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Commensuration effects on skyrmion Hall angle and drag for manipulation
of skyrmions on two-dimensional periodic substrates
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We examine the dynamics of an individually driven skyrmion moving through a background lattice of
skyrmions coupled to a 2D periodic substrate as we vary the ratio of the number of skyrmions to the number
of pinning sites across commensurate and incommensurate conditions. As the skyrmion density increases, the
skyrmion Hall angle is nonmonotonic, dropping to low or zero values in commensurate states and rising to
an enhanced value in incommensurate states. Under commensuration, the driven skyrmion is channeled by a
symmetry direction of the pinning array and exhibits an increased velocity. At fillings for which the skyrmion
Hall angle is zero, the velocity has a narrow band noise signature, while for incommensurate fillings, the
skyrmion motion is disordered and the velocity noise is broad band. Under commensurate conditions, multi-step
depinning transitions appear and the skyrmion Hall angle is zero at low drives but becomes finite at higher drives,
while at incommensurate fillings there is only a single depinning transition. As the gyrotropic component of the
skyrmion dynamics, called the Magnus force, increases, peaks in the velocity that appear in commensurate
regimes cross over to dips, and new types of directional locking effects can arise in which the skyrmion
travels along other symmetry directions of the background lattice. At large Magnus forces, and particularly
at commensurate fillings, the driven skyrmion can experience a velocity boost in which the skyrmion moves
faster than the applied drive due to the alignment of the Magnus-induced velocity with the driving direction. In
some cases, an increase of the Magnus force can produce regimes of enhanced pinning when the skyrmion is
forced to move along a nonsymmetry direction of the periodic pinning array. This is in contrast to systems with
random pinning, where increasing the Magnus force generally reduces the pinning effect. We demonstrate these
dynamics for both square and triangular substrates and map out the different regimes as a function of filling
fraction, pinning force, and the strength of the Magnus force in a series of dynamic phase diagrams.
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I. INTRODUCTION

Magnetic skyrmions are particle-like spin textures found
in numerous systems [1–8], including materials in which the
skyrmions are stable at room temperature [9–12]. Skyrmions
can also be generated by an applied current [13–20]. Due to
their size scale, mobility, and stability, skyrmions are promis-
ing candidates for a variety of applications [21–24], many of
which require the ability to control how the skyrmions move,
how they interact with defects or nanostructures, and how to
manipulate them on the individual level. The skyrmions also
interact with quenched disorder in the system, giving rise to
a pinning effect and establishing a threshold driving force
that must be applied for the skyrmion to be set in motion
[25–31]. The magnitude of this threshold depends on the prop-
erties of the disorder [25,32–34], collective interactions with
other skyrmions [35], and thermal effects [36–38]. There are
also other types of skyrmions and skyrmionlike textures [39],
including ferromagnetic [1,2] and antiferromagnetic [40,41]
skyrmions, antiskyrmions [42,43], and merons [44].

For ferromagnetic skyrmions subjected to an applied drive,
the skyrmion motion exhibits a skyrmion Hall effect along
the skyrmion Hall angle [3,45,46] θsk, which arises from
the topology of the skyrmions. The intrinsic skyrmion Hall
angle θ int

sk is proportional to the ratio of the Magnus or

gyrotropic term to the dissipative term of the skyrmion dy-
namics. Many proposed skyrmion applications require the
reduction or absence of the skyrmion Hall effect, so there
have been numerous studies focused on understanding how
to control the skyrmion Hall angle, such as by the use of
nanostructures [25,31]. The magnitude of the skyrmion Hall
effect is modified both by the pinning landscape and by the
velocity of the skyrmions. Quenched disorder induces a side
jump effect that reduces the skyrmion Hall angle below its
intrinsic value. The side jump is largest for small velocities
just above depinning, giving a skyrmion Hall angle that is
zero at depinning and increases with increasing drive until it
saturates at a value near θ int

sk for high drives [19,30,38,47–55].
The skyrmion Hall angle can also be affected by shape dis-
tortions of the skyrmions and collisions with other skyrmions
[30,38,56,57]. In addition to the importance of understanding
skyrmion dynamics in the presence of disorder for applica-
tions, the strong gyrotropic nature of the dynamics means that
skyrmions represent a new class of systems that can show
collective dynamics when driven over random or periodic sub-
strates. Most previous studies of such behavior have involved
overdamped systems [25].

One approach to generating well-controlled skyrmion mo-
tion is to couple the skyrmions to nanostructures, such as
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a periodic array of defects or other types of engineered
landscapes [21,22,25,58–61]. In this case, it is important to
understand how individual skyrmions interact with both the
defect array and with the other skyrmions. An example of such
a system is skyrmions interacting with a two-dimensional
(2D) periodic substrate, where the system can be characterized
by a filling factor f corresponding to the ratio of the number
of skyrmions Ns to the number of pinning sites Np. When
f = Ns/Np is an integer, the skyrmions form a commensurate
or ordered crystalline structure. Commensuration effects for
particles on 2D substrates have been studied extensively in
other condensed matter systems, such as the ordering of atoms
or molecules on surfaces [62], sliding friction [63], colloidal
particles on patterned substrates [64,65], dusty plasmas [66],
Wigner crystal ordering in moirè systems [67], vortices in
Bose Einstein condensates [68], and cold atoms coupled to
optical traps [69]. The closest match to the skyrmion system,
however, is vortices in type-II superconductors coupled to 2D
pinning arrays [70–75]. At commensuration, the supercon-
ducting vortices form an ordered lattice and exhibit a strong
enhancement of the pinning effect observable as peaks in the
depinning threshold as a function of changing superconduct-
ing vortex density.

Commensurate-incommensurate systems display a rich va-
riety of dynamical phases since the collective motion differs
at commensurate and incommensurate fillings [25]. For exam-
ple, there can be multiple step depinning, transitions between
ordered and disordered flow [76,77], and soliton motion [78].
Particle flow on 2D periodic substrates can be modified sig-
nificantly depending on the direction of drive with respect to
symmetry directions of the underlying substrate. For example,
in directional or symmetry locking, the particles preferentially
move along certain symmetry directions of the pinning lattice
even when the drive is not aligned with those directions, and
as a result, for changing drive orientation a series of steps
appear in the velocity versus driving angle curves [79–84].
Since the skyrmion Hall angle depends on the magnitude of
the drive in systems with pinning, when individual skyrmions
move over 2D periodic substrates, numerical studies have
shown that the skyrmion motion locks to different substrate
symmetry directions as the magnitude of the drive increases
[48,85,86]. For a square array, such locking directions include
0◦ and 45◦ from a primary lattice vector. In general, locking
of skyrmions moving on a square array can occur at angles
φ = arctan(n/m) from the primary symmetry axis, with inte-
ger n and m; however, the size of the pinning sites as well
as interactions with other skyrmions can limit which symme-
try directions are accessible. Other studies for skyrmions on
2D pinning arrays indicate that different types of crystalline
ordering occur at the matching fields [87] and that large
scale collective flow states can arise under bulk driving [88].
In micromagnetic simulations, skyrmions moving on a 2D
pinning array exhibit a number of different dynamic phases
that could be useful for applications [89]. In addition, there
are now various experiments on skyrmion states in periodic
one-dimensional (1D) [61] and 2D pinning arrays [90].

In this work, we examine the dynamics of skyrmions on
a 2D square or triangular pinning lattice. We drive a single
skyrmion that interacts both with the other skyrmions and
directly with the substrate, and measure the velocity and di-

rection of motion of the driven skyrmion as the system passes
through a series of commensurate-incommensurate transitions
at varied pinning strength and varied ratios of the Magnus
term to the dissipative term. This work builds upon our pre-
vious studies examining the dynamics of individually driven
superconducting vortices [91,92] and skyrmions [93,94] in-
teracting with either a background lattice of particles or with
pinning. In the case of superconducting vortices where the
motion is overdamped, numerous methods to drive individ-
ual vortices, including nanotips [95,96] and optical trapping
[97,98], have been studied in experiments and simulations.
Individual skyrmions can also be driven with different types
of tips [99], local magnetic field gradients [100,101], and with
optical trapping [102–104]. The method of driving individual
particles though a background of other particles while measur-
ing the drag on the driven particle from fluctuations is known
as active rheology and has been studied experimentally and
theoretically for colloidal particles [105–109], granular matter
[110–112], active matter [113], and superconducting vortex
systems [91,96,114,115].

