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Machine learning techniques to construct detailed phase diagrams for skyrmion systems
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Recently, there has been an increased interest in the application of machine learning (ML) techniques to a
variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization
of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram
of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions
where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion
crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons
and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale
Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network
(CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases,
focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature
configurations and to other DM values to construct a detailed magnetic-field–temperature phase diagram,
achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in
order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.
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I. INTRODUCTION

In the last five years, machine learning (ML) techniques
have provided a new perspective on the study of a great variety
of physical phenomena in condensed-matter physics, from
representation of quantum states [1] to discovering phase tran-
sitions [2–4] and identifying conventional phases of matter
[5]. The ability of ML to identify and classify huge data sets,
including images, provides a powerful tool to analyze the state
space of condensed-matter systems.

These approaches have been successfully applied to a va-
riety of complex topological spin systems and models. For
example, autoencoders have been used to extract models from
neutron-scattering data in spin ice systems [6,7]. Support
vector machines with a tensorial kernel have been used to
explore tensor order parameters and hidden order in nontrivial
frustrated models such as the XXZ model on the pyrochlore
lattice [8], the classical kagome antiferromagnet [9], and Ki-
taev models and materials [10–12].

Among exotic phases, magnetic skyrmions are undoubt-
edly at the heart of a large body of work [13–15]. Skyrmions
are swirling magnetic textures characterized by a topologi-
cal invariant, the topological charge Q = 1

4π

∫
d2r �S · (∂x �S ×

∂y �S) (where �S is the unit vector of the local magnetization),
which provides them with great stability against perturbations.
Therefore, magnetic skyrmions have been intensively studied
due to their potential in future magnetic data storage and
spintronics applications. In fact, neural networks have been
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implemented in the last years to distinguish skyrmion phases.
On one hand, a few years ago, it was shown that a single
layer neural network can successfully classify standard con-
figurations: spiral, ferromagnetic and skyrmion crystal [16],
and a similar classification task was achieved with convolu-
tional neural networks (CNNs) to construct low-temperature
phase diagrams for models including anisotropy terms [17].
Recurrent neural networks were used to classify skyrmion dy-
namic processes [18]. On the other hand, CNNs were used to
predict features such as chirality in these type of systems [19],
even in confined geometries [20], and to extract information
on the interactions from data images [21]. Moreover, taking
input data from videos, these type of techniques were used to
classify the dynamical skyrmion phases and to predict phase
boundaries [22]. Most studies in this field have only focused
on the characterization of typical configurations and not so
much attention has been paid to the intermediate and less
conventional phases emerging from thermal fluctuations.

In this regard, the aim of this investigation is to explore
the capacity of machine learning algorithms to identify and
classify all the magnetic phases in skyrmion systems. Our
main goal is to apply these techniques to construct a com-
plete magnetic-field–temperature (B-T) phase diagram for a
well-known model where a skyrmion crystal is stabilized
at low temperatures, the ferromagnetic square lattice with
Dzyaloshinskii-Moriya (DM) interactions under an external
magnetic field. Magnetic configurations for this study were
collected using large-scale Monte Carlo simulations. Then, we
resort to a convolutional neural network (CNN) to classify the
lowest temperature phases, that include bimeron and skyrmion
gas labels. The term “bimeron” here is used to refer to
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elongated skyrmions or broken spirals [23–25] and to dif-
ferentiate from the use of the term which refers to two
merons [26].

As a first step, we train and validate the network for three
specific values of the DM interaction. We then apply the
trained model to other DM values and to higher temperature
configurations, and build the complete B-T phase diagram,
which we compare with results from simulations, finding re-
markable agreement. In particular, our CNN-based approach
shows that all types of topological phases considered could
be distinguished and classified. Given that CNNs are tech-
niques ideal for treating image data, this opens the door to
use a similar approach for analysis of the experimental images
obtained with spin-polarized scanning tunneling microscopy
techniques, where these type of intermediate phases are usu-
ally found [27–30].

