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Distinct signatures of particle-hole symmetry breaking in transport coefficients
for generic multi-Weyl semimetals
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We propose and study generic multi-Weyl semimetal (mWSM) lattice Hamiltonians that break particle-hole
symmetry. These models fall into two categories: model I (model II) where the gap and tilt terms are coupled
(decoupled) can host type-I and type-II Weyl nodes simultaneously (separately) in a hybrid phase (type-I and
type-II phases, respectively). We concentrate on the question of how anisotropy and nonlinearity in the disper-
sions, gaps and tilt terms influence diffusive second-order transport quantities, namely, the circular photogalvanic
effect (CPGE) and the Berry curvature dipole (BCD) as well as first-order Magnus Hall effect (MHE) in the
ballistic limit. The signatures of topological charges are clearly imprinted in the quantized CPGE response for
the hybrid mWSM phase in model 1. Such a quantization is also found in the type-I WSM phase for model 1I,
however, the frequency profiles of the CPGE in these two cases is distinctively different owing to their different
band dispersion irrespective of the identical topological properties. The contributions from the vicinity of Weyl
nodes and away from the WNs are clearly manifested in the BCD response, respectively, for models I and II.
The Fermi surface properties for the activated momentum lead to a few hallmark features on the MHE for both
models. Furthermore, we identify distinguishing signatures of the above responses for type-I, type-II, and hybrid

phases to provide an experimentally viable probe to differentiate these WSMs phases.

DOLI: 10.1103/PhysRevB.105.214307

I. INTRODUCTION

Recent years have witnessed a surge of studies of topolog-
ical systems such as, topological insulator [1] and topological
superconductor [2], as they exhibit exotic gapless edge states
while the bulk remains gapped. In addition, gapless bulk
modes are noticed for Weyl semimetals (WSMs) [3-6], Dirac
semimetals, and nodal line semimetals [7] hosting topologi-
cally protected surface states. Interestingly, either by breaking
time reversal symmetry (TRS) or inversion symmetry (IS),
each twofold degenerate Dirac cone in Dirac semimetals is
split into two isolated gap closing points known as, Weyl
nodes (WN5s) of opposite chiralities [8]. In particular, one can
find at least two WNs of opposite chirality when the system
breaks TRS while this minimum number becomes four if
the system breaks IS only. These WNs, protected by some
crystalline symmetries, carry a topological charge n (quanti-
fied by the absolute value of the Chern number |C|) that is a
quantized Berry flux through the Fermi surface enclosing it in
the Brillouin zone (BZ) [6]. The WSMs can be further classi-
fied into type-I and type-II WSMs: pointlike (non pointlike)
Fermi surface at the WNs refers to type-1 (type-1I) WSMs
[9-11] (however, note that one can define additional classes
[12,13]). The large tilting in the conical spectrum of the Weyl
cone results in a Lifshitz transition from a type-I to a type-II
class WSM where Lorentz invariance is no longer satisfied. In
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experiments, several inversion asymmetric compounds, such
as TaAs (for the type-1 WSM) and MoTe,, WTe, (for the
type-1I WSMs) have been synthesized [14—18].

Surprisingly, in contrast to the conventional WSMs with
n = 1, it has recently been shown, using first principles calcu-
lations, that n can be generically greater than unity [19-22].
These are referred to as the multi WSMs (mWSMs) where
the quasiparticle dispersion becomes anisotropic and nonlin-
ear similar to the dispersion in multilayer stacked graphene
[23,24]. For example, HgCr,Se4 and SrSi, are candidate ma-
terials for double WSM with n = 2 [20] while Rb(MoTe);
might be a triple WSM with n = 3 [25]. However, the experi-
mental discovery of mWSMs is yet to be made. Remarkably,
another class of WSM is given by the case where one WN
belongs to the type-I, while its chiral partner belongs to the
type-II class. This kind of hybrid WSM, consisting of mixed
types of WNs, has been theoretically predicted for single
WSM [10,11,26]. In order to obtain the above phase, one
requires to break particle-hole (PH) symmetry for the indi-
vidual WNs. To the best of our knowledge, it remains an open
question how to formulate a mWSM lattice model that hosts
the above introduced hybrid mWSM phase in the presence of
a PH symmetry breaking term.

In the field of transport phenomena in topological systems,
WSMs have also emerged as a fertile ground for theoretical
[27,28] as well as experimental [29-31] research. The Fermi
arc surface states, connecting the two WNs with opposite chi-
ralities, are responsible for the topological transport properties
[4]. To name a few, negative magnetoresistance related to
the chiral anomaly, and the quantum anomalous Hall effect
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[19,32-34] are identified. In addition to electronic transport
phenomena, there exist a plethora of studies on the thermal
transport properties [27,30,31,35-38]. Furthermore, the elec-
tronic and thermal transport properties of type-II WSMs can
be significantly different compared to type-1 WSMs [39-46].
On the other hand, the anisotropic nature of nonlinear dis-
persion can further alter the transport properties as observed
for mWSMs [37,47-52]. The realm of diffusive transport
phenomena is further enriched by the following second-order
responses apart from the above mentioned first-order trans-
port coefficients. The circular photogalvanic effect (CPGE)
[53-60] and Berry curvature dipole (BCD) [61-68] mediated
optical and electronic effects, respectively, emerge due to
their unique response characteristics. To add even more, the
concept of third order response was introduced very recently
[69,70]. Interestingly, some of these nonlinear effects are
found to survive even when the TRS is not broken explicitly
unlike the first-order responses. Another first-order transport
mechanism in the presence of built-in electric field, namely
the Magnus Hall effect (MHE), falls into the same category
[52,71-73] where the electron transport is attributed to the
Magnus velocity in absence of magnetic field. Note that MHE
is a ballistic transport phenomena.

Here, we aim at addressing the distinct signatures of the
second-order optical (i.e., CPGE) and electrical (i.e., BCD)
transport properties as well as of the first-order (i.e., MHE)
responses in mWSM concentrating on how the anisotropy,
nonlinearity and tilt of the dispersion affect these signatures
compared to the single WSM cases. The topological charge is
clearly imprinted on the magnetotransport behavior [37,50].
One can distinguish TRS broken single WSMs from the
TRS invariant counterpart by investing the CPGE [58,59].
Therefore it is worth studying the transport properties in TRS
broken mWSM including a PH symmetry breaking tilt term
which to the best of our knowledge remains an open question.
To be more concrete, we answer the following questions:
can we distinguish the CPGE responses in the hybrid phase
from that in the type-I and type-II phases of mWSMs under
suitably breaking the PH symmetry? How do the changes in
Fermi surface characteristics, influenced by such PH symme-
try breaking terms, manifest in BCD and MHE responses?

In this work, we propose a generic mWSM lattice
Hamiltonian, dubbed model I, where the hybrid phase in
addition to the type-I and type-II phases can be realized
by appropriately tuning the PH symmetry breaking tilt term
[Egs. (2), (4), and (6)]. We further investigate another model,
referred to as model II, where the tilt and the gap terms are
decoupled [Eq. (7)] resulting in the nondegenerate WNs. This
allows us to compare different transport properties between
these two models. We show that the CPGE is found to be
quantized, being proportional to the topological charge, in the
hybrid (type-I) phase for model I (model II) (see Figs. 4 and
5). The choice of gap and tilt terms in both of the models
allows us to explore the rich frequency profile of the CPGE
as the effects of these terms are encapsulated in the Fermi
distribution function as well as the optically activated momen-
tum surfaces. Turning our attention to another second-order
response, namely, BCD, we find that the mirror symmetry re-
stricted diagonal components obtain significant contributions
from the vicinity of WNs and away from the WNs for models

T and II, respectively (see Figs. 6 and 7). These responses grow
with increasing topological charge as the corresponding Fermi
surface contribution enhances. We find that the Magnus Hall
conductivity (MHC), connected to the MHE, also noticeably
changes between models I and II, depending on the nature of
the tilt and gap term, as the the distribution of ballistically
activated momentum modes and the associated Fermi surface
profiles are modified (see Figs. 8 and 9). We also thoroughly
distinguish the type-II response from that for type-I to pro-
vide guidance to experiments on how to distinguish these
phases.

The paper is organized as follows. In Sec. II, we describe
the generic models for tilted mWSM, namely, models I and
II. Next in Sec. III, we discuss the formalism to compute
the second-order response CPGE along with our findings.
We then illustrate the BCD induced second-order response
properties for our models in Sec. IV. After that, we analyze
the MHC in Sec. V. We compare our results with the existing
literature in Sec. VI. We extend the discussion on material and
experimental connections in Secs. VII and VIII, respectively.
Finally, in Sec. IX, we conclude with possible future direction.

