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Scattering of spin waves by a Bloch domain wall: Effect of the dipolar interaction
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It is known that a Bloch domain wall in an anisotropic ferromagnet is transparent to spin waves. This result
is derived by approximating the dipolar interaction between magnetic moments by an effective anisotropy
interaction. In this paper we study the scattering of spin waves by a domain wall, taking into account the full
complexity of the dipolar interaction, treating it perturbatively in the distorted wave Born approximation. Due
to the peculiarities of the dipolar interaction, the implementation of this approximation is not straightforward.
The difficulties are circumvented here by realizing that the contribution of the dipolar interaction to the spin
wave operator can be split into two terms: (i) an operator that commutes with the spin wave operator in the
absence of dipolar interaction and (ii) a local operator suitable to be treated as a perturbation in the distorted
wave Born approximation. We analyze the scattering parameters obtained within this approach. It turns out that
the reflection coefficient does not vanish in general, and that the transmitted waves suffer a lateral shift which
is of order one (not infinitesimal) even at nearly normal incidence. This lateral shift can be greatly enhanced by
making the spin wave go through an array of well-separated domain walls. The outgoing spin wave will not be
appreciably attenuated by the scattering at the domain walls since the transmission coefficient is very close to 1
at nearly normal incidence. This effect may be very useful to control the spin waves in magnonic devices.
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I. INTRODUCTION

Replacing electric currents by spin waves as a means to
transfer and manipulate information in information technol-
ogy devices is currently seen as an alternative that might
be revolutionary due to the ultra-low power consumption
involved in the propagation of spin waves, in comparison
with electric currents, which dissipate energy through ohmic
losses. This fact, besides its intrinsic interest from the funda-
mental physics point of view, makes magnonics a very active
field of research nowadays [1–4]. Indeed, several kinds of
logical devices based on spin waves have been proposed, such
as magnonic logic gates [5], magnonic logic circuits [6], and
a magnon transistor [7].

To develop a technology based partly on spin waves it is
necessary to have materials with adequate magnetic proper-
ties, especially in what concerns the attenuation of spin waves.
Ultra-low magnetic damping is shown by some insulators, no-
tably the yttrium iron garnet [8,9], and has also been recently
reported in thin films of a family of Heusler half-metals [10].
It is also necessary to have means to control and manipulate
spin waves. This can be achieved, in part, by controlling the
magnetic textures on which spin waves propagate, either by
manipulating them externally, producing graded magnetic tex-
tures [11–15], or by exploiting the inhomogeneous magnetic
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states characteristic of chiral magnets, such as skyrmion and
one-dimensional chiral soliton lattices. These states have the
advantage of appearing spontaneously and being controllable
by external means like temperature or magnetic field [16–23].

One tool to control the spin waves is the scattering (reflec-
tion and transmission) at artificially created interfaces, or at
artificial magnetic patterns. This scattering induces interesting
effects like Goos-Hänchen displacements [24–30], the Hart-
man effect [31], and the Talbot effect [32], which could be
used to manipulate the spin wave.

Spin waves are also scattered by magnetic solitons like
domain walls [33], skyrmions [34], or one-dimensional chi-
ral solitons [35], producing effects that could also be useful
to control the spin waves. For instance, the scattering by a
one-dimensional soliton causes a lateral shift of the prop-
agation direction of the scattered waves analogous to the
Goos-Hänchen displacement [35]. It was proposed that the
scattering by domain walls can be used for spin wave inter-
ferometry [36] or as a spin wave valve [37]. The scattering
by solitons has the additional advantage that these kinds of
magnetic structures can be moved across the material under
the action of external influences like magnetic fields or electric
currents [38–42].

In this paper we study the scattering of spin waves by
a Bloch domain wall in an anisotropic ferromangnet. It is
known that such a domain wall is transparent to the spin waves
since the reflection coefficient does vanish. This result is based
on theoretical computations that either ignore the dipolar in-
teraction or approximate it by an effective local anisotropy
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[33,43,44]. Here we show that the domain wall does actually
reflect the spin waves if the dipolar interaction is properly
taken into account. We obtain the reflected and transmitted
amplitudes treating the dipolar interaction as a perturbation
and using the distorted wave Born approximation. Due to
the nature of the dipolar interaction this approximation is
not straightforward, and it is necessary to split the spin wave
operator into an operator that can be included in the “unper-
turbed” operator plus another localized operator, suitable to be
treated in the Born approximation. The reflection coefficient
thus obtained is nonzero, but it vanishes for normal incidence,
which agrees with the numerical simulations of Hertel et al.
[36], which take into account properly the dipolar interaction.

II. DOMAIN WALL OF AN ANISOTROPIC
FERROMAGNET

Let us consider a ferromagnet with uniaxial anisotropy of
easy-axis type at a temperature sufficiently low, so that the
fluctuations of the modulus of the magnetization Ms can be
neglected. Then its magnetization is characterized by a unit
vector field n. We use a Cartesian coordinate system with
axes given by the three orthonormal vectors x, y, and z and
coordinates x, y, and z along these axes. The points of space
are represented by vectors like r, with x = x · r, and so on,
and r = |r|. We will also use sometimes the notation x1 = x,
x2 = y, and x3 = z, and x1 = x, x2 = y, and x3 = z, and then
xi = xi · r. The magnet is oriented so that its anisotropy axis
coincides with z. The dynamics of the magnetization is de-
rived from the energy functional E = ∫

d3rw(r) with

w(r) = A
3∑

i=1

(
∂xi n

)2 − Ku(z · n)2 − μ0M2
s

2
n · hd , (1)

where the successive terms in w(r) correspond to the ferro-
magnetic exchange interaction, the anisotropy interaction, and
the dipolar interaction. The constants A > 0 and Ku > 0 repre-
sent the strengths of the exchange and anisotropy interaction,
respectively, and μ0 is the vacuum permeability. The vector
field hd is the dimensionless magnetostatic field, which is the
solution of the boundary value problem

∇ × hd = 0, ∇ · hd = −∇ · n, (2)

in the whole space (interior and exterior to the magnet), with
hd decaying sufficiently fast as r → ∞ as a condition.