The paper is organized in the following way: In Sec. II we
describe the model, discuss the emergent topological phases,
and show the particular features of the bimeron and skyrmion
gas configurations. The ML approach and analysis are de-
scribed in Sec. III, where we also explore other simpler ML
methods. Conclusions and future perspectives are presented in
Sec. V.

II. SKYRMION MODEL

Skyrmions have been at the heart of a large body of
work since the indirect experimental observation of skyrmion
crystals through neutron diffraction in MnSi [31] and direct
observation in thin films [27]. Research has also expanded to
other topological textures [14,15], such as antiferromagnetic
skyrmions [32–35], magnetic bubbles, merons and antimerons
[36]. Here, we focus on a well-known skyrmion model, which
was proposed to compare with one of the first bidimensional
experimental phase diagrams [27], and has also been used
to explore machine learning techniques for skyrmion phases
[16,19]. We take the ferromagnetic exchange model with
in-plane Dzyaloshinskii-Moriya interactions (DM) under a
magnetic field for classical Heisenberg spins in the square
lattice, given by

H = −J
∑
〈i, j〉

�Si · �S j +
∑
〈i, j〉

�D · (�Si × �S j ) − �B
∑

i

�Si, (1)

where �Si are Heisenberg spins at site i with fixed norm 1,
J is the ferromagnetic exchange coupling, �D is the in-plane
DM interaction along the bonds of the square lattice (see
inset in Fig. 1), and �B = Bz̆ is the external magnetic field,
perpendicular to the lattice plane. We take J = 1 throughout
the rest of this work.

We briefly review here the well-known behavior of this
model with magnetic field and temperature to motivate our
study. We present in Fig. 1 the low-temperature phase di-
agram (T � J) as a function of the magnetic field B and
the DM strength D. Regarding the magnetization process,
the magnetic field takes the system from a spiral phase (Sp)
induced at zero field for a small DM interaction [37] to a
skyrmion crystal (SkX), and then to a ferromagnetic (Fm)
state at higher B. There are two types of intermediate phases,
which we will discuss further below: what we refer to here

FIG. 1. (left) Low-temperature phase diagram for the ferromag-
netic model in a square lattice with DM interactions under a magnetic
field B. In the inset, (blue) arrows indicate the direction of the DM
vectors, along the bonds of the square lattice. (right) Typical real-
space configurations for the four different nonpolarized phases: spiral
(Sp), bimeron (Bm), skyrmion crystal (SkX), skyrmion gas (SkG).

as a “bimeron” phase (Bm), which consists of a mixture of
“broken spirals” or “elongated skyrmions” and skyrmions,
and a second “skyrmion gas” phase (SkG), where the
skyrmions no longer form a crystal and are distributed in
a ferromagnetic background. These intermediate phases are
enhanced by temperature and should disappear in the zero-
temperature limit [23]. A detailed phase diagram for a similar
system at larger system sizes may be found in Ref. [38]. We
show typical real-space configurations for different phases on
the right in Fig. 1.

The spiral skyrmion crystal and ferromagnetic phases can
easily be distinguished by resorting to variables such as the
scalar chirality χ and the structure factor Sq. Throughout all
this work, Sq refers to the structure factor calculated with the
components of the spins perpendicular to the external mag-
netic field, Sq = 1

N 〈| ∑i Sx
i eiq·ri |2 + |∑i Sy

i eiq·ri |2〉, where
N is the total number of spins. The scalar chirality, defined
as χ = ∑

i, j,k
�Si · (�S j × �Sk ), is quantity in a lattice that is

related to the calculation of the topological charge Q, which
is Q = −1 for each skyrmion. Therefore, in the SkX phase, χ

is nonzero and relates to the number of skyrmions, whereas
the spiral and the ferromagnetic phase are not chiral, with
Q = 0. As for Sq, a SkX is characterized with six Bragg peaks
in reciprocal space, where the three inequivalent q∗ vectors
satisfy