In most active rheology studies, under a constant driving
force the velocity of the driven particle decreases as the den-
sity of the system increases due to an increase in the frequency
of collisions with background particles, and there can be a
sudden drop to zero motion or a pinning transition when the
system passes through a critical density into a glass, jammed,
crystalline, or amorphous solid state. In our previous work on
active rheology in a skyrmion system, we considered a single
skyrmion driven through a background of other skyrmions in
the absence of pinning [93]. For a constant driving force, we
found that the skyrmion Hall angle decreases with increasing
skyrmion density due to enhanced collisions; however, par-
ticularly for systems with a strong Magnus force, we also
found a counter-intuitive increase in the velocity, or a boost
effect, in which the skyrmion velocity increases with increas-
ing system density. In some cases, the skyrmion velocity is
larger than what it would be in the absence of collisions with
other skyrmions. This boost effect arises from a combination
of the skyrmion Hall effect and density fluctuations created
in the surrounding skyrmions by the driven skyrmion. The
density gradient forms perpendicular to the direction of the
drive and exerts a repelling force on the driven particle along
this direction, but the Magnus term generates a velocity per-
pendicular to this repelling force and parallel to the drive.
This is example of what is known as an odd-viscosity effect
of the type observed in chiral systems with gyroscopic forces
[116–119]. We have also considered single driven skyrmions
interacting with other skyrmions in the presence of random
quenched disorder, where in addition to velocity boost phe-
nomena, we observe several pinned and jammed phases as
well as stick-slip motion [94].

For overdamped systems, we have also numerically ex-
amined the active rheology of superconducting vortices and
colloidal particles interacting with 2D periodic pinning ar-
rays as the filling factor of the system is varied. Here we
observe what we call an anti-commensuration effect in which
the drag on the driven particle is reduced at commensu-
rate matching conditions [92], opposite from the behavior
found in bulk driven systems [70,72–75]. The drag reduction
at commensuration appears when the surrounding particles
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become strongly coupled to the substrate at matching con-
ditions and cannot be dragged along by the driven particle,
whereas at incommensurate fillings, the surrounding particles
are much more weakly coupled to the substrate, permitting the
driven particle to drag background particles and increasing the
effective viscosity it experiences. The result is a strongly non-
monotonic drag that shows a series of peaks at the matching
conditions. In the case of an individual skyrmion driven over
a 2D periodic array at commensurate and incommensurate
conditions, the Magnus force produces much more complex
dynamics than are found in the overdamped superconducting
vortex system [92].

In this work, we demonstrate that active rheology for a
skyrmion driven through a background lattice in the pres-
ence of a 2D periodic pinning array produces very different
behavior from that found for random pinning [94] or in the
absence of pinning [93]. The skyrmion Hall angle is non-
monotonic, falling to zero at commensurate conditions where
the skyrmions form an ordered lattice and the skyrmion veloc-
ity peaks. For strong Magnus forces, the skyrmion Hall angle
remains finite but is still reduced at the matching conditions.
In general, the skyrmion motion is ordered at commensurate
conditions and disordered at incommensurate fillings. For in-
creasing Magnus force, there are more extended regions of
finite drive for which the skyrmion remains pinned, a behavior
that is the opposite of what is found for bulk driven sys-
tems with random pinning. At strong Magnus forces, under
commensurate conditions we observe a pronounced velocity
boost effect where the driven skyrmion moves faster than it
would if there were no substrate and no collisions with other
skyrmions. This boost occurs when the direction of motion
of the driven skyrmion becomes locked along an interstitial
channel and the driven skyrmion experiences a perpendicular
repulsion from the skyrmions trapped in the pinning sites,
which is converted by the Magnus term to a velocity in the
direction of drive. This effect is similar to the velocity en-
hancement found for skyrmions moving along sample edges
[120,121]. For higher Magnus forces, the motion becomes
increasingly chaotic and the effect of the substrate is strongly
reduced.

We mainly focus on the dynamics of a single driven
skyrmion; however, we also propose some alternative geome-
tries involving bulk driving near the first matching field where
most of the skyrmions are trapped at pinning sites and a small
number of skyrmions are in the interstitial regions. For a
window of applied drives, the skyrmions in the pinning sites
remain pinned but the interstitial skyrmions move and expe-
rience interactions with the pinned skyrmions. We have also
investigated the effect of finite temperature and find that under
commensurate conditions, the behavior changes only when
the temperature becomes so high that thermally activated hop-
ping of skyrmions out of the pinning sites begins to occur.
Our system could be realized using skyrmions in an array of
nanostructured pinning sites created optically, via irradiation,
or with lithography. Ideally the system should have low intrin-
sic pinning so that the driven skyrmion will only interact with
the other skyrmions or with the added pinning sites. Recent
experiments have demonstrated how to create well defined
trapping and guiding sites with irradiation [122]. It would also
be possible to use an array of disk shaped defects [123].

II. SIMULATION AND SYSTEM

We consider a 2D system of size L × L with periodic
boundary conditions in the x and y directions containing
a square pinning array with lattice constant a. The total
number of pinning sites is Np, giving a pinning density of
np = Np/L2. The sample contains Ns interacting skyrmions
that are modeled as point particles according to a modified
Thiele equation [36,49], in which the skyrmions have repul-
sive interactions with each other and attractive interactions
with the pinning sites. We characterize the system by a fill-
ing factor f = Ns/Np. For integer values of f , the system is
commensurate and adopts a defect-free crystalline ordering,
while for incommensurate fillings, the system either becomes
amorphous or forms a crystalline state containing intersti-
tials or vacancies [25]. For certain fractional fillings, such
as f = 1/2 or f = 3/2, the system can be partially ordered
[124,125]. Each pinning site has a finite spatial extent, so
individual skyrmions can sit either inside a pinning site or
in the interstitial regions between the pinning sites depending
on the filling factor and the pinning strength. From previous
studies of superconducting vortices interacting with 2D square
periodic pinning arrays, it is known that the particles will
form a square lattice with all of the pinning sites occupied
for f = 1.0, a checkerboard pattern with half of the particles
in interstitial sites at f = 2.0, an ordered lattice of dimers at
f = 3.0, and a hexagonal lattice at f = 4.0 [71,73,74,126].
The initial skyrmion positions are obtained by performing
simulated annealing from a high temperature molten state
down to T = 0, as in previous work [73]. After the system is
initialized, we insert an additional interstitial skyrmion that is
coupled to an applied driving force. This driven particle inter-
acts both with the pinning sites and with the other skyrmions.

The equation of motion for skyrmion i is given by

αd vi + αmẑ × vi = Fss
i + Fp

i + FD
i , (1)

where the skyrmion velocity is vi = dri/dt . The first term
on the left with damping constant αd is the dissipation that
aligns the skyrmion motion in the direction of the net applied
force. The second term on the left is the Magnus force of
magnitude αm that generates a velocity component perpen-
dicular to the net force. The skyrmion-skyrmion interaction
is described by Fss

i = ∑Ns
j=1 K1(ri j )r̂i j , where the distance

between skyrmion i and skyrmion j is ri j = |ri − r j |, r̂i j =
(ri − r j )/ri j , and K1 is the modified Bessel function which
decays exponentially for large r [36]. The pinning sites are
modeled as finite-range parabolic potential traps of radius
rp that exert a maximum pinning force of Fp, giving Fp

i =
∑Np

k=1(Fp/rp)(ri − r(p)
k )�(rp − |ri − r(p)

k |)r̂(p)
ik , where � is the

Heaviside step function. We fix the pinning density to np =
Np/L2 = 0.4882 throughout this work.

