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Exotic correlation spread in free-fermionic states with initial patterns
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We describe a relation between the light-cone velocities after a quantum quench and the internal structure of
the initial state, in the particular case of free fermions on a chain at half filling. The considered states include
short-range valence bond solids, i.e., dimerized states, and long-range states such as the rainbow. In all the
considered cases the correlations spread into one or a few well-defined light cones, each of them presenting an
effective velocity which can be read from the form factor. Interestingly, we find that the observed velocities range
from zero to the Fermi velocity and may not always be obtained from the dispersion relation for valid momenta.
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I. INTRODUCTION

The spread of correlations is one of the central issues
regarding the dynamics of quantum many-body systems. The
main insight was provided by Lieb and Robinson [1], when
they proved rigorously that a light-cone structure appears
within the dynamics of short-range Hamiltonians under some
mild mathematical conditions on the nature of the interaction.
Yet, it is relevant to ask about the effective velocity associated
with the light cone, and its relation to the propagation velocity
of quasiparticles [2], which is associated with the maximal
group velocity according to the dispersion relations [3,4], both
in local and long-range Hamiltonians [5–7], or in the case of
periodically changing Hamiltonians [8]. The time evolution of
the entanglement entropy (EE) under integrable Hamiltonians
has received special attention. For example, nonequilibrium
dynamics of EE after a sudden quantum quench has been
extensively studied for the Ising model in a transverse field
[9] or the XY model [10]. Recently, the exact time evo-
lution of the EE has been found for the XXZ model and
the Lieb-Liniger model, showing a velocity dependence on
the interaction parameters [11,12]. The nonintegrable case
presents its own challenges. For example, the Ising model
subject to both a transversal and a longitudinal field shows
that the spread of entanglement can be significatively faster
than that of energy [13]. Moreover, the light cone may fade
away for some values of the interaction parameters, related
to the interpretation of the Hamiltonian as a toy model for
quark confinement [14], without violating the Lieb-Robinson
result. It is shown that general hydrodynamical arguments
yield a natural generalization of the group velocity [15]. An
application of the conformal field theory (CFT) framework to
quantum quench in the XX chain is also discussed [16].

As the previous examples show, the effective velocity of
the light cone may vary with the interaction parameters and
form. Yet, in some relatively recent works by Giovannini

et al. [17] and Bouchard et al. [18] it is shown that spatially
structured light beams may propagate in vacuum with a speed
lower than the speed of light, due to internal interference
effects which give rise to an effective index of refraction.
Thus, in some cases the light-cone velocity may depend sig-
nificatively on the nature of the initial state. For example,
it is known that thermal states present light-cone velocities
correlated with the excess density of energy after a quench
to the XXZ model [19]. Along with this, it has been shown
that the presence of entanglement in the initial state can help
in enhancing and accelerating the growth of correlations [20].
Moreover, we should stress the recent work by Najafi et al.
[21], where it is shown that initial states with a spatial peri-
odicity can present a lower light-cone velocity under an XY
Hamiltonian.

In this article, we extend the previous works by char-
acterizing the spread of correlations in quantum states
presenting different types of spatial structures under a spinless
free-fermion Hamiltonian in one-dimension (1D), which is
described in the continuum limit by a CFT. In many cases,
correlations may spread into more than one light cone. As
we will show, the different light-cone velocities, which range
from zero to the Fermi velocity, can be read from the form
factor, i.e., the correlation matrix in momentum space. The
behavior is also found to be imprinted in the growth of the EE
where we report more than one linear stage of growth, with
different slopes, corresponding to the passage of the different
types of quasiparticles. We also extend the set of initial states,
considering cases with short-range correlations, such as the
dimerized state and a few more complex relatives, but also
initial states with long-range correlations, such as the rainbow
state and its variants [22–31]. By extending the formalism
in the continuum limit, we show that in all the cases the
structure of the correlation matrix away from the light cone
presents universal signatures: the correlations along the light
cone decay as t−1/3.