∑
i qi = 0 (triple-q phase). In a spiral phase, for this

model, there would be two incommensurate Bragg peaks (sin-
gle q). However, things are not so simple if we wish to take
into account the intermediate phases. On one hand, the system
does not present a clear transition between phases with tem-
perature. On the other hand, especially at higher temperatures,
these configurations do not have a characteristic structure
factor. We illustrate this showing the results of Monte Carlo
simulations for D = 1 in Figs. 2 (B = 0.2) and 3 (B = 0.9). In
both cases, we plot the resulting specific heat and chirality as
a function of temperature and show three different snapshots
and their respective Sq at different temperatures. In Fig. 2, at
B = 0.2, we see that, at low temperature, the system is in a
Sp phase, with the typical single-q Sq. At higher T , there is
nonzero chirality and the snapshots show a Bm phase, which
goes from single-q to a less defined Sq. A similar behavior is
seen at higher fields (B = 0.9) in Fig. 3, but comparing here
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FIG. 2. Monte Carlo simulations for D = 1, B = 0.2. (top) Spe-
cific heat, magnetization, and chirality as functions of temperature.
(bottom): Three snapshots and their corresponding Sq for three dif-
ferent temperatures, indicated as vertical lines in the plots from
the top panel. At the lowest simulated temperature, a spiral phase
is stabilized, but an intermediate bimeron phase is clearly seen at
higher T .

a ferromagnetic phase at low temperature with an intermedi-
ate skyrmion gas phase. In the higher-temperature snapshot,
which corresponds to the highest value of the chirality, we can
also see that although the system has a net chirality, thermal
fluctuations break the skyrmion and less-defined chiral struc-
tures are seen.

FIG. 3. Monte Carlo simulations for D = 1, B = 0.9. (top) spe-
cific heat, magnetization, and chirality as a function of temperature.
(bottom) three snapshots and their corresponding Sq for three dif-
ferent temperatures, indicated as vertical lines in the plots from the
top panel. At the lowest simulated temperature, the system is in
the ferromagnetic phase, but an intermediate skyrmion gas phase is
clearly seen at higher T .

Following the discussion above, the identification of the
intermediate phases and the construction of a complete de-
tailed B-T phase diagram requires a combination of resources,
including calculation of the scalar chirality, inspection of
the structure factor, and inspection of the real-space config-
urations. In this work, our goal is to use machine learning
techniques to assist in the detection of the intermediate
“nonstandard” phases and in the construction of this phase
diagram, avoiding a snapshot-by-snapshot inspection. In the
next section we describe our machine learning approach and
present our results using a convolutional neural network.

III. MACHINE LEARNING APPROACH

Here we describe how we are going to use machine learn-
ing techniques to construct a complete B-T phase diagram.
We present the steps in Fig. 4.

First, in order to train and validate the ML algorithms
we produce snapshots for the five different low-temperature
phases (Bm, Fm, SkG, SkX, Sp) using Monte Carlo simu-
lations. We use the model Hamiltonian presented in Eq. (1),
but we only take three values of the DM interaction, D =
0.5, 1.0, 1.5, for training and validation. Since we are taking
low-temperature configurations, from Fig. 1 it can be clearly
seen that the dataset will be very unbalanced, since the inter-
mediate Bm and SkG phases are only stable in a very narrow
range of magnetic field. Therefore, we run more simulations
in these magnetic field ranges, in order to increase the num-
ber of Bm and SkG snapshots. The Monte Carlo simulations
are done with the Metropolis algorithm combined with over-
relaxation for a 48 × 48 square lattice, taking 105 MC steps
for thermalization and twice as many to take measurements.
Each simulation is done by fixing a value of B and using the
annealing technique to take the system from T = 3 to T =
0.017. For each parameter set, ≈30 copies with independent
seeds were done.