The dynamics of the magnetization obeys the Landau-
Lifschitz-Gilbert equation

∂t n = γ Beff × n + αn × ∂t n, (3)

where γ is the electron gyromagnetic factor, α is the Gilbert
damping constant, and Beff is the effective field, given by
the variational derivative (the first variation) of the energy
functional: Beff = −(1/Ms)δE/δn. In the present case it is

Beff = 2A

Ms

(∇2n + q2
0(z · n)z + εq2

0 hd
)
, (4)

where q0 = √
Ku/A has the dimensions of inverse length and

ε = μ0M2
s /2Ku is dimensionless. Notice that at a fixed time

hd is a linear functional of n, given by the solution of Eq. (2).
Since we are interested in the scattering of spin waves, we

neglect the damping term, assuming that the spin waves are
able to propagate to long-enough distances without apprecia-
ble attenuation.

Let us consider a large magnet, which eventually will be
infinite. Let Lx, Ly, and Lz be the system dimensions along
the x, y, and z directions, respectively, and let Lz be much
larger than Lx and Ly. In the limit Lz → ∞ the ferromagnetic
state with uniform magnetization along the z direction is an
equilibrium state since the magnetostatic field inside the mag-
net vanishes in this limit, and therefore the energy functional
attains its absolute minimum [45]. After the Lz → ∞ limit we
take Lx → ∞ and Ly → ∞. By symmetry, the uniform state
with magnetization pointing along the −z direction is another
equilibrium state.

This system has domain walls as metastable states. To see
this, let us neglect first the dipolar interaction. It is well known
that the Euler-Lagrange equations of the functional (1) with
the dipolar interaction term removed have the solution

n0(r) = sin θ (x)y + cos θ (x)z, (5)

where θ (x) = 2atan(eq0x ). This state is a domain wall cen-
tered at x = 0, which separates a domain with n(r) → z for
x → −∞ from the opposite domain, with n0(r) → −z, for
x → +∞. The magnetostatic field produced by the magneti-
zation field (5) vanishes in the infinite system, and therefore
Eq. (5) is a solution of the Euler-Lagrange equations with
dipolar interaction. Moreover, the dipolar energy reaches its
minimum (zero) at the domain wall state, which consequently
remains as a metastable state when the dipolar interaction is
taken into account.

III. SPIN WAVE OPERATOR IN PRESENCE
OF A DOMAIN WALL

Let us consider perturbations of the domain wall state,
which in general can be described by two real fields ξ1 and
ξ2, so that

n = (
1 + ξ 2

1 + ξ 2
2

)1/2
n0 + ξ1e1 + ξ2e2, (6)

where {e1, e2, n0} is a right-handed orthonormal triad. Notice
that e1 and e2 depend on r since n0 does. We take

e1(r) = x, e2(r) = cos θ (x)y − sin θ (x)z. (7)

We consider local perturbations δn = ξ1e1 + ξ2e2 whose
absolute value decreases to zero rapidly enough as r →
∞. These local perturbations propagate through the magnet
as spin waves. Their dynamics are governed by the lin-
earized Landau-Lifschitz-Gilbert equation, which, neglecting
the damping term, has the form

∂tδn = γ B(0)
eff × δn + γ δBeff × n0, (8)

where B(0)
eff is the effective field corresponding to the

metastable state n0

B(0)
eff = 2A

Ms
q2

0 cos(2θ )n0, (9)

and δBeff is the effective field to first order in the perturbation
δn,

δBeff = 2A

Ms

(∇2δn + q2
0(z · δn)z + εq2

0 δhd
)
, (10)
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with δhd being the magnetostatic field created by the pertur-
bation, which is the solution of

∇ × δhd = 0, ∇ · δhd = −∇ · δn. (11)

Projecting Eq. (8) onto e1 and e2 we obtain the equations for
the dynamics of ξ1 and ξ2:

∂tξ1 = −W ξ2 + ω0 ε (δhd × n0) · e1, (12)

∂tξ2 = W ξ1 + ω0 ε (δhd × n0) · e2, (13)

where ω0 = 2γ Aq2
0/Ms and W is the Schrödinger operator

W = −ω0

q2
0

∇2 + ω0 − 2ω0sech2(q0x). (14)

The dipolar field determined by Eq. (11) is linear in ξ1 and ξ2

and thus we have

[δhd (r) × n0(x)] · e1(x) = (D11ξ1)(r) + (D12ξ2)(r), (15)

[δhd (r) × n0(x)] · e2(x) = (D21ξ1)(r) + (D22ξ2)(r), (16)

where the Dαβ are linear operators which will be determined
in the next section. Thus, defining ξ as the two-component
column vector ξ = (ξ1, ξ2)T , the spin wave equation can be
written as

∂tξ = �ξ, (17)

where � = �0 + εω0D is a linear operator with

�0 =
(

0 −W
W 0

)
, D =

(
D11 D12

D21 D22

)
. (18)

If the dipolar interaction is neglected, or if it is ap-
proximated by an effective interaction included in Ku, the
dynamics of the spin waves is given by �0. This operator
has been studied since long ago by a number of researchers
(see Refs. [33,36,43,44,46–49]). Let us recall its spectral
properties, which are needed in the following. Let ψ be an
eigenfunction of W , with eigenvalue ν � 0 (since the spec-
trum of W is nonnegative), so that W ψ = νψ . Then the two
states

1√
2

(
1
−i

)
ψ,

1√
2

(
1
i

)
ψ, (19)

are eigenstates of �0 with eigenvalues +iν and −iν, re-
spectively. Hence, the spectral properties of �0 are fully
determined by those of W .

To obtain the spectrum of W we perform a Fourier trans-
form in the variables y and z,

ψ̃ (x, kp) =
∫

d2rpe−ikp·rpψ (x, rp), (20)

where kp = kyy + kzz and rp = yy + zz, and the spectral equa-
tion for W becomes

ω0

q2
0

(
− d2

dx2
+ k2

p + q2
0 − 2q2

0sech2(q0x)

)
ψ̃ (x, kp)

= ν ψ̃ (x, kp). (21)

This is a one-dimensional time-independent Schrödinger
equation with potential −2q2

0sech2(q0x), which is exactly

solvable [50]. Its spectrum consists of one bound state with
eigenvalue νB = ω0k2

p/q2
0 and eigenfunction

φB(x) = q0√
2

sech(q0x), (22)

and a continuum spectrum above a gap, given by ωG = νB +
ω0. The continuum spectrum is parameterized by a real num-
ber (wave number) kx as

