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Spin Hall effect driven by the spin magnetic moment current in Dirac materials
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The spin Hall effect of a Dirac Hamiltonian system is studied using semiclassical analyses and the Kubo
formula. In this system, the spin Hall conductivity is dependent on the definition of spin current. All components
of the spin Hall conductivity vanish when spin current is defined as the flow of the spin angular momentum.
In contrast, the off-diagonal components of the spin Hall conductivity are nonzero and scale with the carrier
velocity (and the effective g factor) when spin current consists of the flow of spin magnetic moment. We derive
the analytical formula of the conductivity, carrier mobility, and the spin Hall conductivity to compare with
experiments. In experiments, we use Bi as a model system that can be characterized by the Dirac Hamiltonian.
Te and Sn are doped into Bi to vary the electron and hole concentration, respectively. We find the spin Hall
conductivity (σSH) takes a maximum near the Dirac point and decreases with increasing carrier density (n). The
sign of σSH is the same regardless of the majority carrier type. The spin Hall mobility, proportional to σSH/n,
increases with increasing carrier mobility with a scaling coefficient of ∼1.4. These features can be accounted for
quantitatively using the derived analytical formula. The results demonstrate that the giant spin magnetic moment,
with an effective g factor that approaches 100, is responsible for the spin Hall effect in Bi.

DOI: 10.1103/PhysRevB.105.214419

I. INTRODUCTION

Spin current is defined as a flow of carriers with opposite
spins moving in opposite directions. There are a number of
well established approaches to generate spin current in non-
magnetic materials. Among them, the spin Hall effect (SHE)
[1–4] allows electrical generation of spin current: application
of current induces spin current that flows perpendicular to the
current flow [5–9].

The degree of which a material can generate spin current
via the spin Hall effect is characterized by the spin Hall con-
ductivity. The spin Hall conductivity in nonmagnetic materials
can be calculated using the Kubo formula in a similar way
the anomalous Hall conductivity is estimated in magnetic
materials. The form of the latter is equivalent to the Berry
curvature of the electronic state of the host material [10,11].
The anomalous Hall conductivity thus results from a purely
geometrical property of the Bloch wave function. (Here we
do not discuss contributions from extrinsic effects, e.g., skew
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scattering and side jump.) In contrast, there is no equivalent
geometrical property, as far as we know of, that corresponds
to the spin Hall conductivity. The lack of such correspondence
is intimately related to the definition of spin current: the prob-
lem stems from the fact that spin density is generally not a
conserved quantity [12–14].

Spin current is commonly defined as the flow of spin an-
gular momentum, i.e., the product of carrier velocity and the
spin angular momentum [15,16]. Although such spin current
does not conserve spin [12–14], it has been widely used to
characterize spin transport in metallic systems. The difficulty
in defining the spin current is particularly apparent in systems
where the electronic states can be described by the Dirac
Hamiltonian [17–22]. We refer to such systems as Dirac mate-
rials hereafter. Dirac semimetal [23] is a notable material class
that belongs to this system. As we show below, all components
of the spin Hall conductivity in Dirac materials vanish when
spin current is defined as the flow of spin angular momentum.

Here we present a systematic study of spin current in Dirac
materials. Two different definitions of the spin current, the
flow of spin angular momentum and the flow of spin magnetic
moment, are used to calculate the spin Hall conductivity. We
show that the spin current in Dirac materials is zero when
flow of spin angular momentum is used as the spin current.
In contrast, the spin Hall conductivity associated with the
flow of spin magnetic moment possesses nonzero off-diagonal
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components. We derive analytical formulas of the carrier den-
sity, mobility, conductivity, and spin Hall conductivity.

To compare with the model developed, we study the SHE
of bismuth (Bi), a model Dirac material. Te and Sn are used
as dopants to add, respectively, electrons and holes in Bi
and tune the position of the Fermi level. We find the spin
Hall conductivity shows significant dependence on the carrier
density, taking a maximum when the Fermi level is close to
the Dirac point. The sign of the spin Hall conductivity is
found to be independent of the majority carrier type. The
scaling relations between the spin Hall conductivity, carrier
density and mobility are studied and compared to the model
calculations. The results clearly show that the observed spin
current is consistent with the flow of spin magnetic moment,
which is defined by the effective g factor of the host material.

II. MODEL ANALYSES

A. System description

In this paper, we use bismuth (Bi) as a model Dirac Hamil-
tonian system. Bi is a nonmagnetic material that possesses
large spin orbit coupling. It is a semimetal with electron and
hole pockets crossing the Fermi level [24,25]. Both electrons
and holes contribute to the transport properties. The electron
pockets preside near the three L points of the reciprocal space,
whereas the hole pocket is located around the T point. Ow-
ing to the large spin orbit coupling of Bi, tight binding and
k · p model calculations show that the electronic structure
of the states near the L points can be described using the
Dirac Hamiltonian [20,26,27]. Here we assume that the spin
transport properties of the system is effectively defined by the
carriers presiding near the L point.

In the following, bold fonts represent vectors. The repeated
indices imply summation. The superscript † indicates trans-
pose conjugate. e is the elementary charge (e > 0) and h̄ is
the reduced Planck constant.

B. Electronic structure

The Dirac Hamiltonian is defined as

H = −h̄vkiτ2 ⊗ σi + �τ3 ⊗ σ0

=

⎡
⎢⎣

� 0 ih̄vkz ih̄vk−
0 � ih̄vk+ −ih̄vkz

−ih̄vkz −ih̄vk− −� 0
−ih̄vk+ ih̄vkz 0 −�

⎤
⎥⎦, (1)

where k± = kx ± iky, and ki is the ith component of the wave
vector. τi and σi (i = 1, 2, 3) are the Pauli matrices that rep-
resent the orbital and spin degree of freedom, respectively.
(i = 1, 2, 3 correspond to x, y, z in real space coordinate, re-
spectively.) τ0 and σ0 are 2 × 2 identity matrices. v is the
carrier velocity, and 2� is the energy gap. Previous studies
have shown that H describes the electronic states near the L
point of Bi [20,26,27]

The eigenvalues (Eτ ) and the corresponding eigenfunctions
(ψτ,σ ) of H are

Eτ =τε,

ψτ,σ = 1√
2

⎡
⎣τ

√
1 + τ�

ε
k·σ
k χσ

−i
√

1 − τ�
ε

χσ

⎤
⎦, (2)
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FIG. 1. (a) Energy dispersion relation (E vs wave vector k) of the
system. [(b) and(c)] The density of states D(E ) (b) and the density
of spin Berry curvature Dm (c) plotted as a function of position
of energy E . (d) The Fermi level EF dependence of the spin Hall
conductivity σ̃SH. [(a)–(d)]. Parameters used in the calculations are:
a = 3.5 × 10−7 s cm−1, α = − 1

3 , � = 7.7 meV, and Ec = −5 eV.
Line colors represent calculation results using different values of car-
rier velocity v: see the legend of (c). Inset to (b) shows an illustration
of the Bi band structure near the L point.

where ε =
√

�2 + (h̄vk)2, k = |k|, τ (= ±1) and σ (= ±1)
represent the state index of the band and the spin, respec-
tively. Note that τ and σ are integers representing orbital
and spin states whereas τi and σi (i = 0, 1, 2, 3) are matrices.
χσ is the spinor of the spin basis function (χ+1 = [1, 0]

†
,

χ−1 = [0, 1]
†
). The density of states D(E ) is obtained as the

following:

D(E ) =
∑
τ,σ

∫
dk

(2π )3
δ(E − Eτ )

=
⎧⎨
⎩

|E |√E2 − �2

π2h̄3v3
, |E | > �,

0, |E | < �,

(3)

where the spin degree of freedom has been included. E = 0
corresponds to the Dirac point.

The calculated band dispersion is displayed in Fig. 1(a).
In the calculations, we use 2� = 15.4 meV [25,28], which
represents the band gap of Bi L point. (Due to a nonzero
�, a gap forms between the upper and lower branches of
the dispersion.) The solid lines with different color represent
the dispersion relation calculated using different values of
v. The corresponding density of states D(E ) is shown in
Fig. 1(b). As evident, D(E ) asymptotically increases with
E2, which is one of the characteristics of the linear band
dispersion of three-dimensional Dirac Hamiltonian system.

