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Enhancement of spin-mixing conductance by s-d orbital hybridization in heavy metals
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In a magnetic multilayer, the spin transfer between localized magnetization dynamics and itinerant conduction
spin arises from the interaction between a normal metal and an adjacent ferromagnetic layer. The spin-mixing
conductance then governs the spin-transfer torques and spin pumping at the magnetic interface. Theoretical
description of spin-mixing conductance at the magnetic interface often employs a single conduction-band
model. However, there is orbital hybridization between conduction s electron and localized d electron of the
heavy transition metal, in which the single conduction-band model is insufficient to describe the s-d orbital
hybridization. In this work, using the generalized Anderson model, we estimate the spin-mixing conductance
that arises from the s-d orbital hybridization. We find that the orbital hybridization increases the magnitude of
the spin-mixing conductance.
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I. INTRODUCTION

The technological potential of magnetic devices based on
transition metals for spin-current manipulation has pushed re-
search forward in the spintronics area [1]. The basic structure
of a magnetic device is a magnetic multilayer. In spin-based
memory systems, the interaction between normal metal and
ferromagnetic metal can cause the magnetization direction to
change [2].

In a magnetic multilayer, magnetization dynamics can be
induced by spin current via the spin-transfer torque effect [3].
When the nonmagnetic layer has a finite spin accumulation μ,
which represents the difference of the spin-dependent electro-
chemical potential, the magnetization near the ferromagnetic
interface experiences a torque τ due to spin transfer [4]:

τ = g↑↓m × (m × μ), (1)

where g↑↓ is the spin-mixing conductance. Reciprocally, in
spin pumping, the spin current can be induced by magne-
tization dynamic m via the exchange interaction between
magnetization and spin of the conduction electron [5]. An
adiabatic precession of the magnetization pumps a spin cur-
rent from the ferromagnet to the nonmagnetic layer with a
polarization [6–8] of

J = g↑↓m × ṁ. (2)

Both spin-transfer torque and spin-pumping effects are gov-
erned by the same g↑↓, which has a complex value with a
comparably small imaginary term [9].

Spin-mixing conductance was originally described using
spin-dependent scattering theory [5]. The basic theoretical
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models of spin-mixing conductance utilizes a noninteracting
electron model for the nonmagnetic metal [10,11]. While this
is certainly appropriate for free-electron-like metals, it is less
so for heavy transition metals [12]. To accommodate the lo-
calized symmetry of the d electron, a linear response theory
description of spin-mixing conductance has been developed
[11]. However, there are few theoretical studies exploring the
spin-mixing conductance of heavy metals with the interacting
electron model [13]. Therefore, a better understanding of the
spin-mixing conductance of heavy metals is required.

The theoretical description of spin-mixing conductance
is often simplified in order to focus on a certain aspect or
interaction that dominates a particular setup [14]. In the spin-
pumping setup involving a heavy-metal system discussed in
this article, we focus on the effect of electron-electron in-
teraction at the nonmagnetic heavy-metal layer. While the
effect of electron interaction on spin-mixing conductance has
been studied using the Stoner model and phenomenological
Hubbard parameter U [15–17], a more realistic model of the
heavy-metal system requires orbital hybridization [18], for
example, the Anderson model [19]. In the Anderson model,
a d electron is treated as an impurity, with well-localized en-
ergy dispersion [20]. For describing a heavy metal, however,
we need to consider a d electron with a more generalized
dispersion [21]. This article aims to theoretically estimate
the electron-electron interaction correction factor due to the
s-d orbital hybridization of a heavy metal as illustrated
in Fig. 1.