The driving force is FD = FDx̂ for the driven skyrmion
and FD = 0 for all of the other background skyrmions, and
the driving is always applied along the positive x direction.
In the absence of other skyrmions or pinning, the driven
skyrmion will move with an intrinsic skyrmion Hall an-
gle of θ int

sk = arctan(αm/αd ). Pinning and skyrmion-skyrmion
collisions can modify the observed skyrmion Hall angle,
θsk = arctan(〈Vy〉/〈Vx〉), where 〈Vx〉 is the average velocity
along the driving direction and 〈Vy〉 is the average velocity
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FIG. 1. Image of a sample containing a square pinning lattice
showing background skyrmions (blue filled circles), pinning site
locations (brown circles), the driven skyrmion (red filled circle), and
the skyrmion trajectories (black lines) during a fixed time window.
Here, Fp = 0.25, αm/αd = 1.0, θ int

sk = −45◦, and FD = 1.0 at an in-
commensurate filling of f = 0.62 where the background skyrmions
are disordered. The driven skyrmion moves in a disordered manner
along θsk = −27◦.

perpendicular to the drive. For convenience, we use the
normalization condition (α2

d + α2
m)1/2 = 1.0. This constraint

ensures that we always have 〈V 〉 = (〈Vx〉2 + 〈Vy〉2)1/2 = 1.0
for FD = 1.0 in the absence of pinning regardless of the value
of θ int

sk . It also makes a velocity boost easy to detect, since
for example if FD = 1.0, there is a boost whenever 〈V 〉 > 1.0.
We increment FD from zero to a maximum value, spending
2 × 106 to 5 × 106 simulation time steps at each driving force
increment in order to obtain a stationary state average velocity
measurement.

III. SKYRMION HALL ANGLE AT COMMENSURATE
AND INCOMMENSURATE FILLINGS

In Fig. 1, we show a snapshot of a system containing a
square pinning lattice with Fp = 0.25, αm/αd = 1.0, θ int

sk =
−45◦, and FD = 1.0 at an incommensurate filling of f =
0.62 where the background skyrmions are disordered. The
skyrmion follows a disordered trajectory with θsk = −27◦,
indicating that the interactions with the pinning and the other
skyrmions have depressed the magnitude of θsk below that of
its intrinsic value θ int

sk .
In Fig. 2(a), we plot 〈Vx〉 and 〈Vy〉 versus filling fraction f

for the system in Fig. 1. Figure 2(b) shows the net skyrmion
velocity 〈V 〉 and Fig. 2(c) illustrates the corresponding θsk =
arctan(〈Vy〉/〈Vx〉). In the limit f = 0 where only the driven
skyrmion is present, 〈V 〉 = 1.0 and θsk = 45◦. As f increases,
〈Vy〉 and θsk both go to zero at f = 1.0, where a peak appears
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FIG. 2. Behavior under varied filling fraction f = Ns/Np for
the system shown in Fig. 1 with a square pinning array, Fp =
0.25, αm/αd = 1.0, θ int

sk = −45◦, and FD = 1.0. (a) 〈Vx〉 (red) and
〈Vy〉 (blue) vs f . (b) 〈V 〉 = (〈Vx〉2 + 〈Vy〉2)1/2 vs f . (c) θsk =
arctan(〈Vy〉/〈Vx〉) vs f , which goes to zero at commensurate fillings
f = 1.0 and f = 2.0.

in both 〈Vx〉 and 〈V 〉. In Fig. 3(a), we show a blow up of
the skyrmion motion at f = 1.0 for the system in Fig. 2.
The background skyrmions form an ordered commensurate
square lattice, while the driven skyrmion moves along a 1D
interstitial channel between two adjacent pinning rows. As f
is further increased, 〈Vy〉 and θsk become finite again over the
range 1.0 < f < 2.0 and the skyrmion Hall angle becomes fi-
nite, as illustrated in Fig. 3(b) at f = 1.14 where θsk = −10◦.
The magnitude of the skyrmion Hall angle is smaller than that

x(a)

y

x(b)

y

FIG. 3. Images of samples containing a square pinning lattice
showing background skyrmions (blue filled circles), pinning site
locations (brown circles), the driven skyrmion (red filled circle),
and the skyrmion trajectories during a fixed time window for the
system from Fig. 1 with Fp = 0.25, αm/αd = 1.0, θ int

sk = −45◦, and
FD = 1.0. (a) A portion of the sample at f = 1.0, where θsk = 0◦.
Here the driven skyrmion is outside of the visible frame. (b) The
entire sample at f = 1.14, where θsk = −10◦.
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of θ int
sk due to the larger number of skyrmion-skyrmion colli-

sions that occur at the higher densities. At f = 2.0, θsk = 0.0
when the background skyrmions form an ordered checker-
board state and the driven skyrmion follows a 1D path along
the x direction. For higher fillings, 〈V 〉 and the magnitude of
θsk gradually decrease.

The skyrmion locking to 1D motion at the f = 1.0 com-
mensurate state is caused by the repulsion of the driven
skyrmion from skyrmions trapped at the pinning sites. At
commensurate fillings, the pinned skyrmions form an ordered
structure that contains 1D easy flow paths for the driven
skyrmion. These paths confine the driven skyrmion and pre-
vent its motion from aligning with the angle induced by the
skyrmion Hall effect. They also produce a peak in the ve-
locity since the Magnus term rotates part of the repulsive
force from the sides of the 1D channel into the direction
of motion of the driven skyrmion. In contrast, at incom-
mensurate fillings there are weak spots in the 1D confining
potential that allow the skyrmion to escape from the con-
finement and move with a finite skyrmion Hall angle. In
general, since skyrmion-skyrmion interactions strongly affect
the motion of the driven skyrmion, by modifying the density
of the background skyrmions we can change from a regime
at commensuration in which the driven skyrmion is effec-
tively moving over a periodic substrate to a regime just off
commensuration where the driven skyrmion is moving over
different levels of disorder. We can even consider strongly
incommensurate regimes.

An alternative realization of this system would be a driven
skyrmion moving over a periodic array of repulsive sites
[48], which could be created using methods such as those
described in Refs. [53,127]; however, this would only capture
the f = 1.0 behavior. In principle, a series of samples could
be fabricated in which repulsive sites are omitted or extra
repulsive sites are added in order to mimic incommensurate
fillings; however, the advantage of our system is that a wide
range of commensurate and incommensurate states can be
accessed using only a single sample by tuning the skyrmion
density with a simple control parameter such as an external
magnetic field.

In Figs. 4(a)–4(c), we plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus
f for the system from Fig. 2 but with stronger dissipation
of αm/αd = 0.204, where θ int

sk = −11.54◦. We find that θsk

is equal to zero at f = 1.0 and f = 2.0, and is small in
magnitude for all f > 0.5. There is still a strong peak in 〈Vx〉
and 〈V 〉 at f = 1.0, with a smaller peak appearing at f = 2.0.
In Figs. 4(d)–4(f), similar behavior appears at αm/αd = 0.436
with θ int

sk = −21.9◦, where there is a strong peak in 〈V 〉 at
f = 1.0.

The behavior of 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus f in
a system with αm/αd = 0.57 and θ int

sk = −30◦ appears in
Figs. 5(a)–5(c). There are peaks in 〈V 〉 at f = 1.0, 2.0, and
3.0, coinciding with fillings for which θsk = 0◦. Figures 5(d)–
5(f) shows the same quantities for a sample with αm/αd =
1.33 and θ int

sk = −53◦. At the matching fillings, 〈Vy〉 has a dip
in magnitude but does not drop completely to zero. There
is a cusp in θsk to θsk = −4◦ at f = 1.0, and another more
rounded cusp appears at f = 2.0. For these parameters, there
is no peak in 〈V 〉 at f = 1.0, but there is a smaller peak

-0.2
0

0.2
0.4
0.6
0.8

1

<
V

x>
, <

V
y>

-0.4

0

0.4

0.8

1.2

<
V

x>
, <

V
y>

0.4

0.6

0.8

<
V

>

0.4

0.6

0.8

<
V

>

0 1 2 3
f

-20

-15

-10

-5

0

θ sk

0 1 2 3
f

-30

-20

-10

θ sk

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Behavior under varied filling fraction f for the system
from Fig. 2 with a square pinning array, Fp = 0.25, and FD = 1.0,
but with [(a)–(c)] αm/αd = 0.204 and θ int

sk = −11.54◦ and [(d)–(f)]
αm/αd = 0.436 and θ int

sk = −21.9◦. (a,d) 〈Vx〉 (red) and 〈Vy〉 (blue) vs
f . [(b) and (e)] 〈V 〉 vs f . [(c) and (f)] θsk vs f .

at f = 0.66. In Fig. 5(e), we observe regions over which
〈V 〉 > 1.0, indicated by locations where the curve rises above
the dashed line. This is a signature of a velocity boost pro-
duced by interactions with the background skyrmions and the
pinning sites. In general, as the density increases, there are
more collisions with the background skyrmions that increase
the effective dissipative velocity; however, since the collisions
can also contribute to the odd viscosity, there is a competition
between the viscosity components. When the odd viscosity
term dominates, the velocity boost effect can emerge [93,94].