2469-9950/2022/105(21)/214306(13) 214306-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6603-7661
https://orcid.org/0000-0001-6112-4427
https://orcid.org/0000-0002-6521-526X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.214306&domain=pdf&date_stamp=2022-06-16
https://doi.org/10.1103/PhysRevB.105.214306


SUDIPTO SINGHA ROY et al. PHYSICAL REVIEW B 105, 214306 (2022)

This article is organized as follows. In Sec. II we describe
our model and initial states. Section III leads to our main
result, showing how a spatial pattern in the initial correlation
matrix may result in an effective velocity different from the
Fermi velocity. In Sec. IV we discuss the implications of our
results toward the time evolution of the EE of different blocks.
Section V discusses the universal features of the time-evolved
correlation matrix away from the light cone. We finish the pa-
per in Sec. VI summarizing our conclusions and suggestions
for further work.

II. MODEL HAMILTONIAN AND INITIAL STATES

Our dynamics will be governed by the following free-
fermionic Hamiltonian on a chain of size N ,

H = −1

2

N∑
i=1

c†
i ci+1 + H.c., (1)

where ci is the fermionic annihilation operators at site i, and
where periodic boundaries are in effect, cN+1 = c1. Let us
define fermionic operators dk with a well-defined momentum

dk = 1√
N

N∑
j=1

e−i jkc j, (2)

where k ranges over the set of valid momenta,

k =
{

2mπ

N

∣∣∣∣m = 0, 1, 2, . . . , N − 1

}
, (3)

transforming Hamiltonian (1) into

H =
∑

k

εk d†
k dk, (4)

with eigenvalues εk = − cos k.
Let us choose a set of engineered states presenting spatial

patterns, which we will allow to evolve under the action of
Hamiltonian (1). Our first family of initial states is the Wigner
crystals with period P, illustrated in Fig. 1(a) and defined by

|WP〉 =
N/P∏
i=1

c†
Pi|0〉, (5)

where N is divisible by P, and 1/P denotes the filling fraction.
In this case, the group velocity for the excitations is given by

vg = ∂εk

∂k

∣∣∣∣
kF

= sin
(π

P

)
. (6)

This will be our only example away from half filling. Most of
our initial states will be valence bond states (VBSs), defined
by

|V 〉 ≡ 2−N/4
N/2∏
p=1

(c†
lp

+ ηp c†
rp

)|0〉, (7)

where the bond p connects sites lp and rp, with a relative phase
ηp. We will assume that for all i ∈ {1, . . . , N} there is a unique
p that satisfies either lp = i or rp = i, implying that all sites are
part of a unique bond. Moreover, let us define the application

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 1. Illustration of (a) Wigner state with P = 3; (b) dimer
state; dimer-q states, which present a spatial periodicity with P = 4q
sites, for (c) q = 1 and (d) q = 2; (e) rainbow state, whose bonds
alternate signs ηp, and (f) frozen rainbow state, whose bonds always
have the same sign ηp; (g) island-P states, which present spatial
periodicity with P, for P = 3.

σ : {1, . . . , N} �→ {1, . . . , N} such that σi yields the index of
the partner of i, i.e.,

σi = j ⇔ ∃p | (lp = i ∧ rp = j) ∨ (lp = j ∧ rp = i). (8)

Our first VBS example is just the dimer state, Fig. 1(b),

|D〉 = 2−N/4
N/2∏
p=1

(c†
2p−1 + c†

2p)|0〉, (9)

i.e., lp = 2p − 1, rp = 2p, and ηp = 1 in Eq. (7). Of course,
σi = i + 1 when i is odd, and i − 1 when i is even. We will
also consider some interesting generalizations, such as the
dimer-q state, illustrated in Figs. 1(c) and 1(d) and defined
by

|Dq〉 = 2−N/4
N/2∏
p=1

(c†
2p−1 + �(p, q) c†

2p)|0〉, (10)

where �(p, q) = (−1)�p/q mod 2; i.e., it alternates q bonds
with ηp = +1 sign and q bonds with ηp = −1. Therefore,
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the pattern repeats itself after exactly P = 4q sites. Next, we
consider the rainbow state [22–30], which is formed by a con-
centric set of bonds and presents maximal entropy between its
left and right halves, as shown in Fig. 1(e). It is defined as

|R〉 = 2−N/4
N/2∏
i=1

(c†
i + (−1)N/2+i c†

N+1−i )|0〉. (11)