C. Transport properties

The carrier density n is calculated by integrating D(E ) over
the occupied (electron) states or the unoccupied (hole) states.
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FIG. 2. (a) Fermi energy (EF) dependence of the carrier concen-
tration (n). [(b)–(d)] Carrier mobility μc (b), spin Hall conductivity
σ̃SH (c), and spin Hall mobility μs (d) plotted against n. [(a)–(d)]
Line colors indicate calculation results using different values of
carrier velocity v: see the legend of (a). Since μc and μs scale with
the inverse of |n|, here we limit the plotting to a range of |n| that
satisfies |EF| � 0.5 meV. Parameters used in the calculations are
a = 3.5 × 10−7 s cm−1, α = − 1

3 , � = 7.7 meV, and Ec = −5 eV.

The result is

n =
∫ EF

�

dED(E ) =
∫ −�

EF

dED(E ) =
(
E2

F − �2
) 3

2

3π2(h̄v)3
, (4)

where EF is the Fermi level. In Fig. 2(a), we show the Fermi
level (EF) dependence of n calculated using different values
of v. Note that negative (positive) n indicates carriers with
negative (positive) charge. As typical of Dirac Hamiltonian
systems, |n| increases when EF moves away from the Dirac
point.

The electrical conductivity (σxx) can be obtained from the
Kubo formula (see the Appendix (Sec. A 1))

σxx = e2D(EF)v2 E2
F − �2

3E2
F

τeff . (5)

τeff is the relaxation time, which we assume takes the follow-
ing form [29,30]:

τeff = anα. (6)

a and α are constants. The exponent α defines the charac-
teristic relaxation time of the carriers involved in transport
[29]. Assuming carrier transport based on Drude’s model,
the carrier mobility μc can be estimated from the following
relation:

σxx = neμc. (7)

From Eqs. (5)–(7), μc reads

μc = eD(EF)v2 E2
F − �2

3E2
F

anα−1. (8)

The n dependence of μc is shown in Fig. 2(b) with a =
3.5 × 10−7 s cm−1 and α = − 1

3 . μc takes a sharp maximum as

the Fermi level approaches the Dirac point, a characteristics of
systems with Dirac Hamiltonian [31–34]. The sharp increase
is largely due to the reduction in |n| near the Dirac point. We
will see later that simple scaling relations hold for σxx and μc

as a function of |n|, and the coefficients of such relations can
be compared with experiments.

D. Spin angular momentum and spin magnetic moment

In the following, we discuss the form of spin Hall conduc-
tivity. First, the jth component of the velocity operator v (v j)
is given by

v j = 1

h̄

∂H
∂k j

= −vτ2 ⊗ σ j = v

[
0 iσ j

−iσ j 0

]
. (9)

Next, we introduce the operators representing the spin mag-
netic moment (m) and the spin angular momentum (s) of
the carriers. The spin magnetic moment is defined from the
Zeeman energy term that appears in the Hamiltonian when
a magnetic field is applied to the system [20,25]. The ith
component of m (mi) reads

mi = −eh̄v2

2�
(τ3 ⊗ σi ) = −eh̄v2

2�

[
σi 0
0 −σi

]
. (10)

mi can be rewritten using the Bohr magneton μB (μB = eh̄
2me

and me is the free electron mass) as the following:

mi = − 1

2
g∗μB(τ3 ⊗ σi ), (11)

where g∗ is the effective g factor. For the system under study
[Eq. (1)], g∗ is given by [20]

g∗ = 2mev
2

�
. (12)

The spin angular momentum (s) is defined by the Lorentz
invariance of the Dirac equation [35]. The ith component of
s (si) reads

si = h̄

2
(τ0 ⊗ σi ) = h̄

2

[
σi 0
0 σi

]
. (13)

To find the form of spin current, we study the time evolu-
tion of 〈si〉 and 〈mi〉 using the Heisenberg equation of motion.
We define 〈x〉 = φ†xφ: x is an operator, φ and φ† are the field
operators. φ (φ†) is expressed using the electron annihilation
operator ck,τ,σ (creation operator c†

k,τ,σ
) and the eigenfunction

ψτ,σ [see Eq. (2)] as the following:

φ(r, t ) =
∑
k,τ,σ

ψτ,σ eik·r−iEτ t ck,τ,σ . (14)

φ(r, t ) is the eigenfunction of the Hamiltonian [Eq. (1)] in
the momentum representation: Hp = −vpiτ2 ⊗ σi + �τ3 ⊗
σ0, where pi = −ih̄∂i is the momentum operator. The equa-
tion of motion for 〈si〉 reads

d〈si〉
dt

= 1

ih̄
〈[si,Hp]〉 = −∂ j

〈
ji
s, j

〉+ τs,i,

〈
ji
s, j

〉 = − h̄

2
vδi j

∫
φ†(τ2 ⊗ σ0)φdr,
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τs,i = i
h̄

2
vεi jl

∫ (
φ†(τ2 ⊗ σl )(∂iφ)

− (∂iφ
†)(τ2 ⊗ σl )φ

)
dr, (15)

where δi j is the Delta function, εi jl is the Levi-Civita symbol.
The equation of motion for 〈mi〉 is given as

d〈mi〉
dt

= 1

ih̄
〈[mi,Hp]〉 = −∂ j

〈
ji
m, j

〉+ τm,i,

〈
ji
m, j

〉 = −μBvεi jl

∫
φ†(τ1 ⊗ σl )φdr,

τm,i = −iμBvδi j

∫ (
φ†(τ1 ⊗ σ0)(∂ jφ)

− (∂ jφ
†)(τ1 ⊗ σ0)φ

)
dr. (16)

Equations (15) and (16) represent the continuity equation of
the spin angular momentum and the spin magnetic moment,
respectively. 〈 ji

s, j〉 and 〈 ji
m, j〉 are the associated spin current.

With regard to spin current, the subscript j represents the
flow direction and the superscript i indicates the spin direc-
tion. Interestingly, 〈 ji

m, j〉 is nonzero when the flow and spin
directions are orthogonal (i.e., i �= j) whereas 〈 ji

s, j〉 vanishes
under the same condition. That is, 〈 ji

s, j〉 is nonzero only when
the flow and spin directions are parallel. In the continuity
equation, if τs,i (τm,i) is zero, the spin angular momentum
〈si〉 (the spin magnetic moment 〈mi〉) conserves. In general,
however, τs,i (τm,i) is not zero and 〈si〉 (〈mi〉) is not a conserved
quantity. One may define the spin current such that 〈si〉 or 〈mi〉
conserves [18,19]. Since our focus here is on systems with
strong spin orbit coupling (e.g., Bi), where spin (〈si〉 or 〈mi〉)
is generally not a conserved quantity, we employ the intuitive
definitions shown below [see Eqs. (17) and (18)].

From the second line of Eqs. (15) and (16), we define the
spin current operator as the following:

ĵ i
s, j = − h̄

2
v(τ2 ⊗ σ0) = 1

2
{v j, si}, (17)

ĵ i
m, j = −me

e
μBvεi jl (τ1 ⊗ σl ) = me

e

1

2
{v j, mi}, (18)

where the curly bracket indicates an anticommutator. Note
that the definition of ĵ i

m, j as a spin current was employed in
Ref. [20]. We set the unit of the spin current to be equal to
the product of energy and length, i.e., erg cm in cgs units.
The prefactor me

e in Eq. (18) is a normalization constant that
converts the flow of spin magnetic moment to erg cm. For
ĵ j
s,i, we have left out the Delta function (δi j) that appears

in Eq. (15) to allow spin current with different symmetries.
The right-hand side of Eqs. (17) and (18) shows that the
spin current represents the product of the carrier velocity and
the spin angular momentum (spin magnetic moment) for ĵ j

s,i

( ĵ j
m,i).