Second, we train a convolutional neural network (CNN) for
classification using the low-T dataset, where we have labeled
the snapshots (this is an instance of supervised learning). As in
previous works [16], we only use as input the projection of the
spins along the magnetic field Sz. This has the clear advantage
of reducing the dataset by a factor of three. Nonetheless, inclu-
sion of the in-plane components of the spins would be needed
to distinguish between Bloch and Néel skyrmions and also an-
tiskyrmions, which is not the case in this work. We do not use
any other variable (D, B, specific heat, chirality, etc.), to make
sure that resulting model does not depend on parameters, but
only on the configurations, and it can thus be potentially used
for snapshots resulting from different Hamiltonians. Since we
aim to construct a B-T phase diagram, we also take snapshots
at the highest temperatures, i.e., in the paramagnetic phase
(Pm), at high (B = 0.9) and zero magnetic field, where the
system will not stabilize at low temperatures in a SkX phase.
We later discuss the effect of including these snapshots.

Third, we apply the trained network to a test set, which
we construct with low-T snapshots obtained for other values
of the DM interaction, D = 0.75, 1.25, not used in training.
The value of D controls the size of the skyrmions and the
spirals. Therefore, our idea here is to see whether the network
can correctly identify topological structures in a parameter
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FIG. 4. Steps from the machine learning approach used in this work. The dataset consists of Sz components from spin configurations
obtained from Monte Carlo simulations. A convolutional neural network classification model was constructed, using the lowest-temperature
configurations at three values of the DM coupling (D = 0.5, 1, 1.5) and a subset of high-temperature data for training and validation, separating
in six different phases: spirals, bimerons, skyrmion crystal, skyrmion gas, ferromagnetic, and paramagnetic. A set of lowest temperature
samples for different DM values (D = 0.75, 1.25) was used for testing. The resulting CNN classification model was applied for configurations
in a wide range of temperature and magnetic field, to construct a complete (B, T ) phase diagram. Details of the CNN architecture are shown
in the Appendix.

region where it has not been trained. This would be extremely
useful, since it would mean that it is only necessary to train
a technique in a small region of parameter space, and then it
may be applied to any other values.

Finally, to construct the complete B-T phase diagram, we
apply the trained CNN to classify snapshots for all tempera-
tures and magnetic fields. We do this for different values of D,
and we compare the resulting phase diagrams with the chiral-
ity density phase diagram obtained from MC simulations.

Below, we present a table detailing the dataset used in this
work.

A. Convolutional neural network results

Convolutional neural networks (CNNs) have been used
with great success in pattern and image recognition [39].
Details of the architecture of the CNN used in this work are
given in the Appendix. The training dataset was split in 80%
for training and 20% for validation, and the Sz spin component
was rescaled from [−1, 1] to [0,1]. The output of the CNN is
a probability for each class (or phase), and we define the class
of a given snapshot as the one that has the highest probability.

As a first step, we apply the CNN to the D = 0.5, 1.0, 1.5
dataset, including all five low temperature phases and the
paramagnetic phase. We obtain an accuracy of 99.9% in the
training set, and 97.5% in the validation set. Then, we use
this trained CNN to predict the phases for our test set, D =
0.75, 1.25, and obtain a slightly lower, but still satisfactory,
accuracy of 91%. To analyze if there are specific phases where
the CNN is misclassifying the snapshots, we calculate the
confusion matrices (CM) for the training, validation and test
set, which are to be read as follows: the ith row indicates
the true label for the ith class, and the jth row, the predicted
label for the jth class. Therefore, at a quick glance, if the
off-diagonal elements of the CM matrices are significantly
lower than the diagonal ones, it would mean that there are

few misclassified snapshots in that dataset. We present the
confusion matrices for the three sets below, where the classes
(phases) are ordered alphabetically (Bm, Fm, Pm, SkG, SkX,
Sp):

