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Many magnetic equilibrium states and phase transitions are characterized by fluctuations. Such magnetic
fluctuation can, in principle, be detected with scattering-based x-ray photon correlation spectroscopy (XPCS).
However, in the established approach of XPCS, the magnetic scattering signal is quadratic in the magnetic scat-
tering cross section, which results not only in often prohibitively small signals but also in a fundamental inability
to detect negative correlations (anticorrelations). Here, we propose to exploit the possibility of heterodyne mixing
of the magnetic signal with static charge scattering to reconstruct the first-order (linear) magnetic correlation
function. We show that the first-order magnetic scattering signal reconstructed from heterodyne scattering now
directly represents the underlying magnetization texture. Moreover, we suggest a practical implementation based
on an absorption mask rigidly connected to the sample, which not only produces a static charge scattering
signal but also eliminates the problem of drift-induced artificial decay of the correlation functions. Our method
thereby significantly broadens the range of scientific questions accessible by magnetic x-ray photon correlation
spectroscopy.
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I. INTRODUCTION

Thermal and quantum fluctuations are of fundamental im-
portance for the physics and function of many magnetic
materials. Fluctuations particularly emerge during phase tran-
sitions, for instance, critical fluctuations close to the magnetic
ordering temperature and Barkhausen noise during a fer-
romagnetic reversal, both representing standard models of
magnetism. More recent examples comprise the fluctuation
dynamics of frustrated systems such as artificial spin-ice ma-
terials [1–4], spin and charge density fluctuations in high-Tc

superconductor materials [5–7], and a fluctuation-mediated
topological phase transition [8]. Technologically, fluctuations
play a decisive role in the stability of magnetic recording
media in which thermal activation leads to the switching of
the magnetic area representing a logic bit [9]. The resulting
minimum size of the magnetic grains for long-term stability
gives rise to the superparamagnetic limit for the recording
density [10,11].
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Correlation-based x-ray scattering methods [typically re-
ferred to as x-ray photon correlation spectroscopy (XPCS)]
provide a very general and direct way to study fluctuations
in the time domain [12,13]. Generally, these coherent x-ray
methods rely on the analysis of temporal speckle correla-
tions in the scattered intensity. In contrast to its visible-light
counterpart, called dynamical light scattering (DLS), XPCS
provides access to optically opaque materials and gains
nanometer-scale and even atomic-scale sensitivity from the
small x-ray wavelength [14,15].

So far, applications of XPCS are still rare in magnetism
research. Examples, including methodically related investiga-
tions based on resonant elastic x-ray scattering, comprise the
dynamics and memory effects of magnetic domains [16–18]
and charge and spin density waves [19,20] as well as artificial
spin-ice dynamics [4] and orbital-domain dynamics [21,22].
These experiments were carried out on a timescale of sec-
onds or even quasistatically. For magnetic samples, the x-ray
magnetic circular dichroism (XMCD) in the soft-x-ray range
is typically exploited for contrast. The time limitation arises,
on the one hand, from the low magnetic scattering signal
compared to the scattering from electron-density variations
and, on the other hand, from the slow area detectors avail-
able so far, particularly for soft x rays. While experiments
at x-ray free-electron lasers have demonstrated magnetic
XPCS on the ultrafast timescale (picoseconds to nanosec-
onds) [23–25], a sizable gap in the application time window
remains.
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This situation is supposed to improve in the near future as
soft-x-ray detector technology is about to be significantly ad-
vanced [26–28] and fourth-generation synchrotron-radiation
sources are coming into operation, providing almost fully
coherent soft x rays of much higher intensity. However, the
progression towards much shorter timescales will still be
hampered by the low magnetic scattering cross section. The
scattering geometry is typically designed in such a way that
the weak, magnetically scattered intensity is well separated
from charge-based contributions in the scattering space, which
allows for an almost background-free detection of the mag-
netic signal [29]. Nevertheless, the intensity of this homodyne
magnetic scattering is typically 102 to 104 times smaller than
the charge-based scattering (corresponding to a 10 to 102

times smaller magnetic absorption cross section). Ultimately,
this signal will become too small for short-term detection, in
particular, as faster dynamics are often additionally accom-
panied by a further reduction of the magnetic signals due to
a general loss of magnetization as well as smaller relevant
length scales and correspondingly higher scattering angles [8].

