
PHYSICAL REVIEW B 105, 214409 (2022)

Spin waves in layered antiferromagnets with honeycomb structure
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We develop a description of spin waves in a 3D quantum XY antiferromagnet (AFM) in terms of macroscopic
variables, magnetization and Néel vector densities. We consider a layered AFM with spins located on the
honeycomb lattice. In the discussed system, the spectrum of spin waves consists of four modes, all well captured
by our macroscopic description. The gapless mode of the spin waves, i.e., magnons, is described by a system of
equations, which has a structure general for the Goldstone mode in AFMs. We demonstrate that the parameters
in the spin Hamiltonian can be evaluated by fitting the experimental data with the results obtained for the four
modes using the macroscopic variable approach. The description of AFM in terms of macroscopic variables can
be easily extended to the case when the lattice of the magnetic substance is deformed by an external strain or
acoustic wave.
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I. INTRODUCTION

In this paper we derive the equations of motion for the
system of spins in a quantum XY AFM in terms of pairs
of macroscopic quantities, which are the magnetization and
the Néel vector densities. Compared to other classes, the
XY AFMs are relatively limited in occurrence. Usually, they
could be met in systems with a hexagonal symmetry of the
crystalline lattice, see Ref. [1]. At the present moment, a
number of materials has been confirmed to be the layered
AFM with in-plane spins, including NiPS3 [2], CoPS3 [3],
CuMnAs [4], CrCl3 [5–7], etc. Here, for concreteness, we
consider the XY -type layered CoTiO3, although the approach
is general and expected to be applicable to any layered anti-
ferromagnet.

We arrive to a relatively simple description of quantum
AFM in terms of the gradient expansion of the pairs of macro-
scopic variables that in the continuous limit reproduces the
main features of the results obtained for CoTiO3 in Ref. [8].
In particular, this method allows to describe accurately all four
spin-wave modes existing in the discussed system. By com-
paring their spectrum calculated here using the macroscopic
variables approach with the experimental data of Ref. [8], we
extracted the values of the parameters in the spin Hamiltonian
and confirm the XY character of the intralayer spin exchange
in this material.

In a series of papers [9–11], the magnon backward scat-
tering by a magnonic crystal was studied experimentally
in ferromagnets. The periodic scattering potential (i.e., the
magnonic crystal) was created by a set of current carrying
meander wires. The perspective of this experimental method
for bulk AFM samples remains unclear. We, therefore, study
here the effect of the lattice deformation on the spin dynamics.
The deformations change distances between spins, and thus
modify exchange coupling constants. The modulation of the

coupling constants causes in its turn scattering of the spin
waves. The description in terms of the macroscopic variables
developed in this paper can be easily extended to a system
with deformations, and allows one to obtain the dynamics of
the scattering spin waves in the modulated crystal. This is
another goal of the present paper.

II. SPIN DYNAMICS IN THE ABSENCE OF LATTICE
DEFORMATIONS

CoTiO3 is a layered antiferromagnetic material, and is a
sort of a magnetic “ABC-stacked graphite”. Namely, in each
of the layers, spins are arranged on a honeycomb lattice (xy
plane), and different layers are ABC stacked along the third
direction (z axis). A schematic structure of the spin lattice
is shown in Fig. 1. The exchange coupling J‖ within a layer
is ferromagnetic, i.e., J‖ < 0, while the exchange coupling
constant between layers is antiferromagnetic, J⊥ > 0. Previ-
ous measurements (cf. Ref. [8], and see also the discussion in
Appendix D) found out that the Hamiltonian describing best
the magnetic excitations in CoTiO3 is

H =
∑
i,δ1

J‖
(
Sx

i Sx
i+δ1

+ Sy
i Sy

i+δ1

) +
∑
i,δ2

J⊥
(
Sx

i S̄x
i+δ2

+ Sy
i S̄y

i+δ2
+ Sz

i S̄z
i+δ2

) + {Sx/y/z ↔ S̄x/y/z}. (1)

Here, the index i runs over all sites of spin, while δ1 and δ2 run
over the nearest neighbors within the same layer, and all the
next-nearest neighbors between the layers. In the Hamiltonian
(1) we have introduced S and S̄ that are the spin operators
for the ±x-ordered magnetic layers, respectively. Using the
Heisenberg equations of motion, dS

dt = 1
i [S, H], for each of
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FIG. 1. Schematic spin lattice structure of CoTiO3. The period
along the z direction comprises six layers including the ABC stack-
ing and the alternating ±x spin ordering in the neighbor layers.
The red and blue spheres represent atoms located on the A and B
sublattices, respectively, while arrows indicate the direction of their
spins. CoTiO3 is an intralayer ferromagnet and simultaneously an
interlayer antiferromagnet. The dashed lines display couplings of a
selected atom in the middle layer to the nine next-nearest neighbors
in the other two layers. Each of the red atoms on the A sublattice
in the middle layer is coupled with six blue atoms in the top layer and
three red atoms in the bottom layer. A blue atom on the B sublattice
in the middle layer is coupled with three blue atoms in the top layer
and six red atoms in the bottom layer.

the spin components of Si, we find

dSx
i

dt
=

∑
δ1

J‖Sz
i Sy

i+δ1
+

∑
δ2

J⊥
(
Sz

i S̄y
i+δ2

− Sy
i S̄z

i+δ2

)
,

dSy
i

dt
= −

∑
δ1

J‖Sz
i Sx

i+δ1
+

∑
δ2

J⊥
( − Sz

i S̄x
i+δ2

+ Sx
i S̄z

i+δ2

)
,

dSz
i

dt
=

∑
δ1

J‖
(
Sy

i Sx
i+δ1

− Sx
i Sy

i+δ1

) +
∑
δ2

J⊥
(
Sy

i S̄x
i+δ2

− Sx
i S̄y

i+δ2

)
.

(2)

The equations of motion for S̄ could be obtained by making
the exchange: S ↔ S̄. Although the period of the spin lattice
along the z direction is six layers, there is no need in consid-
ering the dynamics of all six layers. Instead, one just needs
to calculate the equations of motion for S and S̄, which are
the spin operators of two oppositely ordered layers. Suppose
we start from the bottom layer in Fig. 1 and move upward.
Then each next layer requests for the same operation, i.e.,
change in the direction of the spin ordering along with a shift
by one unit length along the +x direction. Hence, each layer
is in the same environment and does not feel the periodicity
along the z direction.

Next, in order to get a continuum model, we make an
expansion in S with respect to its coordinate dependence, see
e.g., Ref. [12]. For example, let us take the term

∑
δ1

J‖Sz
i Sy

i+δ1

and assume that the site i is on the A sublattice. We are
interested in finding the equation of motion for a spin located
on this site. For this, we need to explore its environment.
Performing the expansion, we obtain

∑
δ1

Sz
i Sy

i+δ1
=

∑
δ1

Sz
iA

(
Sy

iB + ∂Sy
iB

∂rα
δα

1 + 1

2

∂2Sy
iB

∂rα∂rβ
δα

1 δ
β

1 + · · ·
)

≈ 3Sz
iASy

iB + 3

4
Sz

iA

(
∂2

∂x2
+ ∂2

∂y2

)
Sy

iB. (3)

Here and further on, the subscription A/B stands for the A/B
sublattices. There are three nearest neighbors for the honey-
comb lattice, and δ1 are taken to be δ1,1 = (1, 0, 0), δ1,2 =
(− 1

2 ,
√

3
2 , 0), and δ1,3 = (− 1

2 ,−
√

3
2 , 0). In Eq. (3) the summa-

tion over α and β is assumed, where α, β = x, y, z combines
the three Cartesian components of the vector δ1, j with three
coordinate derivatives. Note that for the convenience of the
discussion, lengths are measured in the units of either intra-
or interlayer lattice constants.

Similarly, for a term describing the interlayer interaction,∑
δ2

J⊥Sz
i S̄y

i+δ2
, we have

∑
δ2

Sz
i S̄y

i+δ2
≈ 3Sz

iA

(
S̄y

iB + 2S̄y
iA

) + 3Sz
iA

[
∂ S̄y

iB

∂z

+ 1

4

(
∂2

∂x2
+ ∂2

∂y2
+ 2

∂2

∂z2

)(
S̄y

iB + 2S̄y
iA

)]
. (4)

Here we assumed that a site i is on one of the A sublattices
(i.e., i is red), and that δ2 runs over nine next-nearest neighbors
as indicated by the dashed line in Fig. 1.