For a sample with αm/αd = 2.065 and θ int
sk = −64◦, we

plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus f in Figs. 6(a)–6(c). The
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FIG. 5. Behavior under varied f for the system from Fig. 2 with
a square pinning array, Fp = 0.25, and FD = 1.0, but with [(a)–
(c)] αm/αd = 0.57 and θ int

sk = −30◦ and [(d)–(f)] αm/αd = 1.33 and
θ int

sk = −53◦. [(a) and (d)] 〈Vx〉 (red) and 〈Vy〉 (blue) vs f . [(b) and (e)]
〈V 〉 vs f . [(c) and (f)] θsk vs f . The dashed lines in (b) and (e) are at
〈V 〉 = 1.0, showing that there is a small boost effect in panel (e) for
f < 1.0.
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FIG. 6. Behavior under varied f for the system from Fig. 2 with
a square pinning array, Fp = 0.25, and FD = 1.0, but with [(a)–(c)]
αm/αd = 2.065 and θ int

sk = −64◦ and [(d)–(f)] αm/αd = 4.92 and
θ int

sk = −78◦. [(a) and (d)] 〈Vx〉 (red) and 〈Vy〉 (blue) vs f . [(b) and
(e)] 〈V 〉 vs f . [(c) and (f)] θsk vs f . The dashed lines in (b) and (e)
indicate the value 〈V 〉 = 1.0; boost effects are present when 〈V 〉 rises
above this value.

peaks that appeared in 〈V 〉 at f = 1.0 and f = 2.0 for lower
αm/αd have not only disappeared, but there is now a dip in 〈V 〉
at f = 1.0 accompanied by a small increase in the magnitude
of θsk. A velocity boost appears over the entire range 0.1 <

f < 1.0, as indicated by the curve rising above the dashed
〈V 〉 = 1.0 line in Fig. 6(b). There is an increase in 〈Vx〉 over
the same range of fillings since the boosted velocity is aligned
with the driving or +x direction, and when the Magnus force
is large enough, the magnitude of the boost increases with
decreasing magnitude of the skyrmion Hall angle θsk [93]. We
plot the same quantities for a sample with αm/αd = 4.92 and
θ int

sk = −78◦ in Figs. 6(d)–6(f). Here there is no large feature at
f = 1.0; instead, strong peaks or dips appear in 〈Vx〉, 〈Vy〉 and
〈V 〉 at f = 2.0. For this filling, θsk = −45◦, indicating that
the commensurate structure is directionally locked with one
of the major symmetry angles of the pinning array. As f in-
creases further, the magnitude of θsk resumes its decrease after
passing through the locking step at θsk = −45◦. At f = 2.0,
the system forms an ordered checkerboard state with a well
defined symmetry direction; however, away from f = 2.0,
the structure becomes disordered again and the directional
locking is lost. In Fig. 6(d), 〈Vx〉 increases with increasing f
while the magnitude of 〈Vy〉 undergoes a moderate decrease.
Figure 6(e) shows that a velocity boost is present over the
entire range of f except at very small values of f , with the
largest boost appearing at f = 2.0. At this filling, 〈V 〉 ≈ 1.8,
nearly twice as large as the expected velocity in the limit of a
single skyrmion and no substrate.

Taken together, the results in this section indicate that
commensuration effects can both reduce the skyrmion Hall
angle and also speed up the skyrmion motion, two features
that are desirable for applications. For values of αm/αd higher
than what is shown here, we observe similar trends; however,
as the relative strength of the damping term becomes small,
the motion becomes increasingly disordered and fluid-like,
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FIG. 7. Velocity fluctuation data for the system from Fig. 2 with a
square pinning array, Fp = 0.25, FD = 1.0, αm/αd = 1.0, and θ int

sk =
−45◦ at [(a) and (d)] f = 0.62, [(b) and (e)] 1.0, and [(c) and (f)]
1.14. [(a)–(c)] Time series of the instantaneous velocities Vx (red) and
Vy (blue). [(d)–(f)] The corresponding velocity distributions P(Vx )
(red) and P(Vy ) (blue). The distributions have a Gaussian character
at f = 0.62 in (d) and f = 1.14 in (f) when the motion is disor-
dered, but develop sharp peaks at f = 1.0 in (e) when the motion is
periodic.

the curves become smooth, and the directional locking effects
disappear. In addition, for values of f higher than those shown
here, the velocity boost is eventually destroyed. For lower FD

and high fillings, a jamming effect can occur in which the
driven skyrmion becomes pinned or jammed due to its strong
interactions with the background skyrmions, similar to what
is found in other active rheology systems [105,128].

A. Fluctuations and noise

We can also characterize the behavior of the commensurate
and noncommensurate states using the fluctuation properties
of the time series of the driven skyrmion velocity. In general,
we find ordered motion at commensurate fillings for which
θsk = 0◦ and disordered motion at incommensurate fillings
where θsk is finite. In Figs. 7(a)–7(c), we plot the time series
of the instantaneous velocities Vx and Vy for the system in
Fig. 2 with θ int

sk = −45◦. At f = 0.62 in Fig. 7(a), where
θsk = −28◦, the velocities fluctuate rapidly and, as shown in
the corresponding velocity distribution plots P(Vx ) and P(Vy)
in Fig. 7(d), the distributions have a broadened Gaussian form
that is characteristic of random fluctuations. At f = 1.0 in
Figs. 7(b) and 7(e), the motion is periodic and P(Vy) is cen-
tered at zero. Here the velocity distributions are non-Gaussian
and have sharp features indicative of the repeated periodic
motion. In Figs. 7(c) and 7(f) at f = 1.14, corresponding to
the motion with θsk = −10◦ illustrated in Fig. 3(b), the flow
is once again random with Gaussian velocity distributions. We
find similar behaviors for commensurate and incommensurate
fillings at other values of αm/αd , including the 〈Vy〉 = 0 states
at f = 1.0 and f = 2.0 where the motion is periodic. For
higher values of αm/αd such as αm/αd = 1.33 in Fig. 5(f),
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FIG. 8. The power spectra Sx (ω) (red) and Sy(ω) (blue) for the
velocity time series Vx and Vy, respectively, in Fig. 7 from samples
with a square pinning array, Fp = 0.25, FD = 1.0, αm/αd = 1.0, and
θ int

sk = −45◦. (a) f = 0.62. (b) f = 1.0, where there is a strong nar-
row band noise signature. (c) f = 1.14.

where θsk does not reach zero but is strongly reduced at
f = 1.0 and f = 2.0, the motion is mostly periodic with
occasional jumps in the transverse direction.

The skyrmion motion can also be characterized by examin-
ing the velocity noise, as considered in both simulations [52]
and experiments [129]. From the time series in Fig. 7, we can
extract the power spectrum Sα (ω) = | ∫ Vα (t )e−iωt dt |2, where
α = x, y. In Fig. 8 we plot the power spectra from the time
series of both Vx and Vy for the system in Fig. 7. At f = 0.62
in Fig. 8(a), there are no peaks in the power spectra, indicating
that the motion is random, while at f = 1.0 in Fig. 8(b),
there is a strong narrow band noise signal in the form of a
sequence of peaks. In this case, there are two overlapping
periodic signals. The first, at higher frequencies, arises from
the periodic motions of the driven skyrmion as it interacts with
the ordered commensurate pinned skyrmions. The second, at
lower frequencies, is produced by a small number of defects
that are present in the commensurate configuration, which
generate a time-of-flight velocity signature. For the disordered
motion at f = 1.14 in Fig. 8(c), the noise signature has a
broad band character. There is a weak periodic signal at higher
frequencies due to the low value of θsk at this filling, which
causes the skyrmion to flow through an interstitial channel be-
tween two adjacent pinning rows with infrequent but roughly
periodic hops occurring from one interstitial channel to the
next.