E. Spin Hall conductivity

We are now in a position to calculate the spin Hall conduc-
tivity (σSH), which is obtained by integrating the spin Berry
curvature (�l

s(m),i j,τ,σ ) of the occupied states with band τ with
spin σ . �l

s(m),i j,τ,σ associated with the spin angular momen-

tum flow (spin magnetic momentum flow) is expressed as

�l
s(m),i j,τ,σ

= −h̄
∑

τ ′,σ ′ �=τ,σ

2Im
〈ψτ,σ | ĵ l

s(m), j |ψτ ′,σ ′ 〉〈ψτ ′,σ ′ |vi|ψτ,σ 〉
(Eτ − Eτ ′ )2

.

(19)

h̄ is multiplied to the right-hand side of Eq. (19) so that the
unit of �l

i j,τ,σ becomes length square ([cm2]). The spin Berry
curvature associated with the flow of spin angular momentum
(�l

s,i j,τ,σ ) is obtained by substituting Eqs. (2), (9), and (17)
into Eq. (19), which leads to

�l
s,i j,τ,σ = 0. (20)

This is in significant contrast to conventional Pauli-
Schrödinger Hamiltonian systems, in which �l

s,i j,τ,σ does not
vanish. Since �l

s,i j,τ,σ = 0, all components of σSH vanish for
the flow of spin angular momentum. This is one of the unique
characters of Dirac materials. See Sec. IV and the Appendix
(Sec. A 2) for the implication of the vanishing σSH associated
with the spin angular momentum flow.

In contrast, the spin Berry curvature associated with the
flow of spin magnetic moment (�l

m,i j,τ,σ ) reads

�l
m,i j,τ,σ = τεi jl

h̄2g∗v2�

8ε3
. (21)

For calculating the spin Hall conductivity σSH, it is convenient
to introduce the density of spin Berry curvature (Dm,τ,σ ),
defined as

Dm,τ,σ =
∫

dk
(2π )3

�l
m,i j,τ,σ δ(E − Eτ ). (22)

Substituting �l
m,i j,τ,σ into Eq. (22), we find

Dm,τ,σ = g∗τ�

8π2h̄h̄v

√
E2 − �2

E2
. (23)

In contrary to the density of states (D(E )), Dm,τ,σ can be neg-
ative as its sign determines the sign of spin Hall conductivity.
Since Dm,τ,σ depends on τ , the sign of Dm,τ,σ is opposite for
the bands below or above the gap.

For the flow of spin magnetic moment, we obtain

σSH(EF) = −e
∑
τ,σ

∫ EF

Ec

dE fFDDm,τ,σ , (24)

where fFD is the Fermi-Dirac distribution function. For
the energy integration, a cutoff energy Ec is introduced.
Ec is determined by the band structure. From tight bind-
ing calculations, the valence band near the Dirac point
lies in the energy range of a few electron volts. We
thus set Ec to −5 eV in the calculations. At 0 K,
the integration results in the following expression for
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σSH [20,25]:

σSH(EF) = − emev

4π2h̄
(F (EF) − F (Ec)),

{
F (E ) = ln

( |E |+√
E2−�2

�

)−
√

E2−�2

|E | , for |E | > �,

F (E ) = 0, for |E | � �.

(25)

This result is equal to that reported in Refs. [20,25]. The
present approach to obtain the form of σSH using spin Berry
curvature is thus equivalent to that using thermal Green’s
functions. The unit of σSH is C cm−1. We define σ̃SH ≡ 2e

h̄ σSH,
which has the same unit with conductivity, i.e., �−1 cm−1. In
analogy to the carrier mobility [Eq. (7)], the spin Hall mobility
is defined as

μs = σ̃SH

ne
. (26)

The unit of μs is the same with that of carrier mobility, i.e.,
cm2 V−1 s−1. μs can be considered the mobility associated
with the spin current [37].

Figure 1(c) shows the energy dependence of the density
of spin Berry curvature Dm,τ,σ calculated using different val-
ues of v. Dm,τ,σ takes an extremum near |E | ∼ � and the
sign of Dm,τ,σ changes across the band gap. The sign change
of Dm,τ,σ across the band gap results in a plateau of σ̃SH

around the Dirac point (E = 0): see Fig. 1(d), which shows
the Fermi level dependence of σ̃SH. The constant σ̃SH within
the band gap is a characteristic feature of systems with gapped
Dirac Hamiltonian [20,22]. Note that the sign of σ̃SH does
not change when the Fermi level moves across the gap. In
Figs. 2(c) and 2(d), we show the calculated σ̃SH and μs plotted
as a function of carrier density. Both σ̃SH and μs show a sharp
peak at small |n|.

F. Scaling relations

Since many of the transport properties depend on the car-
rier density, it is useful to study the scaling relation among
the parameters. In Figs. 3(a)–3(c), the carrier density (|n|)
dependence of the conductivity (σxx), the carrier mobility (μc)
and the spin Hall mobility (μs) are presented by the solid lines
in a log-log scale. Similarly, the relation between μs and μc

is shown in Fig. 3(d). Different colors represent results when
different values of v are used. All plots show a clear power
law.

When |EF| � �, σxx in Eq. (5), μc in Eq. (8), and μs in
Eq. (26) can be approximated as

σxx ∼ 2ae2v

3(3π2)1/3h̄
nα+ 2

3 , (27)

μc ∼ 2aev

3(3π2)1/3h̄
nα− 1

3 . (28)

μs = emev

2π2h̄2 n−1 ln

(
Ec

(3π2n)
1
3 h̄v

)
. (29)

In the last equation, μs obeys a power law with a scaling
coefficient of −1 if the ln(n−1) dependence can be neglected.
To study the scaling coefficient, we fit the lines in Fig. 3(c)
with a linear function in the appropriate |n| range (1018 �

FIG. 3. [(a)–(c)] Carrier density |n| dependence of the conduc-
tivity σxx (a), carrier mobility μc (b), and spin Hall mobility μs (c).
(d) μs vs μc. [(a)–(d)] All plots are in a log-log scale. Line colors
indicate calculation results using different values of carrier velocity
v: see the legend of (a). Parameters used in the calculations are
a = 3.5 × 10−7 s cm−1, α = − 1

3 , � = 7.7 meV, and Ec = −5 eV.
The dotted line in (a)–(d) show the corresponding relation based on
Eq. (27) (a), Eq. (28) (b), Eq. (29) (c), and Eq. (31) (d). Lines are
shifted vertically. The slope of the lines are denoted in each panel.

|n| � 1021 cm−3):

log10(μs) = as log10(|n|) + bs (30)

We find the scaling coefficient as is close to −1: see Fig. 4 in
which as is plotted as a function of v using different values
of α. Although as slightly decreases with increasing v, its
variation is small. as does not depend on α since σ̃SH is
independent of the relaxation time τeff . These results show
that the scaling of μs can be approximated as |n|−1, with a
10%–20% variation, when v is in the range shown in Fig. 4.
Assuming that μs scales as |n|−1, the relation between μs and
μc reads

μs ∝ μ
− 1

α− 1
3

c . (31)

FIG. 4. Carrier velocity dependence of the scaling coefficient as

obtained by linear fitting the spin Hall mobility μs in a log-log scale
as a function of carrier density |n|, see Fig. 3(c). Symbols represent
calculation results using different values of α denoted in the legend.
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TABLE I. Comparison of the scaling coefficients obtained in the
experiments and model calculations. For the latter, the following
parameters are used: v = 2.5 × 107 cm s−1, α = − 1

3 , a = 3.5 ×
10−7 s cm−1, � = 7.7 meV, and Ec = −5 eV.

Relation Experiments Modela (α = − 1
3 ) Fittingb

σxx vs |n| 0.22 ± 0.08 α + 2
3 0.33 0.33

μc vs |n| −0.68 ± 0.08 α − 1
3 −0.67 −0.66

μs vs |n| −1.0 ± 0.05 −1 −1 −1.2
μs vs μc 1.4 ± 0.2 − 1

α−1/3 1.5 1.8

aScaling coefficients when EF � � is assumed. σxx vs |n|: Eq. (27).
μc vs |n|: Eq. (28). μs vs |n|: Eq. (29) and the ln(n− 1

3 ) dependence is
neglected. μs vs μc: Eq. (31).
bSlope of the linear line fitted to the calculations presented in Fig. 9.