Here, we propose to extend the application frame of mag-
netic XPCS by a change in the scattering geometry to a
heterodyne detection scheme. Heterodyne XPCS is achieved
by mixing the scattered signal wave from the fluctuating
sample with a temporally constant reference wave [30]. As
one of the main differences of the homodyne detection, the
interference with the reference wave preserves the scattering
amplitude of the signal wave and its relative phase to the
reference [31]. Heterodyning is a standard technique in DLS
[31,32] and is also exploited by coherent x-ray methods. In
particular, heterodyne mixing is applied in XPCS velocity
measurements of slow-moving materials and particles [33–35]
as well as holographic x-ray imaging [36,37]. When exploit-
ing the XMCD, coherent mixing between magnetic scattering
and charge scattering naturally occurs for x rays with circular
polarization [38–40]. If the charge scattering signal is static, it
can serve as a reference to realize a heterodyne XPCS experi-
ment. If the charge-based reference signal is stronger than the
magnetic signal, the latter will be coherently amplified. As a
result, heterodyne detection of the magnetic scattering is sup-
posed to increase the XPCS signal to overcome instrumental
noise, in a way similar to what has already been demonstrated
for reference-assisted coherent diffractive imaging [41,42].

Particularly important in the context of magnetic systems,
heterodyne scattering also provides access to first-order cor-
relations and therefore allows detecting anticorrelations. In
practice, this means that an inversion of the magnetic structure
such as a magnetic switching event appears in the heterodyne
XPCS signal but remains hidden in the homodyne case.

In soft-x-ray experiments, it is straightforward to obtain the
static reference signal from an aperture which is fabricated
directly on the sample or mounted in its close proximity [38].
Such an aperture can be well adapted in size and shape to the
experiment and provides excellent temporal stability [20].

We will derive the first-order, two-time correlation function
for this particular experimental geometry. Our results can be
transferred easily to similar setups. Our goal is to prove that
the temporal first-order speckle correlations directly reflect
correlations of the changing real-space magnetization texture.
We will show under which conditions and how well this direct

relation is achieved. The analytic derivation is complemented
by Monte Carlo–like simulations to provide an error estimate
of the method and demonstrate the sensitivity gained from the
stability of the mask-based approach.

II. GENERAL CONSIDERATIONS

X rays provide sensitivity to the magnetization of a mate-
rial via a dichroism, i.e., via a dependence of the material’s
x-ray absorption on the x-ray polarization state. In more gen-
eral terms, the effect is described by a polarization-dependent
atomic x-ray scattering factor f n(ω) of the magnetized atom
n. As the dichroism is particularly pronounced at electronic
resonances, the magnetization contrast is typically obtained
in an element-specific way. In the absence of any charge
(natural) dichroism, the magnetic dichroism is described via
the expansion of the elastic resonant atomic scattering factor
into charge and magnetic scattering amplitudes [39,43,44]:

f n(ω) = (ê∗
2 · ê1) f n

c (ω) − i (ê∗
2 × ê1) · m̂n f n

m1(ω)

+ (ê∗
2 · m̂n)(ê1 · m̂n) f n

m2(ω) + · · · . (1)

Here, the charge [ f n
c (ω)] and magnetic [ f n

m1(ω), f n
m2(ω)]

atomic scattering factors contain the sums of the transition
probabilities of the atomic excitation and decay processes
involved in the resonant scattering process. The polarization
dependence is given by specific vector products of the com-
plex unit polarization vectors of the incident (ê1) and the
scattered (ê2) x rays [45], as well as m̂n, the unit vector along
the magnetic polarization axis of the scattering atom. The
asterisk (∗) indicates complex conjugation. The first magnetic
scattering term describes the XMCD, and the second term
describes the linear dichroism.