To derive the equations of motion for the macroscopic
quantities, we substitute the leading expansion terms as shown
in Eqs. (3) and (4) back into Eq. (2). The calculations are
straightforward, and details are presented in Appendix A.
Then, after making a transition from the site spin operators
Si(t ) to the continuous variable S(r, t ), we introduce the
macroscopic quantities for each of the two sublattices: the to-
tal magnetization mA/B(r, t ) ≡ SA/B(r, t ) + S̄A/B(r, t ) and the
Néel vector lA/B(r, t ) ≡ SA/B(r, t ) − S̄A/B(r, t ), which will be
used for describing the long-wavelength spin wave excita-
tion. Finally, for the two spin-wave branches with the lowest
energy we implement the approximation mA = mB = m and
lA = lB = l , and as a result get:

dmx

dt
≈ 3

2
J‖(lzly) + 9

8
J⊥(ly∇2

+lz ), (5)

dmy

dt
≈ −3

2
J‖(lzlx ) − 9

8
J⊥(lx∇2

+lz ), (6)

dmz

dt
≈ −3

8
J‖[l × (∇2

−l )]z + 9

8
J⊥[l × (∇2

+l )]z, (7)

dlx

dt
≈

(
3

2
J‖ − 9J⊥

)
(lymz ) − 9

8
J⊥(ly∇2

+mz ), (8)

dly

dt
≈

(
− 3

2
J‖ + 9J⊥

)
(lxmz ) + 9

8
J⊥(lx∇2

+mz ), (9)

and

dlz

dt
≈ 9J⊥(m × l )z − 3

8
J‖[l × (∇2

−m)]z

− 9

8
J⊥[l × (∇2

+m)]z. (10)

Here, the short notation ∇2
± ≡ ∇2 ± ∂2

∂z2 has been introduced;
the indices x, y, z mark the x, y, and z component of the vec-
tors, respectively. In the following, we drop the last terms in
Eqs. (8) and (9), because they lead to the terms in dispersion,
which are of higher order in k2, while we are interested in ω2

only up to the order ∼O(k2).
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To proceed further, we will use the parametrization (see
e.g., Refs. [13–15])

l = 2S̃

√
1 −

( |m|
2S̃

)2

(cos θ cos φ, cos θ sin φ, sin θ ),

m = (−mθ sin θ cos φ − mφ sin φ,−mθ sin θ sin φ + mφ

× cos φ, mθ cos θ ). (11)

Under this parametrization, the vectors m and l are automat-
ically constrained by m · l = 0 and, at the same time, the
lengths of S and S̄ are taken to be a fixed value S̃. De facto,
by the transition from spin operators to the classical variables
m and l , we have implemented the language of the nonlinear
sigma model (NLSM) for the description of the antiferromag-
net dynamics.

Keeping only the linear terms in Eqs. (5)–(10), we get
two decoupled pairs of equations in terms of the variables
introduced in Eqs. (11):

ṁθ ≈ (4S̃2)

(
− 3

8
J‖∇2

−φ + 9

8
J⊥∇2

+φ

)
,

φ̇ ≈
(

− 3

2
J‖ + 9J⊥

)
mθ ; (12)

and

ṁφ ≈ (4S̃2)

(
− 3

2
J‖θ − 9

8
J⊥∇2

+θ

)
,

θ̇ ≈
(

− 9J⊥ − 3

8
J‖∇2

− − 9

8
J⊥∇2

+

)
mφ. (13)

Note that θ (0) = 0, m(0)
θ = 0, and m(0)

φ = 0 are the equilibrium
values for these equations, while φ can be arbitrary, because
this system has a rotational symmetry along the z direction.

By taking another time derivative in Eqs. (12) and (13) we
obtain closed equations of the second order. For example, for
mθ and mφ they look as follows:

m̈θ ≈ (4S̃2)

[
− 3J‖

8

(
− 3J‖

2
+ 9J⊥

)
∇2

− + 9J⊥
8

(
− 3J‖

2

+ 9J⊥

)
∇2

+

]
mθ ,

m̈φ≈(4S̃2)

[
27

2
J‖J⊥ + 9

16
J2
‖ ∇2

− + 9J⊥
8

(
3J‖
2

+ 9J⊥

)
∇2

+

]
mφ.

(14)

These equations give eigenfrequencies of the two low-energy
spin-wave branches

ωa ≈ (2S̃)

[(
9

16
J2
‖ − 81

16
J‖J⊥ + 81

8
J2
⊥

)(
k2

x + k2
y

)

+
(

− 27

8
J‖J⊥ + 81

4
J2
⊥

)
k2

z

] 1
2

,

ωsh ≈ (2S̃)

[
− 27

2
J‖J⊥ + 9

16
J2
‖
(
k2

x + k2
y

)

+
(

81

8
J2
⊥ + 27

16
J‖J⊥

)(
k2

x + k2
y + 2k2

z

)] 1
2

. (15)

Here, ωa and ωsh are the acousticlike and the opticlike
branches of the spin waves, respectively. In fact, the two
branches exactly repeat each other after shifting kz on ±π .
(This is why we indicate the “fake” opticlike branch by “sh”.)

It remains to obtain the two “true” opticlike branches
with higher energies. Since the opticlike excitations are
not related with the rotational symmetry along the z di-
rections, we perturb the spins on A and B sublattices in
the antiphase manner: An ansatz mA/B = ±(δmxex + δmyey +
δmzez ) and lA/B = 2S̃ex ± (δlxex + δlyey + δlzez ) is imple-
mented for these eigenmodes. Here, + and − stand for A and
B sublattices, respectively. Note that, without loss of gener-
ality, we take the equilibrium Néel vector to be along the x
direction, l0 = 2S̃ex. As above, mA/B and lA/B are subject to
the constraint mA/B · lA/B = 0 [16]. Expanding the magnetiza-
tion density and Néel vector around the equilibrium, we get
(more details can be found in Appendix A)

dδmx

dt
≈ 0, (16)

dδmy

dt
≈ 2S̃

[(
− 3

2
J‖ + 3J⊥

)
− 3

8
J⊥∇2

+

]
δlz, (17)

dδmz

dt
≈ 2S̃

[
(3J‖ − 3J⊥) + 3

8
J‖∇2

− + 3

8
J⊥∇2

+

]
δly, (18)

dδlx

dt
≈ 0, (19)

dδly

dt
≈ 2S̃

[(
− 3

2
J‖ + 6J⊥

)
+ 3

8
J⊥∇2

+

]
δmz, (20)

and

dδlz

dt
≈ 2S̃

[
(3J‖ − 6J⊥) + 3

8
J‖∇2

− − 3

8
J⊥∇2

+

]
δmy. (21)

We, thus, get two pairs of equations: Eqs. (17) and (21) for
the pair (δmy, δlz ), and Eqs. (18) and (20) for (δmz, δly).
Consequently, these pairs of equations lead us to two opticlike
modes:

ωo1 ≈ (2S̃)

[
9

2
(J‖ − 2J⊥)2 − 9

16
J‖(J‖ − 2J⊥)

(
k2

x + k2
y

)

− 9

16
J⊥(J‖ − 2J⊥)

(
k2

x + k2
y + 2k2

z

)] 1
2

,

ωo2 ≈ (2S̃)

[
9

2
(J‖ − J⊥)(J‖ − 4J⊥) − 9

16
J‖(J‖ − 4J⊥)

× (
k2

x + k2
y

) + 9

16
J⊥(J‖ + 2J⊥)

(
k2

x + k2
y + 2k2

z

)] 1
2

.

(22)

The gradient terms in Eqs. (17), (21), and in (18), (20) deter-
mine the dispersion of the opticlike modes.

III. HOLSTEIN-PRIMAKOFF APPROACH

As a comparison, we introduce an 8 × 8 model using
the Holstein-Primakoff transformation, which quantitatively
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describes the spectrum of the spin waves in CoTiO3 with using
the Hamiltonian given by Eq. (1).

