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Magnetization dynamics and spin waves in ferromagnets are investigated using the inertial Landau-Lifshitz-
Gilbert equation. Taking inertial magnetization dynamics into account, dispersion relations describing the
propagation of nutation spin waves in an arbitrary direction relative to the applied magnetic field are derived
via Maxwell’s equations. It is found that the inertia of magnetization causes the hybridization of electromagnetic
waves and nutation spin waves in ferromagnets, hybrid nutation spin waves emerge, and the redshift of frequen-
cies of precession spin waves is initiated, which transforms to precession-nutation spin waves. These effects
depend sharply on the direction of wave propagation relative to the applied magnetic field. Moreover, the waves
propagating parallel to the applied field are circularly polarized, while the waves propagating perpendicular to
that field are elliptically polarized. The characteristics of these spin nutation waves are also analyzed.
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I. INTRODUCTION

For decades, nutation of magnetization was neglected and
considered as a paltry effect. Indeed, the majority of resonance
and wave phenomena in magnetic materials was well de-
scribed under the assumption that precession of magnetization
dominates over nutation. However, the recent experimental
evidence of nutation [1] at terahertz frequency necessitates
a revision of the established point of view. The observation
of nutation confirmed the previous theoretical predictions that
the analogy between a spinning top and magnetization is
more than a pedagogical concept [2] and nutation must be ac-
counted for in the theory of magnetization dynamics. As in the
case of a rigid body, the origin of nutation of magnetization is
due to inertia of magnetization [3] leading to noncollinearity
between angular momentum and magnetization [2]. Beyond
the mechanical approach, other models demonstrated inertial
behavior of magnetization, among which are the relativistic
quantum framework [4], the torque-torque correlation model
[5], mesoscopic theory [6], and the breathing Fermi surface
model [7]. However, the earlier theoretical models afford un-
derstanding of experimental results, but by merging nutation
into different phenomena.

The investigation of inertia indicated that it manifests as
a nutation resonance in the terahertz frequency range [8–12]
and causes nutation spin waves (NSWs) [13–15] as well
as inducing a frequency shift of the ordinary (precession)
spin waves [13]. The latter can be considered as a sequence
of phase shifts between precessing magnetic moments cou-
pled by exchange and dipole interactions; these interactions
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provide potential energy. The inclusion of inertia brings ki-
netic energy and an additional degree of freedom in spin
systems, and that eventually leads to the emergence of
NSWs. These waves were introduced as collective exci-
tations in Heisenberg spin chains possessing one-particle
behavior—nutation acquiring mass via the Brout-Englert-
Higgs mechanism [14]. The surface nature of nutation waves
and their relatively low group velocity were predicted in fer-
romagnetic films [13]. More recently, in the investigation of
nutation waves in nanostructures with uniaxial anisotropy, it
was discovered that they can be excited magnetoelastically
[15]; in this study a special case of longitudinal propagation
was implicitly considered. However, these studies are clearly
insufficient to fully characterize wave phenomena caused by
nutation.

In contrast, the linear phenomena of propagation pre-
cession spin waves have been comprehensively investigated
in ferromagnetic films [16,17], layered magnetic structures
[18,19], and magnonic crystals [20,21]. It was found that these
waves exhibit either dispersive or nondispersive propaga-
tion, isotropic or anisotropic propagation, and nonreciprocity
and inhomogeneous medium effects [16,22–25]. In addition,
precession spin waves exhibit an abundance of nonlinear
phenomena [26–30], whereas linear and nonlinear effects of
terahertz NSWs have not been studied sufficiently. This study
is significant not only from a fundamental point of view, but
also from an applied perspective, since nutation manifests
itself at terahertz frequencies that are promising for techno-
logical applications [31].

Here we investigate dispersion relations of nutation spin
waves propagating in an arbitrary direction, taking into ac-
count exchange coupling and electromagnetic properties of
ferromagnets over the entire wave number range. We assume
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that the dielectric permittivity is a scalar quantity, while the
conductivity and the shape anisotropy are negligible. These
assumptions allow us to find an additional dispersion branch
of NSWs, show the hybridization between electromagnetic
waves and NSWs, and determine the nutational-induced spec-
tral shift of precession spin waves. Moreover, we demonstrate
that the magnetization trajectories are transformed from cir-
cular to star shaped.