Focusing on ferromagnetic materials (including ferrimag-
nets with ferromagnetic sublattices or sublayers), the XMCD
typically dominates the magnetic response if the magneti-
zation is suitably aligned to the x-ray beam. In addition,
spatial spin textures in these materials appear on much larger
length scales than atomic distances, and thus, only the forward
scattering amplitude of the atomic cross section has to be
considered. Using circularly polarized x rays, the scattered
intensity with a scattering vector q is then provided by the
superposition (i.e., the summation) of the scattered waves
of all atoms at positions rn in the coherence volume in the
sample, i.e., the magnitude of the structure function squared:

I±(q) ∝
∣∣∣∣∣
∑

n

f neiqrn

∣∣∣∣∣
2

(2)

∝
∣∣∣∣∣
∑

n

(
f n
c ± êk · m̂n f n

m1

)
eiqrn

∣∣∣∣∣
2

. (3)

The XMCD polarization dependence reduces to ±êk · m̂n,
where êk = k/|k| denotes the x-ray propagation direction and
the different signs distinguish left and right circularly polar-
ized x rays. The contrast is thus maximized for a parallel
alignment between the x-ray beam and the magnetization.

The sum in Eq. (3) can be readily divided into charge and
magnetic structure functions:

I±(q) ∝ |Fc ± Fm|2, (4)
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where Fc = ∑
n f n

c exp(iqrn) and Fm = ∑
n êk ·

m̂n f n
m1 exp(iqrn). After expansion, this gives

I±(q) ∝ F ∗
c Fc ± 2Re[F ∗

c Fm] + F ∗
mFm. (5)

The scattered x-ray intensity is composed of a purely
charge-based contribution and a purely magnetic homodyne
contribution as well as the heterodyne term as interference
between charge and magnetic scattering. The mixed term
vanishes for linear polarization, which can be perceived as
a superposition between left and right circularly polarized
photons [38,39]:

Ilin(q) ∝ F ∗
c Fc + F ∗

mFm. (6)

In this case, the scattered intensity is composed of the in-
coherent sum of charge and magnetic scattering. In such
an experiment, the magnetic scattering can mostly be iso-
lated by different approaches: (1) subtracting a separately
recorded pure charge signal if available, (2) reducing the
charge scattering signal as much as possible by using uni-
form, high-quality magnetic films and substrates and a very
smooth, e.g., Gaussian illumination function, and (3) tailoring
the size and shape of the topographic sample features (such
as lithographic structures or apertures) in a way that charge
and magnetic scattering are well separated in Fourier space. In
addition, the charge scattering can be blanked out by suitably
designed beam stops or favorable positioning of the detector
[46]. The isolated magnetic scattering can then be readily
analyzed by standard XPCS methods yielding second-order
(intensity) correlation functions [12,13].

In contrast, the additional heterodyne term in Eq. (5) also
provides access to the first-order correlation function. The
pure charge term can be eliminated by a separately recorded
charge scattering signal as described above. The pure mag-
netic term now appears to be small compared to the mixed
term and can be neglected.

In the following, we will derive Eq. (5) for the specific
case of a uniform magnetic film covered by an x-ray mask
which is located in close proximity to the sample. The mask
contains a single aperture and is opaque to x rays elsewhere.
This topographic structure, the magnetic textures in the film
considered, and the soft-x-ray wavelength are large compared
to atomic distances. We therefore derive the equations in the
wave picture using the continuous (dichroic) refractive index
to describe the sample. From the equation of the scattered
intensity, we will then derive the first-order, two-time cor-
relation function, describing the dynamics of the magnetic
system.

III. MASK-BASED HETERODYNE SETUP

The geometry of the generic coherent scattering exper-
iment in transmission is shown in Fig. 1. The sample is
illuminated by a coherent plane-wave x-ray beam �0(r) =
|�0| exp[i(kz − ωt )] propagating in the z direction with fre-
quency ω and wave number k = 2π/λ. The scattering contrast
arises from a spatially varying refractive index n(ω, r) of the
sample, where r denotes the position in the sample plane. For
ferromagnetic samples, the dichroic complex refractive index
n(ω, r, z, σ ) for right (σ = 1) and left (σ = −1) circularly

Far field

Ψ0(x,y) (qx,qy)IΨ(x,y)