The rainbow state has received a great deal of attention be-
cause it can be built as the ground state (GS) of a deformed
local Hamiltonian in the limit in which the inhomogeneity
is large. We should stress that the form (11) describes the
GS of some spin chains, such as the XX, XXZ, or Ising
chains [25,28,31], after a Jordan-Wigner (JW) transformation
has been applied, as can be shown making use of the strong
disorder renormalization group devised by Dasgupta and Ma
[32]. The alternating character of the signs of its bonds can
be understood in terms of the nonlocal nature of the JW
transformation. Of course, it makes sense to define a rainbow
state without sign alternation, which we will call the frozen
rainbow for reasons to be understood later; see Fig. 1(f).

Our last state will not be a VBS, yet it presents an inter-
esting spatial periodic pattern, as shown in Fig. 1(g). We will
call it an island-P state, |IP〉, and it is the GS of a Hamiltonian
that can be written by weakening every Pth hopping amplitude
from our original Hamiltonian (1),

HP = H + γ

2

N/P∑
i=1

(
c†

PicPi+1 + H.c.
)
, (12)

for γ → 1− (but γ �= 1 to avoid degeneracy), and N a multi-
ple of P.

We would like to stress that most of these states are invari-
ant under a spatial translation of P sites, but not the rainbow
states. Moreover, all of them can be described as Slater de-
terminants, or Gaussian states, and as such they can be fully
characterized by their correlation matrix, via Wick’s theorem.
In the case of a VBS defined by Eq. (7) we have

Cj, j′ = 〈V |c†
j c j′ |V 〉 = 1

2 (δ j, j′ + ηp( j)δ j,σ ( j′ ) ). (13)

Let us notice that all the considered states at half filling (i.e.,
all of them except the Wigner states with P > 2) are GSs of
Hamiltonians with particle-hole symmetry, which implies that
their density is exactly 〈c†

i ci〉 = 1/2.

III. SPATIAL PATTERNS AND LIGHT-CONE VELOCITIES

In this section we provide the main result of this work, es-
tablishing a link between the spatial pattern of the initial state
and the light-cone velocity or velocities needed to describe the
time-evolved correlation matrix.

A. Free-fermion dynamics

Let us describe the necessary setup to analyze the time
dynamics of the initial states introduced in the previous sec-
tion under the free-fermionic Hamiltonian defined in Eq. (1).
Let us consider an initial state |ψ〉, with correlation matrix
Cj, j′ . After a time t , we will have

|ψ (t )〉 = e−itH |ψ〉. (14)

Since all the considered states are Gaussian, we may charac-
terize the time evolution from the two-point correlator,

Cj, j′ (t ) = 〈ψ (t )|c†
j c j′ |ψ (t )〉 = 〈ψ (0)|c†

j (t )c j′ (t )|ψ (0)〉,
(15)

where c j (t ) is the fermion operator in the Heisenberg picture

c†
j (t ) = eitH c†

j e
−itH = 1√

N

∑
k

e−i jkeitεk d†
k

= 1

N

∑
k,�

e−i( j−�)keitεk c†
�. (16)

Plugging this equation into Eq. (15) yields

Cj, j′ (t ) = 1

N2

[∑
k,k′
�,�′

e−i( j−�)k+i( j′−�′ )k′
eit (εk−εk′ ) C�,�′

]
. (17)

Let us remind the reader that particle-hole symmetry implies
that Cj, j (0) = 1/2, for all our initial states at half filling.
The density can be proved to remain constant for all time,
Cj, j (t ) = 1/2.