II. LATTICE HAMILTONIAN FOR MWSM

A. Model I: hybrid mWSM

We start with a two-band tight-binding model on a cubic
lattice. The general form of the Hamiltonian in momentum
space can be written as follows:

HE)=Ni -0 1)

with N = [N, N,, N;] and pseudospin o = [0y, 0y, 0;]. We
consider TRS breaking TH (k)T ' # H(—k) with T =K
such that the lattice model hosts two degenerate WNs. Here,
K denotes the complex conjugation operation. In order to
break the degeneracy, one needs to incorporate Nyoy in H(k):
H(k) = H(k) 4+ Nyop. Our aim is to add an appropriate Ny
such that the IS, generated by P = o, and antiunitary PH
symmetry, generated by A = ¢, /C, are broken: PH (k)P #
H(—k) and AH (k)A~' # —H(—k). These symmetry break-
ings will determine the nature of the phases in WSMs [26].
For a certain phase, two WNs can show different tilt config-
uration i.e., left WN can be of type-I while right WN can be
of type-1I. Below we explicitly demonstrate the lattice models
for single, double and triple WSMs where different phases can
be found.

For the single-WSM with topological charge n = |C| = 1
described by Hamiltonian H,—;, N is chosen as

No = 2t; cos(¢p) — kz) + 21, cos(¢p — Zkz),
N, =tsink,, N, =tsink,, and
N, =t.cosk, —m; +1)(2 — cosk, — cosky). 2)

Note that Ny includes a first and second nearest neighbor pseu-
dospin independent hopping along the z direction denoted by
t) exp(—i¢;) and 1, exp(—i¢), respectively [26]. We include
a phase difference between these complex hopping terms,
allowing us to modulate the energies as well as tilt of the WNs.
Importantly, position and chirality of the WNs, determined by
the Ny, . terms, remain unaltered irrespective of the choice of
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FIG. 1. The dispersions of single WSM, following Eq. (2), are
shown for #; = 0.25 (a), 1.5 (b), and 3.0 (c). (a) The WNs at neg-
ative and positive energies are both of type-I referring to the type-I
phase. (b) The negative (positive) energy WN is of type-I (type-II)
corresponding to the hybrid phase. (c) The WNs at negative and
positive energies both are of type-II suggesting to the type-II phase.
We consider t, = 0.25, (¢1, ¢») = (7w /4, w/2) and k, = k, = 0. The
dispersions for the double and triple WSM look the same as these
dispersion do not change along k, with increasing topological charge
given the above set of parameters (not shown). The WN at k, = /2
with positive energy is more tilted as compared to its counterpart at
k, = —m/2fort;, # 0.

Ny. In this model, the WNs are located at k = (0, 0, sky) with

1% )
cos(skg) = —| — +cosk, +cosk, — 2 3)
L\
and s = £. One can expand the above Hamiltonian around
k, = sko with m, =0, t =ty =¢t, =1 to obtain the low-
energy Weyl Hamiltonian: H,—_;  ~ 2k, (t; sin(¢; — sko) +
2ty sin(¢p — 2sko))og + t(ock, + oyky) + st.ok, sinky.  Im-
portantly, from the low-energy model H,—; 1, one directly
finds C = F1. The quantity n = |2(¢ sin(¢; — sko) +
2t, sin(¢y — 25ko))/(st, sin ko )|, representing the tilt strength,
determines whether the single WSM resides in the type-I or
type-1I phase; n < 1 (n > 1) corresponds to type-I (type-II)
single WSM when both the WNs for s = + with C = F1
exhibit similar tilt profiles. Interestingly, the hybrid phase
arises when the WN for s = — with C = 41 behave distinctly
from the WN for s = + with C = —1. To be precise, the
WN at k, = —m /2 is of type-I (type-II) while the right WN
at k, = +m /2 belongs to type-II (type-I). This is clearly
illustrated in Fig. 1. One can thus obtain type-I, type-II and
hybrid phases by appropriately tuning the parameters #; » and
@12

Now turning towards the double WSM with topological
charge n = |C| = 2 described by Hamiltonian H,—,, Ny ac-
quires the following form [74]:

No = 2t cos(¢p) — k;) + 2t cos(¢pr — 2k;),
N, =t(cosk, — cosk,), Ny =tsink,sink,, and
N, = t;cosk; — m; + (6 + cos 2k, + cos 2k,
— 4cosk, —4cosky). C))
The lattice model of double WSM contains two WNs at k =
(0, 0, sky), similar to the single WSM, with

1
cos(skg) = t—ol:% — (6 + cos 2k, + cos 2k,
z 0

—4cosk, —4cos ky)]. (®)]

One can similarly expand the above Hamiltonian around
k, =sko and m, =0, t =ty =1, =1 as stated for the
single WSM. In this case, the low-energy Hamiltonian
for double-WSM with a given s can be written as H,—, ; &
2k (11 sin(¢h — sko) + 2t sin(¢ — 2sko))oo + 5 (0 (k2 — k_%) +
oyk.ky)) + st sin koo k,. Similarly, for a triple-WSM with
topological charge n = |C| =3 described by Hamiltonian
H,_3, the N is given by [74]

No = 2t cos(¢p) — k;) + 2t cos(¢pr — 2k;),

N, = tsink,(1 — cosk, — 3(1 — cosk,)),

N, = —tsink,(1 — cosk, — 3(1 — cosk,)), and

N, = t;cosk; — m; + to(6 + cos 2k, + cos 2k,
—4cosk, —4cosky). (6)

The low-energy triple-WSM  Hamiltonian is given
by  H,—3, ~ 2k (t; sin(¢p; — sko) + 2t sin(¢p — 2sko))oo +
%(Ux(k/:: — 3kxk3) — Uy(ks — Skfky)) + st, sinkyo,k,. Combi-
ning single, double and triple WSMs, the general
form of the low-energy Hamiltonian for a topological
charge n is given by H, x = 2k (t; sin(¢; — sko) +
2t sin(¢y — 2sko))oo + ak’ oy +ak” o_ + st k; sin koo, with
k+ = k. £ ik, and o1+ = (ox £ ioy)/2. We note that the type-I,
type-1II, and hybrid phases are observed for double and triple
WSMs similar to the single WSM.

It is also noted that single and triple WSMs without the
term Nyop preserve the inversion and antiunitary PH sym-
metry. The identity term can cause the WNs for k, = sky =
s /2 to appear at different WN energies E; = 2st; sin ¢, —
2t; cos ¢,. The chirality, associated with the WN at k, = /2
(k, = —m/2),is C = —1, and —3 (C = +1, and +3), respec-
tively, for single and triple WSM while for double WSM,
the WN at k, = 7 /2 (k, = —m /2), corresponds to C = +2
(C = —2). For sake of simplicity, we below demonstrate the
effect of Ny for the single WSM in more details. This dis-
cussion can be carried over to mWSMs upon appropriately
incorporating the chiralities of individual WNs. Note that for
t12 > 0, the WN at k; = /2 (k, = —m/2) has tilt strength
n =4t + V2t (n = |4t — V2t1]). As a result, the WN with
positive energy at k, = /2 is more tilted as compared to
the other WN with negative energy at k;, = —m /2. This is
clear from the structure of 7 that remains unaltered for single,
double, and triple WSMs.

Interestingly, for the choice of the following parameter
¢ =m, ¢ =m /2, the WNs become degenerate and this
degeneracy is not protected by any symmetry in the general
situation. With the above set of parameters, one can evalu-
ate 1 = |2(¢; sin(¢y — sko) + 2t, sin(¢ — 2skq))/(st; sinky)|
to determine the type-I and/or type-II nature of WN associ-
ated with the chirality C = £1. Considering #, » > 0, both the
WNs at k, = £ /2 are of type-li.e., n < 1 forC = F1, when
ty < —0.5t; 4+ 0.5. The type-II phase, i.e., n > 1 for both the
WNs with C = F1 at k, = £7/2 is separated by the phase
boundaries #, > 0.5¢; + 0.5 and t, < —0.5 + 0.5¢;. On the
other hand, the hybrid phase is bounded by: , < 0.5¢; 4+ 0.5,
t, > —0.5+ 0.5ty and t, > —0.5¢#; + 0.5 within which WN at
k, = —m/2 (k, = /2) is of type-l i.e., n < 1 with C = +1
(type-1L, i.e., n > 1 with C = —1) [26]. The topological phase
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type-11
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FIG. 2. The topological phase diagram of model I, considering
the single WSM Eq. (2). The red, blue and black line correspond to
the following equations r, = 0.5 — 0.5¢,1, = —0.5 4+ 0.5¢;,and 1, =
0.5 + 0.5, respectively. We consider (¢;, ¢») = (i, w /2). Note that
this phase diagram remains unaltered for the double and triple WSMs
cases.

diagram, including type-I, type-II, and hybrid WSM phases,
is shown in Fig. 2.