A. The 8 × 8 model

For a layer, where the magnetization is ordered along x
direction, we introduce the standard Holstein-Primakoff op-
erators,

Sx
A/B = S̃ − (a†a)/(b†b),

S+
A/B ≡ Sy

A/B + iSz
A/B =

√
2S̃ − (a†a/b†b)(a/b),

S−
A/B ≡ Sy

A/B − iSz
A/B = (a†/b†)

√
2S̃ − (a†a/b†b). (23)

Here, the subscription A/B indicates the A/B sublattices and,
similarly, a†/b† and a/b are creation and annihilation opera-
tors of spin excitations on the A and B sublattices, respectively.
In the discussed system, CoTiO3, the effective spin S̃ = 1/2;
see the discussion on this point in Ref. [8]. Finally, for the
neighboring layer, where the magnetization is ordered along
the −x direction, we use operators marked with a bar. We have

S̄x
A/B = (ā†ā/b̄†b̄) − S̃,

S̄+
A/B ≡ −S̄y

A/B + iS̄z
A/B =

√
2S̃ − (ā†ā/b̄†b̄)(ā/b̄),

S̄−
A/B ≡ −S̄y

A/B − iS̄z
A/B = (ā†/b̄†)

√
2S̃ − (ā†ā/b̄†b̄). (24)

Keeping only the quadratic form in terms of the creation
and annihilation operators, one obtains a Hamiltonian HSW in
the quasimomentum k space, which determines the spectrum
of the spin waves. The Hamiltonian HSW = S̃

∑
k V †

k HkVk is
determined as follows:

Vk = {ak, bk, a†
−k, b†

−k, āk, b̄k, ā†
−k, b̄†

−k}T (25)

and

Hk =
(

H1k H2k

H2k H1k

)
. (26)

Here, H1k and H2k are 4 × 4 matrices

H1k =

⎛
⎜⎝

Ak Bk 0 Bk

B∗
k Ak B∗

k 0
0 Bk Ak Bk

B∗
k 0 B∗

k Ak

⎞
⎟⎠ (27)

and

H2k =

⎛
⎜⎝

0 0 Ck Fk

0 0 F ∗
k Ck

Ck Fk 0 0
F ∗

k Ck 0 0

⎞
⎟⎠. (28)

The matrix elements here are Ak = −3J‖ + 9J⊥, Bk =
1
2 J‖γk , Ck = −J⊥(e−ikzγk + eikzγ ∗

k ), and Fk = −J⊥e−ikzγ ∗
k .

The factor γk is determined by summation over the
nearest neighbors, i.e., for the honeycomb lattice γk =∑

j=1,2,3 eik·δ1, j with δ1,1 = (1, 0, 0), δ1,2 = (− 1
2 ,

√
3

2 , 0), and

δ1,3 = (− 1
2 ,−

√
3

2 , 0). In our discussions, we take both in-
plane and out-of-plane lattice constants to be 1 for simplicity.
In Ref. [8], the best estimates of J‖ and J⊥, which match
quantitatively well with the experimental data are found to

FIG. 2. Four branches of the magnon spectrum obtained by solv-
ing the equations (H1k ± H2k )ψ1 = Ekσ3ψ1 with J‖ = −4.41 meV
and J⊥ = 0.57 meV. The eigenvalues are plotted along the kz direc-
tion with kx = ky = 0.

be J‖ = −4.41 meV and J⊥ = 0.57 meV. In the discussions
below, we will use for the parameters J‖ and J⊥ these values.

In Appendix D, we get the parameters of the Hamiltonian
(1) by analyzing the experimental data from Ref. [8] using
our macroscopic description developed above. The extracted
values of parameters, which optimally fit the data, are very
close to the ones presented in Ref. [8].

Note that, this 8 × 8 model gives 4 branches of the
magnon spectrum. These 4 branches could be divided into
2 groups by the symmetry of the eigenstates. To find the
spectrum of magnons, one needs to solve the eigenvalue
problem Hk|ψ〉 = EkS3|ψ〉 with the diagonal matrix S3 =
diag(1, 1,−1,−1, 1, 1,−1,−1). The eigenvector |ψ〉 here is
an eight-dimensional vector constructed in the basis Vk , see
Eq. (25). It could be written as |ψ〉 = {ψT

1 , ψT
2 }T , where ψ1

and ψ2 are four-dimensional vectors within the subspaces
{ak, bk, a†

−k, b†
−k}T and {āk, b̄k, ā†

−k, b̄†
−k}T , respectively. For

one group of the eigenstates, which has the property ψ1 = ψ2,
the eigenvalue equation becomes (H1k + H2k )ψ1 = Ekσ3ψ1,
where the diagonal σ3 = diag(1, 1,−1,−1) is a 4 × 4 matrix.
For another group of the eigenstates with the property ψ1 =
−ψ2, the eigenvalue equation reduces to (H1k − H2k )ψ1 =
Ekσ3ψ1. The effective 4 × 4 Hamiltonian H1k + H2k coincides
with Eqs. (6) and (7) in the Supplemental Material of Ref. [8].
Each of the reduced 4 × 4 Hamiltonians, H1k ± H2k , describes
two branches of the spin waves.

We plot in Fig. 2 the whole magnon spectrum consisting of
four branches. The blue and orange curves are derived from
(H1k + H2k )ψ1 = Ekσ3ψ1, while green and red ones corre-
spond to (H1k − H2k )ψ1 = Ekσ3ψ1. Actually, these two pairs
of branches are connected through π shifting along the kz

direction. This reveals the additional symmetry ψ1 = ±ψ2

possessed by a spin system with the layered structure of
CoTiO3.

One of the four branches, the blue curve, touches zero at
k = 0. This acousticlike branch corresponds to the Goldstone
mode. It is a direct consequence of the continuous symmetry
with respect to rotation of the Néel vector l in the xy plane.
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The other branch (the green curve) after shifting kz by π

reproduces the Goldstone mode.

B. The eigenstates and eigenfrequencies

In principle, the magnon spectrum as well as its eigen-
states can be found by solving the eigenvalue equations
(H1k ± H2k )ψ1 = E (±)

k σ3ψ1. However, it is very intractable,
and therefore we present an approximation here, which al-
lows us to describe the eigenstates and eigenfrequencies in
a simplified but still comprehensive way. As an example, we
demonstrate how it works for H+ ≡ H1k + H2k . Under the
basis of the subspace {ak, a†

−k, bk, b†
−k}T , H+ becomes

H+ =

⎛
⎜⎜⎝

Ak Ck Bk G+
k

Ck Ak G+
k Bk

B∗
k (G+

k )∗ Ak Ck

(G+
k )∗ B∗

k Ck Ak

⎞
⎟⎟⎠ (29)

with G+
k ≡ Bk + Fk . Since the A and B sublattices are equiva-

lent, we are looking for the eigenstate in the form

ψ̃1 = a

⎛
⎜⎜⎝

eiχa

1
eiχb1

eiχb2

⎞
⎟⎟⎠ + 1

8a

⎛
⎜⎜⎝

eiχa

−1
eiχb1

−eiχb2

⎞
⎟⎟⎠. (30)

Here, a, χa, χb1 , and χb2 are functions of the wave vector k that
need to be evaluated. The magnitudes of the ψ̃ components
are all determined by the parameter a, and are equal to a ±
1

8a . Note that ψ̃1 satisfies the standard normalization condition
ψ̃

†
1 σ̃3ψ̃1 = 1, where σ̃3 = diag(1,−1, 1,−1). Equation (30)

states that the dynamics of spins on the B sublattice is the same
as the one on the A sublattice, except for the phase difference.

Expanding χa, χb1 , and χb2 around 0 (see Appendix B), we
get the approximate solution of the equation H+ψ̃1 = E σ̃3ψ̃1:

E ≈
√

[Ak + Re(Bk ) + Ck + Re(G+
k )][Ak + Re(Bk ) − Ck − Re(G+

k )],

a ≈ 1

2
√

2

(
Ak + Re(Bk ) − Ck − Re(G+

k )

Ak + Re(Bk ) + Ck + Re(G+
k )

) 1
4

, (31)

and

χa ≈ − 16a2[Im(G+
k )Re(Bk ) − Im(Bk )Re(G+

k )]

Re(Bk )[(64a4 − 1)Re(Bk ) + (64a4 + 1)Re(G+
k )] + Ck[(64a4 + 1)Re(Bk ) + (64a4 − 1)Re(G+

k )]
,

χb1 ≈ −Re(Bk )[(64a4 − 1)Im(Bk ) + (64a4 + 1)Im(G+
k )] + Ck[(64a4 + 1)Im(Bk ) + (64a4 − 1)Im(G+

k )]

Re(Bk )[(64a4 − 1)Re(Bk ) + (64a4 + 1)Re(G+
k )] + Ck[(64a4 + 1)Re(Bk ) + (64a4 − 1)Re(G+

k )]
,

χb2 = χa + χb1 (32)

where Re(· · · ) and Im(· · · ) denote the real and imaginary
part of “· · · ”, respectively. The solution presented by Eq. (32)
indicates the smallness of the phases, which is consistent
with the expansion in phases χa, χb1 , and χb2 performed after
Eq. (30).