B. The dimer state

The dimer case is specially simple and well known, and
deserves to be carried out in some detail. Applying Eq. (17)
we obtain

Cj, j′ (t ) = δ j, j′

2
+ 1

4
(δ j, j′−1 + δ j, j′+1)

+ (−1) j′

4N

∑
k

(ei(− j+ j′−1)k − ei(− j+ j′+1)k )

× e−2it cos k, (18)

which satisfies the initial condition

Cj, j′ (t = 0) = 1
2 (δ j, j′ + δ j,σ ( j′ ) ), (19)

in agreement with Eq. (13) for the dimer state. Observe that
memory of the initial state is never really lost, because the
long-term time average of the correlator yields the original
value

Cj, j′ = 1

T

∫ T

0
Cj, j′ (t )dt → δ| j− j′|,1

4
. (20)

Notice also the time dependence e2itεk in Eq. (18), which
follows from the relation εk+π = −εk . In addition to this, the
term (−1) j′ is responsible for a parity oscillation with respect
to j′.

Let us consider the N � 1 limit in Eq. (18), approximating
the sum by an integral,

1

N

∑
k

→ 1

2π

∫ 2π

0
dk, (21)

and defining x = j′ − j. Then, for x > 1, we can replace
Eq. (18) by

C(x, t ) � (−1) j′

8π

∫ 2π

0
[ei(x−1)k − ei(x+1)k]e−2it cos kdk. (22)
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x

t

x0

t1

x0 − vt1 x0 + vt1

2vt1

FIG. 2. Schematic representation of the propagation of a pair of
quasiparticles with opposite velocities, ±v, stemming from a point
x0. After a time t1, the maximally correlated sites are located at a
distance 2vt1 = veff t .

Now, comparing the above integrals with the standard form of
the Bessel function of the first kind [33],

Jn(ν) = ei nπ
2

2π

∫ 2π

0
einτ−iν cos τ dτ, (23)

we get

C(x, t ) � ei ( j′+ j+1)π
2

4
[Jx−1(2t ) + Jx+1(2t )]. (24)

Notice that when the integrals are expressed in terms of Bessel
functions, the phase between the two terms changes. At x � 2t
we can further approximate the above equation as follows,

C(x, t ) � ei ( j′+ j+1)π
2

2
Jx(2t ). (25)

This expression shows that the correlation presents a light-
cone structure, associated with an effective velocity veff = 2,
since Jx(vefft ) ≈ 0 whenever x � vefft . Notice that veff is
twice the Fermi velocity and apparently exceeds the Lieb-
Robinson bound. The reason can be understood through the
illustration of Fig. 2. Indeed, the initial state can be thought
of as a source of quasiparticle excitations which emerge any-
where in the lattice (x0) and propagate in opposite direction
with the same velocity, ±v. This results in a maximal correla-
tion between sites located at a distance x = 2vt = vefft from
each other.

The asymptotics of the Bessel function provides very
valuable information about the structure of the correlation
functions, both along and away from the light cone, as we
will consider in Sec. V.

C. Form factors

Let us define a form factor Fk,k′ associated with the initial
state |ψ (0)〉 as

Fk,k′ ≡ 〈ψ (0)|d†
k dk′ |ψ (0)〉 = 1

N

∑
�,�′

ei(�k−�′k′ )C�,�′ , (26)

which is just the Fourier transform of the initial correlation
matrix; i.e., it corresponds to the correlation matrix in momen-
tum space. Notice that |〈ψ (t )|d†

k dk′ |ψ (t )〉| is preserved for all

k and k′ along the time evolution. Nonetheless, our definition
Eq. (26) only makes reference to the initial state and does not
have an absolute value. The form factor allows to simplify the
expression for the time-evolved correlation matrix,

Cj, j′ (t ) = 1

N

∑
k,k′

e−i( jk− j′k′ )+it (εk−εk′ )Fk,k′ . (27)

When the initial state is a VBS we can plug Eq. (13) into
Eq. (26) to obtain

Fk,k′ = 1

2
δk,k′ + 1

2N

N∑
�=1

ηp(�)(e
i(k�−k′σ (�)) ). (28)