In Fig. 9, we use the behavior of the transport curves and
θsk to construct a dynamic phase diagram as a function of
filling fraction f versus αm/αd for the system in Fig. 2. In the
red region, the skyrmion moves strictly along the direction
of drive and θsk = 0◦. In the blue region, the skyrmion Hall

0 1 2 3 4
αm/αd

0

1

2

f

FIG. 9. Dynamic phase diagram as a function of filling fraction
f vs αm/αd for the system in Fig. 2 with a square pinning array,
Fp = 0.25, and FD = 1.0 constructed using the features in the trans-
port curves and the behavior of θsk. In the red region, θsk = 0.0◦, a
condition that extends out to higher αm/αd at commensurate fillings.
In the blue region, θsk is finite but there is no velocity boost, while in
the green region, θsk remains finite and a velocity boost appears.

angle is finite but there is no velocity boost, and in the green
region, there is both a finite skyrmion Hall angle and a finite
velocity boost. Near the commensurate conditions of f = 1.0
and f = 2.0, the window of zero skyrmion Hall angle extends
out to larger values of αm/αd . For these same commensurate
conditions, even when the value of θsk becomes finite, it is still
suppressed relative to its value away from commensuration,
a feature that is not illustrated in the plot. We note that the
peaks in the velocity are the most persistent when the intrinsic
skrymion Hall angle is smaller than 45◦, where αm/αd < 1.
In contrast, the boost effect generally does not appear until
θ int

sk � 45◦ or αm/αd > 1.

IV. VELOCITY FORCE CURVES

We next consider the effect of varying the driving force FD

on the driven particle in the system from Fig. 2. In Fig. 10(a),
we plot 〈Vx〉 and 〈Vy〉 versus FD at f = 0.62. There is a single
depinning threshold at FD = 0.6, above which motion occurs
simultaneously in both directions. Figure 10(b) shows the
corresponding θsk versus FD, where θsk = 0◦ at the depinning
threshold. As FD increases, the magnitude of θsk gradually
increases until it approaches the intrinsic value θ int

sk = −45◦
at higher drives. In Fig. 10(c), 〈Vx〉 and 〈Vy〉 versus FD for
a sample with f = 1.0 reveal the presence of a two step
depinning threshold. The first depinning transition occurs at
FD = 0.55, and for 0.55 < FD < 1.25 the motion is only along
the x direction with θsk = 0◦. The second depinning transi-
tion occurs at FD = 1.25, above which finite motion in the
y direction appears. In the corresponding plot of θsk versus
FD in Fig. 10(d), θsk is zero above the first depinning tran-
sition and begins to increase in magnitude above the second
depinning transition. There are also several steps or plateaus in
the velocity, including one with θsk ∼ −27◦ and another with
θsk = −45◦. These correspond to directional locking steps
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FIG. 10. (a) 〈Vx〉 (red) and 〈Vy〉 (blue) vs driving force FD for the
system from Fig. 2 with a square pinning array, Fp = 0.25, αm/αd =
1.0, and θ int

sk = −45◦ at a filling fraction of f = 0.62. (b) The cor-
responding θsk vs FD. (c) 〈Vx〉 (red) and 〈Vy〉 (blue) vs FD for the
same system at f = 1.0, where there is a two step depinning process.
(d) The corresponding θsk versus FD contains two directional locking
steps along the angles θsk = arctan(1/2) and θsk = arctan(1/1).

with θsk = φ = arctan(n/m). The n/m = 1/2 step has φ =
arctan(1/2) = −25.56◦, while the 1/1 step has φ = −45◦.

In Fig. 11(a), we illustrate the skyrmion trajectories for
the sample in Figs. 10(c) and 10(d) at a nonstep drive of
FD = 2.75, which is close to but not on the 1/2 step. There is a
combination of ordered and disordered motions, with regions
in which the skyrmion translates by a distance 2a in the
x direction and −a in the y direction, combined with regions
in which the skyrmion makes occasional jumps in other di-
rections. Figure 11(b) shows the same system at FD = 6.0 on
the 1/1 step, where the skyrmion moves in an orderly periodic
fashion strictly along −45◦.

In Figs. 12(a), we plot the time series of Vy on the 1/1 step
at FD = 6.0 in the system from Figs. 10(c) and 10(d), while
in Fig. 12(c) we show the corresponding Fourier transform
F (ω) = ∫

Vye−iωt dt , where there is a strong narrow band sig-
nal. The time series of Vy for a nonstep region at FD = 3.25

x(a)

y

x(b)

y

FIG. 11. Images of samples containing a square pinning lattice
showing background skyrmions (blue filled circles), pinning site
locations (brown circles), the driven skyrmion (red filled circle),
and the skyrmion trajectories during a fixed time window for the
system in Figs. 10(c) and 10(d) with Fp = 0.25, αm/αd = 1.0, and
θ int

sk = −45◦ at a filling fraction of f = 1.0. (a) FD = 2.75 near the
1/2 step. (b) FD = 6.0 along the 1/1 step.
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FIG. 12. [(a) and (b)] The time series of Vy and [(c) and (d)]
its corresponding Fourier transform F (ω) for the system from
Figs. 10(c) and 10(d) with a square pinning array, Fp = 0.25,
αm/αd = 1.0, and θ int

sk = −45◦ at a filling fraction of f = 1.0.
[(a) and (b)] FD = 6.0 on the 1/1 locking step where the motion is
periodic. [(c) and (d)] A nonstep region at FD = 3.25 where the flow
is more disordered and the peaks in F (ω) are broadened.

with partially periodic motion appears in Fig. 12(b), and the
broadened signature of the corresponding F (ω) is shown in
Fig. 12(d). In general, as a function of increasing FD we find
that in regimes of directional locking where there are steps in
θsk, the periodic motion produces narrow band velocity noise,
while in regimes where no steps are present, the motion is
more disordered and the velocity noise is either broad band or
contains weakly periodic signals.

For individual skyrmions moving over a square substrate in
the absence of background skyrmions, previous work showed
that the velocity-force curve and skyrmion Hall angle exhibit
a series of steps corresponding to directional locking centered
on the values θsk = arctan(n/m) with m, n integer [48]. For
the active rheology situation we consider here, due to the
large number of collisions the driven skyrmion experiences
with background skyrmions, only the most prominent locking
steps are visible, as illustrated in Fig. 10(d). In general, higher
order directional locking only occurs at the commensurate
conditions of f = 1.0 and f = 2.0, but there is some weaker
higher order locking at some incommensurate fillings as well.
The number of accessible steps also depends on the value of
αm/αd ; as this quantity becomes larger, a greater number of
steps beyond 1/1 can be accessed.

In Figs. 13(a) and 13(b), we plot 〈Vx〉, 〈Vy〉, and θsk ver-
sus FD for the system from Fig. 10 at a filling fraction of
f = 1.1392. The locking step features are reduced or absent,
while 〈Vx〉 and 〈Vy〉 both become finite at a single depinning
transition near FD = 0.5. Figures 13(c) and 13(d) shows the
same quantities for f = 2.0, where there is a two step de-
pinning transition in which 〈Vx〉 becomes finite at FD = 0.5
and 〈Vy〉 does not become finite until FD = 1.15. There is a
reduced 1/2 locking step, but the 1/1 locking step remains
robust. In Fig. 14(a), we illustrate the skyrmion trajectories
in a subsection of the sample at FD = 6.0 on the 1/1 locking
step, where the driven skyrmion moves at −45◦ through an
interstitial channel in the checkerboard lattice formed by the
background skyrmions. The 1/1 step is associated with a
cusp in 〈Vx〉 and 〈Vy〉 as indicated in Fig. 13(c). For driving
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FIG. 13. (a) 〈Vx〉 (red) and 〈Vy〉 (blue) vs FD for the system from
Fig. 2 with a square pinning array, Fp = 0.25, αm/αd = 1.0, and
θ int

sk = −45◦ at f = 1.1392. (b) The corresponding θsk versus FD.
(c) 〈Vx〉 (red) and 〈Vy〉 (blue) vs FD for the same system at f = 2.0
where there is a two step depinning process. (d) The corresponding
θsk versus FD contains two directional locking steps at 1/1 and 1/2.

individual skyrmions over a periodic substrate in the absence
of background skyrmions, similar cusps in the velocity-force
curves appear at several of the transitions into and out of the
directional locking steps [48]. Figure 14(b) shows the same
system in a nonstep region at FD = 3.25, where the motion is
more disordered and θsk is smaller in magnitude.