As for the higher energy state, we use the same ansatz
and repeat the above procedures, but expand χa and χb2

around π . Eventually we get the results similar to Eqs. (31)
and (32) but with the following changes: (i) Bk → −Bk; (ii)
Ck → −Ck ; and finally (iii) phase π has to be added to χa and
χb2 .

In Fig. 3, we compare the results obtained for the acous-
ticlike and opticlike branches of the magnon spectrum by
solving the eigenvalue equation exactly, and using the ap-
proximate equations (31) and (32). In all six plots, the
dashed curves (approximate) almost match the solid ones
(exact). Hence, the approximate Eqs. (31) and (32) work per-
fectly.

IV. RESULTS AND DISCUSSION

Let us compare the results of the Holstein-Primakoff ap-
proach with those obtained using the magnetization and Néel
vector densities. To give a general picture, in Fig. 4, we plot

four branches of the magnon spectrum given by two methods.
As it is shown, each pair of two branches obtained through
two different approaches is approximately matching with each
other at small kz.

A. Comparison of different methods

We now compare, in detail, the results of our description
in terms of the macroscopic variables with those obtained
from the exact solution of the 8 × 8 model. In Fig. 5, we
plot the dispersion of the acousticlike and opticlike modes
along the kz and kx directions. To quantitatively compare the
results obtained by these two very different approaches, we
estimate the spin wave velocities of the acousticlike branch
along the x and z directions; see Figs. 5(a) and 5(e). We find
∂ωa(k)

∂kz
|k=0 ≈ 3.81 for the 8 × 8 model and ∂ωa(k)

∂kz
|k=0 ≈ 3.88

for our proposed macroscopic description. The mismatch is
less than 2%. Along x direction, we get an even better agree-
ment with ∂ωa(k)

∂kx
|k=0 estimated to be 5.19 for both models.

Consequently, we conclude that our macroscopic description
of the acousticlike magnon branch agrees quantitatively well
with the exact spectrum under the long wavelength limit, i.e.,
k � 0.5.

For completeness, we also compare the results obtained
for other three branches of the spin waves (see Fig. 4).

214409-5



ANKANG LIU AND ALEXANDER M. FINKEL’STEIN PHYSICAL REVIEW B 105, 214409 (2022)

FIG. 3. The acousticlike (first row) and opticlike (second row) branches of the magnon spectrum found by the Holstein-Primakoff method.
Plot (a) and (d) give the spectrum; (b) and (e) are phases, while (c) and (f) are magnitudes of each of the components. Here, we plotted the
dependence on kz with kx = ky = 0. The solid curves represent the exact solutions for the eigenvalue equations (H1k + H2k )ψ1 = Ekσ3ψ1,
while the dashed curves stand for the approximated solutions Eqs. (31) and (32).

For the shifted acousticlike and two opticlike branches [see
Figs. 5(b), 5(c), and 5(d)], using the Holstein-Primakoff
method, we obtain for the kz direction ∂2ωsh (k)

∂2kz
|k=0 ≈ −0.41,

∂2ωo1(k)
∂2kz

|k=0 ≈ 0.22, and ∂2ωo2(k)
∂2kz

|k=0 ≈ −0.24. At the same

time, our semimacroscopic approach yields, ∂2ωsh (k)
∂2kz

|k=0 ≈
−0.33, ∂2ωo1(k)

∂2kz
|k=0 ≈ 0.30, and ∂2ωo2(k)

∂2kz
|k=0 ≈ −0.17. On the

contrary, for the kx direction [cf. Figs. 5(f), 5(g), and

FIG. 4. Four branches of the magnon spectrum obtained by the
Holstein-Primakoff approach (solid curves) and macroscopic de-
scription (dashed curves). The eigenvalues are plotted along the kz

direction with kx = ky = 0.

5(h)], both methods give the same estimates ∂2ωsh (k)
∂2kx

|k=0 ≈
1.71, ∂2ωo1(k)

∂2kx
|k=0 ≈ −1.02, and ∂2ωo2(k)

∂2kx
|k=0 ≈ −1.44. Al-

though there is a relatively large mismatch between the two
approaches for the kz direction, the dispersion within (kx, ky )
momentum plane is well captured by our semimacroscopical
scheme. We ascribe the discrepancy in the magnon spectrum
along the kz direction to the neglecting of ± ∂

∂z terms in
Eqs. (A4)–(A9) when deriving the macroscopic equations of
motion, see Appendix A for the details.

B. Dynamics of four branches in terms of the
macroscopic variables

In this section, to have a better understanding of the four
spin-wave branches shown in Fig. 4, we give the schematic
pictures of their spin dynamics. We start with the acousti-
clike magnon branch, i.e., the (mθ , φ) pair. As it is shown in
Fig. 6(a), spins on A and B sublattices are fully synchronized.
The magnetization densities mA/B alternate along the z direc-
tion, while the Néel vectors lA/B rotate back and forth around
the equilibrium position within the xy plane. The magnon
frequency of this mode goes to zero as k → 0, because of the
rotational symmetry. Generally, this mode manifests the possi-
bility of the spin superfluidity in a system with XY symmetry,
see, e.g., Refs. [15] and [17]. In contrast to the acousticlike
branch, the other branch described by the (mφ, θ ) pair is look-
ing like an opticlike branch due to its finite energy at k = 0
but, in fact, is the shifted version of the acousticlike branch.
This mode has the same dynamics on both A and B sublat-
tices. It exhibits alternating mA/B along the y direction and

214409-6



SPIN WAVES IN LAYERED ANTIFERROMAGNETS WITH … PHYSICAL REVIEW B 105, 214409 (2022)

A

A

O

O

O

O

FIG. 5. The fragments of the spectrum of the acousticlike, shifted and two opticlike magnon modes. The first row presents the spectrum
along the kz direction with kx = ky = 0, while the second row gives the kx direction with ky = kz = 0. (a) and (e) are acousticlike branch;
(b) and (f) are the fragments of the shifted acousticlike branch, while (c), (g), and (d), (h) are related to the opticlike branches 1, and 2,
respectively. In each subfigure, the solid curve represents the exact solutions for the eigenvalue equations (H1k ± H2k )ψ1 = Ekσ3ψ1, while the
dashed curve is described by the semimacroscopic equations (15) and (22).

rotating lA/B within the xz plane. Because of absence of the
rotational symmetry around the y direction, this mode gets a
finite energy at k = 0. Note, however, that at kz = π , the phase
difference between two neighboring layers will interchange
the picture of spin dynamics presented in Figs. 6(a) and 6(b).
At kz = π , the discussed branch (looking like the optic one)
touches zero, while the acousticlike magnon acquires the finite
frequency. This is the reason why we named this branch as the
“shifted acousticlike”; see Fig. 2.

The dynamics of the other two (true) opticlike branches
with finite energies along the whole spectrum are depicted
in Figs. 6(c) and 6(d). The opticlike branch 1 is similar to

the shifted acousticlike branch with mA/B alternating along
the y direction and lA/B rotating within the xz plane. The
decisive point here is that spins on A and B sublattices change
oppositely. Finally, the opticlike branch 2 is a gapped ana-
log of acousticlike branch: it has out-of-layer magnetization
densities and in-layer Néel vectors. However, spins on sites
A and B evolve oppositely, which makes this mode to be
opticlike.

In Appendix D, we evaluated the parameters of the Hamil-
tonian (1) using results obtained here for the four spin-wave
modes.