CMtrain =

⎛
⎜⎜⎜⎜⎜⎝

163 0 0 0 0 7
0 262 0 0 0 0
0 0 473 0 0 0
0 5 0 187 0 0
6 0 0 0 214 0
0 0 0 0 0 281

⎞
⎟⎟⎟⎟⎟⎠

, (2)

CMval =

⎛
⎜⎜⎜⎜⎜⎝

36 0 0 0 1 1
0 68 0 0 0 0
0 0 127 0 0 0
0 1 0 47 0 0
1 0 0 0 39 0
0 0 0 0 0 79

⎞
⎟⎟⎟⎟⎟⎠

, (3)

CMtest =

⎛
⎜⎜⎜⎜⎜⎝

101 0 0 0 11 22
0 10 0 0 0 0
0 0 60 0 0 0
0 3 0 87 0 0
11 0 0 30 267 0
9 0 0 0 0 351

⎞
⎟⎟⎟⎟⎟⎠

. (4)

Inspecting the CMs, we can see that, not surprisingly, the
CNN has more trouble classifying the intermediate phases,
Bm and SkG (first and fourth rows). Notice that the test
dataset contains less ferromagnetic and paramagnetic phases
(Table I), where the network has more accuracy: from the
CMs, reading rows two and three, it can be seen that all
Fm and Pm snapshots where correctly classified. To further
analyze the misclassified data, we first present as an example
a misclassified snapshot from the test set in Fig. 5, left. This is
a Bm phase, where there are some bimerons among skyrmions
arranged in a lattice. If we look at the probabilities calculated
for this configuration by the CNN, we see that it assigns it as
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TABLE I. Data set. Snapshots at D = 0.5, 1.0, 1.5 were used
for training and validation, and D = 0.75, 1.25 were used as the
test set. Bm: bimerons, Fm: ferromagnetic, Pm: paramagnetic, SkG:
skyrmion gas, SkX: skyrmion crystal, Sp: spiral.

Phases or classes D = 0.5, 1.0, 1.5 D = 0.75, 1.25

Bm 208 134
Fm 330 10
Pm 600 60
SkG 240 90
SkX 260 308
Sp 360 360
Total 1998 962

a SkX with a probability of 55%, but the Bm class, which is
the correct class, has the second highest probability of 44%.
Then, there is not a large difference between the two highest
probabilities assigned by the CNN, i.e., the highest probability
assigned is not significantly high. We then plot in Fig. 5, left,
a histogram of the highest probability assigned to the chosen
phase to the whole test set and compare it with the same
histogram obtained only for misclassified snapshots. We can
clearly see that in the misclassified subset the CNN assigns
much lower probabilities than to the correctly classified ones,
since the peak for the probabilities higher than 0.9 is not
seen in the histogram of the misclassified data. Comparing the
counts from the histogram, it may also be seen that there are
significantly less misclassified snapshots, suggesting a high
accuracy.

To further explore the network, to see how to get the low-
temperature phases in the test dataset, we plot the probability
of all six phases as a function of magnetic field, calculated
for all low temperature configurations in the test dataset, D =
1.25 and D = 0.75, at the top row of Fig. 6. The bottom row
shows the low-temperature chirality as a function of magnetic
field, calculated as the mean value and standard deviation
over 30 independent realizations per field of the thermal

FIG. 5. (left) Example of a misclassified snapshot for the test
dataset. The CNN assigns a 55% probability to the SkX phase,
and 44% to the Bm phase. (right) Histograms of the maximum
probability for the complete test set (blue) and for the misclassified
configurations in the test set (orange). It can be seen that there is
a larger portion of misclassified snapshots with lower highest prob-
abilities, and that the highest probabilities correspond to correctly
classified configurations.