ν(k) = ω0
k2

x

q2
0

+ ωG, (23)

with k = kxx + kp, and has the eigenfunctions

φkx (x) = 1√
q2

0 + k2
x

eikxx[q0 tanh(q0x) − ikx]. (24)

The eigenfunctions satisfy the normalization condition∫ ∞

−∞
φ2

B(x)dx = 1, (25)

∫ ∞

−∞
φkx (x)∗φk′

x
(x)dx = δ

(
kx − k′

x

)
, (26)

and the closure relation

φB(x)φB(x′) +
∫ ∞

−∞

dkx

2π
φkx (x)φ∗

kx
(x′) = δ(x − x′). (27)

The eigenstates of �0 are obtained by substituting ψ in
Eq. (19) by eikp·rpφB(x) or by eikp·rpφkx (x). The closure relation
(27) ensures that �0 has the spectral representation

�0(r, r′) =
∫

d2kp

(2π )2
eikp·(rp−r′

p)�̃0(kp, x, x′), (28)

where

�̃0(kp, x, x′) =
(

0 −νB

νB 0

)
φB(x)φB(x′)

+
∫ ∞

−∞

dkx

2π

(
0 −ν(k)

ν(k) 0

)
φkx (x)φ∗

kx
(x′).

(29)

From now on we will not show explicitly the kp dependence
of �̃0, which has to be understood.

The spin wave spectrum contains two states bound to the
domain wall, sometimes called Winter modes [43], whose
spatial distribution is described by the wave function φB(x),
which decays exponentially for |x| → ∞. These modes are
very interesting since they only propagate on the domain wall
plane, so that they might be used as a wave guide for spin
waves [51]. Spin wave propagation bound to the domain wall
was experimentally observed by Wagner et al. [52].

In this paper, however, we focus on the scattering of un-
bounded spin waves by the domain wall. For that we will need
the asymptotic behavior of φkx (x) as x → ±∞, which is given
by

φkx (x) ∼ −i e±iδ0 eikxx, x → ±∞, (30)

where

δ0 = π/2 − atan(kx/q0). (31)
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It is well known that the 2q2
0sech2(q0x) potential is reflec-

tionless [50], and this quality is inherited by the �0 operator.
Therefore, the domain wall does not reflect the spin waves if
the dipolar interaction is neglected, or if it is approximated by
an effective magnetic anisotropy [33,43,44].

IV. CONTRIBUTION OF THE DIPOLAR INTERACTION

Let us analyze the form of the D operator, which gives
the contribution of the dipolar interaction to the spin wave
operator.

Since we consider local perturbations, which vanish suffi-
ciently rapid as r → ∞, the solution of Eq. (11) is

δhd (r) = − 1

4π

∫
d3r′ r − r′

|r − r′|3 ∇ · δn(r′). (32)

Notice that the perturbations induce no magnetic surface
charge since they are localized and vanish on the surface.
Therefore, the above expression for the dipolar field cre-
ated by the perturbations is exact. Combining Eq. (32) with
Eqs. (15) and (16) we obtain the form of the D operator.
Noticing that e1 and e2 are independent of y and z, we perform
the Fourier expansion in the variables y and z (recall that
rp = yx + zz and kp = kyx + kzz):

ξα (x, rp) =
∫

d2kp

(2π )2
eikp·rp ξ̃α (x, kp), α = 1, 2. (33)

In this way we get

(Dαβξβ )(x, rp) =
∫

d2kp

(2π )2
eikp·rp (D̃αβ ξ̃β )(x, kp), (34)

where no summation in β is is to be understood and

(D̃αβ ξ̃1)(x, kp) =
∫ ∞

−∞
dx′D̃αβ (x, x′, kp)ξ̃β (x′, kp), (35)

where the kernels are given by

D̃11(x, x′, kp) = −iF (x, kp)σ (x − x′)ρ(x − x′), (36)

D̃12(x, x′, kp) = −F (x, kp)ρ(x − x′)F (x′, kp), (37)

D̃21(x, x′, kp) = δ(x − x′) − ρ(x − x′), (38)

D̃22(x, x′, kp) = iσ (x − x′)ρ(x − x′)F (x′, kp). (39)

In these expressions we introduce the functions

σ (x) = x/|x|, ρ(x) = kp

2
e−kp|x|. (40)

and F (x, kp), which is the projection of kp/kp onto e2(x):

F (x, kp) = ky

kp
cos θ (x) − kz

kp
sin θ (x). (41)

Notice that F (x, kp) → ∓ky/kp as x → ±∞. Some details on
the derivations of the operators D̃αβ are given in Appendix A.

For fixed kp the operator D̃ is not invariant under reflection
about the domain wall center, x = 0. This is due to the fact that
the the equilibrium state n0(x) is not invariant under reflection
with respect to the yz plane [not even the ferromagnetic state
n0(x) = z is invariant, since n is an axial vector]. However,

n0(x) is invariant under the composition of a reflection with
respect to yz plane and a reflection with respect to the xy plane.
This means that D̃ is invariant under the transformation x →
−x and kz → −kz, keeping ky unchanged, as can be easily
checked.

The operator D contributes to the dynamics of the asymp-
totic spin wave states, since (D̃αβ ξ̃α )(x, kp) does not vanish
as |x| → ∞. It is clear that this has to be so since the dipolar
interaction affects also to the perturbations of the ferromag-
netic states. To study the scattering we have to separate from
D̃αβ , the part that survives as |x| → ∞. Let us introduce the
asymptotic operators D̃(±)

αβ so that

D̃αβ ξ̃β (x, kp) ∼ D̃(±)
αβ ξ̃β (x, kp) (42)

for x → ±∞. Taking into account the asymptotic behavior of
F (x, kp) as x → ±∞ we have

D̃(±)
11 (x, x′, kp) = ∓i

ky

kp
σ (x − x′)ρ(x − x′), (43)

D̃(±)
12 (x, x′, kp) = −k2

y

k2
p

ρ(x − x′), (44)

D̃(±)
21 (x, x′, kp) = δ(x − x′) − ρ(x − x′), (45)

D̃(±)
22 (x, x′, kp) = ±i

ky

kp
σ (x − x′)ρ(x − x′). (46)

The two asymptotic operators are different due obviously
to the fact that spin waves propagate on ferromagnetic do-
mains with opposite magnetization if x → −∞ and x →
+∞. To avoid the complications of scattering with two dif-
ferent asymptotic operators we consider ky = 0. In this case
F (x, kp) tends to zero exponentially as |x| → ∞ and there-
fore the only nonvanishig asymptotic operators are D̃(−)

21 =
D̃(+)

21 , and therefore we have a single asymptotic operator for
|x| → ∞.