Let us evaluate the form factor of the states described in the
previous section. For the dimer state, Eq. (9), we have

Fk,k′ =δk,k′

2
+ 1

2N

N/2∑
p=1

(ei((2p−1)k−2pk′ ) + ei(2pk−(2p−1)k′ ) )

=δk,k′

2
+ eik′ + e−ik

2N

N/2∑
p=1

ei2p(k−k′ )

=δk,k′

2
+ eik′ + e−ik

4
(δ|k−k′|=0 + δ|k−k′ |=π ), (29)

which is plotted in Fig. 3(a), where we can observe two
modulated straight lines: k′ = k and k′ = k ± π . In a similar
way, we can show that the form factor for the Wigner states of
period P, Eq. (5), are given by

Fk,k′ = e−i(k−k) 1

2P

P−1∑
m=0

δ|k−k′|,2πm/P. (30)

The exact calculation for the other relevant states is provided
in Appendix A, and here we will only report the results. For
the dimer-q state we obtain

Fk,k′ = δk,k′

2
+ 1

4q

(
q∑

p=1

(
δ|k−k′ |, π (2p−1)

2q
+ δ|k−k′ |,2π− π (2p−1)

2q

))

×
(

q∑
p=1

(
e−i((2p−1)k−2(p−1)k′ ) + e−i(2(p−1)k−(2p−1)k′ ))),

(31)

which means that it presents 2q parallel lines of the form k′ =
k ± (2p − 1)π/2q, as shown in Fig. 3(b). On the other

Fk,k′ = δk,k′

2
+ (−1)N/2+1ei k−k′

2

4N

(
ei kN

2 + (−1)N/2+1e−i k′N
2

)2

cos( k+k′
2 )

,

(32)
and it can be visualized in Fig. 3(c). The denominator
cos[(k + k′)/2] shows that Fk,k′ diverges whenever k + k′
= ±π , which yields the two orthogonal lines. The frozen
rainbow has a simpler form factor,

Fk,k′ = δk,k′

2
+ e−i(N+1)k′

δ|k+k′ |=0

2
, (33)

which yields the two orthogonal lines, k′ = k and k′ = −k,
as we can see in Fig. 3(d). Finally, we have numerically
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FIG. 3. Absolute value of the form factors |Fk,k′ | for several relevant states, using N = 240. The color code is chosen so as to provide a
higher contrast. (a) Dimerized state, Eq. (9). (b) Dimer-1 state, Eq. (10). (c) Rainbow state, Eq. (11). (d) Frozen rainbow state. (e) Island-3
state, using γ = 1–10−3.

evaluated the form factor for the island-3 state, and check
that it is approximately concentrated along straight lines of
the form k′ = k ± 2π/3 and k′ = k ± 4π/3.

D. Emergence of an effective velocity

In the previous section we realized that in many cases we
can express the form factor in the following form,

Fk,k′ ≈
∑

p

Fp(k)δ(k ± k′ + αp), (34)

where Fp(k) is the modulation function and αp is the phase
shift. Notice that this expression is exact in most cases, being
approximate only for the rainbow and the island states. In this
case, the time-evolved correlation matrix can be decomposed
into a sum of terms, each of which provides a light cone with
a different effective velocity, as we will prove.

The time-evolved correlation matrix, Eq. (27), can be
written now as

Cj, j′ (t ) ≡
∑

p

∑
k

Fp(k)e−i[k j∓(k+αp) j′]ei(εk−ε±(k+αp ) )t

=
∑

p

C(p)
j, j′ (t ) (35)

and each p term can be evaluated as

C(p)
j, j′ (t ) = e±iαp j′

∑
k

Fp(k)e−ik( j∓ j′ )e−i[cos(k)−cos(k+αp)]t

= e±iαp j′
∑

k

Fp(k)e−ik( j∓ j′ )e−i2 sin (k+αp/2) sin(αp/2)t

= e±iαp j′
∑

q

Fp(q)ei−[(π−αp)/2−q]( j∓ j′ )

× e−i cos(q)[2 sin(αp/2)t], (36)

where in the last step we have defined q = (π − αp)/2 − k.
Notice that the time dependence is completely encoded in the
last term, and we can define an effective velocity

veff,p = 2 sin(αp/2), (37)

thus allowing us to postulate that each straight line in the form
factor diagram yields a term in the time-evolved correlation
matrix, where the main difference is provided by the effective
velocity. We are thus led to claim that our states may present
different types of quasiparticles, characterized by different
spreading velocities.