In this article, we first analyze the linear response theory
of spin density in a heavy transition metal using the Ander-
son model in Sec. II. In Sec. III, we show that the orbital
hybridization enhances g↑↓ of the interface of ferromagnet
and heavy transition metal (Ta, W, Ir, Pt, or Au). Lastly, we
summarize our findings in Sec. IV.
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FIG. 1. (a) The interface of magnetic and heavy metals can be
modeled as a ferromagnetic layer with localized magnetic moments
and itinerant conduction electrons. The interaction of magnetic mo-
ments and conduction spin induces spin-transfer torque and spin
current pumping in ferromagnetic layer and nonmagnetic layer,
respectively. (b) In heavy metal, there is orbital hybridization be-
tween conduction s electron and d electron [19] with parabolic
dispersions [21].

II. LINEAR RESPONSE THEORY
IN HEAVY TRANSITION METAL

Near the magnetic interface, the exchange interaction be-
tween the localized magnetic moments m at the magnetic
interface and the conduction spin σ can be written in the
following Hamiltonian,

Hex = −J
∫

drδ(r)m · σ(r), (3)

where the exchange constant in the strong screening limit is
J = Ms/(γNF ) [4,11]. Ms and γ are saturation magnetization
and gyromagnetic ratio of the ferromagnetic insulator, respec-
tively. NF is the density of states of the conduction electron at
the Fermi level.

Using linear response theory, one can show the response of
σ to m via spin susceptibility χi j ,

σi(r, t ) = J
∫

dr′dt ′χi j (r − r′, t − t ′)mj (t
′)δ(r′), (4)

where

χi j (r, t ) = i

h̄
�(t )〈[σi(r, t ), σ j (0, 0)]〉. (5)

Here �(t ) is the Heaviside step function. In an isotropic
medium, χi j = δi jχ can be written in terms of χ−+ and χ+−:

χ = χ−+ + χ+−, (6)

where

χ−+(r, t ) = i

h̄
�(t )〈[σ−(r, t ), σ+(0, 0)]〉,

χ+−(r, t ) = i

h̄
�(t )〈[σ+(r, t ), σ−(0, 0)]〉.

Here σ± = (σx ± iσy)/2 and σa (a = x, y, z) are Pauli matri-
ces. Since χ+− can be obtained by replacing + and −, it is
convenient to discuss χ−+.

For a noninteracting simple metal with parabolic disper-
sion Ek = E0 + h̄2k2/2m∗, χ in a small-ω limit is [11]

lim
ω→0

χ0(q, ω) = lim
ω→0

∑
k

fk − fk+q

Ek+q − Ek + h̄ω + i0+

= mkF

π2h̄3

(
1

2
+ k2

F − ( q
2

)2

2kF q
ln

∣∣∣∣∣
1 + q

2kF

1 − q
2kF

∣∣∣∣∣
)

+ iω
m2�(2kF − q)

2π h̄3q

≡ χ r
0 (q) + iωχ i

0(q), (7)

where fk is the low-temperature Fermi-Dirac distribution
with wave vector k.

This single-band picture is appropriate for simple metals,
such as light transition metals. Meanwhile, for heavy transi-
tion metal such as Au, W, Ta, and Pt, a localized 5d-electron
can mixed with the 6s band, as illustrated in the band structure
[see Fig. 1(b)]. The band structure can be obtained from
density functional theory (DFT) software [22,23] (see the
Appendix). Because of that, to determine the g↑↓ of heavy
metal, we need to modify the single-band Hamiltonian with an
appropriate Hamiltonian that accommodates the hybridization
of s and d electrons.

In the second quantization, the interactions in a heavy-
metal system near the interface that is illustrated in Fig. 1
can be written with the following Hamiltonian based on the
Anderson model [19,20]:

H0 =
∑
kα

(
a†

kα b†
kα

)(Es
k V

V Ed
k

)(
akα

bkα

)
, (8)

where V is the hybridization parameter, a†
kα (akα ) is the cre-

ation (annihilation) operator of the s electron with wave vector
k and spin α and b†

jα (b jα ) is the creation (annihilation) opera-
tor of the d electron with spin α. The second term corresponds
to the s-d hybridization. Here σαβ are the Pauli vectors. The
energy dispersion of s and d electrons can be assumed to be
parabolic,