The simplicity of the asymptotic D operator in the case
ky = 0 (only D̃(±)

21 is nonzero) can be easily understood: the
perturbations for x → ±∞ are δn ∼ ξ1x ∓ ξ2y and therefore
the source of the dipolar field is

∇ · δn ∼ ∂xξ1 ∓ ∂yξ2. (47)

Since ∂yξ2 = 0 if ky = 0, we have that, in this case, the dipo-
lar interaction depends only on ∂xξ1 if x → ±∞. Hence the
asymptotic D operator acts only on ξ1 and is the same for
x → ±∞.

The asymptotic operators are translationally invariant and
their kernels have a Fourier representation, which for ky = 0
is given by

D̃(±)(x − x′) = Z
∫ ∞

−∞

dkx

2π

k2
x

k2
x + k2

p

eikx (x−x′ ), (48)

where

Z =
(

0 0
1 0

)
. (49)

Notice that we use the same symbol for the operators D̃(±) and
their integral kernels.
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V. SCATTERING PROBLEM

We address the scattering problem perturbatively, taking
advantage of the exact solvability of the problem in the
absence of the dipolar interaction and treating this as a pertur-
bation. To this end we have to separate the spin wave operator
into an operator which is to be treated exactly (it has to contain
�̃0) and has the correct asymptotic behavior, plus a localized
perturbation which does not contribute to the dynamics of
the asymptotic states. Localization means that the operator
is given by an integral kernel �(x, x′) so that the integral∫ |�(x, x′)|dx′ decays exponentially to zero as |x| → ∞. A
particular case of this is a potential that decays rapidly enough
with the distance. However, the perturbation in the present
case does not have the form of a potential.

A. Split of the spin wave operator into an “unperturbed”
operator plus a perturbation

The perturbation cannot be εω0D̃ since this is not a local-
ized operator. In the case ky = 0, we can separate from D̃ its
asymptotic part, D̃(−), and D̃ − D̃(−) is localized. The problem
with this natural identification of the perturbation is that we do
not have the exact spectrum of �̃0 + D̃(−). To overcome this
difficulty we split D̃(−) as D̃(−) = D̃(u) + �, where these two
new operators are given by the integral kernels

D̃(u)(x, x′) = Z
∫

dkx

2π

k2
x

k2
x + k2

p

φkx (x)φ∗
kx

(x′), (50)

and

�(x, x′) = Z
∫

dkx

2π

k2
x

k2
x + k2

p

(
eikx (x−x′ ) − φkx (x)φ∗

kx
(x′)

)
.

(51)
The sum of these two operators give D̃(−), as can be seen
from Eq. (49). The key points are (i) D̃(u) has the asymptotic
behavior of D̃(−) and �̃u = �̃0 + εω0D̃(u) is an “unperturbed”
operator that can be treated exactly and has the correct the
asymptotic behavior and (ii) that, as we show below, � is a
localized operator. The reason for this is that the spectral pro-
jector φkx (x)φ∗

kx
(x′) tends asymptotically to exp[ikx(x − x′)],

the difference between these two functions being a function
exponentially decaying with |x|.

Summarizing, we split the spin wave operator into an “un-
perturbed” term �̃u and a localized perturbation V as

�̃ = �̃u + εω0V, (52)

where V = D̃ − D̃(−) + �. Equation (52) is the key point of
this work.

B. �̃u operator

To study the scattering we need the asymptotic states,
which are given by the eigenstates of �̃u. The explicit form
of the integral kernel of �̃u is given by

�̃u(x, x′) = �̃(b)
u (x, x′) + �̃(s)

u (x, x′), (53)

with

�̃(b)
u (x, x′) =

(
0 −νB

νB 0

)
φB(x)φB(x′), (54)

and

�̃(s)
u (x, x′) =

∫
dkx

2π

(
0 −ω2(k)

ω1(k) 0

)
φkx (x)φ∗

kx
(x′), (55)

where we define

ω1(k) = ν(k) + ε
ω0k2

x

k2
x + k2

p

, ω2(k) = ν(k). (56)

The spectrum of �̃u consists of the two bound states of �̃0

and a continuum of states, with the spectrum on the imaginary
axis parameterized by kx as ±i

√
ω1ω2, and with eigenstates

given by

φkx (x) ξp, φkx (x) ξm, (57)

where the labels p and m correspond to +i
√

ω1ω2 and
−i

√
ω1ω2, respectively. In the above expressions we intro-

duced the two component vectors

ξm = 1

(ω1 + ω2)1/2

(√
ω2

i
√

ω1

)
, (58)

and ξp = ξ ∗
m. For fixed kp each eigenvalue is doubly degener-

ate, the degeneracy corresponding to the two opposite values
of kx since ω1 and ω2 are even functions of kx.

C. � operator

Let us write �(x′, x′′) = d (x′, x′′)Z , so that d (x′, x′′) is the
integral entering the left-hand side of Eq. (51). Taking into
account the form of φkx (x) we get

d (x′, x′′) =
∫

dkx

2π
eikx (x′−x′′ ) q2

0 k2
x g(x′, x′′, kx )(

k2
x + k2

p

)(
k2

x + q2
0

) , (59)

where

g(x′, x′′, kx ) = 1 − tanh(q0x′) tanh(q0x′′)

+ i
kx

q0
[tanh(q0x′′) − tanh(q0x′)]. (60)

If x′ 
= x′′ the integrand behave for large |kx| as exp[ikx(x′ −
x′′)]/kx, which is integrable, while it behaves as 1/k2

x if x′ =
x′′, which is also integrable. The integral can be evaluated by
the method of residues, closing the integration contour on the
upper half complex plane if x′ − x′′ > 0 or on the lower half
complex plane if x′ − x′′ < 0. We obtain

d (x′, x′′) = q2
0

k2
p − q2

0

(d0(x′, x′′, kp) − d0(x′, x′′, q0)), (61)

where

d0(x′, x′′, k) =
(

1 + tanh(q0x′) tanh(q0x′′)

+ k

q0
| tanh(q0x′) − tanh(q0x′′)|

)
k

2
e−k|x′−x′′|.