The scaling relations derived in Eqs. (27), (28), (29), and
(31) are part of the main results of this paper. The scaling
coefficients are summarized in Table I. The dotted lines in
Fig. 3 show the expected scaling relations from Eqs. (27),
(28), (29), and (31). The lines are shifted vertically for better
visibility. As evident, the scaling coefficient are consistent
with the slope of the linear lines plotted in Fig. 3. In the next
section, we compare the scaling coefficients obtained in the
experiments with those predicted by the model.

III. EXPERIMENTAL RESULTS

A. Sample preparation and structural characterization

We use bismuth (Bi) as a model system to study the spin
Hall effect under the Dirac Hamiltonian. Pristine Bi (no dop-
ing), Te-doped Bi (Bi1−xTex), and Sn-doped Bi (Bi1−ySny)
thin films were grown by magnetron sputtering on thermally
oxidized Si substrates with or without a 0.5-nm-thick Ta seed
layer. x and y represent the nominal doping level of Te and Sn
in Bi, respectively. The nominal thickness of the doped and
pristine Bi films is ∼10 to ∼15 nm. See the Appendix (Sec.
A 3) for the details of sample preparation and device fabri-
cation. Figure 5(a) shows the x and y dependence of θ − 2θ

x-ray diffraction (XRD) spectra for pristine and doped Bi
films. The films are polycrystalline with Bi(012) and Bi(104)

FIG. 5. (a) XRD spectra of carrier-doped Bi thin films grown
on the substrates with the 0.5-nm Ta seed layer. Data are shifted
vertically for clarity. The alloy composition is denoted for each
spectra. (b) Nominal doping concentration (x and y) dependence of
(012) atomic plane distance d012. Inset shows a sketch of the film
structure. (The CoFeB layer sketched here is inserted only for the
films used in the spin-orbit torque measurements.)

�
�

�

FIG. 6. (a) Carrier concentration n plotted as a function of nom-
inal doping concentration x for Bi1−xTex alloy and y for Bi1−ySny

alloy. x = y = 0 corresponds to pristine Bi. Positive (negative) n
indicates the majority carrier is hole (electron). [(b)–(d)] n depen-
dence of mobility μc (b), spin Hall conductivity σ̃SH (c) and spin
Hall mobility μs (d). Inset to (c) shows the spin torque efficiency ξDL

vs n. [(a)–(d)] Red circles: Sn-doped Bi, blue triangles: Te-doped Bi,
black squares: pristine Bi. Solid (open) symbols show results from
films with (without) the 0.5-nm Ta seed layer.

being the two primary planes that grow along the film normal
for films with x and y up to ∼0.4. The appearance of β-Sn
(200) peak for y � 0.3 may indicate agglomeration of β-Sn
clusters in Bi. Note that all XRD peaks presented in Fig. 5(a),
except for the weak β-Sn peak at 2θ ∼ 31◦, can be indexed by
the diffraction peaks for rhombohedral Bi, suggesting that the
crystal structure of Bi is maintained upon Te and Sn doping.
Focusing on the (012) diffraction peak, we plot in Fig. 5(b) the
corresponding interatomic plane distance d012 deduced from
the Bragg’s law as functions of x and y. d012 varies linearly
with increasing x and y, suggesting that the doped element is
distributed uniformly within Bi. The opposite trend of d012

for Bi1−xTex and Bi1−ySny may arise from the differ-
ent atomic radii r of the elements satisfying the relation
rSn � rBi > rTe [36].

B. Transport properties

We first investigate the transport properties of pristine and
doped Bi thin films. The carrier density n and mobility μc

of the films are estimated using ordinary Hall coefficient and
resistivity measurements. For films with small doping where
the single-carrier model is not valid, longitudinal magnetore-
sistance is measured and analyzed using a two-carrier model
[37]. Figure 6(a) shows n as a function of x and y. Posi-
tive (negative) n indicates that the majority carrier is hole
(electron). We find the smallest |n| in pristine Bi among the
films studied: The minimum value is |n| ∼ 1019 cm−3. Note
however that such |n| is nearly two orders of magnitude larger
than that of single crystal Bi [38]. We infer that disorder
(defects, impurities) induced by the deposition process causes
the extra carriers. The difference in n with respect to nominal
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concentration of Te and Sn dopants may be attributed to their
different solubility in Bi.

The change in n with respect to the dopant concentration
can be understood using a rigid-band model. A simplified
image of the band structure near the L point of Bi is illustrated
in the inset to Fig. 1(b). The Fermi level of pristine Bi lies
close to (∼30 meV above) the Dirac point [24]. Electron
and hole doping shift the Fermi level (EF) away from the
Dirac point, leading to dramatic enhancement of |n| due to
the increased density of states. This is consistent with the
Fermi level dependence of the density of states (D) shown in
Fig. 1(b). Note that it is difficult to identify the exact position
of the Dirac point with respect to doping concentration since
the measurements are carried out at room temperature and
the precision of the doping concentration is not determined.
Hereafter, we assume n as an indicator of EF relative to the
Dirac point.

The n dependence of mobility μc is presented in Fig. 6(b).
As evident, μc takes a maximum at small |n| and abruptly
decays as the number of carriers increases. Such n dependence
of μc has been observed in materials with Dirac cones (e.g.,
in graphene), in which the mobility takes an extrema when
the Fermi level is close to the Dirac point. The maximum
μc at small |n| is ∼350 (cm2 V−1 s−1). Note that the longi-
tudinal resistivity ρxx exhibits a sharp peak at small |n| and
decreases monotonically with increasing x and y [see Fig. 10
in Appendix (Sec. A 3)]. Such a reduction of the resistivity
upon doping is primarily due to the rapid increase of n: the
slower decrease of the mobility is unable to counter balance
such trend.

C. Spin torque efficiency

The harmonic Hall voltage measurement [39–43] is used
to quantify the spin torque efficiency via measurements of
the spin-orbit torques. A 2-nm-thick CoFeB layer is deposited
on top of the pristine or carrier doped Bi layer. The anoma-
lous Hall and the planar Hall effects of the CoFeB layer
are used to detect the change in the magnetization direction
as current is supplied to the films. From the measurements
(see the Appendix (Sec. A 4) for the details) the dampinglike
(fieldlike) spin-orbit effective field hDL(FL) is obtained. Contri-
butions from thermoelectric voltages, in particular, the large
ordinary Nernst effect of Bi, are taken into account in the
measurements [37,42,43]. The dampinglike (fieldlike) spin
torque efficiency ξDL(FL) is estimated from hDL(FL) using the
following relation:

ξDL(FL) = 2e

h̄

hDL(FL)Msteff

j
, (32)

where e is the elementary charge, h̄ is the reduced Planck con-
stant, j is the current density that flows in the pristine or carrier
doped Bi layer, Ms and teff are the saturation magnetization
and the effective thickness of the CoFeB layer, respectively.
The product of Msteff is measured using vibrating sample
magnetometry; see the Appendix (Sec. A 3) for the details.
ξDL is related to the spin Hall angle (θSH) via the relation
ξDL = T tan θSH, where T is the interface spin transmission
coefficient [44–46]. We assume T = 1: ξDL thus provides a

lower limit of θSH (as θSH varies from −π
2 to π

2 , the range of
ξDL is, in general, unlimited).

ξDL of all structures are plotted as a function of n in the
inset to Fig. 6(c). The n dependence of ξFL is presented in
the Appendix, Fig. 12 (Sec. A 4). Positive ξDL corresponds to
generation of spin current that has the same sign with that of
Pt [47] and BiSb [37]. Similar to μc, ξDL reaches a maximum
at small |n|. For pristine Bi, we obtain ξDL that exceeds 5. Note
that such large spin torque efficiency is in contrast to previous
studies on the spin Hall effect of Bi [48–50]. We infer the
structure of Bi at the interface with the ferromagnetic layer
plays a crucial role for the spin torque efficiency. For example,
reversing the stacking order (placing the ferromagnetic layer
below Bi) results in significant reduction in the spin torque
efficiency, likely caused by the difference in film growth [51].
Here we consider the rhombohedral crystal of Bi, in which
the electronic structure at the L point can be described by
the Dirac Hamiltonian, is essential in obtaining the large spin
Hall conductivity. Reversing the stacking order may cause the
rhombohedral crystal structure to be altered by, for example,
strain and/or film growth. Interestingly, the sign of ξDL is
the same for Te- and Sn-doped Bi in which the majority
carrier is, respectively, electrons and holes. This is consistent
with theoretical predictions based on the Dirac Hamiltonian
[20,22]: see also Sec. II E.