V. VARIED PINNING STRENGTH

We next consider the effect of increasing the pinning
strength for the system in Fig. 2 with fixed αm/αd = 1.0 and
FD = 1.0. In Figs. 15(a)–15(c), we plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk

versus f for a sample with Fp = 0.125, which is half the value
of Fp used in Fig. 2. The general trends remain unchanged,
with the magnitude of θsk dropping to zero at f = 1.0 and
reaching a value close to zero at f = 2.0. Figures 15(d)–15(f)
shows the same quantities in a sample with stronger pinning,
Fp = 0.5. The shapes of the curves remain similar to those at

x(a)

y

x(b)

y

FIG. 14. Images of portions of samples containing a square pin-
ning lattice showing background skyrmions (blue filled circles),
pinning site locations (brown circles), the driven skyrmion (red filled
circle), and the skyrmion trajectories during a fixed time window for
the system in Figs. 13(c) and 13(d) with Fp = 0.25, αm/αd = 1.0,
and θ int

sk = −45◦ at f = 2.0. (a) FD = 6.0 on the 1/1 step. (b) FD =
3.25 in a nonstep region.
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FIG. 15. Behavior under varied filling fraction f for the system
shown in Fig. 2 with a square pinning array, αm/αd = 1.0, θ int

sk =
−45◦, and FD = 1.0. [(a) and (d)] 〈Vx〉 (red) and 〈Vy〉 (blue) vs f .
[(b) and (e)] 〈V 〉 vs f . [(c) and (f)] θsk vs f . The pinning strength is
[(a)–(c)] Fp = 0.125 and [(d)–(f)] 0.5.

lower Fp, but there is now a finite window of f near f = 2.0
where θsk = 0◦.

In Figs. 16(a)–16(c), we plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus
f for the same system in Fig. 15 but at stronger pinning of
Fp = 0.625. There are now regions, such as near f = 1.0,
where the system is pinned. There are also extended regions
near f = 2.0 and f = 3.0 where θsk is close to zero. The
pinned phase arises from the interaction between the driven
skyrmion and the pinning sites, which occurs both directly
when the driven skyrmion encounters a pinning site, and in-
directly when the driven skyrmion experiences a repulsion
from a pinned skyrmion. At low f , the driven particle has
only direct interactions with the pinning sites, and as long
as FD/Fp > 1.0, it will not become pinned. At large f , all of
the pinning sites are occupied by background skyrmions and
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FIG. 16. Behavior under varied filling fraction f for the system
from Fig. 2 with a square pinning array, αm/αd = 1.0, θ int

sk = −45◦,
and FD = 1.0. [(a) and (d)] 〈Vx〉 (red) and 〈Vy〉 (blue) vs f . [(b) and
(e)] 〈V 〉 vs f . [(c) and (f)] θsk vs f . The pinning strength is [(a)–(c)]
Fp = 0.625 and [(d)–(f)] 0.75.
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FIG. 17. Dynamic phase diagram as a function of pinning
strength Fp and filling fraction f for the system in Figs. 15 and 16
with a square pinning array, FD = 1.0, and αm/αd = 1.0. The system
is pinned in the light blue region, moving with θsk = 0.0◦ in the red
region, moving with θsk = −45◦ in the brown region, and moving
with finite θsk and no velocity boost in the dark blue region.

the driven skyrmion never encounters a pinning site directly;
however, for certain incommensurate fillings at which the
positions of the background skyrmions become disordered,
the driven skyrmion can become pinned via interactions with
skyrmions located at pinning sites. The plots of 〈Vx〉, 〈Vy〉,
〈V 〉, and θsk versus f in Figs. 16(d)–16(f) for the same system
at Fp = 0.75 show that motion only occurs for f < 0.05 and
f > 2.0 with a broad pinned window appearing in between
those fillings, while the magnitude of θsk remains below 10◦
for the higher fillings.

Using the features in the transport curves and θsk, in Fig. 17
we construct a dynamic phase diagram as a function of Fp

versus f for the system in Figs. 15 and 16 with αm/αd = 1.0
and FD = 1.0. A large pinned region appears at larger Fp.
There are some smaller pinned regimes (not shown) above
f = 2.1. The intervals of pinning also depend strongly on FD.
When θsk ≈ 0◦, the motion is locked to the x direction, shown
as red regions. For low f where there are few interactions
with background skyrmions, the brown region indicates that
the motion is locked to θsk = 45◦. At these low values of
f , pinned states occur only when Fp > FD = 1.0. In the blue
region, θsk is finite and there is no boost effect. Near the bor-
der between the flowing and pinned regimes, there are some
windows of stick-slip motion, which produce 1/ f velocity
fluctuation noise and a bimodal velocity distribution with a
peak at 〈V 〉 = 0.0 and a second peak at higher velocities.

We next consider a sample with strong pinning of Fp =
0.75 and FD = 1.0 where we vary αm/αd . In Fig. 18(a), we
plot 〈Vx〉 and 〈Vy〉 versus f for a system with αm/αd = 0.1 and
θ int

sk = −5.74◦. In this case, 〈Vy〉 = 0 over the entire range of
f measured. There are two pinned intervals with 〈Vx〉 = 0 at
0.075 < f < 0.92 and 1.6 < f < 2.07. For low f , the driven
skyrmion moves along the pinning rows in the x direction. As
f increases, the driven skyrmion begins to collide with other
skyrmions and becomes pinned by the combination of the
pinning and the interactions with the background skyrmions.
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FIG. 18. 〈Vx〉 (red) and 〈Vy〉 (blue) versus f for a system with a
square pinning array, Fp = 0.75, and FD = 1.0. (a) αm/αd = 0.1 and
θ int

sk = −5.74◦. (b) αm/αd = 0.5 and θ int
sk = −30◦.

Near f = 1.0 where the system is more ordered, the driven
skyrmion channels along the x direction between the pinned
skyrmions. Near f = 0.8, the background skyrmions are dis-
ordered enough that the driven skyrmion trajectory begins to
divert into the y direction, but the driven skyrmion quickly
becomes trapped among the background skyrmions. For
f > 2.0, there are regions where the driven skyrmion depins
and shepherds some of the background skyrmions along the
x direction. Figure 18(b) shows 〈Vx〉 and 〈Vy〉 for a sample
with αm/αd = 0.58 and θ int

sk = −30◦. For low f , the skyrmion
Hall angle is finite. There is also a reduced window near
f = 1.0 where the driven skyrmion channels along the x di-
rection. Figure 18 demonstrates that increasing the Magnus
component of the dynamics enhances the effectiveness of the
pinning, a behavior opposite from what is typically observed
in systems with random pinning [25]. The high Magnus force
causes the driven skyrmion to attempt to move partially in the
y direction rather than strictly along the x direction, and since
the direction of motion no longer coincides with a symmetry
direction of the pinning lattice, encounters with pinning and
pinned skyrmions happen more frequently and increase the
effectiveness of the pinning.

In Figs. 19(a)–19(c), we plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus
f for a sample with αm/αd = 2.06 and θ int

sk = −64.15◦. From
0.41 < f < 1.08, there is an unpinned region with motion
locked to −45◦, as indicated by the 1/1 label in Fig. 19(c).
There is a pinned region for 1.08 < f < 2.16 followed by
another region in which motion occurs in both the x and y
directions. Notice that when f = 0, 〈Vx〉 = 0.44, but that in
the range 0.41 < f < 1.0, 〈Vx〉 ≈ 0.9, indicating a substantial
boost of the velocity in the direction of driving. There is also
a boost in the overall velocity for 1.08 < f < 2.16, as shown
in Fig. 19(b) where 〈V 〉 rises above the dashed line marking
〈V 〉 = 1.0. Figures 19(d)–19(f) shows 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk

versus f for a sample with αm/αd = 3.04 and θ int
sk = −71.8◦.
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FIG. 19. Behavior under varied filling fraction f for a system
with a square pinning array, Fp = 0.75, and FD = 1.0. [(a) and (d)]
〈Vx〉 (red) and 〈Vy〉 (blue) vs f . [(b) and (e)] 〈V 〉 vs f . [(c) and
(f)] θsk vs f . [(a)–(c)] αm/αd = 2.06 and θ int

sk = −64.15◦. [(d)–(f)]
αm/αd = 3.04 and θ int

sk = −71.8◦.