In order to include magnetization inertia, the Landau-
Lifshitz-Gilbert (LLG) equation was generalized by including
an additional term that is the second-order time derivative
of the magnetization with the appropriate coefficient. The
resulting equation is given by

dM
dt

= M ×
(

−γ Heff + α

MS

dM
dt

+ η

MS

d2M
dt2

)
, (1)

and is called the inertial Landau-Lifshitz-Gilbert (ILLG)
equation, where γ = 2.2 × 105 rad m A−1 s−1 is the gyromag-
netic ratio, M is the magnetization, MS is the saturation
magnetization, Heff is the effective magnetic field, α is the
Gilbert precession damping, and η is the inertial parameter
[2,4,6,7].

First, we study the natural oscillations of the magnetization
in the time domain to determine their trajectories, and the
characteristic frequencies of precession and nutation modified
by exchange coupling. In our previous work [32], we obtained
analytical solutions for the magnetization trajectories from the
ILLG equation in the nondamping case, α = 0, without any
approximations. Here we extend that investigation to focus on
the dynamics of damped magnetization, using an approxima-
tion based on the linearization procedure. Next, we derive the
dynamic susceptibility tensor in the presence of coupling from
the ILLG equation considering forced oscillations. Finally,
by substituting the susceptibility tensor into Maxwell’s equa-
tions, we obtain the dispersion relations, which demonstrate
hybridizations of precession-nutation spin waves with elec-
tromagnetic modes in ferromagnets. The similar hybridization
processes of ordinary spin waves were studied in planar mul-
tiferroic structures [33]. The resulting dispersion relations
describe waves propagating in an arbitrary direction relative
to the applied magnetic field. We show that inertia of magne-
tization yields nutation spin waves, while the usual spin waves
are now subject to the nutational motion.

II. MAGNETIZATION DYNAMICS IN THE PRESENCE
OF EXCHANGE INTERACTION AND INERTIA

The rigorous solution of Eq. (1) is a rather complicated
task, which can be solved in very limited cases. For example,
an analytical solution for the undamped deterministic motion
of magnetization was given in Ref. [32]. The inclusion of
damping or exchange interaction makes the analytical solu-
tion extremely difficult. Fortunately, approximate methods are
available for solving the problem in the general case. These
methods are widely used to analyze the solution of an ordinary
LLG equation [22]. Here we apply the method of successive
approximations to linearize the ILLG, Eq. (1).

In the presence of exchange interaction, the effective mag-
netic field Heff (r, t ) and the magnetization M(r, t ) can be
expressed as

Heff (r, t ) = H0 + h(r, t ), (2)

M(r, t ) = M0 + m(r, t ), (3)

where |H0| � |h|, |M0| � |m|, H0 = Hext + Ha incorporates
a strong uniform external field Hext = Hextez directed along
the Z axis and an internal field due to the internal anisotropy
potential Ha (the Ha can be neglected in a strong uniform
external field), and M0 = M0ez [again in a strong uniform
external field directed along the Z axis the magnetization
M(r, t ) of a sample is almost saturated in the direction of
the field Hext = Hextez, namely, M0 ≈ MS]. On substituting
Eqs. (2) and (3) into Eq. (1) and linearizing the resulting
equation, we obtain

dm
dt

= −γ m × H0 + M0 ×
(

−γ h + α

MS

dm
dt

+ η

MS

d2m
dt2

)
.

(4)

Since we investigate natural oscillations without external
excitation, the varying magnetic field is equal to the exchange
field, viz.,

h(r, t ) = hex(r, t ) = λ∇2m(r, t ), (5)

where λ is the exchange spin-wave stiffness. With the har-
monic ansatz, the varying component of the magnetization is
written as

m(r, t ) = m(t )e−ir·k, (6)

and, consequently h(r, t ) = −λk2m(t )e−ir·k, where k = |k|.
Using Eqs. (5) and (6), we can rewrite Eq. (4) as

dm
dt

= −
[

(ωH + ωMλk2)m + α
dm
dt

+ η
d2m
dt2

]
× eZ , (7)

where ωH = γ H0 and ωM = γ M0. Unlike the ordinary LLG
equation, the linearized Eq. (1) is now a second-order dif-
ferential equation. By projecting the vector Eq. (7) onto the
laboratory (Cartesian) axes, one obtains the following equa-
tions:

dmX

dt
= −(ωH + ωMλk2)mY − α

dmY

dt
− η

d2mY

dt2
, (8)

dmY

dt
= (ωH + ωMλk2)mX + α

dmX

dt
+ η

d2mX

dt2
, (9)

dmZ

dt
= 0. (10)