ΔTmagnTmask

FIG. 1. Geometry of the proposed transmission experiment for
heterodyne detection of the magnetic scattering signal. Symbols are
explained in the text.

polarized light is commonly written as [37]

n(ω, r, z, σ ) = 1 − δ0(ω, r, z) + iβ0(ω, r, z)

+[−	δ(ω, r, z) + i	β(ω, r, z)]σ êk · m̂(r, z), (7)

where δ0 and β0 denote the optical constants for unpolarized
or linearly polarized light. The additional constants 	δ and
	β refer to the XMCD. The optical constants are directly
derived from the atomic scattering factors and the material’s
atomic density [47]. The strength of the XMCD depends on
the local magnetization direction m̂(r, z) with respect to the
orientation of the light’s propagation direction êk = êz. Using
the projection approximation [37,48], the exit wave �exit (r) is
a product of �0(r) and the sample transmittance T (r):

�exit (r) = T (r)�0(r), (8)

T (r) = exp

[
ik

∫ 0

−d
[n(r, z) − 1] dz

]
, (9)

where n(r, z) − 1 is integrated over the sample thickness d .
This equation is valid for magnetic and nonmagnetic samples.
The exit wave at z = 0 propagates in free space to the detector
located in the Fraunhofer far-field region. The scattered wave
front �det (xdet, ydet ) at the detector is therefore represented by
the Fourier transform of �exit (trivial phase terms are omitted):

�det (xdet, ydet ) = F[�exit](q). (10)

Here, q = (qx, qy) ≈ (k/z0)(xdet, ydet ) represents a reciprocal-
space coordinate, which is linked to the real-space coordinates
at the detector at distance z0 from the sample. The initial factor
|�0| and any spatially uniform contributions of T influence
only the integrated intensity detected without generating con-
trast. We hence focus our discussion on the spatially varying
part of T (r).

Our generic sample comprises two distinct layers, the
mask and the actual magnetic film, with transmission func-
tions Tmask(r) and Ts(r), respectively. Assuming thin layers
compared to the lateral size of the aperture, we can again
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use the projection approximation: T (r) = Tmask(r)Ts(r). Ad-
ditionally, we make the following assumptions:

(1) The mask is a circular hole in a fully opaque layer. In
particular, Tmask(r) = Tmask(−r), and F[Tmask] is real.

(2) The sample is sufficiently thin such that the exponential
function in Eq. (9) can be approximated by the Taylor expan-
sion up to linear order: Ts(r) = 1 + 	Ts(r).

(3) For homogeneous films, the contrast 	Ts is generated
by a single, scalar, real-valued quantity C(r). In the case of
magnetic samples, this quantity is the product of the helicity,
light propagation direction, and local magnetization unit vec-
tor: C(r) = (σ/d )

∫
êk · m̂(r, z) dz. The integration is carried

out over all magnetized layers which are resonantly probed.
The contrast is entirely magnetic and is given by the z com-
ponent of the magnetization mz(r). The sample transmission
is then given by the product of C and the (complex) contrast
factor zC corresponding to the quantity σ	Tmagn ≡ 	Ts =
zCC(r) = σ zCmz(r). For XMCD contrast, zC = ikd (−	δ +
i	β ). Note that any topography of the magnetic film can be
represented by adapting Tmask.

The detector records the signal intensity I (q, σ ), i.e., the
squared absolute value of �det:

I (q, σ ) ∝ |F{Tmask(r)[1 + σ	Tmagn(r)]}|2. (11)

For an XPCS experiment, this intensity is sampled in time
frames in order to monitor the dynamic behavior of the sam-
ple. In the next step, we will derive the general two-time
correlation for two intensity measurements I1 and I2 and times
t1 and t2, respectively.

IV. DERIVATION OF THE FIRST-ORDER
TWO-TIME-CORRELATION FUNCTION

As discussed earlier, heterodyne magnetic scattering pro-
vides an interference term which is linear in the sample’s
magnetization. Therefore, it is our explicit goal to derive an
equation for the two-time correlation cq(t1, t2) of the scattered
intensity, which yields the same result that a correlation of
the underlying magnetic configurations in real space would.
This correlation function will go beyond the information pro-
vided by classical (homodyne) XPCS experiments as it will
also resolve anticorrelations and, e.g., provide information
on magnetic switching events, which for many systems are
characteristic of the underlying magnetization dynamics.

