is proportional to the magnitude of the z
component of the vector field at the origin. Crucially, for
a general rotation of the reference frame, the z component
becomes mixed with the other components, so that it changes
its value. We then deduce that the power spectrum is not
rotational invariant if the vector field does not vanish at the
origin of the local reference frame. It is worth stressing that
this proof holds, since the origin is a fixed point for the
rotation. If the center or rotation is not the origin, then also
the argument of the spherical harmonics will rotate, making
the m 
= 0 terms relevant, too. This proof can be generalized
also to the case in which there are other atoms within the
cutoff radius. As pointed out in the main text, however, we
can recover a cylindrical symmetry by simply rotating the
system so that the vector fields in the origin point in the same
direction as the z-axis. Another possible solution stems from
the presence of the radial-basis set in Eq. (A2), which, if
carefully chosen, could remove the symmetry-breaking terms
of the power spectrum. Spherical Bessel functions are suit-
able for this purpose, as we will now show. We first notice
that for l 
= 0 the function vanishes at the origin, namely
gn−l,l (0) = 0. This is a consequence of the fact that the basis
set is defined in terms of the spherical-Bessel functions jl (x),
which also vanish at the origin for nonzero l . Thus, for l 
= 0
all the contributions arising from an atom at the origin are
removed, ensuring the rotational invariance. We are then left
to prove that the power spectrum is invariant also for l = 0.
This is easily done by noticing that the spherical harmonic Y 0

0
is just a constant, with no angular dependence, completing the
demonstration.

APPENDIX B: POWER SPECTRUM CONNECTING
DIFFERENT RADIAL CHANNELS

Following the same approach used in Ref. [12], we can
generalize the expression for the power spectrum so that dif-
ferent radial channels are coupled. A generalized expression
for the power spectrum may read

pnn′lJ =
∑

M

u∗
nlJMun′lJM . (B1)

The rotational invariance is still ensured by the fact that
the transformation rules for the expansion coefficients unlJM

involve only the Wigner D-matrix belonging to the angular
momentum J [see Eq. (18)]. However, it is apparent that the
number of components defining the descriptors are increased
with this coupling choice. Note that we must ensure the same
l for the two factors in the sum above, so that the resulting
quantity is real: the only complex part is found in the angular-
dependent terms since the radial functions are real.

APPENDIX C: GENERALIZATION TO A TENSORIAL
DENSITY

In this Appendix, we generalize our formalism from a
vectorial field to a tensorial one. In this case, the local density

reads

ρ(r) =
∑

a

waha(r − ra)T na
a , (C1)

where T na
a is an na-rank tensor associated with the ath atom.

Note that tensors associated with different atoms can have
different ranks, as, for example, when dealing simultaneously
with a scalar field and a vector field. We can then use the
spherical decomposition of the tensors and write T na

a in Dirac
notation as

∣∣T na
a

〉 =
na∑
λ

λ∑
μ=−λ

(Ta)μλ |λμ〉, (C2)

where (Ta)μλ is the spherical component of the tensor T na
a

relative to the spherical basis |λμ〉. This is analogous to va,q

and |q〉 for the case of a vectorial field. The components (Ta)μλ
transform as the spherical harmonic Y μ

λ under rotation. We can
then write the density as

|ρ〉 =
nmax∑
n=0

n∑
l=0

l∑
m=−l


∑
λ=0

λ∑
μ=−λ

cnlmλμ|nlmλμ〉, (C3)

where the expansion has been truncated at nmax, and with 
 =
maxa(na) being the highest rank of the tensors in the tensorial
field, additional zero coefficients can be introduced to have
a homogeneous representation in the highest-tensorial rank.
The expansion coefficients are then obtained by projection as

cnlmλμ =
∑

a

wa(Ta)μλ

∫
dr d r̂ r2Rnl (r)Y m∗

l (r̂)ha(r − ra),

(C4)
with (Ta)μλ = 0 if λ > na. Following the same procedure out-
lined previously for the case of a vectorial field, we can
express the density over the coupled basis as

|ρ〉 =
∑

nlλJM

unlλJM |nlλJM〉, (C5)

by means of the coupling scheme,

|nlλJM〉 =
l∑

m=l

λ∑
μ=−λ

CJM
lmλμ|nlmλμ〉, (C6)

with |l − λ| � J � l + λ. The coupled-basis coefficients are
given in terms of the uncoupled ones as

unlλJM =
∑
mμ

CJM
lmλμcnlmλμ. (C7)

Finally, the power spectrum is again given by squaring the
coefficients

pnlλJ =
∑

M

|unlλJM |2, (C8)

and it is invariant under simultaneous rotations of the frame
of reference and the tensorial field. A further generalization
to multichannel coupling can be obtained by using the same
argument presented in Appendix B.
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