The spin Hall conductivity σ̃SH is calculated using the
relation σ̃SH = ξDL/ρxx (assuming T = 1). The n dependence
of σ̃SH is presented in Fig. 6(c). σ̃SH shows a broad maximum
at small |n| and decay with increasing |n|. For samples with
small |n|, σSH ranges from ∼1000 to 2000 ( h̄

2e�
−1 cm−1),

which is comparable to that of Pt [47] and BiSb alloys
[37]. As an independent verification, we have also quantified
the spin torque efficiency of pristine Bi using the spin-
torque ferromagnetic resonance technique. We obtain σSH ∼
1220 ( h̄

2e �−1 cm−1), which is consistent with the results ob-
tained using the harmonic Hall measurements [see Fig. 13 in
Appendix (Sec. A 5)]. The spin Hall mobility (μs) is plotted
against |n| in Fig. 6(d). The n dependence of μs shows similar
characteristics with μc: it takes a sharp peak at small |n| and
abruptly decreases with increasing |n|.

D. Scaling relations

These results show that the SHE of Bi strongly depends
on the carrier density. To quantify the scaling, we show in
Figs. 7(a)–7(c) the |n| dependence of σxx, μc and μs in a log
scale. The relation of μs and μc is presented in Fig. 7(d). The
log-log plots can be fitted with a linear function: the fitted
curve is shown by the solid line. The slope of the log-log plot,
presented in each panel, gives the scaling coefficient.

E. Comparison to model calculations

We use the formulas described in Sec. II to study their
applicability. To find a parameter set that best describes the
experimental results, we adjust v, a, and α in the model calcu-
lations. 2� is set to the band gap of Bi (� ∼ 7.7 meV) [28,52]
and the cutoff energy Ec is fixed to −5 eV, which roughly
represents the band width near the Fermi level. Since μc and
μs scale with the inverse of |n|, here we introduce impurity
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FIG. 7. [(a)–(c)] Conductivity σxx (a), mobility μc (b) and spin
Hall mobility μs (c) plotted as a function of carrier concentration
|n|. (d) Dependence of spin Hall mobility μs on μc. [(a)–(d)] Solid
lines are linear fit to the data plotted in a log-log scale. The slope
of the linear fit is denoted in each panel. The error range represents
95% confidence interval. Red circles: Sn-doped Bi, blue triangles:
Te-doped Bi, black squares: pristine Bi. Solid (open) symbols show
results from films with (without) the 0.5-nm Ta seed layer.

induced carrier density n0, which is set to the minimum carrier
density found in experiments, i.e., n0 ∼ 1 × 1019 cm−3.

The calculated Fermi level dependence of n and the n
dependence of μc, σ̃SH and μs are shown in Fig. 8. We set v

so that the maximum value of σ̃SH at small |n| agrees with that
of the experiments. α is determined by the scaling relations
shown in Fig. 9 (discussed in the following). a is adjusted
to match the maximum value of μc and μs with that of the
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FIG. 8. (a) Fermi energy (EF) dependence of the carrier concen-
tration (n). [(b)–(d)] Carrier mobility μc (b), spin Hall conductivity
σ̃SH (c), and spin Hall mobility μs (d) plotted against n. Parame-
ters used in the calculations are v = 2.5 × 107 cm s−1, a = 3.5 ×
10−7 s cm−1, α = − 1

3 , � = 7.7 meV, Ec = −5 eV, and n0 ∼ 1 ×
1019 cm−3.
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FIG. 9. [(a)–(c)] Carrier density |n| dependence of the conduc-
tivity σxx (a), mobility μc (b) and spin Hall mobility μs (c). (d) μs vs
μc. [(a)–(d)] All plots are in a log-log scale. The red solid lines rep-
resent linear fitting to the calculated results in the appropriate range
(1020 � |n| � 1022 cm−3). Slope of the linear line is denoted in each
panel. Parameters used in the calculations are v = 2.5 × 107 cm s−1,
a = 3.5 × 10−7 s cm−1, α = − 1

3 , � = 7.7 meV, Ec = −5 eV, and
n0 ∼ 1 × 1019 cm−3.

experiments. We thus obtain v = 2.5 × 107 cm s−1, α ∼
−1/3, and a ∼ 3.5 × 10−7 s cm−1. The effective g factor
obtained from � and v is g∗ ∼ 92: studies have reported
values similar in order of magnitude [53]. The value of α is
in accordance with theoretical calculations using the Dirac
Hamiltonian [30]. Note that μc drops to zero as |EF| ap-
proaches � owing to the introduction of n0 [see Eq. (8)].

The calculated scaling relations are presented in Fig. 9.
The ranges of the x and y axes are set to the same as those
in Fig. 7 to allow direct comparison. As μc approaches zero
when |EF| → �, Fig. 9(b) reflects such trend. To verify that
introduction of n0 does not influence the scaling relation, we
fit the log-log plots with a linear function in the appropriate
range (1020 � |n| � 1022 cm−3). The red solid lines show the
fitting results. The slope of the linear lines is denoted in each
panel and Table I.

Table I summarizes the scaling relations obtained from
the model analyses and experiments. For the former, the an-
alytical formulas of the scaling coefficient [Eqs. (27), (28),
(29), and (31)] and the corresponding values with α = − 1

3
are shown. Note that EF � � is assumed to derive these
formulas. The scaling coefficient is set to −1 for the relation
between μs and |n| (see the discussion in Sec. II F). The
slope of linear lines displayed in Fig. 9, which describe the
scaling relations when n0 is nonzero, are shown in the column
“Fitting.” As evident, introduction of n0 does not significantly
alter the scaling coefficients. The deviation of the coefficient
for the μs versus |n| scaling (and consequently the μs vs
μc scaling) between the analytical formula and the fitting
is largely caused by the omission of the ln(n− 1

3 ) factor in
Eq. (29). We find the model calculations roughly reproduce
the coefficients obtained by the experiments. As the experi-
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mental data exhibit relatively large scattering, the differences
between the experiments and the calculations are within the
experimental error.

IV. DISCUSSION

Here we discuss potential alternative interpretations of the
experimental results. First, the model described in Sec. II
neglects contribution, if any, from the holes presiding at the
T point. From tight binding calculations, however, we find
contribution from the holes on the spin Hall conductivity is
rather small due to the large effective mass. The extrinsic
carriers induced by Te and Sn doping may also contribute to
the generation of spin current via the extrinsic SHE (e.g., skew
scattering and side jump mechanisms). As shown in Fig. 6(c),
the spin Hall conductivity drops drastically upon alloying Bi
with Te (with one additional valence electron than Bi) or Sn
(with one less valence electron than Bi). It is interesting to
compare these results with those when Bi is alloyed with Sb.
Sb is placed at the same row with Sn and Te in the periodic
table and has the same number of valence electrons with Bi.
Reference [37] showed that alloying Bi with Sb leads to a
spin Hall conductivity plateau for composition up to ∼40%
Sb. We therefore consider the observed modulation of spin
Hall conductivity with doping is not a simple function of the
extrinsic carrier density but rather reflects the position of the
Fermi level. Moreover, a theoretical study[22] predicted that
the n dependence of σSH becomes an odd function of n when
skew scattering is taken into account. The study also showed
that σSH increases with |n| when side jump mechanism is
considered. Such features are not found in the experiments,
suggesting that contributions from the extrinsic SHE, if any,
are negligible. Further studies are required to experimentally
identify the origin of the SHE in Bi.