Introducing the circular variables,

m± = mX ± imY , (11)

we derive the equation of motion,

η
d2m±
dt2

+ (α ± i)
dm±
dt

+ (ωH + ωMλk2)m± = 0, (12)
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FIG. 1. Magnetization trajectories for μ0H0 = 0.84 T, m′+(0) = 0 (a), (b); μ0H0 = 0.92 T, m′+(0) = 0 (c), (d); μ0H0 = 0.92 T, m′+(0) =
3.82 × 1016 A m−1 s−1 (g), (h). The calculation was performed for μ0M0 = 1.2 T, m+(0) = 0.08 M0, and η = 0.75 ps. Here μ0 = 4π × 10−7

(H/m) is the magnetic permeability of free space.

which together with Eq. (10) yields the following solutions:

m+(t ) = A−eiω−t + A+e−iω+t , m−(t ) = m∗
+(t ), (13)

mZ (t ) = mZ (0) = 0, (14)

where the asterisk denotes complex conjugation,

ω± = ±(1 − iα) +
√

(1 − iα)2 + 4η(ωH + ωMλk2)

2η
, (15)

A± = 1

2

[
m±(0) ± 2iηm′±(0) − (1 − iα)m±(0)√

(1 − iα)2 + 4η(ωH + ωMλk2)

]
, (16)

m′±(0) = dm±
dt

(0). (17)

If k = 0, the frequency of ferromagnetic resonance is given
by ω−, whereas nutation resonance corresponds to ω+. Note
that in the limiting inertia-free case η → 0, the amplitudes are
given by

lim
η→0

A+ = 0, lim
η→0

A− = m+(0). (18)

This means that nutation disappears if inertia is neglected.
The trajectories of the end of the magnetization vector are

shown in Fig. 1. In the nondamping case, the trajectories
are star shaped [Figs. 1(a) and 1(c)]. In the damping case,
the trajectories converge to the center [Figs. 1(b), 1(d), and
1(f)]. With the approximation mZ = 0, the trajectories lie in a
plane, and the condition of magnetization length conservation,
|M| = MS = const, is broken. For the rigorous solution the
trajectories are loop shaped in three-dimensional space [32].
The loop-shaped trajectories in two-dimensional space can be
obtained if the initial velocity of the magnetization vector is

relatively high [Figs. 1(g) and 1(h)]. One can compare this
velocity with the typical values of the first precession term of
the ILLG equation. The magnitude of the spikes decreases as
the inertial parameter η decreases; they disappear at η = 0:
therefore, the precessional trajectory can be observed in the
limiting case (see, for example, Refs. [16,23]).

If a precession period Tpr is equal to an integer number p
of nutation periods Tnu,

Tpr = pTnu, p ∈ N, (19)

then the trajectory is closed. By substituting Tpr = 2π/ω− and
Tnu = 2π/ω+ into Eq. (19), we obtain the magnetic field Hcls

satisfying such trajectories:

Hcls = 1

γ η

p

(p − 1)2 − M0λk2. (20)

The number of nutation spikes is proportional to p and
decreases as the wave number k increases at the constant
magnetic field [compare Figs. 1(a) and 1(c)]. If the condi-
tion, Eq. (19), is not fulfilled, the trajectories are not closed
[Figs. 1(e) and 1(f)]. One can see that the magnetization
trajectories, and hence the waveform, depend on the wave
number and the effective magnetic field. The waveform can
be visualized as a sequence of oscillating magnetic moments
with phase shifts [13]. Note that the closed-loop condition
means a rational ratio of the precession and nutation harmon-
ics, which gains significance in the nonlinear wave dynamics.