(62)

It is easily checked that the kernel d (x′, x′′) is continuous at
kp = q0. We see that, as expected, � is a localized operator.
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D. Lippmann-Schwinger equation

The spectral equation for �̃ has the form

(�̃u + εω0V )ξ = −iωξ. (63)

We henceforth consider on ω > 0 and kx > 0, where kx is
related to ω by

√
ω1ω2 = ω. Since V is a localized operator,

the solutions of the above equation behave asymptotically as
eigenstates of �̃u, that is,

ξkx ∼ (α± eikxx + β± e−ikxx )ξm (64)

for x → ±∞, taking into account the asymptotic behavior of
φkx (x). The solution appropriate for scattering requires β+ =
0 (no wave incoming from +∞), and in this case β−/α− and
α+/α− are the reflected and transmitted amplitudes, respec-
tively.

The condition β+ = 0 is satisfied if the eigenstate ξ+
kx

is
chosen as the solution of the Lippmann-Schwinger equation

ξ+
kx

(x) = φkx (x) ξm +
∫ ∞

−∞
dx′G+(x, x′,−iω + μ)

×
∫ ∞

−∞
dx′′εω0V (x′, x′′) ξ+

kx
(x′′), (65)

with μ → 0+. The Green’s function G+ is the integral kernel
of the resolvent operator (−iω + μ − �̃u)−1 and satisfies the
asymptotic condition

lim
μ→0+

G+(x, x′; −iω + μ) ∼ eikxxQ(x′) (66)

for x → +∞, where Q(x′) is a 2 × 2 matrix independent of
x. The positive sign of μ ensures that this condition holds, as
will be seen below.

VI. GREEN’S FUNCTION

The scattering parameters are obtained from the asymptotic
behavior of ξ+

kx
as x → ±∞. Therefore, to calculate them we

need the asymptotic behavior of the Green’s function.
Using the spectral representation (53) we obtain

G+(x, x′,−iω + μ)

= 1

(−iω + μ)2 + ν2
B

(−iω + μ −νB

νB −iω + μ

)
φB(x)φB(x′),

+
∫ ∞

−∞

dk′
x

2π

1

(−iω + μ)2 + ω1ω2

×
(−iω + μ −ω2

ω1 −iω + μ

)
φk′

x
(x)φ∗

k′
x
(x′), (67)

where it is understood that ω1 and ω2 depend on k′
x. As

we said, we reserve the symbol kx for the solutions of√
ω1ω2 = ω.
The part of the Green’s function due to the bound states

does not contribute to the asymptotic behavior, and it can be
safely ignored since we take ω above the gap (ω > νB + ω0).

Thus, we have to evaluate the integral of the right-hand side
of Eq. (67) for x → ±∞. The integrand is a meromorphic
function of k′

x that decays exponentially to zero as |k′
x| → ∞

on the upper half complex plane if x > x′, and on the lower
half plane if x < x′ due to the form of φk′

x
(x). Therefore the

FIG. 1. Pole structure of the integrand of the right-hand side of
Eq. (67).

integral can be evaluated by the method of residues, choosing
an integration contour as in Fig. 1 for x > x′.

The generic pole structure of the integrand, which is ana-
lyzed with some detail in Appendix B, is displayed in Fig. 1.
There are two poles coming from φk′

x
(x)φ∗

k′
x
(x′), located on

the imaginary axis at ±iq0 (yellow points). In addition, there
are six more poles (blue points), three of them on the upper
half plane and another three on the lower half plane (see
Fig. 1). As μ → 0+ two of these six poles attain the real
axis, at the solutions k′

x = ±kx of the equation
√

ω1ω2 = ω

(see Appendix B) The negative pole −kx is reached from the
lower half plane and the positive pole kx from the upper half
plane. All the other poles remain separated from the real axis
as μ → 0+ (see the red circles in Fig. 1).

Consider the case x > x′. For x − x′ → ∞ the contribution
of poles which do not attain the real axis as μ → 0+ is
exponentially small and do not contribute to the asymptotic
behavior, which is given only by the kx pole. Its residue can
be readily computed and gives the asymptotic part, as x → ∞,
keeping x′ fixed, of the Green’s function

G+
as(x, x′,−iω) = − i

vx
eiδ0 eikxxφ∗

kx
(x′)Pm, (68)

where vx = ∂ω/∂kx is the group velocity, and

Pm = 1

2

(
1 −i

√
ω2/ω1

i
√

ω1/ω2 1

)
(69)

is the projector along ξp onto ξm:

Pm ξp = 0, Pm ξm = ξm. (70)

One has to bear in mind that in Eq. (68) ω1 and ω2 depend
on kx and that ω and kx are related by the equation ω1ω2 =
ω2 (the dispersion relation) which then determines the group
velocity.

For x − x′ < 0 we have to close the integral contour on
the lower half plane and again only the pole attaining the
real axis (this time at k′

x = −kx) as μ → 0+ contributes to the
asymptotic behavior x − x′ → −∞. The asymptotic Green’s
function as x → −∞ with x′ fixed is given by

G+
as(x, x′,−iω) = i

vx
eiδ0 e−ikxxφkx (x′)Pm. (71)

VII. DISTORTED WAVE BORN APPROXIMATION

We get an approximation to ξ+
kx

(x) by using the first
(distorted wave) Born approximation to solve the Lippmann-
Schwinger equation, substituting on its right-hand-side ξkx (x′′)
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by φkx (x′′) ξm:

ξ+
kx

(x) = φkx (x) ξm +
∫ ∞

−∞
dx′G+(x, x′,−iω + μ)

×
∫ ∞

−∞
dx′′εω0V (x′, x′′) φkx (x′′) ξm. (72)

We expect the Born approximation will be good if εq0/kx

is small enough since the correction to the wave function
introduced by the perturbation considered here is of this or-
der. It is well known that in one-dimensional problems the
Born approximation cannot be used in the vicinity of the gap
frequency (small kx) since the Green’s function diverges for
kx → 0 (see Ref. [53]).

The scattering properties (reflection and transmission am-
plitudes) are obtained in the Born approximation from the
explicit expression for ξ+

kx
(x) given by Eq. (72).