FIG. 6. Dynamics of the four spin wave excitations in terms of the macroscopic pairs: (a) (mθ , φ); (b) (mφ, θ ); (c) (δmy, δlz ); and (d)
(δmz, δly ) at k ≈ 0. Spin vectors, magnetization densities, and Néel vectors on the A and B sublattices are indicated by red and blue colors,
respectively. In the lower part of each subfigure, (1), (2), (3), and (4) illustrate the magnitudes and directions of mA/B and lA/B at t = 0, T

4 , T
2 ,

and 3T
4 , respectively; T is the period of the spin wave.
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V. SPIN DYNAMICS IN THE PRESENCE OF LATTICE
DEFORMATIONS

The successful description of the acousticlike magnon
excitations by the two different methods encourages us to
extend the scheme developed in Sec. II to a system with a
deformation of the lattice. Lattice deformations change the
equations of motion Eqs. (12) and (13) obtained in Sec. II.
The point is that deformations change distances between
spins that in turn modify exchange coupling constants J‖ and
J⊥ in Eq. (2). The changes of J‖ and J⊥ along δ1 and δ2

directions, denoted accordingly as δJδ1
‖ and δJδ2

⊥ , are con-

nected with the deformation as follows: δJδ1
‖ ∼ 1

a ( ∂J‖
∂a )δ1 ·

(δ1 · ∇u) and δJδ2
⊥ ∼ 1

c ( ∂J⊥
∂c )δ2 · (δ2 · ∇u). Here, a and c are

the dimensionless intra- and interlayer distances, and u is
the lattice displacement. As a result, for the in-plane ex-
change couplings describing an action on a spin located on
the A sublattice by those on the B sublattice, i.e., B → A, we
have

δJδ1,1

‖ ∼ g1εxx,

δJδ1,2

‖ ∼ g1

(
1

4
εxx + 3

4
εyy −

√
3

2
εxy

)
,

δJδ1,3

‖ ∼ g1

(
1

4
εxx + 3

4
εyy +

√
3

2
εxy

)
. (33)

Here, g1 ≡ 1
a ( ∂J‖

∂a ), and the strain tensor
εαβ ≡ 1

2 (∂αuβ + ∂βuα ) with α, β = x, y, z. For the interlayer
exchange couplings, this idea works similarly, and
finally, with the use of the standard parametrization, we
find that in the presence of a lattice deformation the
linearized equations for mθ , mφ , θ , and φ become [c.f.
Eqs. (20) and (21), the comprehensive derivation is shown in
Appendix C]

ṁθ ≈ (4S̃2)

(
− 3

8
J‖∇2

−φ + 9

8
J⊥∇2

+φ

)
,

φ̇ ≈
(

− 3

2
J̃‖ + 9J̃⊥

)
mθ ; (34)

and

ṁφ ≈ (4S̃2)

(
− 3

2
J̃‖θ − 9

8
J⊥∇2

+θ

)
,

θ̇ ≈
(

− 9J̃⊥ − 3

8
J‖∇2

− − 9

8
J⊥∇2

+

)
mφ. (35)

Here, exchange coefficients are modified by the strain tensor

J̃‖ ≡ J‖ + 1
2 g1(εxx + εyy) (36)

and

J̃⊥ ≡ J⊥ + 1
2 g2(εxx + εyy + 2εzz ) (37)

with g2 ≡ 1
c

∂J⊥
∂c to be the out-of-plane magnetoelastic coef-

ficient. The equations (34) and (35) are one of the main
results of this work. In Ref. [18] we used these equations for
description of scattering of the AFM magnons in the backward
direction.

VI. CONCLUDING REMARKS

In this paper, we studied the dynamics of spins in a layered
van der Waals crystal CoTiO3. This system is a 3D quantum
XY AFM, with the direction of magnetization alternating
between the neighboring layers. As is well known, the XY
AFMs are spin analogues of the superfluid Helium and su-
perconductors [17,19]. The angle of orientation of the Néel
vector is equivalent to the superfluid phase. Correspondingly,
the long-wavelength magnons are the Goldstone excitations in
an XY AFM. We have studied the spectrum of magnons using
corresponding pairs of the macroscopic quantities, which are
the magnetization and the Néel vector densities of various
kind. We demonstrate here that for the acousticlike excitations
(i.e., for the Goldstone mode), the accuracy of the scheme is
almost perfect. Besides, we have confirmed the XY type of
the intralayer spin exchange in this material by comparing our
macroscopic description of the all four spin-wave modes with
the experimental data.

In addition to the spectrum of magnons, we considered
the case when the crystal lattice of the magnetic substance
is deformed by an external strain. One may expect [18] that
the spin flow could be manipulated by applying a spatially
modulated strain. The description of the quantum AFM de-
veloped in this paper provides a simple ready-to-use scheme
for studying the spin superfluidity in such magnetic systems,
as well as the possibility to control the spin dynamics through
the lattice deformation.

We would like to emphasize that at the derivation of
the equations of motion for the spin-wave excitations, i.e.,
Eqs. (5)–(10), the route used in this paper is somewhat dif-
ferent from the one in the conventional approach (cf. Refs.
[13] and [14]). Conventionally, one starts from the spin
Hamiltonian, then constructs the path integral using the spin
coherent states and, finally, obtains the Lagrangian density,
which can be recognized as the nonlinear sigma model.
Eventually, the equations of motion are found by making
the variation of the action to be zero. In the present paper,
the order of operations was changed. We started with the
derivation of the equations of motion for the quantum spin
operators directly from the Hamiltonian. Then, these equa-
tions were treated in terms of the continuous variables with a
nonlinear constraint. By performing this step, we effectively
executed the transition to the language of the nonlinear sigma
model.
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APPENDIX A: DERIVATION OF EQUATIONS OF MOTION FOR m AND l WITHOUT DEFORMATION

In this Appendix, we show how to derive Eqs. (5)–(10) and (16)–(21) in the main text. Similar to what were discussed in the
main text, for the case when site i is on the B sublattice, Eqs. (3) and (4) are modified as follows: (i) A ↔ B; (ii) ∂

∂z → − ∂
∂z .

Finally, incorporating the gradient expansion terms in Eq. (2), one obtains the equations of motion for the spin components SA/B:
dSx

A/B

dt
≈ 3J‖Sz

A/BSy
B/A + 3J⊥

[
Sz

A/B

(
S̄y

B/A + 2S̄y
A/B

) − Sy
A/B

(
S̄z

B/A + 2S̄z
A/B

)] + 3

4
J‖Sz

A/B∇2
−Sy

B/A

+ 3J⊥

{
Sz

A/B

[
± ∂ S̄y

B/A

∂z
+ 1

4
∇2

+
(
S̄y

B/A + 2S̄y
A/B

)] − Sy
A

[
± ∂ S̄z

B/A

∂z
+ 1

4
∇2

+
(
S̄z

B/A + 2S̄z
A/B

)]}
, (A1)

dSy
A/B

dt
≈ −3J‖Sz

A/BSx
B/A + 3J⊥

[
Sx

A/B

(
S̄z

B/A + 2S̄z
A/B

) − Sz
A/B

(
S̄x

B/A + 2S̄x
A/B

)] − 3

4
J‖Sz

A/B∇2
−Sx

B/A

+ 3J⊥

{
Sx

A/B

[
± ∂ S̄z

B/A

∂z
+ 1

4
∇2

+
(
S̄z

B/A + 2S̄z
A/B

)] − Sz
A/B

[
± ∂ S̄x

B/A

∂z
+ 1

4
∇2

+
(
S̄x

B/A + 2S̄x
A/B

)]}
, (A2)

and
dSz

A/B

dt
≈ 3J‖

(
Sy

A/BSx
B/A − Sx

A/BSy
B/A

) + 3J⊥
[
Sy

A/B

(
S̄x

B/A + 2S̄x
A/B

) − Sx
A/B

(
S̄y

B/A + 2S̄y
A/B

)]
+ 3

4
J‖

(
Sy

A/B∇2
−Sx

B/A − Sx
A/B∇2

−Sy
B/A

) + 3J⊥

{
Sy

A/B

[
± ∂ S̄x

B/A

∂z
+ 1

4
∇2

+
(
S̄x

B/A + 2S̄x
A/B

)]

− Sx
A/B

[
± ∂ S̄y

B/A

∂z
+ 1

4
∇2

+
(
S̄y

B/A + 2S̄y
A/B

)]}
. (A3)

Here, we eventually dropped the site index i in the spin operators, assuming from now on that SA/B are space- and time-dependent
variables SA/B(r, t ). For the spatial derivatives, we have also introduced a short notation, ∇2

± ≡ ∇2 ± ∂2

∂z2 . The equations of
motion for S̄A/B could be obtained through the exchange SA/B ↔ S̄A/B in the above equations.