The pinned regions are reduced in width and occur away from
the commensurate fillings. There is still directional locking to
θsk = −45◦ near f = 1.0, as indicated in Fig. 19(f) by the 1/1
label, and the velocity boosted regime in Fig. 19(e) is more
extended.

In Figs. 20(a)–20(c), we plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus
f for a system with αm/αd = 4.39 and θ int

sk = −77.16◦. There
is a single pinned region near f = 0.5 and a peak in the
magnitude of 〈Vx〉, 〈Vy〉, and 〈V 〉 at f = 2.0, but there is no
peak near f = 1.0. The peak near f = 2.0 falls at the end of
an extended window of locking to −45◦, shown as the 1/1 step
in θsk in Fig. 20(c). Over most of the range of f shown, there
is a strong velocity boost in 〈V 〉, as indicated by 〈V 〉 running
above the 〈V 〉 = 1.0 line in Fig. 20(b). Figures 20(d)–20(f)
shows 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk for a sample with αm/αd =
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FIG. 20. Behavior under varied filling fraction f for a system
with a square pinning array, Fp = 0.75, and FD = 1.0. [(a) and (d)]
〈Vx〉 (red) and 〈Vy〉 (blue) vs f . [(b) and (e)] 〈V 〉 vs f . [(c) and (f)]
θsk versus f . [(a)–(c)] αm/αd = 4.39 and θ int

sk = −77.16◦. [(d)–(f)]
αm/αd = 13.28 and θ int

sk = −85.7◦.
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FIG. 21. Dynamic phase diagram as a function of filling fraction
f versus intrinsic skyrmion Hall angle −θ int

sk for the system from
Figs. 18–20 with a square pinning array, Fp = 0.75, and FD = 1.0.
The pinned region is light blue, the red region is motion with θsk =
0.0◦, the brown region is motion with θsk = −45◦, the dark brown
region is motion with θsk = arctan(1/2), and the dark blue region is
motion with finite θsk. Regions with and without velocity boost are
not distinguished in this diagram.

13.28 and θ int
sk = −85.7◦, where there is no longer a pinned

phase and only a small 1/1 locking step appears near f = 3.0.
Here the magnitude of θsk decreases nearly monotonically
with increasing f , while 〈V 〉 shows an increasing velocity
boost as f becomes larger. For large Magnus forces such as
this, the dynamics become increasingly disordered, destroying
the directional locking.

From the features in the transport curves and the behavior
of θsk for the system in Figs. 18–20, we construct a dynamic
phase diagram as a function of f versus −θ int

sk in Fig. 21. We
highlight the pinned phase, locking to the x direction with
θsk = 0◦, locking to θsk = −45◦ or the 1/1 direction, locking
to θsk = arctan(1/2) or the 1/2 direction, and motion at a
finite skyrmion Hall angle. No distinction is made between
regions with and without a velocity boost in this figure. For
−θ int

sk < 45◦, there are extended regions of locking in the
x-direction, while the additional directional locking effects
appear only for higher Magnus fores with −θ int

sk > 60◦. Near
f = 1.0 and 2.0, we find extended regions where θsk = 0◦.
There are extended regions of velocity boosting (not shown)
which appear when −θ int

sk > 45◦.

VI. TRIANGULAR PINNING ARRAYS

If the square pinning array is replaced with a triangular
pinning array, similar behavior occurs. In Figs. 22(a)–22(c),
we plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus f for a sample with tri-
angular pinning, Fp = 0.5, FD = 1.0, αm/αd = 1.0, and θ int

sk =
−45.0◦. Here θsk goes to zero at f = 1.0 but not at f = 2.0.
For a triangular pinning array, the background skyrmions
form a commensurate triangular lattice at f = 1.0; however,
at f = 2.0 the skyrmions form a honeycomb structure rather
than a triangular lattice. A similar structure has been observed
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FIG. 22. Behavior under varied filling fraction f for a system
with a triangular pinning array, Fp = 0.5, and FD = 1.0. [(a) and (d)]
〈Vx〉 (red) and 〈Vy〉 (blue) vs f . [(b) and (e)] 〈V 〉 vs f . [(c) and (f)] θsk

vs f . [(a)–(c)] αm/αd = 1.0 and θ int
sk = −45◦. [(d)–(f)] αm/αd = 1.73

and θ int
sk = −60◦.

for superconducting vortices on a 2D triangular pinning array
[73]. Since the honeycomb arrangement is less stable than the
triangular arrangement, the background skyrmions are not as
strongly pinned at f = 2.0 compared to f = 1.0, and there is
less reduction of the drag on the driven skyrmion at f = 2.0.
Figures 22(d)–22(f) shows 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk versus f
for the same sample at αm/αd = 1.73 and θ int

sk = −60◦, where
the skyrmion Hall angle does not show any feature at f = 1.0.
There is a small velocity boost for f < 1.0, as indicated by the
excursion of 〈V 〉 above the value 〈V 〉 = 1.0 in Fig. 21(e).

In Figs. 23(a)–23(c), we plot 〈Vx〉, 〈Vy〉, 〈V 〉, and θsk ver-
sus f for a triangular pinning system with αm/αd = 0.374
and θ int

sk = −20.5◦. There is a pinned region near f = 0.4
along with a region of θsk = 0.0◦ centered at f = 1.0 that
coincides with a peak in the magnitudes of 〈Vx〉 and 〈Vy〉.
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FIG. 23. Behavior under varied filling fraction f for a sys-
tem with a triangular pinning array, Fp = 0.5, FD = 1.0, and np =
0.4882. [(a) and (d)] 〈Vx〉 (red) and 〈Vy〉 (blue) vs f . [(b) and (e)]
〈V 〉 vs f . [(c) and (f)] θsk vs f . [(a)–(c)] αm/αd = 0.374 and θ int

sk =
−20.5◦. [(d)–(f)] αm/αd = 0.658 and θ int

sk = −33.4◦.
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FIG. 24. Images of samples containing a triangular pinning lat-
tice showing background skyrmions (blue filled circles), pinning site
locations (brown circles), the driven skyrmion (red filled circle),
and the skyrmion trajectories during a fixed time window for the
system in Figs. 22(a)–22(c) with Fp = 0.5, FD = 1.0, αm/αd = 1.0,
and θ int

sk = −45◦. (a) f = 0.6. (b) A portion of the sample at f = 1.0,
where the motion is only along the x direction.

Figures 23(d)–23(f) shows the same quantities in a sample
with αm/αd = 0.658 and θ int

sk = −33.4◦, where a peak appears
in 〈Vx〉 and 〈V 〉 for f = 1.0. We do not see the same commen-
surate effects at f = 2.0 due to the honeycomb ordering.

Figure 24(a) illustrates the skyrmion trajectories for the
system in Figs. 22(a)–22(c) at f = 0.6 where the skyrmion
motion is along θsk ≈ −18◦. The driven skyrmion interacts
both directly with the pinning sites and with the background
skyrmions, and its trajectory is disordered. In Fig. 23(b), the
same system at f = 1.0 exhibits channeling motion along the
θsk = 0◦ symmetry direction of the pinning array.