FIG. 6. (top) Probabilities calculated by the trained CNN as a
function of B for the test set values of the DM interaction, D = 1.25
(left) and D = 0.75 (right). (bottom) Chirality density obtained from
MC simulations as a function of magnetic field, averaged over 30
independent copies. Error bars indicate the standard deviation.

average obtained from MC simulations. In the D = 1.25 case,
for the chosen range of B, it can clearly be seen that the
CNN identifies the low-B configurations as spirals, and the
higher-B snapshots as skyrmion crystal. At a certain point of
B, the probability for the bimeron phase raises significantly,
indicating a small Bm phase at low T . Inspection of the
chirality agrees with this picture: it is zero at low fields,
and it has a finite and constant value at higher B. Between
these values, intermediate points can be identified, matching
the Bm prediction. For D = 0.75, more phases can be seen
in a smaller range of magnetic field. We may also identify
intermediate regions, so that the selected phases as a function
of the magnetic field are spiral, bimeron, skyrmion crystal,
skyrmion gas, and paramagnetic. No high probability can be
seen for the paramagnetic phase for either value of D, which is
consistent with the fact that we are inspecting low-temperature
configurations.

We now proceed to construct the complete B-T phase
diagram, applying the trained CNN to snapshots for all tem-
peratures and magnetic fields. In Fig. 7 we plot the resulting
phase diagrams for D = 1.0, where only the lowest T and
the B = 0 and B = 0.9 high-T configurations where used for
training and validation, and for D = 0.75, which was not used
to train the CNN. To compare the results, we plot the chiral-
ity density obtained from Monte Carlo simulations. We can
see that there is a very good agreement between both phase
diagrams and the χ density. Moreover, we can see that there
is no “phase mixing:” the CNN does not assign for example
a spiral at high magnetic field, or an ordered phase at high
temperature.

Although the CNN seems to overestimate slightly some
intermediate regions, for example the SkG phase at high fields
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FIG. 7. Phase diagrams for D = 1 (top) and D = 0.75 (bottom). First column shows the chirality density obtained from MC simulations.
Middle column shows the phases predicted by the CNN. Right column shows the probabilities for the phases predicted by the CNN.

or the Bm phase at very low fields, it can also correctly
identify what may be considered “tricky” configurations, such
as single skyrmions in a ferromagnetic background. We plot
in Fig. 8 three snapshots at high field that the CNN labels as
SkG: one is a single well-formed skyrmion at low T (left),
and the other two are at higher temperatures: in one case,
skyrmion-like structures may still be identified (center), in the
other case, thermal fluctuations have destroyed the character-
istic skyrmion like structures.

To continue analyzing the output of the CNN, in the right
column of Fig. 7 we plot the phase diagram of the maximum
probability assigned to the chosen class. It can be seen that
the CNN classifies with high probability in the middle of the
different phases, but it gets lower in the interphases, both with
magnetic field and temperature. In this sense, the probability

FIG. 8. Examples of snapshots classified as skyrmion gas, D = 1
(left) One single skyrmion at the lowest temperature, T = 0.017,
for B = 0.75. (center) Skyrmion gas intermediate phase induced by
temperature for T = 0.75, B = 0.95. (right) Snapshot of the config-
uration at T = 1.0, B = 0.95.

gives us valuable physical information, specially in regions
with stronger thermal fluctuations.

We may then wonder two things: whether it is necessary to
include a paramagnetic phase, and what would change if we
only classified with the three well-defined phases (Fm, SkX,
Sp). As was stated in previous works [16,19], fluctuations in
the probability may gives us an insight on whether to expect
intermediate or different phases. We thus proceed as we did
before for the six-phase dataset, constructing three different
subsets: five low-T phases (Bm, Fm, SkG, SkX, Sp), three
low-T phases and the paramagnetic one (Fm, Pm, SkX, Sp),
and only three low-T phases (Fm, SkX, Sp). For each case,
a different CNN model was trained, but we maintained the
architecture of the network. As a comment, excluding the
intermediate Bp and SkG phases enhances the accuracy: for
the last two data subsets the accuracy is 100% for the training,
validation and test sets. We plot the phase diagrams and the
corresponding probabilities for D = 1 in Fig. 9.