III. MAGNETIC SUSCEPTIBILITY MODIFIED
BY EXCHANGE COUPLING

Equation (15) yields the characteristic frequencies of the
magnetization dynamics. Now we apply an AC external
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magnetic field happ(t ) = heiωt with small amplitude h to the
ferromagnetic sample. If the AC field frequency ω coincides
with the characteristic frequency of magnetization motion,
resonance takes place in the spectrum of the susceptibility of
the ferromagnetic sample. Next, we derive expressions for the
susceptibility tensor χ̂ (ω) introduced by the formula m = χ̂h
and used in the dispersion relations below. There are different
methods for studying the susceptibility spectrum, namely, (i)
direct Fourier transform [9] and (ii) the use of the harmonic
ansatz. Since both methods give the same result in the case
of linear differential equations, which we study here, the har-
monic ansatz is employed. In accordance with Eq. (13), we
may seek the time dependent component of the magnetization
as m(t ) = meiωt . The total time-varying field is now

h(r, t ) = (h0 − λk2m)eiωt−ik·r. (21)

This field corresponds to a plane wave. Thus, vector Eq. (4)
may be transformed into a system of scalar equation by anal-
ogy with Eqs. (8) and (9):

iωmX + (ωH + ωMλk2 + iωα − ω2η)mY = γ MShY , (22)

−iωmY + (ωH + ωMλk2 + iωα − ω2η)mX = γ MShX . (23)

By rewriting these equations in vector form one derives the
antisymmetric susceptibility tensor,⎛

⎝mX

mY

mZ

⎞
⎠ =

⎛
⎝ χ iχa 0

−iχa χ 0
0 0 0

⎞
⎠

⎛
⎝hX

hY

hZ

⎞
⎠, (24)

FIG. 2. The dispersive (χ ′
± blue lines) and the dissipative (χ ′′

±
orange lines) parts of susceptibility vs ω/ωM for right-hand side (a)
and left-hand side (b) rotations. The calculation was performed for
μ0M0 = 0.2 T, H0 = 0.5M0, η = 0.75 ps, and α = 0.01. The solid
lines show susceptibility at k = 0; the lines with circles demonstrate
susceptibility at λk2 > 0.

where

χ = ωM (ωH + ωMλk2 − ηω2 + iωα)

(ωH + ωMλk2 − ηω2 + iωα)2 − ω2
, (25)

χa = ωMω

(ωH + ωMλk2 − ηω2 + iωα)2 − ω2
. (26)

As we noted before, the susceptibility tensor components
are of resonant structure with the resonance frequencies ωres

calculated from the equation

ηω2
res + (±1 − iα)ωres − ωH − ωMλk2 = 0, (27)

namely,

ωres = ±1 + iα ±
√

(1 ± iα)2 + 4η(ωH + ωMλk2)

2η
. (28)

In the nondamping case (α = 0) at k → 0, this expression
yields the ferromagnetic and nutation resonance frequencies:

ωFMR = 1

2η
[
√

1 + 4η(ωH + ωMλk2) − 1] ≈ γ H0, (29)

ωNR = 1

2η
[
√

1 + 4η(ωH + ωMλk2) + 1] ≈ 1

η
. (30)

FIG. 3. The dissipative parts of susceptibilities χ ′′
+ (a) and χ ′′

−
(b) vs frequency and wave number for μ0M0 = 0.2 T, H0 = 0.5M0,
η = 0.75 ps, and α = 0.1.
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TABLE I. The dispersion equations for the waves propagating perpendicularly to the applied magnetic field.