The relatively good agreement between the experiments
and calculations suggests the validity of the model used. The
flow of spin magnetic moment as a spin current in Bi, how-
ever, poses a question on whether it itself can exert spin torque
on the magnetization of the ferromagnetic layer. The damp-
inglike spin-orbit torque is, in general, based on conservation
of spin angular momentum. Since the flow of spin angular
momentum vanishes in Bi, one expects zero-spin torque on the
CoFeB magnetization. To account for the observed spin-orbit
torque at the Bi/CoFeB interface, we infer the spin current
due to the flow of spin magnetic moment in Bi is converted
to spin angular momentum in CoFeB at the interface. Note
that the wave function of Bi is composed of a four-component
spinor, whereas that of CoFeB, a typical transition metal,
is formed from a two-component spinor. Thus a 2 × 4 spin
transmission matrix must be introduced to match the wave
function at the interface, which may promote the conversion.
Further modeling is required to identify the form of the 2 × 4
spin transmission matrix.

V. CONCLUSION

In summary, we have studied the spin transport properties
of Dirac Hamiltonian systems. The Hamiltonian represents
the electronic structure of gapped Dirac semimetals that in-
cludes, for example, states near the L point in the reciprocal

space of Bi. The spin Hall conductivity is calculated using
the Kubo formula. If the spin current is defined as a flow
of spin angular momentum, all components of the spin Hall
conductivity vanish. In contrast, when the spin current is de-
fined as the flow of spin magnetic moment, the off-diagonal
components of the spin Hall conductivity are nonzero. The
spin Hall conductivity associated with the flow of spin mag-
netic moment scales with the carrier velocity (and the effective
g factor). Analytical formulas for the carrier density, mobil-
ity, conductivity and spin Hall conductivity and their mutual
scaling relations are derived. The scaling coefficients, which
depend on the carrier velocity and relaxation time, can be used
to characterize the spin transport properties of the system.

The model analyses are compared to experimental results
on the spin Hall effect of Bi. Te or Sn is substituted into Bi
to control the Fermi level via carrier doping. The spin torque
efficiency and the spin Hall conductivity take a maximum
near the Dirac point. The sign of the spin torque efficiency
is the same regardless of the majority carrier type (i.e., the
Fermi level position). A clear power law is found for the
carrier density dependence of the conductivity, mobility and
the spin Hall mobility, suggesting that strong scaling relations
exist. We find these experimental results, including the scaling
coefficients, are consistent with the model calculations. These
results thus demonstrate what spin current stands for in Dirac
materials. Further studies are required to identify how the flow
of spin magnetic moment, with a large effective g factor, is
converted to spin-orbit torque at the interface with magnetic
materials.
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APPENDIX

1. Conductivity by Kubo formula

In the present Hamiltonian (1), the thermal Green’s func-
tion is

G(k, iεn) = iεn + h̄vkiτ2 ⊗ σi − �τ3 ⊗ σ0

D , (A1)

where εn = (2n + 1)πkBT , with an integer n, is Matsubara
frequency. D := (iεn)2 − ε2 and ε =

√
�2 + (h̄vk)2. Using

the velocity in Eq. (9), the electric conductivity is obtained
from the current-current correlation function

�xx(iωλ) = −kBTe2

V

∑
n,k

TrG+v̂xGv̂x, (A2)

where ωλ = 2πλkBT (λ is an integer) represents the fre-
quency of the applied electric field. Here the vertex correc-
tions are neglected. Tr is the trace over the 4 × 4 matrix, and
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G+ := G(k, iεn + iωλ). After taking the trace, �xx becomes

�xx(iωλ) = −4kBTe2v2

V

∑
n,k

iεn(iεn + iωλ) − ε2 + 2K2
x

DD+
,

(A3)

with Kx = h̄vkx and D+ := (iεn + iωλ)2 − ε2. The summa-
tion over n can be taken by the standard technique using
contour integral. We assume the relaxation rate is given by
� = h̄/2τeff . Taking the analytic continuation iωλ → h̄ω + iδ,
we obtain the conductivity, up to linear order of ω, as

σxx = lim
ω→0

�xx(h̄ω + iδ) − �xx(0)

iω

= 4e2v2h̄

V

∑
k

∫ ∞

−∞

dz

2π
(− f ′(z))

[
z2 + �2 − ε2 + 2K2

x

DRDA

− DR + 2K2
x

2(DR)2
− DA + 2K2

x

2(DA)2

]

= e2v2h̄

V

∑
τ,τ ′,k

∫
dz

2π
(− f ′(z))

{
1 + ττ ′

(
2K2

x

ε2
− 1

)}

×
[

1

(z + i� − τε)(z − i� − τ ′ε)

− Re
1

(z + i� − τε)(z + i� − τ ′ε)

]
, (A4)

with

DR = (z + i�)2 − ε2, DA = (z − i�)2 − ε2. (A5)

If � is small compared to � or EF, the intraband contribu-
tion with τ = τ ′ becomes dominant and σxx is approximated
as

σxx = e2v2h̄

V

∑
τ,k

∫
dz

(
− f ′(z)

�

)
K2

x

ε2
δ(z − τε). (A6)

At T = 0, this becomes

σxx = e2D(EF)v2 E2
F − �2

3E2
F

τeff . (A7)

This result is consistent with that in the Boltzmann trans-
port theory with relaxation time approximation, σxx =
e2D(EF)〈v2

x 〉FSτeff = e2D(EF)v2
Fτeff/3, since the Fermi veloc-

ity in the present case is

vF = 1

h̄

∂ε

∂k

∣∣∣∣
ε=EF

= v

√
E2

F − �2

EF
. (A8)

See Ref. [54] for the derivation of the conductivity using
the Born approximation, where the carrier relaxation rate,
obtained from the self-energy due to impurity potentials, de-
pends on the energy of the carriers.

2. Zero-spin Hall conductivity of spin angular momentum flow

We discuss the reason behind the zero-spin Hall conduc-
tivity when the flow of the spin angular momentum is used as
the spin current. First, we show that the Dirac Hamiltonian

[Eq. (1)] can be decomposed into two subspaces. The ba-
sis state ck = t (c1, c2, c3, c4) is transformed using an unitary
transformation Uk = τ0 ⊗ uk, where uk satisfies uk(k · σ)uk =
|k|σ z; that is, c̃k = Ukck. The Hamiltonian therefore trans-
forms as∑

k

c̃†
kHc̃k =

∑
k

c†
kU †

k HUkck

=
∑

k

c†
k

⎛
⎜⎝

� 0 ih̄v|k| 0
0 � 0 −ih̄v|k|

−ih̄v|k| 0 −� 0
0 ih̄v|k| 0 −�

⎞
⎟⎠ck.

(A9)

By interchanging rows and columns, we may block-
diagonalize the Hamiltonian as follows:

∑
k

c̃†
kHc̃k =

∑
k

c̄†
k

⎛
⎜⎝

� ih̄v|k| 0 0
−ih̄v|k| −� 0 0

0 0 −� ih̄v|k|
0 0 −ih̄v|k| �

⎞
⎟⎠c̄k,

(A10)

where c̄k = t (c1, c3, c4, c2).
Next, we define two-component spinors ak and bk as the

projections of the four component spinor c̄k; ak = t (c1, c3)
and bk = t (c4, c2). The Hamiltonian can thus be expressed as∑

k

c̃†
kHc̃k =

∑
k

a†
kh�

k ak +
∑

k

b†
kh�̄

k bk, (A11)

where �̄ = −� and

h�
k =

(
� ih̄v|k|

−ih̄v|k| −�

)
. (A12)

We refer to the states described by ak and bk as the a and b
carriers, respectively. Note that the Hamiltonians of a and b
carriers have the same matrix elements except for the sign of
the diagonal term, i.e., the mass gap (�).