We first recall the equation of the real-space correlation
function:

cr(t1, t2) = 〈m1, m2〉
‖m1‖‖m2‖ , (12)

where mi = mz(r, ti ) ∝ Tmask	Tmagn is the out-of-plane mag-
netization in the field of view defined by the mask transmis-
sion function Tmask. Numerically, the brackets 〈·, ·〉 indicate
the point-by-point scalar product, and ‖ · ‖ indicates the cor-
responding norm.

According to Plancherel’s theorem, scalar products are
identical in Fourier space and in real space. Therefore,

〈m1, m2〉
‖m1‖‖m2‖ = 〈F[m1],F[m2]〉

‖F[m1]‖‖F[m2]‖ . (13)

Normally, F[mz] is inaccessible from scattering data since the
complex phase of the Fourier transform is lost in the detection
process. However, the heterodyne mixing of topographic and
magnetic signals allows us to partially recover the sign of the
wave front from the interference of the mask scattering and
the magnetic scattering.

We start by recording scattering patterns of opposite helic-
ity σ and calculate the sum [Isum(q) = I (q,+1) + I (q,−1)]
and difference [Idiff (q) = I (q,+1) − I (q,−1)] of these pat-
terns based on Eq. (11):

Idiff (q) ∝ F[(Tmask	Tmagn)(r)] · F∗[Tmask(r)]

+F∗[(Tmask	Tmagn)(r)] · F[Tmask(r)], (14)

Isum(q) ∝ |F[Tmask(r)]|2
+ |F[(Tmask	Tmagn)(r)]|2. (15)

The difference contains the magnetic-charge mixed terms of
interest. For a symmetric object aperture, F[Tmask(r)] is a real-
valued function. Moreover, the mask scattering |F[Tmask(r)]|2
is much stronger than the other terms contributing to Isum(q).
We can therefore simplify the expressions to

Idiff (q) ∝ Re{zCF[mz(r)]}F[Tmask(r)], (16)

Isum(q) ∝ F[Tmask(r)]2. (17)

Hence, if we define S = Idiff (q)/
√

Isum(q), we can calculate
the correlation via

cq(t1, t2) = 〈S1, S2〉
‖S1‖‖S2‖ (18)

= 〈Re(zCF[m1]), Re(zCF[m2])〉
‖Re(zCF[m1])‖‖Re(zCF[m2])‖ . (19)

This expression is identical to cr (t1, t2) if we assume that
the correlation of the real part of F[mz] is approximately
equivalent to the complex correlation. In principle, only when
zC has a nonzero imaginary part is information about the
imaginary part of F[mz] transferred to the real part. We further
investigate and discuss this approximation in Sec. V.

As the sum Isum depends on only the static topography
function of the aperture, it can be determined once at the
beginning of the experiment. The difference can then be cal-
culated from one helicity measurement alone as Idiff (q) =
2σ I (q, σ ) − σ Isum(q). A helicity switch within the time se-
ries of an XPCS recording is not necessary. The experiment
greatly benefits from avoiding the helicity switching during a
time series for a number of reasons. First, it naturally saves a
significant amount of time; second, the time series can be kept
continuous and thus can be recut or rebinned as needed, and
last but not least, it dramatically improves the measurement
stability. However, the condition continues to be that Isum must
remain a correct approximation of the topography over time.

V. COMPARISON OF THE FOURIER-SPACE AND
REAL-SPACE CORRELATION

According to Eq. (19), the heterodyne intensity correlation
function is sensitive to only the real part of the Fourier trans-
form of the magnetic transmission function. The imaginary
part is lost in this procedure. Consequentially, the question
of how large the deviation between the Fourier-space and
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real-space correlations caused by this loss of information ac-
tually is arises. We aim to answer this question by comparing
both correlation functions using examples of typical magnetic
domain states.