For a given set of parameters (¢, t;), the WNs continue
to appear at the same energy as long as ¢; = mm with m =
0,1, 2, ..., irrespective of the value of ¢,. On the other
hand, for ¢, = 2m + 1) /2, ¢ # mm, two WNs are always
separated in energy. The maximum energy separation between
two WNs appear when ¢y = (2m + 1) /2 and ¢, = mmwr. We
consider (¢, ¢,) = (7 /4, w/2) to tune the WNs to different
energies. We use the following set of parameters for the model
Lt=t,=1,m=0,1=025 ¢ =n/4, and ¢, =7/2
thorough out our paper. The type-I phase, irrespective of the
topological charge n = |C|, is found for #; < 0.71, hybrid
phase for 0.71 < #; < 2.12, and type-II phase for #; > 2.12
as shown in Fig. 1. In this case, the WNs with chirality
C = £1, £3 appear at energies Ex = F+/2t; at momentum
k, = Fm /2 for single and triple WSMs. For double WSM,
WNs of chirality C = 42 appear at energies Ey = £+/21
at momentum k, = £ /2. One can thus easily understand
that the hybrid phase in single and triple WSMs hosts type-I
(type-1II) WN at k, = —m /2 (k, = w/2) with C = +1 and 43
(C = —1 and —3), respectively. On the other hand, in the
hybrid phase of double WSM, WN atk, = 7 /2 (k, = —7/2)
is of type-1, i.e., n < 1 with C = 42 (type-1I, i.e., n > 1 with
C=-2).

B. Model II: conventional mWSM

Having described the hybrid phase in model I, we here
consider another form of Ny so that gap and tilt terms are
decoupled calling this model II:

No = t1 cosk, 4+ 1, sink,. @)

Here the gap is given by the hopping #, that causes the non-
degenerate WNs. The tilt is controlled by #; only. The single,
double, and triple WSM lattice Hamiltonians for model II are
same as given in Egs. (2), (4), and (6) with Ny = #; cosk, +
tysink,. We note that the IS and PH symmetry are both
broken by the above term. The type-I (type-II) phase is ob-
served for n = |(t, cos kg — sty sinky)/(st;sinkg)| < 1 [n =
|(#y cos kg — sty sinkg)/(st, sinky)| > 1] while the WNs ap-
pear at k, = sky with s = £. The hybrid phase no longer
exists here as both the WNs of opposite chiralities share an

(a) 2.0l (b)
1.0 '
E 00 E 00 \
N
—-1.0 9.0
t/=05,t,=1.0 TP =15,t=10

-1.0 0.0 1.0
k.(m)

-1.0 0.0 1.0
k.(m)

FIG. 3. The dispersions of single WSM, following Eq. (2) with
Ny given in Eq. (7), are shown for type-1 phase with #; = 0.5 in
(a) and type-II phase with #; = 1.5 in (b). Unlike the model I, the
hybrid phase does not exist in model II. We consider #, = 1 and
the remaining parameters are same as Fig. 1 such that ky = 7 /2.
The nondegenrate WNs appear at £, = +£1,. Unlike the dispersion
in model I, shown in Fig. 1, the WNs with positive and negative en-
ergies at k = 7w /2 and k = /2 both exhibit identical tilt strength for
model II.

identical tilt profile. This is intimately related to the fact that
the tilt term #; eventually becomes decoupled from s while
the gap term is still connected with s as evident from n.
This is in contrast to the model I where tilt and gap terms
are mutually coupled with s. The type-I and type-II phases
are shown in Fig. 3 where we consider #, = 1 such that the
WNs are nondegenerate with energy E; = s sin ko + #; cos k.
The chiralities, associated with the individual WNs, for the
single, double and triple WSMs in model II are identical to
that in model I. We reiterate that in model II similar to model
I, we consider t =t, = 1, m; = 0, such that ky = /2. Note
that both the WNs at k = £ /2 exhibit identical tilt strength
n = t; in model II unlike the model I.

The low-energy dispersion of a WN in models I and II with
a given s are, respectively, given by

s = 2k (11 sin(¢y — sko) + 215 sin(¢p, — 2sko))

&\ Ja2k 4 1202 sin’ ko ®)

and

elfs = k,(t; cos kg — sty sinky) £ \/ozzkf_" + tzzk? sin? kg )

with k; = V&2 + kf The anisotropy in the dispersion is
clearly visible as compared to the dispersion in untilted single

WSM eki ==Y kf + kf + kf. The quasivelocity (v = %i,:) is
given by

1 _ _ .
Vg = (kxnazki(" 2 kynazki(" b kztz2 sin® ko + eky,ly),

€k.n

' (10)
where €, = \/azkf_" + tzzkf sin” ky. Here, y = 2(t; sin(¢p —
sko) + 2t sin(¢py — 2sko)) and y = (¢, cos kg — sty sinky) for
models I and II, respectively. The velocity for a single un-
tilted WSM is v = k/e,f reflecting the isotropic nature of
the velocity in all momentum directions. Importantly, the z-
component of velocity is different in these two models which

can potentially lead to distinct response properties.
The Berry curvature (BC) of the mth band for a Bloch
Hamiltonian H (k), defined as the Berry phase per unit area
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in the momentum k space, is given by [75]

1 o (N 0N an
———€weNg - | — x — ).
AN Bk, T ok,

Interestingly, the Ny term does not appear in the BC owed to
the fact that the topological charges of these different models
are identical. One can estimate the BC, following the low-
energy models, as follows:

Q]’Zu — (_l)m

b _ L7tz sinkoo?kP"

k 2 ENE

This is markedly different from the BC of a single WSM
QF = k/|ef|*. In particular, one notices that €2, depends
on n in a quadratic manner while €2, and 2, are linearly
dependent on n. The Chern number C,,, associated with the
band index m, can be found by a closed surface momentum
integration of the BC:

(ky, ky, nk;). (12)

1
= — | Qrd’k. 13
om i [ w

We use Chern number as chirality interchangeably throughout
the paper. C+ = +1, £2, and 43 in a single, double, and triple
WSM for valence (—) and conduction (4) bands [50].

III. CIRCULAR PHOTOGALVANIC EFFECT (CPGE)

The circularly polarized light induced second-order optical
response namely, the CPGE injection current is defined as
dJ;

d_t’ = Bij(®)[E(w) x E*(»)];, (14)

where E(w) = E*(—w) is the circularly polarized electric
field of frequency w, i and j indices are the directions of
current J; and the circular polarized light fields, respectively.
With the reversal in the polarization of the incident light, i.e.,
exchange of E(w) and E*(w), the photocurrent changes its
sign. We note that the photocurrent J; is a measure of the
nonlocal diffusion of photoexcited carriers. The photocurrent
is represented by the CPGE tensor multiplied by carrier life-
time t. The CPGE tensor B can be generically expressed as
[53,76]:

o3

ijl Z Afk nmAvk nmrk nmrllf, mn

k,n,m

X 6(hw — Ex un), (15)

Bij(w) =

where V is the sample volume, Ej ,, = Ex, — Ex,,, and
Afi.nm = fen — fem are the difference between n-th and
m-th band energies and Fermi-Dirac distributions respectively,
Tk = i(n|Ox|m) is the off-diagonal Berry connection and
Avk am = Ok um /i = vkn vkm The trace of the CPGE
tensor fB;; for a two band model with n, m = 1, 2 is given by

> AfirnAvy (e — Ex12). - (16)
k,i

A = 28
RV

Here, Qi = i€ Y, Am r,’c‘ynmr}(!mn is the ith component of the
BC. We note that Tr[8(w)] reverses its sign under reversal
of polarization k(I) — I(k) due to the underlying anticom-
mutator like form of €2 ; [59]. In our numerical analysis, we
consider 7 = 1 without loss of generality.