Now we show that the magnitude of the a and b carriers’
Berry curvaturelike contributions to spin Hall conductivity are
the same but their signs are opposite. Since the Hall conduc-
tivity in general has a direct correspondence with the Berry
curvature, we look for its form. First we calculate the Hall
conductivity in the absence of magnetic field. The electric
current operator is given as

Ji = −e
∑

k

c̃†
k

(
1

h̄

∂H

∂ki

)
c̃k. (A13)

Using a and b carriers’ representation, Ji can be expressed as

Ji = ev
∑

k

[
ki

|k|a†
k

(
0 −i
i 0

)
ak + ki

|k|b†
k

(
0 −i
i 0

)
bk

+|k|A+
k,ia

†
k

(
1 0
0 −1

)
bk + |k|A−

k,ib
†
k

(
1 0
0 −1

)
ak

]
,

(A14)

where the gauge field in the momentum space Aα
k,i is defined

as

Aα
k,i = −i

4
tr

[
U †

k

∂Uk

∂ki
σα

]
(α = x, y, z), (A15)
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and A±
k,i = Ax

k,i ± iAy
k,i. To calculate σxy, we introduce the

correlation function of charge currents

〈Jx; Jy〉(iωλ) =
∫ β

0
dτ eiωλτ 〈Tτ Jx(τ )Jy〉H , (A16)

where β = 1/kBT , ωλ is the Matsubara frequency (of boson),
Tτ is the time-ordering operator, Ji(τ ) is the Heisenberg rep-
resentation of Ji, and 〈· · · 〉H represents the thermal average of
H . Using the correlation function, σxy reads

σxy = lim
ω→0

〈Jx; Jy〉(ω) − 〈Jx; Jy〉(0)

iω

= e2

h̄

1

V

∑
k

∑
η=±

f (εkη )
(
�a

η,xy(k) + �b
η,xy(k)

)
, (A17)

where 〈Jx; Jy〉(ω) is the retarded correlation function ob-
tained by taking the analytic continuation iωλ → h̄ω + i0 in

〈Jx; Jy〉(iωλ), and εkη = η
√

h̄2v2k2 + �2 is the eigenenergy.
�a

η,xy and �b
η,xy are defined as

�a
η,xy = −�b

η,xy (A18)

= − ih̄2v2k2

4ε2
kη

(A+
k,xA−

k,y − A+
k,yA−

k,x ). (A19)

�a
η,xy and �b

η,xy are a and b carriers’ Berry curvature-like
contributions to the Hall conductivity. As their signs are op-
posite, but with equal magnitude, the Hall conductivity (σxy)
vanishes.

The spin Hall conductivity can also be expressed using
�a

η,xy and �b
η,xy. The spin Hall conductivity based on the Kubo

formula is obtained via calculation of the correlation function
between spin current and charge current. The spin current
operator for the flow of spin angular momentum is given by

Jα
s,i = h̄

2

∑
k

c̃†
k

1

2

{
1

h̄

∂H

∂ki
, sα

}
c̃k, (A20)

where {A, B} = AB + BA is the anticommutator and sα =
τ0 ⊗ σα . Using a and b carriers’ representation, Jα

s,i can be
expressed as

Jα
s,i =

∑
k

−ki

|k| Sα
aaa†

k

(
0 −i
i 0

)
ak+

∑
k

−ki

|k| Sα
bbb†

k

(
0 −i
i 0

)
bk

−
∑

k

|k|A+
k,i

(
Sα

aa + Sα
bb

2

)
a†

k

(
1 0
0 −1

)
bk

−
∑

k

|k|A−
k,i

(
Sα

aa + Sα
bb

2

)
b†

k

(
1 0
0 −1

)
ak, (A21)

where Sα
aa and Sα

bb are the matrix elements of sα [see Eq. (13)]
with a and b carriers, respectively. It turns out Sα

bb = −Sα
aa

and thus the third and forth terms of the right-hand side of
Eq. (A21), i.e., the hybridization terms, are zero. We keep
these terms hereafter to show how the spin Hall conductivity
vanishes.

The correlation function of spin current and charge current
is given as

〈
Jα

s,si; Jj
〉
(iωλ) = 1

V

∫ β

0
dτ eiωλτ

〈
Tτ Jα

s,i(τ )Jj
〉
. (A22)

The spin Hall conductivity is defined as

σα
i j = lim

ω→0

〈
Jα

s,i; Jj
〉
(ω) − 〈Jα

s,i; Jj
〉
(0)

iω
, (A23)

where 〈Jα
s,si; Jj〉(ω) is obtained by taking the analytic contin-

uation iωλ → h̄ω + i0 in 〈Jα
s,i; Jj〉(iωλ). After some straight

forward calculations, we obtain

σα
i j = −e

h̄

1

V

∑
k

∑
η=±

f (εkη )
(
�a

η,xy(k) + �b
η,xy(k)

)(
Sα

aa + Sα
bb

)
.

(A24)

We thus find that σα
i j can also be expressed using �a

η,xy and
�b

η,xy and the two cancel out each other. Note that the term
Sα

aa + Sα
bb also sets σα

i j = 0. This puts a strong constraint on
σα

i j , which must be zero even if �a
η,xy + �b

η,xy �= 0. However,
with the current model, the relation �a

η,xy + �b
η,xy = 0 always

hold due to the symmetry of the a and b carriers and thus
σα

i j = 0.

3. Sample preparation and characterization

Bi1−xTex and Bi1−ySny alloy thin films were grown by ra-
dio frequency (RF) magnetron sputtering on 10 × 10 mm2 Si
substrates covered with 100-nm-thick Si oxide. The film struc-
tures are sub./seed/[tBi Bi|tSn Sn]N/0.3 Bi/FM/2 MgO/1
Ta and sub./seed/[tBi Bi|tTe Te]N/0.3 Bi/FM/2 MgO/1 Ta
(thicknesses in nanometer). Bi, Te, and Sn layers were sput-
tered from elemental targets. tBi(Te,Sn) is the thickness of
each Bi (Te, Sn) layer. N represents the repeat number of
[Bi|Sn] and [Bi|Te] bilayers. (Here N = 16 is used.) The
thickness of a bilayer unit is set to meet tBi + tTe(Sn) ∼ 0.65 nm
so that the two elements intermix. We define the nominal
Te (Sn) concentration, x (y), as x(y) ≡ tTe(Sn)/(tBi + tTe(Sn)).
The total thickness of the carrier doped Bi (including the
Bi termination layer) is denoted by t ≡ (tBi + tTe(Sn))N +
0.3 (thickness in nanometer). For N = 16, t ∼ 10.7 nm.
Films without carrier doping (pristine Bi) are also made:
sub./seed/t Bi/FM/2 MgO/1 Ta. The seed layer is either
0.5 nm Ta or no insertion layer. The FM layer is 2 nm CoFeB.
The nominal composition of CoFeB is Co:Fe:B = 20:60:20
at%.

The transport properties and the spin-orbit torques (SOT)
of the heterostructures were measured using devices with
tCoFeB = 0 and 2 nm, respectively. Hall bar devices were fab-
ricated using standard optical lithography and Ar ion etching.
The width of the Hall bar w and the distance between two
longitudinal voltage probes L are 10 and 25 μm, respectively.
5 Ta/60 Cu/5 Pt contact pads were formed using standard
lift-off processes onto the Hall bars. The effective saturation
magnetization, i.e., the product of saturation magnetization Ms

and the effective thickness teff of the CoFeB layer, of unpat-
terned heterostructures with tCoFeB = 2 nm were determined
using a vibrating sample magnetometer. Msteff is 182 μemu
cm−1 for Bi, 201, 188 μemu cm−1 for x = 0.3, 0.5 and 186,
154 μemu cm−1 for y = 0.2, 0.5. The data is interpolated to
obtain the value for all samples studied. The magnetic easy
axis of the CoFeB layer points along the film plane for all
samples. The resistivity of pristine and doped Bi thin films is
presented in Fig. 10.
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FIG. 10. Resistivity ρ plotted as a function of carrier concentra-
tion n. Red circles: Sn-doped Bi, blue triangles: Te-doped Bi, black
squares: pristine Bi. Solid (open) symbols show results from films
with (without) the 0.5-nm Ta seed layer.