The simulation is based on a Monte Carlo–like approach
in which magnetic domain patterns are randomly cropped
from a 10 × 10 μm2 magnetic force microscope image of
a Co/Pt multilayer with out-of-plane anisotropy. We use a
binary representation of the domains with opposite magne-
tization showing a mazelike shape and an in-plane correlation
length (twice the domain width) of λD 
 190 nm. The pixel
size corresponds to 4.9 nm. The cropping function is a binary
circular aperture mask. We vary its diameter from 490 to
2450 nm. In addition, we use asymmetric aperture masks with
mask areas equal to the spherical ones. In addition to the size
and shape of the aperture, we vary the complex contrast factor
as zC = 1, i, and 1 + i. For the smallest aperture, we also use
zC = 1 + 0.6i and 0.6 + i. The real-space correlations were
calculated directly from the magnetization patterns. The het-
erodyne Fourier-space correlation was derived using Eq. (18).

In Fig. 2, we present the results of our simulations, with
each panel combining the results for a selected aperture size
and shape and different values of zC . Each data point corre-
sponds to the correlation of two randomly selected domain
configurations.

Specifically, the plots compare the correlation results ob-
tained in real space (abscissa) and Fourier space (ordinate).
In the ideal case, the Fourier-space correlations should match
the real-space target values, and all points should be dis-
tributed along the diagonal of the plots. The deviation from
the diagonal can be conceived of as either an error of the
heterodyne correlation when comparing two specific states
of the magnetic system or additional noise when averaging
the correlation over many states. The corresponding noise
distributions are shown as an inset in each plot.

We make four important observations in our simulation.
First, as expected, the correlation based on the heterodyne
scattering correctly reproduces negative correlation, i.e., an-
ticorrelations.

The second observation concerns the dependence on the
contrast factor zC . When absorption and phase contrast are
equally strong (zC = 1 + i), the Fourier-space correlation is
accurate. For an increasing imbalance of absorption and phase
contrast [Fig. 2(b)] up to even pure absorption (zC = 1) or
phase contrast [zC = i; Fig. 2(a)] the mean deviation of the
Fourier-space correlation also increases. The width of the
noise distribution is independent of whether the real or imagi-
nary part of zC dominates. This observation can be understood
from Eq. (19). The Fourier transform of any real-valued func-
tion mz(r) contains the inversion symmetric part of mz(r)
in the real part and the antisymmetric part of mz(r) in the
imaginary part. The complex multiplication with zC decides
which information is transferred to the real part, which is
conserved in the correlation function. If zC is only real (imagi-
nary), only the real (imaginary) part of F[mz(r)] is conserved.
Conversely, if zC has equal real and imaginary parts, the full
information about mz(r) is taken into the correlation function.
Fortunately, changing the contrast to mixed absorption and
phase contrast can be achieved experimentally by fine-tuning
the energy of the incident x-ray beam [49].

FIG. 2. Noise estimation of the Fourier-space correlation. All
panels show the connection between the real-space and Fourier-space
two-time correlations based on a set of binary, mazelike domain
patterns. Deviations between the correlations are considered noise.
Magnetic contrast zC is simulated as equal absorption and phase
contrast zC = 1 + i (yellow), pure absorption zC = 1 (blue), or pure
phase zC = i (red) contrast in the transmission function. An excep-
tion is (b), where instead of pure absorption and phase contrast,
zC = 1 + 0.6i and 0.6 + i, respectively. Results for a circular aper-
ture mask with a diameter of (a) and (b) 490 nm, (c) 1225 nm, and
(d) 2450 nm. (e) and (f) Results for an asymmetric mask. The mask
areas in (a) and (e) as well as (c) and (f) are equal. The insets in
each panel show an example configuration of the magnetic pattern
and the noise distribution of the data in the main plot (excluding the
data for zC = 1 + i). While the histogram insets are based on all the
simulation data, only a reduced number of data points are shown in
the scatterplots for illustration purposes.