We now calculate the trace of the CPGE in the linearized,
untilted, isotropic WSM, described by the k - ¢ model for
a single WN. One can show that the CPGE trace measures
the Berry flux penetrating through a closed surface [53], re-
sulting in a quantized CPGE response proportional to the
Chern number C of the activated WN. The frequency windows
within which the quantization is observed are dependent on
chemical potential x. The §-function accounts for the optical
selection rule that essentially determines the quantization win-
dow 2|E” | < w < 2|E | with E}, = E; — 1, where E. is the
WN’s energy at k, = 7 /2. The quantization is typically lost
for @ > 2|E | where two WNs contributes with opposite sign
in the Berry flux.

We now discuss the symmetry requirements in order to
observe a CPGE response. The tensor §;; acquires finite value
if the inversion symmetry is broken. On the other hand, in
complete absence of all the mirror symmetries, the system
possesses finite diagonal components of B;;. In the chiral
WSMs, with WNs appearing at different energies, where in-
version and all mirror symmetries are broken, the trace of the
CPGE Tr[B(w)] can show a quantized response. To be more
precise, the quantization of CPGE at two opposite plateaus
is directly related to the Chern number of the activated WN
as noted for TRS broken WSM in Ref. [53]. This picture is
modified in an nontrivial way for TRS invariant WSM where
CPGE is not quantized at two opposite plateaus even though
activated WNs have opposite Chern numbers or chiralities
[58,59]. For TRS broken mWSMs, the CPGE trace is expected
to be quantized at higher magnitudes, as compared to single
WSMs, in accordance with the higher topological charge as-
sociated with the activated WNs. The above predictions are
based on low-energy mWSM Hamiltonians. We below exten-
sively analyze the lattice models I and II where we denote
Tr[B(w)] as B to check the validity of this prediction.

We first analyze the results on CPGE trace for model I
supporting the additional hybrid mWSM phase. We depict the
CPGE trace B, for the type-I phase in Figs. 4(a)—4(c), hybrid
phase in Figs. 4(d)—4(f), and type-II phase in Figs. 4(g)—4(1).
We consider || < |E+| for Figs. 4(a), 4(d) and 4(g); u ~ E1
is chosen in Figs. 4(b), 4(e), and 4(h); || > |E4| are shown in
Figs. 4(c), 4(f) and 4(i). In this way, we explore the behavior
of B, in different phases as well as the changes in the response
with respect to changing u.

It is evident from Fig. 4(b) that quantization is visible
for type-I single and double WSM where p = —0.4 is kept
close to the WN energy E_ = —0.42. Similar results are also
observed for hybrid mWSM when u is kept close to type-I
WN at energy E_. Interestingly, for u being close to E,
the CPGE trace does not show quantization irrespective of
the type and topological charge of the WSMs. The double
(triple) WSM indeed shows twice (thrice) the CPGE trace as
compared to that for the single WSM in the hybrid phase only
within a certain frequency window [see Fig. 4(e)]. However,
this frequency window reduces from single WSM to triple
WSM. Interestingly, for triple WSMs, the CPGE trace is not
always found to be more pronounced than the single and
double WSMs’ one while double WSMs show a much more
pronounced response than the single WSM one in most of
the instances [see Figs. 4(a), 4(b), 4(d), 4(e), 4(g), and 4(h)].
For u = 0, i.e, chemical potential is set around the midway
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FIG. 4. We show the CPGE trace [Eq. (16)], denoted by g, for type-I phases in (a), (b), and (c) with (71, ;) = (0.3, 0.25), hybrid phases
in (d), (e), and (f) with (#1, ) = (1.5, 0.25), and type-II phases in (g), (h), (i) with (#1, o) = (3.0, 0.25), considering model I [Egs. (2), (4),
and (6)]. The nondegenerate WNs appear at Ey = ++/211; || < |E| for (a), (d), and (g); || & |E+| for (b), (e), and (h); || > |E| for
(c), (), and (i). The quantization is most clearly visible in (b) for type-I single WSM when 1 is kept close to the WN’s energy E, = +/21,.
With increasing the tilt, the quantization is gradually lost and eventually disappears for type-IIl WSMs. For p away from the WN’s energy,
the quantization is completely lost. Most importantly, B, exhibits quantization to integer values for the hybrid phase in accordance with the
chirality of the activated WNs. The CPGE trace diminishes significantly for triple WSM while for double WSM, it becomes larger than that
for the single WSM. The parameters used here are as follows: t, = 0.25, (¢1, ¢2) = (7w /4, 7 /2). The CPGE trace B, is measured in the unit of
e’ /h?. We choose a k mesh of (300)* points for our numerical calculations to minimize finite size effects.

between two WN’s energies u ~ (E;. 4+ E_)/2, the CPGE
trace exhibits peak like structure as most prominently visible
for double and triple WSM [see Figs. 4(a), 4(d) and 4(g)]. On
the other hand, when u is set outside the WN’s energies, the
peaks become flattened yielding nonzero response in a larger
w-range [see Figs. 4(c), 4(f) and 4(i)]. For type-I1 WSMs, the
CPGE trace vanishes for higher frequency [see Fig. 4(b)]. In
contrast, B; remains nonzero at higher frequency for type-II
WSMs [see Fig. 4(h)]. The CPGE trace for the hybrid phase
exhibits a mixed behavior where quantization is observed as
discussed above [see Fig. 4(e)]. The frequency window to
observe finite CPGE trace depends on |E — E”|.

Next, we discuss the signatures of the CPGE trace at
certain frequency values. In Fig. 4(a), one can observe that
the CPGE trace acquires nonzero value above the threshold
frequency w = w, > 0.36 for the single WSM when pu = 0.
The CPGE traces show maximum magnitude roughly at w =
o, = 0.55. These frequencies can be understood from the
selection rules §(/iw — Ey 1), combined with u = Ej | va-
lence and n = Ej » conduction band energies, that determine

the optically activated momentum surface. To understand it
more easily, we consider k, = k, = 0 to compute the valence
and conduction band energies Ej ; and Ej 5, respectively,
corresponding to the momentum mode &, such that yu = Ej .
The minimum frequency satisfying the selection rule w =
|Ex,,1 — Ex. 2| = |Eg2 — |, around the WN of positive en-
ergy E,, is responsible for 8; acquiring nonzero values at
small w. On the other hand, the selection rules w = |Ey | —
Ei. o] = |1 — Ei_ 1], in the vicinity of WN of negative energy
E_, qualitatively estimates the frequency at which B; ex-
hibits a peak. One can also determine the cutoff frequency w,
from max{|u — Ey_ 1|, [ — Ex_2|} above which CPGE trace
vanishes. For double and triple WSMs, the nonlinearity in
the dispersion is combined with the selection rule to yield
a different set of frequencies w,,, as compared to single
WSM for p being in the proximity to the symmetric position
(Ex +E_)/2.

Using the above selection rule for lowest frequency o =
|Ex,,1 — Ex 2], one can successfully anticipate the nonzero
CPGE response after a certain threshold frequency in all the
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FIG. 5. We show the CPGE trace g, [Eq. (16)] for model II [Egs. (2), (4), and (6) combined with Eq. (7)] in type-I phase with #; = 0.5
[(a), (b), and (c)] and in type-II phase with #; = 1.5 [(d), (e), and (f)]. The nondegenerate WNs appear at E. = =£1,; || < |EL| for (a), and
(d); |u| =~ |E+| for (b) and (e); || > |E+| for (c) and (f). The quantization is clearly visible for type-I phase (b) when u is kept close to the
WN’s energy E. = £f,. On the other hand, the qunatization is gradually lost when u is away from the WN’s energies in the type-II phase.
Interestingly, the frequency window, within which CPGE trace becomes quantized, diminishes with increasing the topological charge of the
WSM. The parameters used here are the following: t, = 0.25, (¢, ¢») = (7 /4, w/2). We choose a k mesh of (300)* points for our numerical

calculations as adopted in Fig. 4.

cases shown in Fig. 4. This is furthermore evident from the
fact that CPGE trace attains nonzero value for any finite fre-
quency when u is set close to any one of the WN’s energy. The
CPGE profiles, for i being above and below the WN’s ener-
gies, are quite different from each other and can be partially
explained by the frequency selection rules. The peak structure
vanishes there for type-II phases as the selection rules are
substantially modified by the tilt as compared to the type-I and
hybrid phases. In the hybrid phase, the quantization window
is largest (smallest) for single (triple) WSM. As discussed
above the optically activated momentum surface, around the
activated WN, shrinks with increasing the topological charge.
The additional nonlinearity in the dispersion for mWSMs
results in such deviation from quantization to show up more
quickly than single WSMs.