Moreover, we observe that once the velocity has been
changed, the results are quite similar to those found for the
dimer case, Eq. (25), thus allowing us to conjecture that
the structure of the correlation functions will be similar
in all the considered cases, once the time axis is scaled
appropriately.

Let us check numerically the validity of expression (37),
evaluating the time evolution of the correlation matrix of the
states discussed in Sec. II. In all the cases we will show the
correlation |C1, j (t )| using a color map, with the second index
in the horizontal axis and time in the vertical one.

Let us start with the Wigner crystals of period P, given in
Eq. (5), even though they are not at half filling for P > 2. The
system size has been chosen in all the cases to be a multiple of
P. Our theoretical prediction in this case is very clear, because
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FIG. 4. Correlation maps |C1, j (t )| for Wigner crystals, for different values of the periodicity with N = 240 for (a) P = 2, (b) P = 3,
(c) P = 4, and (d) P = 5. The straight lines correspond to the theoretical predictions.

the linear structure in the form factor is exact: the correlation
matrix contains several terms, one corresponding to each line.
The velocities are always given by

veff,m = 2 sin
(m

P
π

)
, (38)

with m ∈ {1, . . . , P − 1}. Thus, it will have a single light cone
for P = 2 and P = 3, which matches with the prediction given
in [21]. However, we additionally show that for P > 3 one
gets more than one light cone. Figure 4 shows that this is in-
deed the case, using N = 240. Notice that the innermost light
cone could have been predicted just by considering the group
velocity at the corresponding filling factor, but our theoretical
framework predicts all of them. Moreover, the outermost light
cone is not predicted by the group velocity framework for
P > 3.

Next, let us check the validity of our results for the dimer
state and its relatives, the dimer-q states. Our prediction for
the dimer state is a single light cone, with velocity veff =
2 sin(π/2) = 2, which is indeed the case, as we can see in
Fig. 5(a). Yet, for alternating patterns of bonds and antibonds,
we can observe lower velocities. For the dimer-1 state we
have a single velocity, veff = 2 sin(π/4) = √

2, which we can
check in Fig. 5(b). The situation for the dimer-2 and dimer-3
states is slightly more involved. In general, the velocities of
the dimer-q states are given by

veff,p = 2 sin

(
(2p − 1)

4q
π

)
, (39)

and we can see that for the dimer-2 the velocities are
veff = 2 sin(π/8) and 2 sin(3π/8), as shown in Fig. 5(c),

while for the dimer-3, the velocities are veff = 2 sin(π/12),
2 sin(3π/12), and 2 sin(5π/12), which are shown in Fig. 5(d).

Next, let us consider the rainbow and the frozen-rainbow
states. In Fig. 6(a) we see the time-evolved correlation func-
tion |C1, j (t )| for the rainbow state, which is very similar to
that of the dimerized state. Indeed, our theoretical predic-
tion is that there will be a single light cone with velocity
veff = 2 sin(π/2) = 2. For the frozen rainbow our prediction
is, on the other hand, that veff = 0, which is apparent from the
absence of time evolution in the correlation function that we
can see in Fig. 6(b). Indeed, the frozen rainbow can be proved
to be an eigenstate of our Hamiltonian, Eq. (1).

Finally, let us consider the island-3 state, which is not a
valence bond state, and is obtained as the ground state of
Hamiltonian (12) with γ = 1–10−3. Indeed, the theoretical
prediction based on the observation of the numerical form
factor seen in Fig. 3(e) is that we will obtain a single light cone
with veff = 2 sin(π/3), which can be checked in the dashed
straight line on the plot of Fig. 6(c).