Type of waves in the inertia case Type of waves in the noninertia case Equation

Nutation electromagnetic (NEL) Vanishing k′
1 = ±

√
− 1

3a

(
b + C + 	0

C

)
Precession-nutation magnetostatic (PNM) Precession magnetostatic (PM) k′

2 ±
√

− 1
3a

(
b + ξC + 	0

ξC

)
Hybrid nutation (HN) Precession electromagnetic (PEL) k′

3 = ±
√

− 1
3a

(
b + ξ 2C + 	0

ξ2C

)

The dispersion relation is based on the dependence of the
susceptibility on the wave number. In order to clarify the
physics of this dependence, we diagonalize the susceptibil-
ity tensor by using the circular variables m±(t ) defined by
Eq. (11), which obey⎛

⎝m+
m−
mZ

⎞
⎠ =

⎛
⎝χ+ 0 0

0 χ− 0
0 0 0

⎞
⎠

⎛
⎝h+

h−
hZ

⎞
⎠, (31)

where h± = hx ± ihy and

χ± = χ ± χa = ωM

ωH + ωMλk2 − ηω2 + iωα ∓ ω
. (32)

The susceptibility tensor is diagonal and m± = χ±h±.
In the positive frequency range, χ+ exhibits ferromagnetic
resonance with right-hand side rotation of magnetization
(precession), whereas χ− shows nutation resonance with op-
posite rotation. The resonance frequencies are determined by
Eq. (15). The influence of the wave number on the susceptibil-
ity is demonstrated in Fig. 2 by separating the dispersive and
dissipative parts of the susceptibility with χ± = χ ′±−iχ ′′±,
viz.,

χ ′
± = ωM (ωH + ωMλk2 − ηω2 ∓ ω)

(ωH + ωMλk2 − ηω2 ∓ ω)2 + ω2α2
, (33)

χ ′′
± = ωMωα

(ωH + ωMλk2 − ηω2 ∓ ω)2 + ω2α2
. (34)

The dispersive χ ′± and the dissipative χ ′′± parts of the
susceptibility for right-hand side (a) and left-hand side (b)
rotations are shown in Figs. 2 and 3. The maximum of the
curve χ ′′± decreases as the wave number increases. One can
see in Fig. 3 that the resonance frequency of the dissipative
part of the susceptibility χ ′′± exhibits a quadratic dependence
on the wave number, namely, ωres ≈ ωH + ωMλk2 for χ ′′+
and ωres ≈ η−1 + ωMλk2 for χ ′′−. Moreover, the width of
the curve χ ′′± measured at a definite level decreases as the
wave number increases. Thus, precessional χ+ and nutational
χ− susceptibilities demonstrate qualitatively similar behavior,
but the latter has the substantially weaker resonance in the
terahertz frequency range.

IV. DISPERSION RELATIONS

The dependence of the resonance frequency on the wave
number, Eq. (28), is still not a dispersion relation, because
such a relation should obey Maxwell’s equations in ferro-

magnets. The derivation is briefly presented in the Appendix.
The resultant equation for waves propagating in an arbitrary
direction in a nonconductive magnetically anisotropic and
electrically isotropic ferromagnet is [16]

n4μ − n2
[
(μ − 1)n2

z + (
μ2 − μ2

a + μ
)
εr

]
+ εr

[(
μ2 − μ2

a

)(
n2

z + εr
) − μn2

z

] = 0, (35)

where n is the dimensionless wave vector given by n = ck/ω,
n = |n|, while μ, μa are components of the permeability
tensor μ̂r [Eq. (A3)], and εr is the relative permittivity of
the ferromagnet. The dispersion relation, Eq. (35), is used in
the analysis of spin waves in ferromagnets with the dynamics
of magnetization obeying the ordinary LLG equation. The
difference in the present consideration is that the susceptibility
tensor now takes into account the inertia of magnetization [see
Eqs. (25) and (26) for the susceptibility tensor components].

A. Waves propagating perpendicular to the applied
magnetic field

In the general case, Eq. (35) can be solved numerically
or by using the method for solving a quartic equation. Here,
for simplicity, let us focus on two particular configurations:
(A) waves propagating perpendicular to the uniform magnetic
field (nz = 0), and (B) waves propagating in the direction of
H0 ‖ eZ (n = nz, nx = ny = 0). For the former (A) case, the
general dispersion relation can be converted to

n4μ − n2εr
(
μ2 − μ2

a + μ
) + ε2

r

(
μ2 − μ2

a

) = 0, (36)

which gives two roots:

n2 = εr (37)

and

n2 =
(
μ2 − μ2

a

)
εr

μ
= (1 + χ+)(1 + χ−)εr

1 + χ
. (38)