Next, we define the total magnetization mA/B ≡ SA/B + S̄A/B and the Néel vector lA/B ≡ SA/B − S̄A/B for the A/B sublattices,
see, e.g., Ref. [14]. Note that in a simple Néel antiferromagnet the vectors m and l are orthogonal, mA/B · lA/B = 0. In the
following part of this paper, mA/B and lA/B will be considered as classical variables rather than the quantum operators. The
resulting equations of motion for mA and lA are

dmx
A

dt
≈ 3

2
J‖

(
mz

Amy
B + lz

Aly
B

) + 3

2
J⊥

[(
mz

Amy
B − my

Amz
B

) − (
lz
Aly

B − ly
Alz

B

)] + 3

8
J‖

(
mz

A∇2
−my

B + lz
A∇2

−ly
B

)
+ 3

8
J⊥

{[
mz

A

(
∇2

+ + 4
∂

∂z

)
my

B − lz
A

(
∇2

+ + 4
∂

∂z

)
ly
B + 2mz

A∇2
+my

A − 2lz
A∇2

+ly
A

]
−

[
my

A

(
∇2

+ + 4
∂

∂z

)
mz

B

− ly
A

(
∇2

+ + 4
∂

∂z

)
lz
B + 2my

A∇2
+mz

A − 2ly
A∇2

+lz
A

]}
, (A4)

dmy
A

dt
≈ −3

2
J‖

(
mz

Amx
B + lz

Alx
B

) + 3

2
J⊥

[(
mx

Amz
B − mz

Amx
B

) − (
lx
Alz

B − lz
Alx

B

)] − 3

8
J‖

(
mz

A∇2
−mx

B + lz
A∇2

−lx
B

)
+ 3

8
J⊥

{[
mx

A

(
∇2

+ + 4
∂

∂z

)
mz

B − lx
A

(
∇2

+ + 4
∂

∂z

)
lz
B + 2mx

A∇2
+mz

A − 2lx
A∇2

+lz
A

]
−

[
mz

A

(
∇2

+ + 4
∂

∂z

)
mx

B

− lz
A

(
∇2

+ + 4
∂

∂z

)
lx
B + 2mz

A∇2
+mx

A − 2lz
A∇2

+lx
A

]}
, (A5)

dmz
A

dt
≈ 3

2
J‖

[(
my

Amx
B + ly

Alx
B

) − (
mx

Amy
B + lx

Aly
B

)] + 3

2
J⊥

[(
my

Amx
B − mx

Amy
B

) − (
ly
Alx

B − lx
Aly

B

)] + 3

8
J‖

[(
my

A∇2
−mx

B

+ ly
A∇2

−lx
B

) − (
mx

A∇2
−my

B + lx
A∇2

−ly
B

)] + 3

8
J⊥

{[
my

A

(
∇2

+ + 4
∂

∂z

)
mx

B − ly
A

(
∇2

+ + 4
∂

∂z

)
lx
B + 2my

A∇2
+mx

A

− 2ly
A∇2

+lx
A

]
−

[
mx

A

(
∇2

+ + 4
∂

∂z

)
my

B − lx
A

(
∇2

+ + 4
∂

∂z

)
ly
B + 2mx

A∇2
+my

A − 2lx
A∇2

+ly
A

]}
, (A6)

dlx
A

dt
≈ 3

2
J‖

(
mz

Aly
B + lz

Amy
B

) + 3

2
J⊥

[(
lz
Amy

B − ly
Amz

B

) + (
lz
Bmy

A − ly
Bmz

A

) + 4
(
lz
Amy

A − ly
Amz

A

)]
+ 3

8
J‖

(
mz

A∇2
−ly

B + lz
A∇2

−my
B

) + 3

8
J⊥

{[
lz
A

(
∇2

+ + 4
∂

∂z

)
my

B − mz
A

(
∇2

+ + 4
∂

∂z

)
ly
B + 2lz

A∇2
+my

A

− 2mz
A∇2

+ly
A

]
−

[
ly
A

(
∇2

+ + 4
∂

∂z

)
mz

B − my
A

(
∇2

+ + 4
∂

∂z

)
lz
B + 2ly

A∇2
+mz

A − 2my
A∇2

+lz
A

]}
, (A7)
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dly
A

dt
≈ −3

2
J‖

(
mz

Alx
B + lz

Amx
B

) + 3

2
J⊥

[(
lx
Amz

B − lz
Amx

B

) + (
lx
Bmz

A − lz
Bmx

A

) + 4
(
lx
Amz

A − lz
Amx

A

)]
− 3

8
J‖

(
mz

A∇2
−lx

B + lz
A∇2

−mx
B

) + 3

8
J⊥

{[
lx
A

(
∇2

+ + 4
∂

∂z

)
mz

B − mx
A

(
∇2

+ + 4
∂

∂z

)
lz
B + 2lx

A∇2
+mz

A

− 2mx
A∇2

+lz
A

]
−

[
lz
A

(
∇2

+ + 4
∂

∂z

)
mx

B − mz
A

(
∇2

+ + 4
∂

∂z

)
lx
B + 2lz

A∇2
+mx

A − 2mz
A∇2

+lx
A

]}
, (A8)

and

dlz
A

dt
≈ 3

2
J‖

[(
my

Alx
B + ly

Amx
B

) − (
mx

Aly
B + lx

Amy
B

)] + 3

2
J⊥

[(
ly
Amx

B − lx
Amy

B

) + (
ly
Bmx

A − lx
Bmy

A

) + 4
(
ly
Amx

A − lx
Amy

A

)]

+ 3

8
J‖

[(
my

A∇2
−lx

B + ly
A∇2

−mx
B

) − (
mx

A∇2
−ly

B + lx
A∇2

−my
B

)] + 3

8
J⊥

{[
ly
A

(
∇2

+ + 4
∂

∂z

)
mx

B − my
A

(
∇2

+ + 4
∂

∂z

)
lx
B

+ 2ly
A∇2

+mx
A − 2my

A∇2
+lx

A

]
−

[
lx
A

(
∇2

+ + 4
∂

∂z

)
my

B − mx
A

(
∇2

+ + 4
∂

∂z

)
ly
B + 2lx

A∇2
+my

A − 2mx
A∇2

+ly
A

]}
. (A9)

To get the equations of motion for mB and lB, one just needs to apply (i) A ↔ B and (ii) ∂
∂z → − ∂

∂z in Eqs. (A4)–(A9).
At this stage, one could argue that only the underlined terms in Eqs. (A4)–(A9) have to be kept when discussing the

linearized dynamics of this system. The reason is that in the equilibrium mA = mB = 0. Hence all terms quadratic in m
have to be ignored. Furthermore, the equilibrium positions of vectors lA and lB are limited to the xy plane, i.e., lz

A = lz
B = 0.

Therefore, all terms containing a product of lz and any component of m have to be ignored. Finally, terms containing derivatives
may coexist only with lx,y, but not with lz or components of m. All this limits the linearized dynamics to the underlined terms
only.

Next, one could notice that the equations of motion for vectors in the sublattices A and B differ only by the terms containing
± ∂

∂z . To derive the equations, which describe the two low-energy branches of magnons, we ignore the difference in the dynamics
of the A and B sublattices, and will proceed with the approximation when mA = mB = m and lA = lB = l . In result, Eqs. (5)–(10)
are obtained.

To derive the equations of motion for the two opticlike branches, we perturb the spins on A and B lattices oppositely
with respect to each other. With this in mind, we adopt the expansions mA/B = ±(δmxex + δmyey + δmzez ) and lA/B = 2S̃ex ±
(δlxex + δlyey + δlzez ), where 2S̃ex is the equilibrium Néel vector. Next, we substitute the expansions in δmx,y,x and δlx,y,x into
Eqs. (A4)–(A9), and keep there only the linear terms. We again neglected ± ∂

∂z -terms in Eqs. (A4)–(A9) and, eventually, arrive
to Eqs. (16)–(21).