First, we see that including the paramagnetic phase in the
dataset is helpful to define the temperature limits of the low-T
configurations. In the case where we included intermediate
phases but excluded the paramagnetic class (Bm, Fm, SkG,
SkX, Sp) Fig. 9, top, we see that, at low magnetic fields, the
assigned probabilities drop at higher temperature, suggesting
that the classification does not work there (and thus, that a
different phase may have to be considered), although this may
not said looking at higher magnetic fields. Then, if we only
take the three phases that would be stable in the T → 0 limit
(spirals, skyrmions crystals and ferromagnetic), we see that
the inclusion of the paramagnetic phase (Fm, Pm, SkG, SkX,
Sp) does not only help to establish the temperature limits
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FIG. 9. Phase diagrams (left) and probabilities (right) assigned
to each phase obtained with the trained CNN for D = 1 and three
different subsets of the data set: five phases without the paramagnetic
case (Bm, Fm, SkG, SkX, Sp), three phases with the paramagnetic
phase—no intermediate phases (Fm, SkX, Sp, Pm), three phases
without intermediate or paramagnetic cases (Fm, SkX, Sp).

of these low-T phases, but it also favors the definition of
possible intermediate phases, given by the areas where the
probabilities are lower, both with temperature and magnetic
field (Fig. 9, middle panel). This is clearly in contrast with
taking only the three low-T phases (Fm, SkX, Sp), bottom
panel of Fig. 9. In that case, the probabilities drop in a narrow
region in magnetic field, and clearly do not drop at higher
temperatures, showing that the CNN underestimates the in-
termediate phases, especially the bimerons at low magnetic
fields. Nonetheless, this comparison allows us to propose that
training a CNN with well-defined phases, such as (Fm, Pm,
SkX, Sp), and applying it to a whole range of temperature and
magnetic field to unknown configurations also serves as a tool
to identify regions where there might be possible new phases.

B. Comparison with other classification methods

In this section, we resort to other less complex ML clas-
sification techniques, to compare with the CNN. First, we
choose the support vector machine (SVM) [39,40]. Using the
Scikit Learn package, we proceed as before, with the six class
dataset (Bm, Fm, Pm, SkG, SkX, Sp). We use cross validation
to optimize the regularization parameter “C” and the kernel

FIG. 10. Phase diagrams obtained with SVM (top) and rf (bot-
tom), for D = 1 (left column) and D = 0.75 (right column).

coefficient “gamma,” choosing a radial basis function as ker-
nel. The resulting SVM has a 99.9% accuracy in the training
set, and 95% in the validation set. However, the accuracy
drops when applying it to the test set, where it goes to 78%.
Inspection of the CM shows that the most notable problem lies
in the spiral class: more than half of the spiral configurations
are classified as paramagnetic. Given that the test set is formed
by other values of D not used in training, we may say that the
SVM does not generalize as well as the CNN. We compare
the complete B-T phase diagrams for D = 1 and D = 0.75
in Fig. 10, top row, where we confirm this last statement.
For D = 1, which was used for training, the phase diagram is
schematically correct at low temperatures. As the temperature
increases, it is still consistent with the known phase diagram
at low fields, but fails at higher fields, especially where there
is an intermediate SkX high T and high B phase. This is even
worse for D = 0.75, where the classification is problematic
even at low temperature. Then, the SVM may be a good tool
to explore a first version of a phase diagram, provided that D
(basically, skyrmion and spiral size) is fixed.