The third observation is related to the size of the aperture
defining the x-ray illumination on the sample. When the size
of the area probed becomes larger, it becomes less likely that
a pattern exhibits a particular symmetry. This is illustrated
in Figs. 2(c) and 2(d). As more and more domains are cap-
tured by the aperture, changes between two states tend to be
represented more and more equally in the real and imaginary
parts of the Fourier transform of these patterns. As a result, the
Fourier space correlation function converges to the real-space
correlation result in the limit of large probe areas. Similar
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FIG. 3. Influence of magnetic contrast and aperture size on the
noise distribution. The rms of the noise distribution derived from the
deviation between the Fourier-space and real-space correlations for
different experimental configurations. Sets of magnetic patterns were
analyzed as (a) a function of the diameter of the circular aperture and
the ratio between absorption and phase contrast and (b) a function of
the aperture size 2

√
AC/π (AC denotes aperture area) for symmetric

and asymmetric aperture shapes. The magnetic configurations in the
insets exemplify the different aperture shapes.

effects were already discussed in DLS experiments on noner-
godic media [50,51] and small scattering volumes [31,52] and,
recently, also theoretically in XPCS experiments [53], where
a strong dependence of the correlation functions on the beam
size and illuminated area was observed.

Last, we observe that also the aperture’s shape influences
the noise of the Fourier-space correlation. Comparing aper-
tures with equal area, apertures with asymmetric shapes show
less noise (given as the rms of the noise distribution) than cir-
cular, symmetric apertures [Fig. 2(a) vs Fig. 2(e) and Fig. 2(c)
vs Fig. 2(f)]. We can understand this observation by going
back to Eq. (16), where we applied the assumption of a sym-
metric aperture, allowing us to separate magnetic and charge
scattering in the mixed term. When using an asymmetric
mask, this separation is not possible anymore as F[Tmask(r)]
is not a purely real-valued function anymore. However, the
mixing (i.e., the multiplication term F[Tmask(r)]F[mz(r)])
now transfers the information about the imaginary part of
F[mz(r)] to the real part of the product, similar to the effect
of a complex zC described above. This gain improves the
Fourier-space correlation for asymmetric masks compared to
symmetric ones.

We summarize the simulation results on the noise of the
heterodyne correlation in Fig. 3. We again use the rms of
the noise distribution as an indicator. In Fig. 3(a), we show
how the noise decreases when the ratio between the real and
imaginary parts of the contrast factor Re(zC )/Im(zC ) increases
from zero to unity. The influence of the aperture size as al-
ready described above is also evident. In Fig. 3(b), we show
the noise of the heterodyne correlation for different aperture
shapes and sizes, given as the square root of the aperture’s
area AC . While we observe significant noise for small aperture
sizes, the noise rms quickly decreases with increasing aperture
size and drops below 5% at an aperture size of approximately
8 times the in-plane correlations length λD of the domains. In
the case of asymmetric apertures the noise rms is systemati-
cally lower than circular apertures and falls below 5% already

at ∼4.7λD. Experimentally, the probed area is often even
larger than these sizes, and we conclude that practically, the
heterodyne first-order correlation function almost resembles
the real-space correlations. We note, however, that this result
was obtained from simulations based on isotropically ordered
magnetic textures. In the case of, e.g., magnetic nanopatterns,
additional, sample-specific simulations are needed to verify
this relation.

VI. ADVANTAGES OF A DRIFT-FREE SETUP

A common issue in long-term XPCS experiments is that
instrumental instability, in particular drift of the sample, or
illumination may significantly deteriorate the measurements.
Drift on the nanometer scale is hard to avoid and leads to a
decorrelation without any actual sample dynamics. Hetero-
dyne detection is particularly vulnerable to drift due to its
sensitivity to changes in the relative phase between the sig-
nal wave and the reference wave. The mask-based geometry
proposed here can be realized in an inherently drift-free way
when rigorously coupling a mask and sample in a monolithic
unit. The approach is well known from x-ray imaging via
mask-based Fourier-transform holography (FTH) [36,54,55]
and was also already used in a quasistatic speckle correlation
experiment in Bragg geometry [20]. Solutions to practically
realize the monolithic connection were already developed for
FTH and can directly be transferred to mask-based magnetic
XPCS. Typically, the actual magnetic samples are produced
on the front side of a transparent substrate, and the mask is
produced into an x-ray-opaque metal film on the back side
of the substrate. Methods like focused ion beam milling and
electron-beam lithography are used to fabricate the aperture in
the mask [56].