The first root applies to the electromagnetic waves caused
by the dielectric properties of ferromagnets. The second root
yields a set of dispersion branches, which can be considered
with normalized variables: � = ω/ωM , �H = ωH/ωM , η′ =
ηωM , and λ′ = λk2

M , where kM = √
εrωM/c, c = 1/

√
ε0μ0 is

the speed of light, and ε0 ≈ 10−9/36π (F/m) is the elec-
tric permittivity of free space. From Eq. (38), one obtains
the following expression for the normalized wave number
k′ = k/kM :

k′2 − �2 (η′�2 − iα� − �H − λ′k′2 − 1)
2 − �2

(η′�2 − iα� − �H − λ′k′2)
2 − (η′�2 − iα� − �H − λ′k′2) − �2

= 0, (39)
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which is the bicubic equation resulting in a few dispersion branches. Employing the notations

a = λ′2, b = λ′[2iα� − �2(2η′ + λ′) + 2�H + 1],

c = −�2 + �[−iα + (η′ + 2λ′)�](−1 − iα� + η′�2) + �H + 2iα��H − 2(η′ + λ′)�2�H + �2
H ,

d = −�2[−1 + �(−1 − iα + η′�) − �H ][−1 + �(1 − iα + η′�) − �H ], (40)

	0 = b2 − 3ac, 	1 = 2b3 − 9abc + 27a2d, C =
⎛
⎝	1 +

√
	2

1 − 4	3
0

2

⎞
⎠

1/3

, ξ = −1 + √−3

2
, (41)

we write the dispersion relations in Table I.
In the noninertia limit, one observes the ordinary spin

waves hybridized with electromagnetic waves due to phase
synchronism in the vicinity of k′ = 1, � = 1 for the calcu-
lation parameters (Fig. 4). The electromagnetic hybridization
yields two dispersion branches [16], which we called here pre-
cession magnetostatic (PM) and precession electromagnetic
(PEL) branches in order to distinguish these waves from the
nutation ones. If one increases the wave number and moves
away from the hybridization area, then the dispersion of the
PEL waves asymptotically tends to the curve of electromag-
netic waves, whereas the dispersion branch of the PM waves
merges with the spin-wave curve:

�2 = (�H + λ′k′2)(�H + λ′k′2 + sin2θk ). (42)

Inertia causes an additional dispersion curve starting at
1/η or � = 30 for the ferromagnet under consideration (not
shown in Fig. 4). This curve intersects the PEL branch
at k′ = 30 (k = 140 cm−1) providing an extra hybridization
[Fig. 4(b)], which eventually results in electromagnetic nu-
tation waves described by nutation electromagnetic (NEL)
and hybrid nutation (HN) branches. One can describe the

behavior of the waves corresponding to the HN branch in
the following manner. The dispersion branch of this wave
starts at the frequency

√
�H (�H + 1) or

√
ωH (ωH + ωM ) in

non-normalized units, which is typical for magnetostatic spin
waves in ferromagnets, then the HN branch exhibits electro-
magnetic behavior after the first hybridization [Figs. 4(c) and
4(d)]; the second hybridization transforms these waves into
the nutational ones, which are subject to exchange interac-
tion at λk2 > 1. In addition, PM dispersion is redshifted by
inertia to the dispersion of the precession-nutation magne-
tostatic (PNW) waves possessing relatively low frequencies
[Fig. 4(e)].

The magnetic field of the waves can be calculated by sub-
stituting the dispersion relations into Eq. (A7). For the first
root given by n2 = εr [Eq. (37)], the wave does not interact
with the medium [since μ‖ = 1; see Eq. (A3)] and propagates
as in a nonmagnetic material. The substitution yields h = h0ez

with an arbitrary value of h0; hence we have

h(r, t ) = hei(ωt−k0y) = h0eze
i(ωt−k0y). (43)

The inertia of magnetization does not change the wave
property in this case.