4. Spin-orbit torque measurements

We used the harmonic Hall technique to measure the spin
torque efficiency in the heterostructures with tCoFeB = 2 nm.
An ac current is applied to the Hall bar made of the het-
erostructure and the resulting Hall voltage is measured. The
r.m.s. amplitude (I0) and the frequency (ω/2π ) of the ac
current are 2.5 mA and 17.5 Hz, respectively. An in-plane
magnetic field Hext is applied and rotated within the film
plane: the angle between Hext and the current flow is defined
as ϕ. The magnetic easy axis of the CoFeB layer points along
the film plane. The in-plane anisotropy of CoFeB is negligi-
bly small compared to Hext: we assume the magnetization is
parallel to the direction of Hext. The ϕ dependence of the first
harmonic Hall voltage V1ω and the second harmonic Hall volt-
age V2ω were simultaneously measured. The first and second
harmonic Hall resistances, R1ω and R2ω, are obtained by divid-
ing the harmonic voltages with I0, i.e., R1ω(2ω) = V1ω(2ω)/I0.
R1ω and R2ω can be expressed as [37,42,43]

R1ω = RPHE sin 2ϕ + ζRAHE cos ϕ, (A25)

R2ω = 1

2

(
RAHE

hDL

Hext + Hk
+ RONEHext + Rconst

)
cos ϕ

− RPHE
hFL + hOe

Hext
cos 2ϕ cos ϕ

≡ A cos ϕ + B cos 2ϕ cos ϕ. (A26)

RAHE is the anomalous Hall resistance, RPHE is the planar Hall
resistance, hDL is the dampinglike (DL) spin-orbit effective
field, hFL is the fieldlike (FL) spin-orbit effective field, hOe

is the Oersted field, and Hk is the magnetic anisotropy field.
Rconst and RONEHext represent thermoelectric contributions to
R2ω that are independent of and linear with Hext, respectively.
The former is due to the anomalous Nernst effect and/or the
combined action of spin Seebeck effect and inverse spin Hall
effect. The latter originates from the ordinary Nernst effect
(ONE) [37,42,43]. R1ω is used to extract RPHE. RAHE and Hk

are obtained from separate measurements of the out-of-plane
field dependence of the Hall resistance. hOe is calculated using
Ampere’s law [41]. Data are fitted with Eq. (A26) to extract
hDL, hFL, Rconst, and RONEHext.

Representative ϕ dependence of R2ω for
Bi0.89Te0.11/CoFeB and Bi0.92Sn0.08/CoFeB bilayers

FIG. 11. [(a) and (b)] Azimuthal angle, ϕ dependence of second
harmonic Hall resistance R2ω for 10.7 Bi0.89Te0.11/2 CoFeB (a) and
10.7 Bi0.92Sn0.08/2 CoFeB (b) bilayers measured at different exter-
nal magnetic fields Hext . [(c) and (d)] cos ϕ component (A) of R2ω

against Hext for 10.7 Bi0.89Te0.11/2 CoFeB (c) and 10.7 Bi0.92Sn0.08/2
CoFeB (d), respectively. The colored curves show contributions from
different effects and the black curves are the sum of all. All data were
obtained at 300 K.

measured at different Hext are plotted in Figs. 11(a) and
11(b). Black solid curves are the best fits using Eq. (A26).
Hext dependence of the cos ϕ component (A) for these two
structures are compared in Figs. 11(c) and 11(d). The best fits
are shown by the black lines. Other colored lines represent
decomposition of various contributions. For both samples,
contribution from the DL spin-orbit torque (red curves)
dominates in small Hext regimes, whereas that of ONE (green
lines) mainly contributes at larger fields. The sign of the ONE
is opposite for Bi1−xTex/CoFeB and Bi1−ySny/CoFeB, which
may be related to the change of the majority carriers in these
two series of doped Bi. In contrast, the DL spin-orbit torque
maintains its sign upon traversing the Dirac point. Note that
due to the distinct Hext dependence, signal contamination
from the ONE can be safely ruled out [50].

The FL spin-orbit torque contribution is estimated using
Eq. (A26). The cos 2ϕ cos ϕ component (B) of R2ω codes
its information. The FL spin torque efficiency (ξFL) of the

FIG. 12. Carrier concentration n dependence of the FL spin
torque efficiency (ξFL) of heterostructures with the 0.5 nm Ta seed
layer.
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heterostructures, estimated using Eq. (32) in the main text,
is plotted as a function of the corresponding carrier density
n in Fig. 12. We find the sign of ξFL is positive (i.e., opposing
the Oersted field) for all samples studied. The sign agrees
with that of Pt/Co/AlOx [40] and BiSb/CoFeB [37], and is
opposite to that of Bi2Se3/Py [55]. ξFL exhibits a maximum
at small |n| and decreases with increasing |n|. Note that the
magnitude of ξFL is smaller than ξDL for all samples.

5. Spin-torque ferromagnetic resonance of Bi/CoFeB

We carried out spin-torque ferromagnetic resonance (ST-
FMR) measurement [56] as an independent verification of the
large spin torque efficiency in Bi/CoFeB. We focus on pristine
Bi grown directly on Si/SiO2 substrate without the Ta seed
layer. The film structure is sub./11 Bi/0-10 CoFeB wedge/2
MgO/1 Ta (thicknesses in nanometer), i.e., a wedge film with
the thickness of CoFeB (tCoFeB) varying from 0 to 10 nm. The
wedge film was fabricated using standard optical lithography
and Ar ion milling into microstrips with a nominal length
of L = 40 μm and a width of w = 10 μm. An amplitude
modulated (AM) radio-frequency (RF) microwave power of
17 dBm was applied through a ground-signal-ground coplanar
waveguide while an in-plane magnetic field Hext was swept
along the azimuthal angle ϕ = 45 or 225 degrees with respect
to the long axis of the microstrip. The mixing voltage Vmix was
measured using a lock-in amplifier being synchronized to the
modulation frequency of 9997 Hz.

The resistivity of pristine Bi (ρBi = 484 μ� · cm) and
CoFeB (ρCoFeB = 158 μ� · cm) are extracted from the tCoFeB-
dependence of the sheet conductance for the wedge film after
microfabrication. We assume a magnetic dead layer thickness
tD ≈ 0.3 ± 0.2 nm [37] and define the effective CoFeB thick-
ness as teff ≡ tCoFeB − tD.

The ST-FMR spectra at various RF excitation frequencies
f of a 11 Bi/7.4 CoFeB device are plotted in Fig. 13(a). The
resonance lineshape can be decomposed into the sum of a
symmetric and an antisymmetric Lorentzian, which is propor-
tional to the DL spin-orbit effective field and the RF effective
field, respectively. The apparent DL spin torque efficiency
ξFMR is extracted based on the line-shape analysis [56]:

ξFMR = S

A

eμ0MstefftBi

h̄

√
1 + 4πMeff

Hext
. (A27)

A typical decomposition of the resonance spectrum at
f = 10 GHz is illustrated in Fig. 13(b). The strong symmetric
component (in red) relative to the antisymmetric counterpart
(in blue) indicates the remarkable spin torque efficiency in

FIG. 13. (a) Spin-torque ferromagnetic resonance (ST-FMR)
spectra for a representative 11 Bi/7.4 CoFeB bilayer device at vari-
ous RF excitation frequencies f . (b) A typical decomposition of the
resonance spectrum for 11 Bi/7.4 CoFeB bilayer device measured
at f = 10 GHz. (c) f dependence of apparent spin torque efficiency
ξFMR with in-plane magnetic field swept along the azimuthal angle
ϕ = 45 ◦ or ϕ = 225 ◦. (d) 1/ξFMR plotted as a function of the inverse
of effective CoFeB thickness teff .

Bi/CoFeB bilayer. We further verified that ξFMR is nearly in-
dependent of f , within the experimental uncertainty, as shown
in Fig. 13(c).

Next, we have studied the CoFeB thickness dependence
of ξFMR in order to take into account contribution of the FL
spin-orbit effective field to the total RF field acting on the
ferromagnetic CoFeB layer. Assuming ξFL is independent of
the CoFeB thickness for reasonably thick teff , ξDL and ξFL

can be extracted [44] from the 1/ξFMR versus 1/teff plot in
Fig. 13(d) via the following relation:

1

ξFMR
= 1

ξDL

(
1 + h̄

e

ξFL

μ0MstefftBi

)
. (A28)

We obtain ξDL ≈ +0.59 and ξFL ≈ +0.007 (opposing the
Oersted field), respectively. The spin Hall conductivity is
estimated to be ∼1220 ( h̄

2e �−1 cm−1), which is in good agree-
ment with that from the harmonic Hall measurements. The
size of ξFL ≈ 0.007 estimated here is an order of magnitude
smaller than that estimated using the harmonic Hall measure-
ments. The origin of this discrepancy is currently unknown
and requires further investigation.
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