A. x → ∞ asymptotics

For x → ∞ we can substitute the Green’s function by the
corresponding asymptotic Green’s function, given by Eq. (68).
We can neglect the contribution to the integral in dx′ of the
region in which x′ is of the order of, or larger than, x, since∫ ∞

−∞
dx′′εω0V (x′, x′′) φkx (x′′) (73)

tends to zero exponentially as x′ → ∞. This is due to the
fact that the perturbation V is a localized operator. Using the
asymptotic form of φkx (x) and G+

as given by Eq. (68), we get
for x → ∞

ξ+
kx

(x) ∼ −ieiδ0 eikxxξm − iεω0

vx
eiδ0 eikxxPmT ξm, (74)

where the 2 × 2 matrix T depends only on kx and kz and is
given by

T =
∫ ∞

−∞
dx′φ∗

kx
(x′)

∫ ∞

−∞
dx′′V (x′, x′′)φkx (x′′). (75)

Taking into account the form of V (x′, x′′), the matrix elements
ti j of T are given by the integrals

ti j =
∫

dx′
∫

dx′′φ∗
kx

(x′) fi j (x
′, x′′, kz )φkx (x′′), (76)

where

f11 = i σ (kz ) sin θ (x′)σ (x′ − x′′)ρ(x′ − x′′), (77)

f12 = − sin θ (x′)ρ(x′ − x′′) sin θ (x′′), (78)

f21 = d (x′, x′′), (79)

f22 = −i σ (kz )σ (x′ − x′′)ρ(x′ − x′′) sin θ (x′′). (80)

Since Pm projects onto ξm, we have PmT ξm = χtξm, where
χt is a complex number that can be computed in terms of the
ti j :

χt = i

2
(
√

ω1/ω2 t12 −
√

ω2/ω1 t21). (81)

In deriving the above expression we used the fact that, by
symmetry, t11 + t22 = 0. Furthermore, the integrals that define

t12 and t21 can be evaluated explicitly in terms of the derivative
of the digamma function. The explicit expressions are given in
Appendix C.

Summarizing, we obtained that for x → ∞

ξ+
kx

(x) ∼ −ieiδ0

(
1 + εω0

vx
χt

)
eikxxξm. (82)

B. x → −∞ asymptotics

For x → −∞ we can substitute the Green’s function by the
corresponding asymptotic Green’s function, given by Eq. (71),
and we can neglect the contribution to the integral in dx′ of the
region in which |x′| is of the order of, or larger than, |x| since
V is a localized operator. Using the asymptotic form of φkx (x)
and G+

as given by Eq. (71), we get for x → −∞

ξ+
kx

(x) ∼ −ie−iδ0 eikxxξm + iεω0

vx
eiδ0 e−ikxxPmRξm, (83)

where the 2 × 2 matrix R depends only on kx and kz and is
given by

R =
∫ ∞

−∞
dx′φkx (x′)

∫ ∞

−∞
dx′′V (x′, x′′)φkx (x′′). (84)

Taking into account the form of V (x′, x′′), the matrix elements
ri j of R are given by

ri j =
∫

dx′
∫

dx′′φkx (x′) fi j (x
′, x′′, kz )φkx (x′′), (85)

with the functions fi j defined by Eqs. (77) to (80).
Since Pm projects onto the subspace spanned by ξm, we

have PmRξm = χrξm, where χr is a complex number that can
be computed in terms of the ri j :

χr = 1

2
(r11 + r22) + i

2
(
√

ω1/ω2r12 −
√

ω2/ω1r21). (86)

Hence we have that for x → −∞
ξ+

kx
(x) ∼ −ie−iδ0 eikxxξm + iεω0

vx
χreiδ0 e−ikxxξm. (87)

C. Scattering parameters

Inspecting Eqs. (87) and (82) we see that by multiplying
ξ+

kx
by ieiδ0 we get the asymptotic behavior

ξ+
kx

(x) ∼ eikxx + R e−ikxx, ξ+
kx

(x) ∼ T eikxx, (88)

for x → −∞ and x → +∞, respectively, where

R = −εω0

vx
ei2δ0χr, T = ei2δ0

(
1 − εω0

vx
χt

)
, (89)

are the reflection and transmission amplitudes, respectively.
Thus, in the Born approximation the reflection coefficient is

|R| = ε
ω0

vx
|χr |, (90)

while the transmission coefficient is, to this order of approx-
imation, |T | = 1 since χt is purely imaginary. The reflected
and transmitted waves pick up phases ϕr and ϕt , respectively,
with respect to the incident wave, which are given by

ϕr = 2δ0 + δϕr, ϕt = 2δ0 + εδϕt , (91)
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where

δϕr = π + atan

(√
ω1/ω2r12 − √

ω2/ω1r21

r11 + r22

)
, (92)

δϕt = ω0

2vx
(
√

ω1/ω2 t12 −
√

ω2/ω1 t21). (93)

The dependence of the phases on the wave vector originates a
shift of the center of the scattered wave packets, with respect
to the center of the incident wave packet, given by

δxl = −∂ϕl

∂kx
, δzl = −∂ϕl

∂kz
, (94)

where the subscript l stands either for r (reflected) or for t
(transmitted). These relations are obtained from a stationary
phase analysis and imply that the scattered waves propagate
along lines shifted laterally with respect to the prediction of
the geometrical optics limit by an amount given by

δsr = sin α
∂ϕr

∂kx
+ cos α

∂ϕr

∂kz
, (95)

δst = sin α
∂ϕt

∂kx
− cos α

∂ϕt

∂kz
, (96)

where α is the incidence angle α = atan(vz/vx ), with vz =
∂ω/∂kz.

The reflection coefficient vanishes at normal incidence
(kz = 0), as can be seen by a careful analysis of the integrals
(85), and thus in these cases all the energy carried by the
spin wave is transmitted. The contribution of the dipolar in-
teraction to the transmitted amplitude also vanishes at normal
incidence, as can be seen from Eqs. (C1) and (C2). However,
∂t21/∂kz does not vanish in the limit kz → 0 (the function t21

is not differentiable at kz = 0). This is interesting because
the transmitted wave is shifted laterally by a finite amount
even at nearly normal incidence [54] (small α), where the
transmission coefficient is very close to one. To order ε, the
lateral shift at nearly normal incidence is approximately given
by

δst ≈ εσ (kz )

4kx

q4
0

k2
x + q2

0

[
2

(ikx − 4q0)2
+ 2

(ikx − 2q0)2

− 1

k2
x

− 1

2q2
0

ψ ′
(

ikx − 4q0

2q0

)
+ c.c.