FIG. 4. Dispersion relations (ω/ωM vs k/kM ) for propagation perpendicular to the applied field (k⊥H0) shown in different scales. The
notation of curves: precession magnetostatic (PM, green), precession electromagnetic (PEL, magenta), precession-nutation magnetostatic
(PNM, red), nutation electromagnetic (NEL, blue) and hybrid nutation (HN, yellow). The calculation is performed for μ0M0 = 0.2 T,
ωH/ωM = 0.5, λ = 3 × 10−16 m2, εr = 1.55, α = 0, and for η = 1 ps in the inertia case, η = 0 in noninertia case.
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TABLE II. The correspondence between the dispersion equations and type of waves.

Type of waves in the inertia case Type of waves in the noninertia case Equation

Precession-nutation magnetostatic (PNM) Precession magnetostatic (PM) k′++, Eq. (48)
Precession-nutation electromagnetic (PNEL) Precession electromagnetic (PEL) k′+−, Eq. (48)
Hybrid nutation (HN) Electromagnetic (EL) k′−+, Eq. (49)
Nutation electromagnetic (NEL) Vanishing k′−−, Eq. (49)

The substitution of the second root [Eq. (38)] into Eq. (A7)
with n = ny and nx = 0 leads to

Â = εr

⎛
⎝−χ2

a (1 + χ )−1 −iχa 0
iχa −1 − χ 0
0 0 χ − χ2

a (1 + χ )−1

⎞
⎠.

(44)

The solution of Eq. (A7) with Â determined by Eq. (44) is
given by

h(r, t ) =
⎛
⎝ 1

iχa(1 + χ )−1|k=ki

0

⎞
⎠h0ei(ωt−kiy), (45)

where ki is the root of Eq. (39). Thus, the PM, PEL, PNM,
NEL, and HN waves propagating perpendicular to the applied
field H0 possess an elliptically polarized magnetic field h.

Since the components of the susceptibility tensor are modified
by the inertia, the magnitude of the polarization depends on
the inertia parameters.

B. Waves propagating parallel to the applied magnetic field

For the waves propagating parallel to the direction of
the applied magnetic fields, we set n = nz and nx = ny = 0.
Therefore, the general dispersion relation becomes

n4 − 2n2μεr + (
μ2 − μ2

a

)
ε2

r = 0 (46)

and gives two roots

n2 = (μ + μa)εr = (1 + χ+)εr,

n2 = (μ − μa)εr = (1 + χ−)εr, (47)

which in turn results in four dispersion equations:

k′2
+± = (η′ + λ′)�2 − (iα − 1)� − �H

2λ′ ±
√

[(η′ + λ′)�2 − (iα − 1)� − �H ]2 − 4λ′[η′�2 − (iα − 1)� − �H − 1]�2

2λ′ ,

(48)

k′2
−± = (η′ + λ′)�2 − �(iα + 1) − �H

2λ′ ±
√

[(η′ + λ′)�2 − �(iα + 1) − �H ]2 − 4λ′[η′�2 − (iα + 1)� − �H − 1]�2

2λ′ ,

(49)

describing different types of waves (Table II). From Fig. 5, one can see that changing the propagation angle barely affects the
dependence of the frequency on the wave number of PEL, NEL, PM, and PNM waves, except the frequency shift due to the sin2θk

factor. In contrast, the HN branch undergoes an abrupt transformation in the vicinity of the first electromagnetic hybridization:
now it starts from ω = 0. In addition, a precession-nutation electromagnetic (PNEL) dispersion branch emerges, which is the
PEL branch redshifted by inertia.

In order to find the polarization of the waves in this parallel
case, we substitute two roots given by Eq. (47) into Eq. (A7)
and obtain

Â± = εr

⎛
⎝±χa −iχa 0

iχa ±χa 0
0 0 −1

⎞
⎠. (50)

The solution of Eq. (A7) with Â± determined by Eq. (50)
is given by

h(r, t ) =
⎛
⎝ 1

∓i
0

⎞
⎠h0ei(ωt−k±y). (51)

Consequently, the magnetic fields of waves propagating
parallel to the applied field H0 become circularly polarized.