Es,d
k = Es,d

0 + h̄2k2

2m∗
s,d

, (9)

as illustrated in Fig. 4.
As illustrated in Fig. 1, the s electron dominates the spin-

mixing process at the interface. Therefore, we can define σ(r)
from the spin density of the s electron

σ(r) =
∑
kqαβ

eiq·rσαβa†
k+qαakβ. (10)

The susceptibility and its Fourier transform χ (ω) =∫
dteiωtχ (t ) can be determined by evaluating its time deriva-

tion using the Heisenberg equation

∂F (t )

∂t
= 1

ih̄
[F (t ), H0] ↔ h̄ωF (ω) = [F (ω), H0]. (11)
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TABLE I. Parameters of conduction electrons and its hybridization. The values are obtained using fitting from DFT [22–24] (see the
Appendix).

Heavy metal Crystal Without spin-orbit coupling With spin-orbit coupling

element structure a (Å) Path Band V (eV) Es,d
0 (eV) m∗

s,d/me UsdN s
F V (eV) Es,d

0 (eV) m∗
s,d/me UsdN s

F

Au fcc 2.88 � − L s 2.44 −8.86 1.19 0.09 2.53 −8.23 1.28 0.15
d −4.27 −4.19 −4.05 −5.46

W bcc 2.74 � − N s 2.38 −8.74 0.84 0.10 2.34 −8.58 0.86 0.11
d −1.98 −2.01 −2.09 −2.17

Ta bcc 2.87 � − N s 2.28 −7.18 0.78 0.22 2.25 −7.02 0.79 0.25
d 0.12 −1.56 −0.02 −1.70

Ir fcc 2.74 � − L s 3.76 −8.95 0.97 0.27 3.62 −9.08 1.12 0.27
d −2.94 −2.96 −2.67 −3.33

Pt fcc 2.77 � − L s 3.22 −8.58 1.21 0.30 3.32 −8.17 1.12 0.37
d −3.14 −5.07 −3.03 −5.01

Here H0 is the unperturbed Hamiltonian in Eq. (8). Due
to the hybridization of s and d orbitals, combinations of
creation (a†, b†) and annihilation (a, b) operators appear
when the commutations are evaluated. For convenience, we
define

χ−+
abcd (q, t ) =

∑
k

χ−+
abcd (k, q, t ), (12)

where

χ−+
abcd (k, q, t )= i

h̄
�(t )

∑
k′q′

〈[ak+q↓(t )bk↑(t ), cq′↑(0)dk′↓(0)]〉.

(13)
χaaaa in the frequency domain can now be obtained from a
matrix relation

⎛
⎜⎜⎜⎜⎝

Es
k+q − Es

k + h̄ω −V 0 V

V Es
k+q − Ed

k + h̄ω −V 0

0 V Ed
k+q − Es

k + h̄ω −V

−V 0 V Ed
k+q − Ed

k + h̄ω

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

χaaaa

χabaa

χbaaa

χbbaa

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f s
k − f s

k+q

0

0

0

⎞
⎟⎟⎟⎠. (14)

Let us note that since susceptibility is a retarded response [8],
ω has a negligibly small imaginary term ω = limη→0(ω + iη)
as in Eq. (7). By solving the linear equation, the leading term
of V -dependent spin susceptibility of the conduction of the s
electron χaaaa is

χaaaa(k, q, ω) � χ0(k, q, ω)

1 − Usd (k, q)χ0(k, q, ω)
,

χ0(k, q, ω) = f s
k − f s

k+q

Es
k+q − Es

k + h̄ω + i0+ . (15)

Here Usd is the electron-electron interaction parameter due to
s-d hybridization,

Usd (k, q) =
(
Es

k+q + Ed
k+q − Es

k − Ed
k

)|V |2(
f s
k − f s

k+q

)(
Es

k+q − Ed
k

)(
Es

k − Ed
k+q

) . (16)

The hybridization parameter V can be obtained by fitting the
band structure obtained from DFT using WANNIER90 software
[24]. The values of the parameters are listed in Table I. Since
the spin-orbit interaction in a heavy metal is large, we also
evaluate the parameters.