APPENDIX B: EQUATIONS FOR E, a, AND χa,b1,b2

Here the procedure is rather straightforward. We substitute the ansatz Eq. (30) into the eigenvalue equation H+ψ̃1 = E σ̃3ψ̃1,
expand χa, χb1 , and χb2 around 0, and take the real parts of the equation. As a result, we get

a
{[

Im(Bk ) + Re(Bk )
(
χb1 − χa

)] − Ckχa + [
Im(G+

k ) + Re(G+
k )

(
χb2 − χa

)]}
+ 1

8a

{[
Im(Bk ) + Re(Bk )

(
χb1 − χa

)] + Ckχa − [
Im(G+

k ) + Re(G+
k )

(
χb2 − χa

)]} ≈ 0,

a
{[

Im(Bk ) + Re(Bk )χb2

] + Ckχa + [
Im(G+

k ) + Re(G+
k )χb1

]}
+ 1

8a

{−[
Im(Bk ) + Re(Bk )χb2

] + Ckχa + [
Im(G+

k ) + Re(G+
k )χb1

]} ≈ 0,

a
{−[

Im(Bk ) + Re(Bk )
(
χb1 − χa

)] + Ck
(
χb2 − χb1

) − [
Im(G+

k ) + Re(G+
k )χb1

]}
+ 1

8a

{−[
Im(Bk ) + Re(Bk )

(
χb1 − χa

)] − Ck
(
χb2 − χb1

) + [
Im(G+

k ) + Re(G+
k )χb1

]} ≈ 0,

a
{−[

Im(Bk ) + Re(Bk )χb2

] − Ck
(
χb2 − χb1

) − [
Im(G+

k ) + Re(G+
k )

(
χb2 − χa

)]}
+ 1

8a

{[
Im(Bk ) + Re(Bk )χb2

] − Ck
(
χb2 − χb1

) − [
Im(G+

k ) + Re(G+
k )

(
χb2 − χa

)]} ≈ 0. (B1)
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As for the imaginary parts, we find

a[Ak + Re(Bk ) + Ck + Re(G+
k )] + 1

8a
[Ak + Re(Bk ) − Ck − Re(G+

k )] ≈ E

(
a + 1

8a

)
,

a[Ak + Re(Bk ) + Ck + Re(G+
k )] − 1

8a
[Ak + Re(Bk ) − Ck − Re(G+

k )] ≈ E

(
− a + 1

8a

)
. (B2)

Finally, by solving Eqs. (B1) and (B2), we obtain the solution Eqs. (31) and (32).

APPENDIX C: DERIVATION OF EQUATIONS OF MOTION FOR m AND l IN THE PRESENCE OF DEFORMATION

In this Appendix, we derive Eqs. (34) and (35). Following the discussion in Sec. V and considering the change in the exchange
coupling constants according to Eq. (33), the deformed term

∑
δ1

(δJδ1
‖ )Sz

i Sy
i+δ1

in Eq. (2) becomes

∑
δ1

(δJδ1
‖ )Sz

i Sy
i+δ1

= Sz
iASy

iB

∑
δ1

(δJδ1
‖ ) + Sz

iA

[
δJδ1,1

‖
∂Sy

iB

∂x
+ δJδ1,2

‖

(
− 1

2

∂Sy
iB

∂x
+

√
3

2

∂Sy
iB

∂y

)

+ δJδ1,3

‖

(
− 1

2

∂Sy
iB

∂x
−

√
3

2

∂Sy
iB

∂y

)]
+ · · ·

≈ 3

2
g1(εxx + εyy)Sz

iASy
iB + 3

4
g1Sz

iA(d · ∇)Sy
iB. (C1)

Here, it was assumed that site i was located on the A sublattice. The vector d = (εxx − εyy,−2εxy, 0) describes the vector-type
coupling of the deformed honeycomb lattice with the spin-wave excitations. For the case A → B the following changes should
be made: (i) A ↔ B; (ii) d → −d.

The out-of-plane exchange interactions could be considered similarly to the in-plane ones. Like g1, there is a new coefficient
g2 ≡ 1

c
∂J⊥
∂c , which describes the sensitivity to the inter-plane deformation. In addition, there appears a new vector e describing

the vector coupling of the out-of-plane deformations with the spin waves. In terms of the strain tensor, components of e could be
found as follows: e = ( − (εxx − εyy) + 4εxz, 2εxy + 4εyz, 2(εxx + εyy + 2εzz )). Finally, we obtain a system of equations describ-
ing the spin dynamics in the presence of the lattice deformations:

dSx
A/B

dt
≈ (· · · ) + 3

2
g1(εxx + εyy)Sz

A/BSy
B/A + 3

2
g2(εxx + εyy + 2εzz )

[(
Sz

A/BS̄y
B/A + 2Sz

A/BS̄y
A/B

) − (
Sy

A/BS̄z
B/A

+ 2Sy
A/BS̄z

A/B

)] + 3

4
g1Sz

A/B(±d · ∇)Sy
B/A + 3

4
g2

[
Sz

A/B(±e · ∇)S̄y
B/A − Sy

A/B(±e · ∇)S̄z
B/A

]
, (C2)

dSy
A/B

dt
≈ (· · · ) − 3

2
g1(εxx + εyy)Sz

A/BSx
B/A + 3

2
g2(εxx + εyy + 2εzz )

[(
Sx

A/BS̄z
B/A + 2Sx

A/BS̄z
A/B

) − (
Sz

A/BS̄x
B/A

+ 2Sz
A/BS̄x

A/B

)] − 3

4
g1Sz

A/B(±d · ∇)Sx
B/A + 3

4
g2

[
Sx

A/B(±e · ∇)S̄z
B/A − Sz

A/B(±e · ∇)S̄x
B/A

]
, (C3)

and
dSz

A/B

dt
≈ (· · · ) + 3

2
g1(εxx + εyy)

(
Sy

A/BSx
B/A − Sx

A/BSy
B/A

) + 3

2
g2(εxx + εyy + 2εzz )

[(
Sy

A/BS̄x
B/A + 2Sy

A/BS̄x
A/B

)
− (

Sx
A/BS̄y

B/A + 2Sx
A/BS̄y

A/B

)] + 3

4
g1

[
Sy

A/B(±d · ∇)Sx
B/A − Sx

A/B(±d · ∇)Sy
B/A

]
+ 3

4
g2

[
Sy

A/B(±e · ∇)S̄x
B/A − Sx

A/B(±e · ∇)S̄y
B/A

]
. (C4)

Here, (· · · ) represents all the terms on the right hand side of Eqs. (A1), (A2), and (A3) without considering the deformation in
the system. Again, the equations of motion for S̄A/B could be obtained through the exchange SA/B ↔ S̄A/B in Eqs. (C2)–(C4).

In terms of the macroscopic quantities mA/B and lA/B, the equations describing the spin dynamics are

dmx
A

dt
≈ (· · · ) + 3

4
g1(εxx + εyy)

(
mz

Amy
B + lz

Aly
B

) + 3

4
g2(εxx + εyy + 2εzz )

[(
mz

Amy
B − my

Amz
B

) − (
lz
Aly

B − ly
Alz

B

)]
+ 3

8
g1

[
mz

A(d · ∇)my
B + lz

A(d · ∇)ly
B

] + 3

8
g2

{[
mz

A(e · ∇)my
B − my

A(e · ∇)mz
B

] − [
lz
A(e · ∇)ly

B − ly
A(e · ∇)lz

B

]}
, (C5)

dmy
A

dt
≈ (· · · ) − 3

4
g1(εxx + εyy)

(
mz

Amx
B + lz

Alx
B

) + 3

4
g2(εxx + εyy + 2εzz )

[(
mx

Amz
B − mz

Amx
B

) − (
lx
Alz

B − lz
Alx

B

)]
− 3

8
g1

[
mz

A(d · ∇)mx
B + lz

A(d · ∇)lx
B

] + 3

8
g2

{[
mx

A(e · ∇)mz
B − mz

A(e · ∇)mx
B

] − [
lx
A(e · ∇)lz

B − lz
A(e · ∇)lx

B

]}
, (C6)
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dmz
A

dt
≈ (· · · ) + 3

4
g1(εxx + εyy)