]
. (97)

The term obtained by removing the σ (kz ) factor from the
above expression is negative. This means that the sign of
the lateral shift at nearly normal incidence is −σ (kz ), that
is, the lateral shift is opposite to the propagation direction
along the asymptotic magnetization axis (the z axis in our
coordinate system). The case of exactly normal incidence is
complicated by the discontinuity of ∂t21/∂kz and it is not
addressed here.

D. Dependence on the domain wall helicity

From the point of view of the propagating spin wave it
is possible to assign a helicity to the domain wall. For the
spin waves considered here, which propagate from left to
right along the x direction, the domain wall considered here
is left-handed since sin θ (x) > 0. There is also a right-handed

FIG. 2. Reflection coefficient (left) for the incidence angles in-
dicated in the legend and phases of the scattered waves (right) for
incidence angle α = 60o.

domain wall, with the same energy, obtained by substituting
sin θ (x) by − sin θ (x), keeping cos θ (x) unchanged.

By inspecting Eqs. (76), (85), and (77) to (80), we see that
t11, t22, r11, and r22 change sign when changing the domain
wall helicity, sin θ (x) → − sin θ (x), while t12, t21, r12, and r21

remain unchanged.
Then, Eq. (92) shows that the contribution of the dipolar

interaction to the phase shift of the reflected wave changes
sign (relative to π ) if the domain wall helicity is changed.
Therefore, the lateral shift of the reflected wave depends on
the domain wall helicity.

However, the contribution of the dipolar interaction to the
phase shift of the transmitted wave is unchanged when the
domain wall helicity is changed, as shown by Eq. (93). This
means that the transmitted wave is not affected by the change
of the domain wall helicity.

The sensitivity of the reflected wave to the domain wall
helicity represents a breaking of the chiral symmetry induced
by the dipolar interaction [55].

E. Some results

Let us discuss some results obtained by numerical eval-
uation of the integrals (85), and of the right-hand-side of
Eqs. (C1) and (C2) given in Appendix C.

Let kx = k cos α and kz = k sin α, where k is the modulus
of the wave vector and α the incidence angle. Figure 2 (left)
displays the reflection coefficient |R|/ε as a function of k for
several values of the incidence angle. Actually, we plot the
limit ε → 0 of |R|/ε since we consider ε small. As discussed
in the previous section, the reflection coefficient vanishes at
normal incidence (α = 0). We see from Fig. 2 (left) that |R|/ε
is very small for α = 10o.

Figure 2 (right) displays the phases of the scattered waves
induced by the dipolar interaction, δϕr and δϕt , for incidence
angle α = 60o. The inset shows the phase shift in the absence
of dipolar interaction 2δ0. Again, we keep only the first order
in ε and consequently we set ε = 0 in δϕr and δϕt [see the
definitions (91)]. We see that ϕr → π/2 as k → ∞ (since
δ0 → 0), as it happens to be usually for reflected waves.
Analogously, we see that ϕt → 0 as k → ∞, as it is expected
for a transmitted wave.

The left panel of Fig. 3 shows the lateral shift of the
scattered waves, in units of the domain wall width 1/q0, as a
function of the wave number k for α = 60o. To avoid choosing
a particular value of ε, we use Eq. (91) to split the shift of
the transmitted wave as δst = δst0 + εδst1, where δst0 comes
from the 2δ0 contribution to ϕt and δst1 comes from the δϕt

term of ϕt . The figure displays δst0 and δst1, with ε = 0 in this
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FIG. 3. Lateral shift of the scattered waves at incidence angle
α = 60o (left) and at nearly normal incidence α → 0 in units of the
domain wall width 1/q0. For nearly normal incidence the absolute
value is plotted.

last quantity. The two terms have opposite sign and therefore
tend to cancel, but the degree of cancellation depends on ε. It
is seen that the shifts are of the order of the wavelength for
k of the order of q0 (i.e., for wavelengths of the order of the
domain wall width), and vanish as k → ∞, as expected. If
the reflection coefficient is small enough, and this depends on
the actual value of ε, the shift of the transmitted waves can
be enhanced by making the spin wave propagate through an
array of well-separated domain walls since the shift is clearly
additive.

The absolute value of the lateral shift for nearly normal
incidence, in units of 1/q0, is shown as a function of the
wave number kx in Fig. 3 (right). Again, to avoid choosing
a value for ε, we actually plot the limit ε → 0 of |δst |/ε.
The shift decreases with the wave number and it is a fraction
of the wavelength. Its actual size is proportional to ε. Given
that the reflection coefficient is very small at nearly normal
incidence, the lateral shift of the transmitted wave may be
greatly enhanced by using an array of well-separated domain
walls. The existence of this shift may be an interesting tool to
control and manipulate the spin waves.

VIII. CONCLUSION

If the dipolar interaction is neglected, or if it is approx-
imated by a local effective anisotropy field, the theoretical
computations show that a Bloch domain wall of an anisotropic
ferromagnet is transparent to spin waves [33,43,44]. How-
ever, we show in this paper that if the dipolar interaction
is taken into account properly the spin waves are actually
reflected by a Bloch domain wall. The scattering param-
eters are obtained perturbatively, using the distorted wave
Born approximation. The application of this perturbative
technique is not straightforward due to the nonlocalized
character of the dipolar interaction. It is necessary to split
the dipolar contribution to the spin wave operator into
two terms: an operator that can be absorbed into the term
treated exactly and an operator which is localized and can
be treated perturbatively in the first (distorted wave) Born
approximation.