Using the localization of ∂ fq/∂Eq ≈ −δ(E − EF ), one can
show that

lim
q,ω→0

χ (q, ω) = lim
qk

∑
k

χ−+
aaaa(k, q, ω → 0)

= χ r
0 (0)

1 − UsdN s
F

+ iωχ i
0(q)(

1 − UsdN s
F

)2 , (17)

where χ r
0 and χ i

0 are defined in Eq. (7) and

UsdN s
F = lim

qkF

∑
k

Usd (k, q)χaaaa(k, q, 0)

= (m∗
d + m∗

s )|V |2
m∗

d [Es(kF ) − Ed (kF )]2 (18)

characterizes the enhancement due to the orbital hybridiza-
tion. This enhancement parameter is similar to the Stoner
parameter UNF that enhances the static magnetic susceptibil-
ity. Furthermore, for Au and W without spin-orbit interaction,

UsdN s
F ≈ UNF ,

where U is the phenomenological Hubbard parameter [15]
(see Table II). However, Usd (kF , 0)N s

F < UNF for Ta, Ir, and
Pt. Table II also shows that the spin-orbit interaction of the
heavy metals increases UsdN s

F .
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TABLE II. Spin-mixing conductance [25] and the enhancement
factor due to orbital hybridization of 5d heavy transition metals (HM)
(see Table I). The electron-electron interaction parameter due to s-d
hybridization UsdN s

F (with and without SOI) is comparable to the
Stoner parameter UNF due to electron-phonon interaction [15].

HM UsdN s
F g↑↓(1018 m−2) g↑↓(1019 m−2)

(5d) UNF [15] (with SOI) Y3Fe5O12|HM [25] Co|HM [28]

Au 0.050 0.09 (0.15) 2.7 ± 0.2 1.0 ± 0.1
W 0.102 0.10 (0.11) 4.5 ± 0.4 1.2 ± 0.1
Ta 0.335 0.22 (0.25) 5.4 ± 0.5 1.0 ± 0.1
Ir 0.290 0.27 (0.22) 2.4 ± 0.2
Pt 0.590 0.30 (0.37) 6.9 ± 0.6 6.0 ± 0.2

III. ENHANCEMENT OF SPIN-MIXING CONDUCTANCE

The spin current generation due to the exchange interaction
between conduction spin and m can be determined from the
spin angular momentum loss due to the relative direction
between conduction spin s and m [7,8]:

J(t ) = J
∫

d3rσ(r, t ) × m(r, t ). (19)

Using the relation of χ and σ, one can obtain the spin current
from Eq. (19):

J(t ) = J
∫

d3rσ(r, t ) × m(r, t )

= m(t ) × ṁ(t ) lim
ω→0

J2
∑
qk

∂Imχaaaa(k, q, ω)

∂ω
.

≡ g↑↓m(t ) × ṁ(t ). (20)

Therefore, the spin-mixing conductance is enhanced by the
orbital hybridization

g↑↓ = lim
ω→0

J2
∑
qk

∂Imχaaaa(k, q, ω)

∂ω
= J2 ∑

q χ i
0(q)[

1−Usd (kF , 0)N s
F

]2 .