Due to the integrated sample design with a fixed aperture
mask, the relative drift between the illumination function and
the sample is eliminated. If the incoming x-ray beam can be
approximated as a plane wave (over the size of the aperture),
changes in the overlap between the x-ray beam and the aper-
ture mostly only alter the intensity and absolute phase of the
exit wave, whereas the relative phase between the sample and
the mask apertures is conserved.

To illustrate how quickly position drift leads to an artificial
decorrelation of the signal, we perform Monte Carlo–like
simulations based on the same maze-domain pattern as be-
fore. To this end, we calculate the correlation between two
domain configurations selected by a circular aperture defining
the illumination function. While the first aperture mask is
randomly positioned on the domain pattern, the second mask
is slightly displaced by a distance d with respect to the first
one to simulate the position drift in between two exposures.
Of course, the domain pattern remains static in this simulation.
We note that this procedure is conceptually very closely linked
to retrieving the spatial autocorrelation of the domain pattern.
However, the simulation additionally shows the influence of
the size of the probed area restricted by the aperture.

The simulation is again based on the binary domain pattern
from a magnetic force microscope image as used in Sec. V.
The magnetic transmission function 	Tmagn results from equal
absorption and phase contrast (zC = 1 + i) to exclude any er-
rors in calculating the heterodyne correlation function. Binary
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FIG. 4. Advantage of a drift-free setup. Analysis of decorrelation
of the domain patterns induced by drift for an aperture diameter of
(a) 490 nm and (b) 2450 nm. Data points are correlations of pairs of
randomly cropped domain configurations with relative drift distance
d . The red curve shows the spatial autocorrelation function of the
whole domain pattern (10 × 10 μm2). Each inset shows an example
configuration cropped by the respective aperture size.

aperture masks with diameters of 490 and 2450 nm define
the area probed. Drift between the signal and reference wave
was simulated by shifting the aperture with respect to the
magnetic domain pattern. The domain configurations at the

initial position and the second, shifted aperture position were
correlated using Eq. (19). For the simulation, 100 random
initial positions were chosen, and in each case the correlation
with 100 randomly shifted positions was evaluated.

The simulated loss of correlation as a function of the po-
sition shift d is shown in Fig. 4. On average, the data points
from the Monte Carlo simulation follow the domain’s auto-
correlation as expected. Neglecting the small (anti)correlation
peaks, the patterns become uncorrelated on average when d
approaches the domain width (λD/2) of the underlying do-
main structure. As a result, significant decorrelation effects
are expected already for drift in the few nanometer regime.
More specifically, the correlation drops by 50% for a drift
distance of only 30 nm, assuming an ∼100 nm texture size
as in our case. Such a stability is challenging to achieve in
a flexible setup, particularly for variable sample temperature
settings and over a long measurement time, which can take
hours in XPCS. Heterodyne XPCS experiments pose even
higher challenges as they also rely on the long-term stability
of the static reference [30,33]. In addition, drift also trans-
lates to statistical noise as witnessed by the large scatter of
the data points, particularly when the aperture size is small
[Fig. 4(a)]. The mask-based heterodyne approach presented
here relaxes the experimental requirements due to the drift-
free sample design enabling the detection of nanometer-scale
processes. Similar to particle velocity measurements [33–35],
heterodyning also opens up opportunities to detect correlated
translational magnetization dynamics, driven by, e.g., applied
magnetic field [57] or spin-polarized electric currents [58].

VII. CONCLUSIONS

We have shown how first-order magnetic correlations can
be reconstructed from the heterodyne mixing of charge and
magnetic scattering. We suggested a practical implementation
that largely reduces errors due to the loss of information of
the imaginary part of the scattering signal and that eliminates
the influence of drift. Our approach not only enhances the
sensitivity and precision of magnetic XPCS measurements
but more generally establishes a direct mathematical link be-
tween the Fourier-space correlation signal and the underlying
real-space dynamics in the sample. We anticipate broad ap-
plications of the technique to study dynamics in magnetic
materials.
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