We now demonstrate the CPGE trace for the model II that
only supports either type-I or type-II phase, as shown in Fig. 5.
Here, we adopt the same presentation scheme as followed in
Fig. 4 except missing the hybrid phase that no longer exists
for model II. The frequency window for the quantization in-
creases to nonzero value from zero when p is increasing from
the symmetric © = 0 to maximally asymmetric © = E4. This
behavior is observed for all the mWSMs in the type-I phase
[see Figs. 5(a) and 5(b)]. The CPGE trace deviates from its
quantized behavior for || > |EL| as shown in Fig. 5(c); how-
ever, single WSMs continue to show quasiquantized response
close to 41. In the type-II phase, the CPGE trace is found to
exhibit quasiquantization for single WSM when u ~ E. [see
Fig. 5(e)]. The frequency window for quantization is confined
between 2E! < w < 2E! with E} = |E+ — u|. We do not
find quantized response in any of the WSMs when p is away

from E [see Figs. 5(d) and 5(f)]. For the type-II phase, the
CPGE shows finite response in a larger frequency domain as
compared to the type-I phase.

We now analyze the frequency window within which the
CPGE trace acquires finite and quantized values for model
II. From the frequency selection rule §(/iw — Ej 1) combined
with u = Ey; or u = Ey» as demonstrated before, one can
easily obtain the threshold frequency w; and cutoff frequency
. between which the CPGE trace becomes quantized [see
Fig. 5(b)]. The quantization for single (double and triple)
WSM can be qualitatively described by the above analysis. In
general, the mWSMs deviate from quantization earlier than
the single WSM case as the optically activated momentum
surface shrinks due to additional nonlinear terms. For © out-
side the energy window between two WNs, the quantization
is lost for mWSMs. However, the minimum frequency above
which the CPGE trace acquires nonzero value can be under-
stood from the selection rule w = u — EL &~ 0 for u ~ E.
For the type-II case, the estimation of quantization window,
as observed for single WSM, becomes even more complex.

Furthermore, we compare the results for the CPGE trace
between models I and II. Even though in both the models
WN’s energies E; and E_ are substantially separated from
each other, the quantization is very prominently visible only
for model II. The TRS is broken in both of the models while
the specific details of the tilt term, breaking the PH symmetry,
can influence the CPGE response to a great extent. Before
we present the dissimilarities in CPGE for both the models,
the common observations are the following: The CPGE trace,
estimated around a given chemical potential u, reverses its
sign between single/triple and double WSMs. This can be
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explained from the lattice model as the Chern number of the
activated WN, when p is set close to the corresponding WN
energies, dictates the quantized profile of the CPGE trace.
The other noticeable similarity is that in type-II phases for
both models, the CPGE traces slowly vanish with frequency.
The marked differences between the behavior of the CPGE
trace in models I and II are the following: The hybrid phase
can only show quantization for all three WSMs in the case
of model I while type-I (type-II) phase show quantization
(quasiquantization) in the case of model II. The antisymmetric
nature (i.e., B just reverses its sign under u© — —u) of the
quantized CPGE trace, as clearly observed for model II in
type-I phase, is completely washed out for model I when u
is set close to two WNs of opposite chiralities. Surprisingly,
the triple WSM is found to show weak response in most of
the instances for model I unlike to the model II where it
exhibits the most pronounced response as compared to single
and double WSMs. Overall, model II shows a quantization of
the response more clearly for single, double and triple WSMs
in general.

Additionally, we try to plausiblize the numerical results
from generic arguments. We first refer to the CPGE formula
given in Eq. (16) where the summands in the k sum can be
decomposed into two parts namely, A fk,leU};,qu,i, being
independent of w but dependent on the PH term, i.e, tilt
term and the remaining part §(fiw — Eg 12) only depending
on . In particular, Afy 1 is the only part including the
tilt term. The bare energy, without the tilt term, becomes
crucial in determining the frequency characteristics of the
CPGE trace via §(hw — Eg 12). Once the optically activated
momentum surface comes into play for a certain range of
frequency, the tilt term imprints its effect through the factor
A f.12. The anisotropic nonlinear dispersion of mWSM sig-
nificantly affects the magnitude of quantization through the
factor Av,? 1282,;. Therefore, for models I and II, the factor
Av,’;,lekq,-S(hw — Ey 12) yields identical contributions while
the Ny term significantly changes the profile as manifested by
A fi.12. This clearly suggests the importance of the Ny term in
determining the CPGE trace.

Importantly, the quantization windows for mWSMs are
less as compared to the single WSMs for both the models.
We note another interesting point in Figs. 4(h) and 5(e) that
CPGE shows oscillatory behavior irrespective of its quantiza-
tion. The oscillatory nature becomes more evident for type-II
mWSMs as compared to the single WSM referring to the
fact that nonlinear band bending in type-II phase play crucial
roles. Such oscillations are also noticed for quantized CPGE
in multifold fermions [55]. We additionally note that the noise
in the CPGE response neither qualitatively modify the profile
of CPGE nor quantitatively alter its magnitude.

IV. SECOND-ORDER RESPONSE:
BERRY CURVATURE DIPOLE (BCD)

Having discussed the nontrivial effects of the PH symme-
try breaking tilt term in the Fermi distribution function, we
next analyze its consequences on the Fermi surface properties
by investigating the BCD response. The DC photocurrent in
inversion asymmetric systems can lead to a transverse anoma-
lous velocity eE x €2, associated with the Berry phase, when

an external electric field E = Re(E¢e™") is present. This in
principle results in an anomalous quantum Hall effect without
any external magnetic field. Interestingly, the first moment
of the BC, namely, the BCD is found to be responsible to
give rise to the nonlinear Hall conductivity y.,. such that
Ja = XareEHE). We note that this is a diffusive transport phe-
nomena. Following the relaxation time approximation in the
Boltzmann equation, ). is found to be [61,66]

3

et
m/(abfk)gk,ddk, (17)

where €44, denotes Levi-Civita symbol and 2 4 represents

the dth component of BC. In the momentum space the BCD
thus takes the form

9
Dy = Z/dk f"sz;;fd. (18)

Xabe = €adc

ak,

Here ), refers to the summation over filled bands. It is
noteworthy that BCD is even under time reversal while BC
is odd. Therefore one anticipates a finite BCD response even
for time reversal symmetric systems. Equation (18), without
loss of generality can be rewritten in the following form:

d d
Dy = /dkvk,th,d—fk = /debd—fk, (19)
86]( aék

where Dpy = vy 2 4 refers to the BCD density [66]. We
are interested in the zero temperature limit where 9 f; /d¢y is
replaced by the Fermi surface configuration —§(ex — w).

We would now like to comment on the symmetry con-
straint to have a nonzero BCD response. The off-diagonal
BCD response D;; with b # d is only found to be nonzero
if the system preserves two mirror symmetries M, and M,
simultaneously such that D,; becomes an even function of
k = (ki, k;, k;) with My H (kp, ka, ki) (Ma)™" = H(kp, —ka. ki)
[66,77,78]. On the other hand, the diagonal element are ex-
pected to contribute without the above symmetry requirement.
Considering the single node low-energy model of WSMs, it
has been found that the off-diagonal component D;; vanishes
while the diagonal components Dy, continue to exist in pres-
ence of a finite tilt. However, the BCD response in the mirror
symmetry protected inversion broken lattice models of WSMs
do not agree with the predictions from low-energy models
[66]. We therefore, investigate the lattice models I and II to
predict the possible experimental observations associated with
TRS broken WSMs.