VII. THERMAL EFFECTS

Up to this point, we have not considered thermal fluc-
tuations. In general, we expect our results to remain robust
for temperature regimes where the driven skyrmion mo-
tion is confined to a 1D channel and the skyrmions in the
pinning sites remain pinned. To test this, we measure the
skyrmion Hall angle in a system with a square pinning array,
Fp = 0.5, θ int

sk = 45◦, and FD = 0.7. The temperature is added
using Langevin kicks with the properties 〈F T

i (t )〉 = 0 and
〈F T

i (t )F T
j (t ′)〉 = 2ηkBT δi jδ(t − t ′) [88]. In Fig. 25, we plot

θsk = arctan(〈Vy〉/〈Vx〉) versus F T for samples with αm/αd =
1.0 at fillings of f = 0.7248, 1.0, and 1.45. For the commen-
surate filling of f = 1.0, the skyrmion Hall angle starts at
θsk = 0 when F T = 0 and rapidly increases in magnitude with
increasing F T . For the incommensurate fillings f = 0.7248
and f = 1.45, θsk remains roughly constant as F T varies.
The background skyrmions remain pinned when F T < 2.0 but
begin to hop out of the pinning sites once F T > 2.0. The peri-
odic background skyrmion lattice that appears when f = 1.0
becomes disordered by the onset of skyrmion hopping, and the
behavior above but near F T = 2.0 is nearly indistinguishable
from that found for the incommensurate filling of f = 1.45.
The magnitude of θsk is larger for f = 1.0 than for f = 1.45 at
large thermal fluctuations of F T = 5.0 where the system acts
more like a fluid than a solid. Since the skyrmion density is
higher at f = 1.45, there are more frequent collisions between
the driven skyrmion and the background skyrmions, leading to
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FIG. 25. Behavior of θsk as a function of thermal fluctuation
magnitude F T in a system with a square pinning array, Fp = 0.5,
αm/αd = 1.0, θ int

sk = −45◦ and FD = 0.7 at different filling fractions
f = 0.7248 (green), 1.0 (red), and 1.45 (blue). When F T > 2.0, the
pinned skyrmions start to hop out of the pinning sites.

the reduction of the magnitude of the skyrmion Hall angle. In
Fig. 26, we illustrate the skyrmion trajectories at F T = 5.0
in the f = 1.0 sample where the thermal fluctuations have
disordered the commensurate configuration of the background
skyrmions.

x

y

FIG. 26. Image of a sample containing a square pinning lattice
showing background skyrmions (blue filled circles), pinning site
locations (brown circles), the driven skyrmion (red filled circle), and
the skyrmion trajectories during a fixed time window for the system
in Fig. 25 with Fp = 0.5, αm/αd = 1.0, θ int

sk = −45◦, FD = 0.7, and
f = 1.0 under finite thermal fluctuations with F T = 5.0. The ordered
commensurate lattice is destroyed by the thermal fluctuations.
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FIG. 27. (a) 〈Vx〉 and (b) 〈Vy〉 vs FD for a sample with a square
pinning array, Fp = 1.5, αm/αd = 0.57, and θ int

sk = −30◦ in which the
driving force is applied to all of the skyrmions at f = 1.01, 1.1392,
1.2416, 1.4512, 1.6576, 1.8656, 2.0, and 2.29, from bottom to top.
There is regime in which the interstitial skyrmions move while the
skyrmions trapped at pinning sites remain immobile. The upward
jumps in the magnitude of 〈Vx〉 and 〈Vy〉 at higher drives correspond
to the points at which the skyrmions at the pinning sites depin.

VIII. BULK DRIVING

In our system, we apply the driving force to only a single
skyrmion. In experiment, this could be achieved by driving the
skyrmion with a local tip; however, another possible approach
is to apply a driving force to all of the skyrmions in the strong
pinning regime where only the interstitial skyrmions move
while the pinned skyrmions remain trapped. The skrymions at
the pinning sites have a well defined depinning threshold Fp,
but skyrmions in the interstitial regions are pinned only via
interactions with the skyrmions at the pinning sites, so they
have a much lower depinning threshold F in

c . These mobile
interstitial skyrmions would have behavior very similar to that
of the individually driven skyrmions we study. To demon-
strate this, in Figs. 27(a) and 27(b), we plot 〈Vx〉 and 〈Vy〉,
respectively, versus FD for a sample with a square pinning
array, αm/αd = 0.5 and θsk = −30◦ where the driving force
is applied to all of the skyrmions for fillings of f = 1.01,
1.1392, 1.2416, 1.4512, 1.6576, 1.8656, 2.0, and 2.29. Here
we work in the strong pinning regime with Fp = 1.5, provid-
ing a wide region of drive over which 〈Vx〉 is finite while 〈Vy〉
remains zero. In this regime, only the interstitial skyrmions
are moving, but at higher drives when 〈Vy〉 becomes finite, the
skyrmions in the pinning sites depin and the system enters a
disordered flow state where skyrmions are able to move trans-
verse to the pinning channels. The extent of the window of
strictly interstitial motion diminishes as the filling increases,
so the range f = 1.0 to 2.1 is where bulk driving can best
mimic the effect of driving a single skyrmion. The intersti-
tial motion window is bounded by the interstitial depinning
threshold, which is controlled by the skyrmion density, and the
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bulk depinning threshold, which is controlled by the pinning
strength. Thus the window can be widened by using a strong
pinning force and/or lower skyrmion densities.

IX. DISCUSSION

We expect that our results should be robust for any pinning
geometries where commensuration effects occur. At match-
ing fillings where the background skyrmions are ordered,
the skyrmion Hall angle will be reduced and there can be a
velocity boost effect when the intrinsic skyrmion Hall angle
is greater than 45◦. Other possible pinning array geometries
include rectangular [130,131], 1D periodic [132], or even
quasiperiodic [133,134]. As partially explored above, we also
expect that thermal effects could enhance some of the phe-
nomena we observe. Our results should be general to other
systems coupled to periodic substrates where gyroscopic ef-
fects come into play.

In this work, we examined a wide range of intrinsic
skyrmion Hall angles ranging from θ int

sk = 5.75◦ to θ int
sk =

84◦. For the square pinning array, we find that the velocity
peaks for commensurate fillings are the most pronounced for
θ int

sk < 45◦, while for larger skyrmion Hall angles, the velocity
versus filling curves are smoother. Experimentally measured
values for the skyrmion Hall angle range from a few degrees
to as large as 22◦ [135,136] or 35◦ [50]; however there are
several studies in which quite large skyrmion Hall angles of
45◦ [137,138] and even 55◦ [46] have been reported. These
values are well within the range in which we find peaks in the
skyrmion velocity and a reduction of the measured skyrmion
Hall angle at commensurate fillings. The velocity boost where
the skyrmion moves even faster than the drive does not occur
until θsk > 45◦, so such an effect could be possible in ma-
terials that have yet to be discovered. It is also possible that
there are already existing systems containing small skyrmions
in which higher Hall angles are present but have not yet been
measured through imaging or transport.

In previous work by Reichhardt et al. [49], a single isolated
skyrmion moving over a periodic substrate was studied. Those
results correspond only to the 1 : 1 matching limit considered
in the present work, but here we have investigated a wide
range of fillings extending from f = 0.01 up to 4.0. Even
at 1 : 1 matching, there can be differences between driving
a single isolated skyrmion through fixed obstacles and driving
an interstitial skyrmion through a pinned lattice of skyrmions,
since the skyrmions within the pinning sites can shift positions
slightly and develop distortions in their lattice that can affect
the moving skyrmion. At other fillings, such collective effects
or additional drag effects become even more important, as
does the disordering of the background skyrmions and the
frustration effects that appear for incommensurate fillings.

In our study, we are assuming a particle-based model,
where distortions of the skyrmions themselves are neglected.
A future direction would be to examine this same system
with a continuum model that can capture the distortions of
the driven skyrmion during collisions or near approaches with
pinned background skyrmions. The particle-based model best
represents lower densities of relatively small skyrmions inter-
acting with a periodic nanostructured array of pinning sites.

X. SUMMARY

We have numerically examined the dynamics of individual
skyrmions driven through an assembly of other skyrmions in
the presence of a two-dimensional periodic pinning array. The
Magnus force causes the driven skyrmion to move with a finite
skyrmion Hall angle. Under a constant driving force, we find a
nonmonotonic dependence of the skyrmion Hall angle on the
density of the background skyrmions. In general, the skyrmion
Hall angle drops to zero or is reduced in magnitude at com-
mensurate conditions when the number of skyrmions is equal
to an integer multiple of the number of pinning sites. There is
also a peak in the net skyrmion velocity at the commensurate
filling. At incommensurate fillings, the skyrmion Hall angle
becomes finite again, but there is generally a decrease in
the skyrmion Hall angle with increasing filling fraction. At
commensurate fillings we find a two step depinning process
and the motion of the driven skyrmion is well ordered, while
at incommensurate fillings there is a single step depinning
transition with disordered motion. For larger Magnus forces,
additional locking effects can appear in which the motion of
the driven skyrmion locks to different symmetry directions
of the pinning lattice. In some cases, we find that increasing
the Magnus force can enhance the effectiveness of the pin-
ning, which is opposite to the behavior observed in a system
with random pinning. This occurs because the Magnus force
reduces the amount of channeling along the x direction. We
show that our results are robust for both square and triangular
pinning arrays. We also map out dynamical phase diagrams as
a function of varied pinning strength, Magnus force contribu-
tion, and filling fraction.
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