[(
my

Amx
B − mx

Amy
B

) + (
ly
Alx

B − lx
Aly

B

)] + 3

4
g2(εxx + εyy + 2εzz )

[(
my

Amx
B − mx

Amy
B

)
− (

ly
Alx

B − lx
Aly

B

)] + 3

8
g1

{[
my

A(d · ∇)mx
B − mx

A(d · ∇)my
B

] + [
ly
A(d · ∇)lx

B − lx
A(d · ∇)ly

B

]}
+ 3

8
g2

{[
my

A(e · ∇)mx
B − mx

A(e · ∇)my
B

] − [
ly
A(e · ∇)lx

B − lx
A(e · ∇)ly

B

]}
, (C7)

dlx
A

dt
≈ (· · · ) + 3

4
g1(εxx + εyy)

(
mz

Aly
B + lz

Amy
B

) + 3

4
g2(εxx + εyy + 2εzz )

[(
lz
Amy

B − ly
Amz

B

) − (
mz

Aly
B − my

Alz
B

)
+ 4

(
lz
Amy

A − mz
Aly

A

)] + 3

8
g1

[
mz

A(d · ∇)ly
B + lz

A(d · ∇)my
B

] + 3

8
g2

{[
lz
A(e · ∇)my

B − ly
A(e · ∇)mz

B

]
− [

mz
A(e · ∇)ly

B − my
A(e · ∇)lz

B

]}
, (C8)

dly
A

dt
≈ (· · · ) − 3

4
g1(εxx + εyy)

(
mz

Alx
B + lz

Amx
B

) + 3

4
g2(εxx + εyy + 2εzz )

[(
lx
Amz

B − lz
Amx

B

) − (
mx

Alz
B − mz

Alx
B

)
+ 4

(
lx
Amz

A − mx
Alz

A

)] − 3

8
g1

[
mz

A(d · ∇)lx
B + lz

A(d · ∇)mx
B

] + 3

8
g2

{[
lx
A(e · ∇)mz

B − lz
A(e · ∇)mx

B

]
− [

mx
A(e · ∇)lz

B − mz
A(e · ∇)lx

B

]}
, (C9)

and

dlz
A

dt
≈ (· · · ) + 3

4
g1(εxx + εyy)

[(
my

Alx
B − mx

Aly
B

) + (
ly
Amx

B − lx
Amy

B

)] + 3

4
g2(εxx + εyy + 2εzz )

[(
ly
Amx

B − lx
Amy

B

)
−(

my
Alx

B − mx
Aly

B

) + 4
(
ly
Amx

A − my
Alx

A

)] + 3

8
g1

{[
my

A(d · ∇)lx
B − mx

A(d · ∇)ly
B

] + [
ly
A(d · ∇)mx

B

−lx
A(d · ∇)my

B

]} + 3

8
g2

{[
my

A(e · ∇)mx
B − mx

A(e · ∇)my
B

] − [
my

A(e · ∇)lx
B − mx

A(e · ∇)ly
B

]}
. (C10)

Again, (· · · ) is the short notation, which represents all the terms on the right hand side of the unperturbed Eqs. (A4)–(A9). To
obtain the equations of motion for mB and lB, one just needs to apply (i) A ↔ B, (ii) ∂

∂z → − ∂
∂z , (iii) d → −d, and (iv) e → −e

to Eqs. (C5)–(C10).
For linearized dynamics, we may keep in the above equations the underlined terms only. Next, we drop all the terms containing

± ∂
∂z , d, and e. As we have argued previously, under this approximation, the equations for A and B sublattices coincide, and

we will assume that mA = mB = m and lA = lB = l . Finally, by applying the standard parametrization, we find the linearized
equations for mθ , mφ , θ , and φ in the presence of a lattice deformation, i.e., Eqs. (34) and (35) written in the main text.

APPENDIX D: THE XY MODEL VERSUS THE XXZ MODEL

In this Appendix, we justify the Hamiltonian (1), i.e., the XY -type intralayer exchange coupling of this model, by exploiting
our macroscopic description and comparing it with the experimental data extracted from Ref. [8]. To do it, we first consider a
general spin Hamiltonian of the type XXZ , i.e.,

H =
∑
i,δ1

J‖
(
Sx

i Sx
i+δ1

+ Sy
i Sy

i+δ1
+ αSz

i Sz
i+δ1

) +
∑
i,δ2

J⊥
(
Sx

i S̄x
i+δ2

+ Sy
i S̄y

i+δ2
+ βSz

i S̄z
i+δ2

) + {Sx/y/z ↔ S̄x/y/z} (D1)

where α and β characterize the anisotropy in the intra- and interlayer couplings, respectively. Note that, α = 0 and β = 1 leads
to the XY model we used in this paper. By following the same steps of deriving the equations of motion for the macroscopic
variables as in Appendix A, we get

ṁθ ≈ (4S̃2)

(
− 3

8
J‖∇2

− + 9

8
J⊥∇2

+

)
φ,

φ̇ ≈
(

− 3(1 − α)

2
J‖ + 9(1 + β )

2
J⊥

)
mθ ; (D2)

and

ṁφ ≈ (4S̃2)

(
− 3(1 − α)

2
J‖ + 9(1 − β )

2
J⊥ + 3α

8
J‖∇2

− − 9β

8
J⊥∇2

+

)
θ,

θ̇ ≈
(

− 9J⊥ − 3

8
J‖∇2

− − 9

8
J⊥∇2

+

)
mφ. (D3)
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for the two lowest spin-wave branches. As for the pairs (δmy, δlz ) and (δmz, δly), which describe other two opticlike branches,
we find:

dδmy

dt
≈ (2S̃)

(
− 3(1 + α)

2
J‖ + 3(3 − β )

2
J⊥ − 3α

8
J‖∇2

− − 3β

8
J⊥∇2

+

)
δlz,

dδlz

dt
≈ (2S̃)

(
3J‖ − 6J⊥ + 3

8
J‖∇2

− − 3

8
J⊥∇2

+

)
δmy; (D4)

and
dδmz

dt
≈ (2S̃)

(
3J‖ − 3J⊥ + 3

8
J‖∇2

− + 3

8
J⊥∇2

+

)
δly,

dδly

dt
≈ (2S̃)

(
− 3(1 + α)

2
J‖ + 3(3 + β )

2
J⊥ − 3α

8
J‖∇2

− + 3β

8
J⊥∇2

+

)
δmz, (D5)

As a result, using Eqs. (D2)–(D5), we obtain

vax ≡ ∂ωa

∂|kx|
∣∣∣∣
k→0

=
(

3S̃

2

)√
(−(1 − α)J‖ + 3(1 + β )J⊥)(−J‖ + 3J⊥),

vaz ≡ ∂ωa

∂|kz|
∣∣∣∣
k→0

=
(

3
√

6S̃

2

)√
(−(1 − α)J‖ + 3(1 + β )J⊥)J⊥,

ωsh(k → 0) = (3
√

6S̃)
√

(−(1 − α)J‖ + 3(1 − β )J⊥)J⊥,

ωo1(k → 0) = (3
√

2S̃)
√

(−(1 + α)J‖ + (3 − β )J⊥)(−J‖ + 2J⊥),

ωo2(k → 0) = (3
√

2S̃)
√

(−(1 + α)J‖ + (3 + β )J⊥)(−J‖ + J⊥). (D6)

We take the effective spin S̃ = 1/2 in Eq. (D6) and adjust the parameters J‖, J⊥, α, and β to fit the measurement in
Ref. [8]. From Figs. 3(a) and 3(e) in Ref. [8], we estimate (ωo1(k → 0) + ωo2(k → 0))/2 ≈ 11.9 meV, vax ≈ 5.1 meV,
ωsh(k → 0) ≈ 5.8 meV, and vaz ≈ 3.9 meV (here, the units of spin-wave velocity are indicated in meV, because we use for
momenta dimensionless units). By fitting these data using Eq. (D6), an optimal set of the extracted parameters is found to be
J‖ ≈ −4.27 meV, J⊥ ≈ 0.59 meV, α ≈ 0.02, and β ≈ 0.97, which is very close to the best fitting parameters suggested in Ref.
[8]. This confirms the legitimacy of the XY Hamiltonian of the described system.
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