We first investigate D,, and D, for the type-I phase of
model I in Figs. 6(a) and 6(d), the hybrid phase in Figs. 6(b)
and 6(e), and the type-II phase in Figs. 6 (c) and 6(f), respec-
tively. The dependence of D,, inside the hybrid phase as a
function of ¢, are shown in Figs. 6(g)-6(i) for u = 0, —2.12,
and 2.12, respectively. We next probe D,, and D, for the
type-1 phase of model II in Figs. 7(a) and 7(c) and the type-II
phase in Figs. 7(b) and 7(d), respectively. As we discussed
above the lattice Hamiltonian for WSMs [Egs. (2), (4) and
(6)] break mirror symmetries such as M;L H(ky, ky, k;)M; #
H(ak,, Bky, 6k;) with (a, B8,8) = (—1,1,1), (1, -1, 1), and
(1,1, —1) fori = x, i =y, and i = z, respectively. Therefore
we do not see any cross term Dy, contributing to the nonlinear
transport rather only diagonal terms Dy, become nonzero. The
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FIG. 6. The BCD response D, and D, following Eq. (19) for model I, are shown in (a), (b), (c) and (d), (e), (f), respectively. [(a) and

pea)

(d)] Type-I phase with ¢#; = 0.5; [(b) and (e)] hybrid phase with #; = 1.5; and [(c), and (f)] type-II phase with #;, = 3.0. The common feature,
observed for D,, and D,,, is that both the WNs contribute almost equally for the type-II phase as compared to the type-I and hybrid phases
where the WN at negative energy E_ contributes significantly. The lower panel (g), (h) and (i) depict the BCD response D, in the hybrid phase
as a function of ¢; for u =0, u = E_ = —2.12, and u = E; = 2.12, respectively. For u = £2.12, the BCD response acquires substantial
contributions around ¢ = £ /4, £37 /4. For all the above cases, the responses become more pronounced for higher values of topological

charge. The parameters used in (a)-(f) are the following: #, = 0.25, (¢1, ¢») = (;r /4, 7 /2). Al other parameters are the same as above except

t; = 1.5 in (g)—(i). Notice that the BCD is measured in the units of lattice constant.

most significant contribution is expected to come from the
vicinity of the WN, i.e., when u is close to WN energies.
With increasing topological charge, the BC enhances that in
turn causes the BCD to grow. Another interesting feature is
that D,, and D, behave differently in general, and this is most
prominently visible for double and triple WSMs. This is due
to the fact that vg, and €2, are significantly different from
Uk,z> S2%,;. On the other hand, D, and D,, behave identically
due to the similar structure of velocity and BC.

Now examining Figs. 6(a)-6(f), we can clearly observe that
the BCD response is most pronounced at 1 ~ E_ = —+/21;
while the BCD contribution is smaller for u close to the WN
of positive energy. This is in spite of the fact that the magni-
tude of BC remains the same around both the WNs. We note
that the WN at energy E_ is type-I for the hybrid phase. For
away from the WN’s energies, the BCD response diminishes
due to the fact that the BC and BCD both become significantly
reduced. Interestingly, the sign of the topological charge is
reflected in the diagonal BCD response. For ¢ = 7 and
0, one can find a pronounced peak and dip as the Fermi
surfaces, associated with the two degenerate WNs at u = 0,
interfere constructively provided the fact that vg , — —v_g x

and 2 , — —_ , [see Figs. 6(g)-6(i)]. On the other hand,
for ¢; = £m /2, the WNs are separated from each other in
the energy space. As a result, their associated Fermi surface
contributions becomes vanishingly small at i = 0. The leads
to a substantial reduction of BCD response. The sign of the
response depends on whether the positive (negative) chiral
WN approaches u = 0 from below (above) or above (be-
low). We note that a given WN becomes more tilted when
¢1 approaches to 0 and +m from +m /2. We encounter an-
other instance where the Fermi surface of a single WN leads
to a BCD response as depicted for u = 2.12. Here, type-I
(type-II) WNs appear for ¢; = —n /4 and 37 /4 (¢, = —37 /4
and m /4). The response drops significantly for ¢ =0, +x
when the degenerate WNs appear at u = 0 far away from
@ = £2.12. Therefore the contribution from the BC drops
substantially leading to a suppressed BCD response.

Having explored the combined effect of tilt and gap in
model I, we now turn to model II as shown in Fig. 7 for
type-1 and type-II phases. We here find a secondary peak
(dip) in addition to the primary peak (dip) in the type-I phase
for Dy, and D,;. This secondary peak or dip almost vanishes
for the type-II phase. This is clearly visible for double and
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FIG. 7. We here depict the BCD responses D,, and D, follow-
ing Eq. (19) for model II, in (a), (b) and (c) and (d), respectively.
(a), and (c): type-I phase with #; = 0.5; (b), and (d): type-1I phase
with #; = 1.5. Noticeably, D, for single WSM becomes vanishingly
small except at the WN energies 4 = EL = =t,. This is in contrast to
D, which become significantly diminished only around p = 0. The
type-I (type-1I) double and triple WSMs with show (do not show)
double peak or dip structure for u < 0.

triple WSMs. The position of the primary peak or dip is
directly given by the gap term ¢, itself while the secondary
peak is weakly dependent on the tilt term #; [see Figs. 7(a)
and 7(b)]. The antisymmetric Fermi surface contributions,
associated with the individual WNs, interfere destructively
at u = 0 leading to the minimum in the BCD response. On
the other hand, with increasing topological charge, the asym-
metric nature of Fermi surface is clearly visible in the BCD
response between i < 0 and p > 0. To this end, we focus on
the BCD response D, where it vanishes everywhere except
at WN’s energies in the case of single WSM [see Figs. 7(c)
and 7(d)]. The asymmetric response is more clearly noticed
here and the primary peak or dip locations differ significantly
between type-I and type-II phases. This might be related to the
anisotropic nonlinear dispersion for double and triple WSMs.
Interestingly, the secondary peaks in the type-I phase indicates
that the BCD density Dy, = v 52, With b = x, z acquires
finite value even away from WNs [66].

Interestingly, D, qualitatively follows Dy, for model I
while they become different for model II. The BCD responses,
observed for the type-I phase in model II, only show sec-
ondary peaks or dips at certain p other than the WN energies.
By contrast, there is no prominently secondary peak or dip
structures found for model I. Therefore the Fermi surface
properties are significantly modified by the PH term asso-
ciated with oy even though the topological characteristics
remain unaltered. In addition, the BCD density also changes
from model I to model II causing the overall BCD to behave
distinctly. To be precise, the underlying nature of the model is
reflected in the vanishing off-diagonal components of BCD
while the sign of the diagonal components at certain w is
determined by the chiralities of the WNs.

V. MAGNUS HALL CONDUCTIVITY (MHC)

We here briefly discuss the MHC that is derived in the
ballistic regimes using Boltzmann transport equation without
applying any external magnetic field [71]. The difference be-
tween the gate voltages Uy and Uy, associated with the source
and drain, AU = U; — U, introduces a built-in electric field
E;, = V.U/e (—e is the electronic charge) in the Hall bar
with a slowly varying electric potential energy U (r) along the
length of the sample. With the relaxation time approximation
the steady-state Boltzmann equation is written as [79,80]

(f.vr+k.vk)f,ge=f’°_Tk, (20)

where the scattering time t can be considered independent of
momentum k and the equilibrium (nonequilibrium) electron
distribution function is denoted by fi (f;°). In the ballistic
regime, the mean free time between two collisions is infinite
T — 0o suggesting the fact that electrons entering from the
source traverse (say along x direction) to the drain with pos-
itive velocity v, > 0 without experiencing a collision within
the length L of the Hall bar. Employing the semiclassical
equation of motion in the Boltzmann equation without the
right hand side collision term and following the ansatz f;'° =
Jfx — Ao fx, one can find the MHC in response to the exter-
nal electric field E, as given by [52,71,72]

2
o= —%AU/ dk . fi 1)
v, >0

where —eLE, = A and E;, = E,l.

It is noteworthy that the MHC [Eq. (21)] originates from
the Magnus velocity Vipagnus = VU x £ that can be thought
of a quantum analog of the classical Magnus effect. The
Magnus responses can be effectively considered as a second-
order coefficient as the built-in electric field AU and external
electric field both appear in calculation of currents. As far as
the symmetry requirements are concerned, it has been shown
that in presence of crystalline symmetries such as, specific
C, and certain mirror symmetries, MHC shows a nontrivial
response [81]. More importantly, for the Magnus responses
to become nonzero, the system must possess finite BC and
asymmetric Fermi surface. The MHC in a way allows us to
scan through the Fermi surfaces by tuning p and investigate
the angular distribution of BC within a given Fermi surface.
It is worth mentioning that the MHC is found to vanish for
low-energy model of untilted mWSMs while it becomes less
pronounced with increasing the topological charge in presence
of tilt [52]. We shall further examine these properties below by
considering the generic lattice models, namely, models I and
IT of WSMs.