(21)

Therefore, the spin-mixing conductance is

g↑↓ = g0
↑↓(

1 − UsdN s
F

)2 . (22)

Here UsdN s
F is the effective electron-electron interaction pa-

rameter described in Eq. (18), and

g0
↑↓ � π

8

(
Ms

γ

)2

(23)

is independent of the heavy metal [4].
Figure 2 shows the enhancement of spin-mixing conduc-

tance of an insulating ferromagnet Y3Fe5O12 and a heavy
metal (HM) as a function of UsdN s

F . For Y3Fe5O12 with the
magnetic moment MY3Fe5O12 = 3μB and unit cell lattice con-
stant aY3Fe5O12 = 5.4 Å [26,27], spin-mixing conductance per

g ↑
↓ 
(1

0
1
8
m

–
2
)

0 0.20.1 4.0 5.03.0
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12

no hybridization
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W

Ta

Pt
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with SOI

FIG. 2. Enhancement of spin-mixing conductance g↑↓ of yttrium
iron garnet (Y3Fe5O12) and 5d heavy transition metal as a func-
tion UsdN s

F , which characterizes the orbital hybridization. Filled
square points are evaluated without spin-orbit interaction (SOI) while
unfilled square points are values with SOI. Dashed and full lines
are the values without and with hybridization, respectively. Here
g0

↑↓(Y3Fe5O12) = 3 ×1018 m−2. The experimental data of the inter-
face of Y3Fe5O12 and 5d transition metals are taken from Ref. [25],
as summarized in Table II.

unit area g0
↑↓/A can be estimated to be

g0
↑↓(Y3Fe5O12|HM)

A
= π (MY3Fe5O12/γY3Fe5O12 )2

8a2
Y3Fe5O12

≈ 3 × 1018 m−2. (24)

The result is in agreement with the experimental work of
Ref. [25]. This indicates that the s-d orbital hybridization
induces an effective electron-electron interaction on the con-
duction s electron of the heavy transition metal and increases
the spin-mixing conductance at its interface with a ferromag-
netic insulator.

The discussion so far focuses on the case when the fer-
romagnetic layer is insulating. In an insulating magnetic
interface, the orbital hybridization dominates the scattering
for the interface of a ferromagnetic insulator and heavy metal,
because only the heavy metal contributes to the conduction
electrons. However, in the case of a metallic ferromagnet,
the interactions of a conduction electron near the interface is
more complicated. For a metallic ferromagnet (e.g., cobalt),
to capture the complexity of the heavy-metal system [14], the
enhancement factor should be replaced by a phenomenologi-
cal parameter of the Stoner model [4,29],

g↑↓(Co|HM) = g0
↑↓(Co|HM)

(1 − UNF )2 , (25)
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FIG. 3. Spin-mixing conductance g↑↓ of (a) Y3Fe5O12|heavy
metal (HM) and (b) Co|HM. Dashed blue and red lines are the values
without hybridization for Y3Fe5O12 and Co, respectively. Full blue
and red lines show the values with hybridization for Y3Fe5O12 and
Co, respectively. While Y3Fe5O12 is an insulating ferromagnet, Co
is a metallic ferromagnet. Experimental data of Y3Fe5O12|HM and
Co|HM are taken from Refs. [25,28], respectively (see Table II). For
a metallic ferromagnet such as Co, the enhancement is characterized
by the Stoner parameter UNF . On the other hand, for an insulating
ferromagnet such as Y3Fe5O12, the enhancement is dominated by s-d
hybridization UsdN s

F (averaged from values in Fig. 2).

where

g0
↑↓(Co|HM)

A
= πdCo

8VCo

(
MCo

γCo

)2

≈ 1.1 × 1019m−2 (26)

is the unenhanced spin-mixing conductance of the bilayer of
HM and Co with width dCo = 10 Å [28], magnetic moment
MCo = 1.60μB, and cell volume VCo = 22 Å3 [26,30].

Figure 3 shows the agreement of Eq. (25) with the ex-
periment of a metallic ferromagnet and Eq. (22) with the
experiment of insulating ferromagnet. Co|HM has a larger
g↑↓ than Y3Fe5O12 because the conduction spin can penetrate
into a metallic ferromagnet and interact with more magnetic
moments. When the ferromagnet layer is an insulator, the con-
duction electron purely originates from the heavy transition
metal. Therefore, s-d hybridization dominates the electron-
electron interaction and our model is more appropriate.