V. CONCLUSION

We have considered the propagation of plane waves in fer-
romagnets, when the magnetic material is close to saturation
and the contribution of the internal anisotropic potential of the
ferromagnetic material can be neglected. We have found that
the trajectories of magnetization are star shaped with the ap-
proximation mz = 0. The number of nutation spikes decreases
as the wave number increases. Moreover, we demonstrated
that the trajectories can be either closed or open, depending
on the wave number and the effective magnetic field. Note
that the presented trajectories are deterministic. If the thermal
fluctuations are included, the trajectories should be averaged
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FIG. 5. Dispersion relations (ω/ωM vs k/kM ) of waves propagating parallel to the applied field (k ‖ H0) shown in different scales. The
notation of curves: precession magnetostatic (PM, green), precession electromagnetic (PEL, magenta), precession-nutation magnetostatic
(PNM, red), nutation electromagnetic (NEL, blue), precession-nutation electromagnetic (PNEL, violet) electromagnetic (EL, gray), and hybrid
nutation (HN, yellow). The calculation is performed for μ0M0 = 0.2 T, ωH/ωM = 0.5, λ = 3 × 10−16 m2, εr = 1.55, α = 0, and for η = 1 ps
in the inertia case, η = 0 in the noninertia case.

over the initial conditions by using the Boltzmann distribution
in the equilibrium state [34]. We envisage that inertia can
cause the chaotic behavior of magnetization and we intend to
address this question in the future.

We have shown that the inertia of magnetization causes the
additional hybridization of electromagnetic waves and nuta-
tion spin waves in ferromagnets, hybrid nutation spin waves
emerge, and the redshift of frequencies of precession spin
waves is initiated, which transforms to precession-nutation
spin waves. Note that these effects depend on the direction of
wave propagation relative to the applied magnetic field. The
magnetic field of the investigated spin waves is elliptically
polarized in the case when the waves propagate perpendicular
to the applied field, and the waves become circularly polarized
in the parallel configuration.

It is of interest to generalize the results obtained by in-
cluding magnetocrystalline and shape anisotropies as well as
the finite size of ferromagnets, as was performed for the fer-
romagnetic and nutation resonance frequencies [35,36]. The
further complication of the wave spectrum can be predicted in
this task. The presented methods can be further developed to
treat tensor electrical properties, nonlinearity of nutation spin
waves, and conductivity of ferromagnets.
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APPENDIX: DERIVATION OF THE GENERAL FORM OF
THE DISPERSION RELATION

The electromagnetic field in a nonconductive magnetically
anisotropic and electrically isotropic medium is governed by

Maxwell’s equations which have the form [16]

∇ × H = ε0εr
∂E
∂t

, ∇ × E = −μ0μ̂r
∂H
∂t

, (A1)

∇ · E = 0, ∇ · B = 0. (A2)

Here, εr is the relative permittivity of the medium, ε0 ≈
10−9/36π (F/m) is the electric permittivity of free space, and
μ0 = 4π × 10−7 (H/m) is the magnetic permeability of free
space. The magnetic permeability tensor associated with the
derived susceptibility Eqs. (25) and (26) is written as

μ̂r =
⎛
⎝ μ iμa 0

−iμa μ 0
0 0 μ‖

⎞
⎠, (A3)

where μ = 1 + χ , μa = χa, and μ‖ = 1 (saturation,
M0 = MS).

Taking the curl (∇×) of the first equation of Eqs. (A1) and
excluding E by using the second equation of Eqs. (A1), we
obtain [18] (ε0μ0 = c−2)

εrμ̂r

c2

∂2H
∂t2

+ ∇ × ∇ × H = 0. (A4)

If one expresses the external magnetic field and magne-
tization as previously [Eqs. (2) and (3)] and employs the
plane-wave ansatz,

M(r, t ) = M0 + mei(ωt−r·k), (A5)

H(r, t ) = H0 + hei(ωt−r·k), (A6)
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Eq. (A4) transforms into

ω2

c2
Âh(r, t ) = 0, (A7)

where the matrix Â is given by

Â =

⎛
⎜⎝

n2 − n2
x − μεr −nxny − iμaεr −nxnz

−nxny + iμaεr n2 − n2
y − μεr −nynz

−nxnz −nynz n2 − n2
z − εr

⎞
⎟⎠, (A8)

and nx, ny, nz are the components of the dimensionless wave vector n defined as

n = c

ω
k. (A9)

The dispersion relation obtained from the equation det Â = 0 is given by Eq. (35).
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