We analyze the MHC response for type-I, hybrid, and
type-II phases in Figs. 8(a)-8(c), respectively, for model 1.
We then show the dependence of the MHC with respect to
¢ for the hybrid phase with u = 0 and £2.12, respectively,
in Figs. 8(d)-8(f). The behavior of the MHC in model II are
demonstrated for type-I and type-II phases in Figs. 9(a) and
9(b), respectively. The main contribution is coming from the
z component of BC and Fermi surface properties for the k
modes having positive quasivelocity along the transport direc-
tion. Therefore the MHC can show higher amplitude at certain
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x 10~6

x 1076

x 1078

1

2 0g,

FIG. 8. The MHC o, following Eq. (21), in the type-I, hybrid, and type-II phases for model I are depicted in (a), (b), (c) and (d), (e), (f),
respectively, as a function of © and ¢;. The MHC shows pronounced signature at certain values of u that depend on Fermi surface property
of the lattice model. Interestingly, the magnitude of the MHC decreases with increasing the tilt. The MHC exhibits complex behavior with ¢,
as the Fermi surface changes substantially there. The parameters used for (a)-(c) here are r, = 0.25, t; = 0.5 (type-I), t; = 1.5 (hybrid), and
t; = 3.0 (type-1D), (¢1, ¢2) = (;r /4, 7w /2). The parameters chosen for (d)—(f) are t; = 1.5, 1, = 0.25, and ¢, = 7 /2. The MHC is measured in

the unit of €% /h.

w different from WN energies. The peak or dip in the MHC
moves away from p = 0 as the tilt increases [Figs. 8(a)-8(c)].
This can be naively understood from the fact that the WNs
depart from each other with increasing tilt. The magnitude
of MHC decreases with increasing the tilt in contrast to the
prediction obtained from low-energy mWSM model [52]. The
signature of WNs, however, appears in the MHC; for example,
WNss exist for ¢; = 0 at u = 0 resulting in pronounced behav-
ior [see Figs. 8(d)-8(f)]. A similar behavior is also observed
for © = £2.12 where WNs appear ¢; = £ /4 and £37 /4.
We now discuss the MHC behavior in the model II where
the gap and tilt induce marked effects (see Fig. 9). The peaks
in the MHC transform into dips while crossing through u = 0
in the type-I phase. This is not observed for the type-II phase

X 10"6 ‘
0.7+ 4=05
O
0
-n= %
“n-
-0.7r “n=13
-2 0 u 2 20 -1 0 " 1 2

FIG. 9. The MHC o following Eq. (21) for model I, is depicted
with u for type-I and type-II phases in (a) and (b), respectively.
The magnitude of the MHC remains almost unaltered for the type-II
phase as compared to the type-I phase unlike the model I as shown
in Fig. 8. However, the MHC profile significantly changes with
increasing the tilt. The parameters used are the following: , = 1,
t; = 0.5 for the type-I and #; = 1.5 for the type-II phases.

as the Fermi surface is modified by the tilt. The effect of
higher topological charge in general can be observed in the
larger amplitude of the MHC. Another dissimilarity between
MHC results, obtained from models I and II, is that for u
being close to a WN at negative energy pu ~ E_, the amplitude
of the MHC enhances significantly for model I. The MHC
responses thus do not necessarily maximize always around
WNs unlike the BCD response.

VI. DISCUSSIONS

We here compare our findings with the existing results
where the nonlinear responses are investigated. We start
with the CPGE trace for the TRS invariant model [58]. The
CPGE trace there is found to be quantized at higher values
than the combined topological charge of the activated WNs
unlike to the TRS broken case [53]. We here focus on the other
aspect, i.e, PH symmetry instead of TRS symmetry, by which
the property of individual WNs can be tuned. Considering
the general lattice model, embedded with the nonlinear and
anisotropic dispersion, our study unfolds three effects: Firstly,
unique quantization profiles of the CPGE trace in the hybrid
phase, secondly distinct signatures when the tilt and gap term
are mutually decoupled, and lastly quantization to higher val-
ues for mWSMs as compared to single WSMs. Therefore
our work sheds light on the generic properties of the CPGE
trace for a TRS broken mWSMs with nonzero chiral chemical
potential such that £, # E_. The frequency window within
which the CPGE acquires quantized values is nontrivially
modified by the choice of the PH symmetry breaking terms.

Moving to the next part of BCD induced second-order re-
sponses, we comment that TRS invariant system, possessing a
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certain mirror symmetries, show interesting off-diagonal BCD
response [66]. Due to the lack of mirror symmetries, we find
only diagonal component to become nonzero. We note that the
diagonal components are only found to be nonzero following
the single node low-energy model analysis. However, our find-
ings are similar though the underlying physics is different. It
has been shown that BCD is related to properties on the Fermi
surface in the overlapping region between the WNs (around
the WNs) can result in off-diagonal response when the WNs
are degenerate (nondegenerate) [66]. In our model I (II), we
find one (both) of these signatures where gap and tilt terms are
coupled (decoupled) form each other.

The substantial BCD response away from the WNs, no-
ticed for model II, might be related to a different BCD density
distribution as compared to the regular BCD density leading to
a strong BCD response around the WNs, observed for model
I. Therefore, even though the off-diagonal terms vanish due
mirror symmetry constraints, the essential physics remains
the same for the diagonal components. Finally, considering
the low-energy mWSMs, it has been shown that tilt can lead
to a finite MHC and the responses become less pronounced
with increasing the topological charge [52]. Interestingly, the
findings on the MHC here, obtained from lattice models, are
substantially different from results based on the low-energy
model similar to the BCD response [66]. The MHC is found to
be finite even for the untilted case and its magnitude is gener-
ically increases with nonlinearity in the dispersion. Therefore
one needs to compute the transport coefficients for the lattice
model in order to obtain a more realistic picture closer to the
experiment.

We would now like to discuss the common symmetry con-
straints in order to observe these higher order effects. The
transport coefficients such as, CPGE trace, BCD response, and
MHC can become nonzero even if the underlying system does
not break TRS. However, we consider TRS broken WSMs
where the first-order effects such as the linear anomalous
Hall response can become substantial. We note that the lin-
ear anomalous Hall response is not a direct Fermi surface
phenomenon, however, it depends on the number of filled
bands. As a result, it does not depend on the derivative of the
Fermi function unlike the BCD and MHE. Therefore, from the
profile of these responses as a function of chemical potential,
one is able to distinguish them from the linear anomalous Hall
response. On the other hand, the prefactor Sy in the CPGE
trace can be large causing a quantized signature to be observed
as comparison to the much reduced metallic or insulating con-
tributions [57,61,82]. It is to be noted that in order to observe
finite CPGE, the WNs must be nondegenerate. In contrast, the
WNs need not to be nondegenerate to realize finite BCD or
MHC.

We would like to comment on the experimental realization
of the transport coefficients in various 2D and 3D systems.
The bulk quantum Hall effect has already been realized in
quasi-2D systems [83—85]. Interestingly, the recent experi-
ments are not restricted to 2D systems only, ZrTes, Hf Tes, and
Cd;As; are examples of 3D systems that exhibit a quantum
Hall effect [86-89]. Apart from the external magnetic field
induced quantum Hall effect, the nonlinear Hall effect, medi-
ated by BCD, has been experimentally observed in the bilayer
nonmagnetic quantum material WTe, [90], in a few layers of

WTe, [91], and in type-Il WSM at room temperature [92].
On the other hand, the type-I WSM transition monopnictide
family such as TaAs, is found to exhibit an interesting CPGE
trace [93,94]; moreover, CPGE is also extensively investi-
gated for type-Il WSMs where the response is not directly
linked to their topological charge [95,96]. Very recently, the
chiral multifold semimetals such as, RhSi are found to exhibit
nonquantized CPGE [56], however, first-principles theoretical
studies demonstrate quantization in contrast [55,97,98].

Given the above developments in the experiments, it is in
principle possible to use the candidate double (HgCr;Se,) and
triple WSM (Rb(MoTe);) materials as samples to investigate
the nonlinear Hall effect. We note that type-I WSMs i.e., TaAs
family and type-Il WSMs, i.e., WTe, family both break inver-
sion symmetry. We here discuss inversion symmetry broken
mWSM where the hybrid phase can be engineered that is yet
to be realized in the experiment. However, magnetic doping
could be one of the possible approaches through which hybrid
phase can be obtained [26]. As far as the experimental set up
in 3D is concerned, the 2D systems can be stacked together
forming a quasi-2D/3D structure where multiterminal Hall
measurements can be performed with appropriate gate poten-
tials. However, the exact prediction of material and accurate
description of experimental set up is beyond the scope of the
present study.