IV. CONCLUSIONS

To summarize, we discuss the effect of s-d orbital hy-
bridization on the spin-mixing conductance of the interface of
ferromagnet and heavy metal. Using a generalized Anderson
model, we study the linear response theory of conduction
spin near a magnetic interface. At the magnetic interface, the
hybridization of the conduction s electron and localized d
electron of a heavy transition metal increases the spin suscep-

tibility of a heavy transition metal and subsequently enhances
the spin-mixing conductance of the interface of ferromagnetic
and 5d transition metals.

For a bilayer of a ferromagnetic metal and a heavy metal,
the enhancement of spin-mixing conductance is characterized
by an electron-electron interaction parameter in the Stoner
model UNF , as illustrated in Fig. 3. Meanwhile, for a bilayer
of a ferromagnetic insulator and a heavy metal, the enhance-
ment is characterized by the electron-electron interaction
parameter UsdN s

F due to orbital hybridization that depends
on the hybridization energy V and the dispersion of s and
d electrons. These parameters can be obtained by analyzing
the band structure obtained from DFT. Figure 2 shows the
agreement of our theory and the experimental values of the
bilayer of Y3Fe5O12 and 5d transition metal.
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APPENDIX: ENERGY DISPERSION AND DENSITY
OF STATES OF 5d TRANSITION METALS

In this article, we analyze the orbital mixing of Ta, W,
Ir, Pt, and Au. The orbital mixing occurs because of the
hybridization between conduction (s band) and localized (d
band, illustrated by DOSd ) electrons [21]. The hybridized
energy bands due to Hamiltonian in Eq. (8) are

E12(k) = Es
k + Ed

k

2
±

√(
Es

k − Ed
k

2

)2

+ |V |2. (A1)

As illustrated in Fig. 4, the partially filled band near the Fermi
surface is chosen as E1(k), while the band at the bottom
of the density of states is chosen as E2(k). Ir, Pt, and Au
have fcc structures. Figures 4(a) and 4(b) illustrate the band
structure along L − � − X symmetry points and density of
states, respectively. On the other hand, Ta and W have bcc
structures. Figures 4(c) and 4(d) illustrate the band struc-
ture along N − � − H symmetry points and density of states,
respectively.

By assuming Es
k and Ed

k to be parabolic near � point, the
band structure parameters can be obtained by fitting the band
structure obtained from DFT. The sum of E1 and E2

E1 + E2 = Es
k + Ed

k ≡ E+
� + h̄2k2

2m∗+
(A2)

can be used to obtain

E+
� = Es

0 + Ed
0 ,

1

m∗+
= 1

m∗
s

+ 1

m∗
d

.

On the other hand, their difference

E1 − E2 =
√(

Es
k − Ed

k

)2 + 4|V |2

≡
√(

E−
� + h̄2k2

2m∗−

)2

+ 4|V |2 (A3)
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FIG. 4. Energy dispersion E (k) and density of states (DOS) of Au and W. The energy dispersion and DOS of Au are shown in panels
(a) and (b), respectively, while panels (c) and (d) show those of W. Data points were obtained using DFT. In panels (a) and (c), blue and red
dotted lines indicate the energy dispersion of s and d electron without hybridization, respectively. The hybridized dispersion are illustrated
with blue and red full lines. In panels (b) and (d), the dashed and full lines illustrate DOS without and with hybridization, respectively. While
the energy dispersion only shows the hybridized band, the DOS shows the total DOS obtained using DFT. The orbital hybridization increases
the DOS near the Fermi level.

can be used to obtain

E−
� = Es

0 − Ed
0 ,

1

m∗−
= 1

m∗
s

− 1

m∗
d

,

and hybridization energy V . The Es′d
0 and effective

masses can then be obtained from E±
� and m∗

±,
respectively.
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