Second, we train a random forest (RF) [39,40], which is a
collection of decision tree (DT) classifiers. As before, using
cross validation we optimized the number of DTs and the
maximum depth of each DT. As with the SVM case, the
accuracy in the training set is high, 100%, but drops to 89%
in the validation set. It gets worse when changing the size of
the textures: the accuracy is 43% in the test set, showing that
the RF is not a good tool to extend the classification to other
configurations. We illustrate this by constructing the phase
diagrams, shown in the bottom row of Fig. 10. For D = 1,
we see that the RF reproduces the behavior at low T , consis-
tent with the accuracy score in the training set, but it does
not generalize well when applying it to higher-temperature
configurations. Clearly, inspecting the D = 0.75 case, we see
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that the RF practically does not detect intermediate phases and
fails dramatically at low magnetic fields, where it assigns a
paramagnetic phase at low temperature. This further supports
the claim that this technique does not generalize well to values
of D that have not been used in training.

IV. CONCLUSIONS

Our main goal in this work was to present a machine learn-
ing approach to classify different types of topological phases,
including skyrmions and bimerons, to construct a complete
detailed phase diagram, and that it would be able to generalize
to different skyrmion sizes. To this end, we chose a convo-
lutional neural network and we constructed the dataset from
Monte Carlo simulations, enhanced for intermediate phases
(bimerons and skyrmion gas). We trained and validated the
CNN using only the lowest-temperature snapshots, exclud-
ing other measurements or parameters from the Hamiltonian
used to generate this configurations. In this way, our resulting
trained CNN would be applicable to other configurations or
images, provided they are formatted as the input data. The
training and validation sets where chosen for fixed values
of the DM interaction, i.e., three characteristic skyrmion and
spiral sizes. To test whether the CNN can generalize to other
skyrmion sizes, we chose as the test set two different DM
values. Since we are interested in building a complete phase
diagram, we included high-temperature snapshots in the para-
magnetic phase.

The resulting CNN model was then applied to configura-
tions for a wide range of temperature and magnetic field, for
different values of D, to construct the complete and detailed
B-T phase diagram. Comparing with the chirality density
obtained from Monte Carlo simulations, we find a remarkable
agreement, even in the intermediate phases. This shows that
CNNs are a powerful tool not only to construct a complete
phase diagram but also to extend this type of work to other
models. Given that the only input for the CNN is the spin con-
figuration, the resulting trained CNN models are applicable to
snapshots obtained with simulations for other Hamiltonians,
or even real-space experimental images.

We also discuss the importance of including paramagnetic
and intermediate phases, constructing the phase diagram for
different subsets of the data. We see that, as a first approach,
taking only the three well-ordered low-temperature phases
may help to determine possible intermediate phases, although
this fails at higher temperature unless the paramagnetic phase
is included.

Finally, we used the same approach choosing two other
machine learning classification techniques: support vector
machine and random forest. In both cases, there is a very high
accuracy in the training set, but it drops significantly when
applying the resulting algorithm to snapshots with different
skyrmion and spiral sizes, specially in the RF case. This shows
that these techniques, very powerful for other tasks, do not
generalize as well as the CNNs.

We hope this work contributes to the ongoing work re-
sorting to machine learning techniques in condensed matter.
In the future, we expect to continue this type of work in
other nontrivial topological phases such as antiferromagnetic
skyrmions [32,41–43], antiskyrmions [44,45], chiral phases
[46,47], and spin liquids [48–50].
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APPENDIX

Here we describe in detail the architecture of the CNN
network, which we maintained when analyzing all the subsets
of data, with the exception of the last layer, where the number
of units matches the number of classes (phases).

The CNN was constructed with four convolutional layers
with 32 filters of size three, no padding, and the activation
function ReLu. Each of these layers was followed by a Max
Pooling layer of pool size two and a Dropout layer with
dropout value of 0.25. Then, the system was flattened and fol-
lowed by a Dense layer of 128 nodes and activation function
ReLu, a Dropout layer with dropout 0.25, and finally a Dense
output layer with activation function softmax.

We chose cross entropy as the error, scalar gradient descent
as the optimizer, and a learning rate 0.05. The CNN was
trained in 200 epochs, with batch size 32. The CNN was
implemented in TensorFlow [51].
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