VII. MATERIAL CONNECTIONS

Here, we connect our findings, based on TRS broken
WSM models, with material studies on WSMs following first-
principles calculations. In the double WSM SrSi,, preserving
TRS, CPGE response does not show opposite quantization
profile for w being close to two opposite chiral WNs [59].
This finding is qualitatively similar to the quantization profile
for both of our present models referring to the fact that our
study is useful in predicting the CPGE profile in real material.
Turning to the BCD, it has been found that BCD in type-II
(MoTe; family) is more pronounced than type-I (TaAs, NbAs,
and NbP family) [77]. In our case, we find similar behavior
for model II. The BCD there acquires maximum value away
from the WN energies that is also noticed for MoTe, family.
On the other hand, the MHE is only studied in 2D transition
metal dichalcogenides [71,81] and is yet to be explored using
first-principles calculations in 3D WSM. However, we believe
that our study yields a broad picture of second-order responses
possible in theoretical models of mWSMs which are relevant
in the context of real material scenarios.

VIII. EXPERIMENTAL CONNECTIONS

Considering the recent progress on the experimental side,
we here demonstrate a possible route to realize the above
transport coefficients in practice. Note that for TRS bro-
ken WSM, the leading order contribution of order (€2 cm)~!
would come from the anomalous Hall conductivity [99]. The
response discussed in the present work are subleading and can
acquire values O[ (12 cm)~!]-O[(mS2 cm)~!']. It has been ob-
served in multifold fermion CoSi that the output voltage signal
reverses its sign under the reversal of the input polarization,
controlled by quarter wave plates, yielding a direct experimen-
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tal signature of CPGE [57]. The quantized CPGE signal is not
yet experimentally realized to the best of our knowledge even
though the first-principles ab initio studies identifies a clear
quantized signal [55,59,97,98]. We believe that our theoretical
findings on CPGE can be verified in the optical conductivity
measurements using the terahertz emission spectroscopy [56].
From the in-phase and out-of-phase photocurrent, the CPGE
signal can also be determined in the multiterminal device that
is thicker than the penetration depth of the light [94]. As far
as the magnitudes of the CPGE is concerned, CoSi is shown
to exhibit photocurrent of O(1A) where the relaxation time
is of the order of Femtosecond [57]. We comment that if the
relaxation time is larger or comparable with the external pulse
width, the quantization O(uA V~2) is expected to occur in the
THz regime [56]. Note that the anomalous Hall conductivity
is insensitive to the polarization of external electromagnetic
field from which CPGE can be distinguished even though the
second-order response is substantially small.

On the other hand, the nonlinear Hall effect, induced by
BCD, is experimentally observed where the transverse Hall
voltage O(uV) is found to vary quadratically with the lon-
gitudinal current O(uA) for nonmagnetic few-layer WTe,
[90,91]. The BCD, estimated there, are found to be O(10~! —
10°) nanometer. In the present case without TRS and any
mirror symmetry, we believe that longitudinal voltage can
indicate the existence of the diagonal BCD following the
angle-resolved electrical measurements. We also expect the
longitudinal voltage to be O(xV) under the longitudinal cur-
rent O(uA) such that the diagonal BCD can become O(A).

Turning to the MHE, we comment that it has not been
experimentally observed yet to the best of our knowledge.
However, the 3D generalization of MHC might not be ob-
vious in terms of the Hall bar experiments that are mostly
based on the gating in 2D sample. However, for 3D systems,
such gating can be implemented in multilayer structures of
WSMs such as, a few layered of WTe, [91]. In order to
obtain the MHC along y axis for 3D system, the motion of
the electron is restricted in the two-dimensional xy plane,
while in the other direction along z axis, the electron’s wave
function is localized. This might be obtained by tuning the
gate voltage along the z direction. There could be another
way to engineer the built-in electric field in the transport
plane where the strain is introduced only along x direction
[100-102]. In this case, one has to be careful about the fact
that the WNs remain unaltered even in the strained case
[103]. The Fermi arc surface states might play an interest-
ing role in MH transport if the electrons move coherently
with a well defined velocity under the built-in electric field
in the surface of WSM. The accurate mechanism of such
movements of electron on the 2D plane, say top surface in
the 3D system, is beyond the scope of the present study.
The possible length scale along x direction resulting in fi-
nite MHC, i.e., transverse voltage along y direction, can be
estimated from A, ~ vp/t, where vp is the characteristics
Fermi velocity and t is the relaxation time between two
successive collisions. The length scale for ballistic transport
is found to be O(nm)-O(um) as vp ~ 10°-10%n/s and T ~
O(10~5-10712)s. Without loss of generality, the dimensions
L, ~ Ay, and L, of the system along x and y directions,
respectively, are comparable while L, can be made larger

such that [L,, Ly, L;] ~ [O(nm), O(nm), O(um)]. We believe
that MHC can acquire values O[( €2 cm)'-0[(mQcm) ']
where the built-in electric potential AU can be typically of
the order of meV. The linear dependence on AU is a clear
signature for the ballistic transport that can be experimentally
observed.

IX. CONCLUSION

We conclude by assembling our results on the second-order
transport coefficient, such as CPGE and BCD responses, in
a more general way. Both the above effects are found to
be finite for a TRS invariant system where the first-order
quantum anomalous Hall effect vanishes. Interestingly, a finite
CPGE trace requires all the mirror symmetry to be broken
in addition to inversion symmetry breaking that results in
nondegenerate WNs. On the other hand, the BCD mediated
responses become finite for systems having a certain mirror
symmetries. Therefore the situation becomes complex if the
TRS, IS and mirror symmetry are broken which we study
in our work. In order to analyze the problem more deeply,
we consider two types of PH symmetry breaking terms in
models I and II [Egs. (2), (4), (6), and (7)]. This allows us
to investigate a complex WSM phase namely hybrid phase
where one WN is of the type-I and the other is of type-II.
We consider tight-binding lattice model for mWSM whether
the topological charge associated with each WN is larger than
unity. Therefore our work on one hand, explores the effect
of anisotropy and nonlinearity of the dispersion and, other
hand, sheds light on the influence of tilt and gap factor in the
transport properties.

In the case of model I where the effects of the tilt and
gap are combined, we find quantized CPGE for the hybrid
phase only (see Fig. 4). The gap and tilt terms are decoupled
in model II, the pronounced quantized CPGE trace within
an extended frequency window is found for the type-I phase
(see Fig. 5). The decoupling of the gap and the tilt term
leaves crucial signatures on the optically activated momen-
tum surface. As a result, CPGE trace profile with frequency
changes for these models such as CPGE trace acquires finite
value at smaller frequency with increasing tilt for model II
as compared to model I when chemical potential is set at
halfway between the WNs. Apart from the frequency selec-
tion rule, as dictated by (fiw — Ej,12), the remaining factor
A fkqlev;’(,qu’i determines the magnitude of CPGE. The
specific structure of oy term imprints its effect in the frequency
profile of CPGE via Afg 2. We find that in model II, the
magnitude of the CPGE is higher as compared to that for
model I as far as the type-II phase is concerned.

On the other hand, as restricted by the mirror symme-
try constraints, the diagonal components of BCD mediated
second-order responses only remains nonzero. The peak and
dip structures of the BCD, appearing around the WNs, are
directly related the chiralities of the WNs (see Figs. 6 and
7). This is similar to the CPGE trace where the sign of the
quantized plateau is determined by the chirality of the acti-
vated WN. The gap term being coupled (decoupled) with the
tilt term leads to qualitatively similar (different) response be-
tween different BCD components. The transport coefficients
acquire higher values with enhancing the nonlinearity in dis-
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persion. Moreover, the significantly different BCD response
between models I and II can be traced back to their distinct
BCD density profile resulted from the nonidentical velocity
factors.

Having investigated the diffusive transport, we explore the
ballistic transport MHE in the later part of our work. We find
that the Fermi surface contribution is significantly modified
whether the gap and tilt term are mutually coupled or decou-
pled. The signature of the gap term is very clearly manifested
in the MHC for model II whereas in model I, the MHC profile
exhibits complicated structures (see Figs. 8 and 9). The MHC
for higher topological charge is not found to be always larger
than that for the lower topological charge. The distribution of
BC for the selected momentum modes over the BZ dictates
the chemical potential dependence of the MHC. Therefore the

momentum modes away from the WNs, combined with the
Fermi surface characteristics, play an intriguing role to deter-
mine the MHC. The effects of the WNs are very pronounced
in the CPGE and BCD while the MHE can be significantly
stronger away from the WN’s energies.
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