The scattering parameters can be computed within this
distorted wave Born approximation. It turns out that the re-
flection coefficient vanishes only for normal incidence. The
phase shifts are different for the transmitted and reflected
waves due to the fact that the wall separates two domains with
opposite magnetization, and therefore the mirror symmetry
about the wall plane is broken. The phase shifts depend not

only on the wave vector component perpendicular to the wall
plane but also on the component parallel to the wall plane.
The dependence of the phase shifts on the wave vector induce
a lateral shift of the reflected and transmitted waves. It is
worthwhile to stress that the lateral shift of the transmitted
wave remains of order one (not infinitesimal) at nearly normal
incidence. Since the reflection coefficient is very small at
nearly normal incidence, the shift can be greatly enhanced
by forcing the spin wave to go through an array of well-
separated domain walls. These properties of the scattering
by a domain wall may be very useful to control the spin
waves.
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APPENDIX A

In this Appendix we give some details on the derivation
of the D̃αβ which gives the contribution of the dipolar in-
teraction to the spin wave operator. It is studied in Sec. IV.
Equation (32) shows that the dipolar field δhd created by the
perturbation δn has the form of a convolution between the
Coulomb potential r/r3 and

∇ · δn = ∂xξ1 + cos θ (x)∂yξ2 − sin θ (x)∂zξ2. (A1)

Therefore, in terms of the Fourier transform of ξα with respect
to y and z, given by Eq. (33), the dipolar field at point r =
xx + rp has the form

δhd =−
∫

d2kp

(2π )2
eikp·rp

∫
dx′C(x − x′, kp)M(x′, kp), (A2)

where

M(x′, kp) = ∂x′ ξ̃1(x′, kp) + ikpF (x′, kp)ξ̃2(x′, kp), (A3)

with F (x, kp) given by Eq. (41), and

C(x, kp) = 1

4π

∫
d2rp e−ikp·rp

xx + rp(
x2 + r2

p

)3/2 . (A4)

The above expression can be written as

C(x, kp) = xA(x, kp)x + i∇kpA(x, kp), (A5)

where

A(x, kp) = 1

4π

∫
d2rp e−ikp·rp

1(
x2 + r2

p

)3/2 . (A6)

For x 
= 0 this integral can be readily performed and is equal
to

A(x, kp) = 1

2

e−kp|x|

|x| . (A7)

From this and Eq. (A5) we obtain

C(x, kp) = 1

2
σ (x)e−kp|x|x − i

1

2
e−kp|x| kp

kp
. (A8)
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Inserting the above expression into Eq. (A2) and integrating
by parts the term that involves ∂x′ ξ̃1, taking into account that
the boundary term vanishes since ξ̃1 vanishes for large |x|, and
that dσ (x)/dx = 2δ(x), we get

δhd = −
∫

d2kp

(2π )2
eikp·rp

∫
dx′ϒ(x, x′, kp), (A9)

where

ϒ(x, x′, kp) = x �(x, x′, kp) + kp

kp
�(x, x′, kp), (A10)

width

�(x, x′, kp) = (δ(x − x′) − ρ(x − x′))ξ̃1(x′, kp)

+ iσ (x − x′)ρ(x − x′)F (x′, kp)ξ̃2(x′, kp),
(A11)

�(x, x′, kp) = iσ (x − x′)ρ(x − x′)ξ̃1(x′, kp)

+ ρ(x − x′)F (x′, kp)ξ̃2(x′, kp). (A12)

From Eqs. (A9) to (A12) it is straightforward to obtain D̃αβ

using Eqs. (15) and (16).

APPENDIX B

Let us analyze the pole structure in k′
x of the integrand

entering the right-hand side of Eq. (67). There are two poles
coming from φk′

x
(x)φ∗

k′
x
(x′), located on the imaginary axis,

given by ±iq0 (golden points in Fig. 1). The contribution of
these to poles to the integral gives a function exponentially
decreasing with |x − x′| and thus it vanishes asymptotically.
They do not contribute to the asymptotic part of the Green’s
function.

Let us introduce the variable z = k′ 2
x . The other poles come

from the zeros of

f (z) = ω1(z)ω2(z) + (−iω + μ)2. (B1)

Let us consider first the case kz 
= 0. Since z = −k2
z is a pole

of f (z), it is clear that p(z) = (z + k2
z ) f (z) has the same zeros

as f (z). But p(z) is a polynomial of third degree and therefore
it has three roots. Hence, f (z) has exactly three zeros, which
are the solutions of

g(z) = ω2 + 2ωμi − μ2, (B2)

where, for convenience, we define g(z) = ω1(z)ω2(z).
Only the poles which attain the real axis as μ → 0+ do

contribute to the asymptotic behavior of the Green’s function
(see Sec. VI). This means that we only need the zeros of f (z)
which attain the positive real axis as μ → 0+. Let us set μ =
0 in Eq. (B2). We notice two facts: (i) g(0) = ω2

G and (ii) it
is straightforward to see that g′(z) > 0 for z � 0, where the
prime stands for the derivative. Therefore the equation g(z) =

ω2 has one and only one solution on the positive real axis if
ω � ωG, and it has no real positive solution if ω < ωG. The
other two zeros of f (z) are either nonreal or negative in the
limit μ → 0+.

Let us consider a frequency ω � ωG and let us denote by
z = k2

x the unique positive solution of g(z) = ω2. For μ > 0
and small we can obtain the solution of Eq. (B2) as a power
series of μ. To leading order we get

z = k2
x + i

2ωμ

g′(k2
x

) + O(μ2). (B3)

For μ → 0+ the imaginary part of the above expression is
positive. This zero of f (z) gives rise to the two poles that
contribute to the asymptotic part of the Green’s function

k′
x = ±

(
kx + i

ωμ

kxg′(k2
x

)
)

. (B4)

One of the poles is located on the upper right quadrant of the
complex plane and another one on the lower left quadrant of
the complex plane.

The case kz = 0 is simpler since then g(z) is a polyno-
mial of second degree and its zeros have a relatively simple
explicit expression. For μ > 0 and small we obtain the two
poles

k′
x = ±

(
kx + i

ωμ

kx
[
ω2 − ω2

G + ω2
0(1 + ε/2)2

]
)

. (B5)

Again one of the poles is located on the upper right quadrant
of the complex plane and another one on the lower left quad-
rant of the complex plane. Both attain the real axis as μ → 0+.

APPENDIX C

The coefficients t12 and t21 defined by Eqs. (76), (78),
and (79) can be evaluated in terms of the derivative of the
digamma function ψ ′(z). Let us remember that the digamma
function ψ (z) is the derivative of the logarithm of the Gamma
function. Defining the complex variable λ = (|kz| + ikx )/q0,
the explicit expressions are

t12 = − 2k2
z

q0
(
q2

0 + k2
x

)
[

1 + |kz|
q0

(
1

(λ − 3)2

+ 1

(λ − 1)2
− 1

4
ψ ′

(
λ − 3

2

)
+ c.c.

)]
, (C1)

t21 = − |kz|
q2

0 + k2
x

[
2

(λ − 4)2
+ 2

(λ − 2)2

+ q0 + |kz|
q0λ2

− 1

2
ψ ′

(
λ − 4

2

)
+ c.c.

]
. (C2)
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