IV. ENTANGLEMENT GROWTH

The previous results have an impact on our predictions for
the growth of the entanglement entropy of a block of size �.
The quasiparticle picture devised by Cardy and Calabrese [2]
provides the following ansatz,

S(�, t ) =
{

σvt, if t < tsat,

σ�, if t > tsat,
(40)
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FIG. 5. Correlation maps |C1, j (t )| for dimerized states, using N = 240. (a) Dimer state, (b) dimer-1, (c) dimer-2, and (d) dimer-3. The
straight lines correspond to the theoretical predictions.

where v is the effective velocity of the quasiparticles, and σ

is the entropy per site of the stationary state after the quasi-
particle wave has gone through the block. Of course, there
may be more than one type of quasiparticle, and then the total
entropy can be estimated as a sum of terms of the form (40).
Figure 7(a) shows the growth of EE for some of the states
in our family, using always N = 360 and � = 50. Indeed, we
can see that in some cases the single-quasiparticle picture is
enough to predict the behavior, but for others we observe
several regimes with different slopes, which correspond to
the passage of different types of quasiparticles, with different
velocities.

Figure 7(a) shows the EE of the leftmost block of � = 50
sites out of a system with N = 360 as a function of time, for

several of our states. They all start in a linear way, as predicted
by the quasiparticle picture, but they grow with different
slopes. The saturation times for this first stage differ, since
they are related to the fastest light-cone velocity present in the
correlation function. In all cases, we have tsat = �/veff , where
veff corresponds to the largest effective velocity. Moreover, the
saturation values for the entropy are also very different among
them, and we see that the dimer-q states reach the maximal
possible value, Ssat ≈ � ln(2), but the dimer and the island-3
do not.

The states with several light cones, such as the dimer-2,
dimer-3, and dimer-4, present more than one linear stage of
growth, with different slopes, related to the passage of the
different types of quasiparticles. Once the quickest ones have

FIG. 6. Correlation maps |C1, j (t )| for dimerized states, using N = 240. (a) Rainbow, (b) frozen rainbow, (c) island-3. The straight lines
correspond to the theoretical predictions.
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FIG. 7. (a) Time evolution of the EE of certain selected states under the action of Hamiltonian (1) for N = 360 and � = 50. Notice that
in some cases, such as the dimer, dimer-1, or island-3, the quasiparticle picture is fulfilled with a single velocity. Yet, for other states, such as
dimer-2, dimer-3, we observe two different slopes, corresponding to the different types of quasiparticles. (b) When both the EE and time are
rescaled by their saturation values, the data collapse for the three cases with a single light cone, i.e., dimer, dimer-1, and island-3.

saturated, the slower ones still keep entangling the block with
its environment, until they also saturate at a later time. At
a time t = (L − �)/veff the quickest particles have traveled
around the whole system, and they start meeting again inside
the initial block. We start a low entangling phase, in which
the entanglement decreases linearly, reaching a lower value
beyond which it starts growing again.

Let us consider the simplest case, that in which we obtain
a single light cone with a single speed. Among our examples,
we have the dimer case, with veff = 2, the dimer-1 case, with
veff = 2 sin(π/4) = √

2, and the island-3 case, with veff =
2 sin(π/3) = √

3. Thus, we predict that the saturation times
will be, respectively, tsat = �/veff in all cases. Figure 7(b)
shows the EE S/Ssat divided by the saturation value, as a
function of t/tsat, for a block � = 50 from a system with
N = 360 using the dimer, dimer-1, and island-3 states. The
data for the three systems collapse not only during the growth
stage but also on the low entangling phase, both of which are
marked by vertical lines.

V. UNIVERSAL FEATURES OF THE
CORRELATION MATRIX

As we have checked both analytically and numerically, the
time evolution of the correlation function of the discussed
states under the free-fermionic Hamiltonian presents one or
several light cones related to the patterns present in the initial
state. In this section we will discuss the internal structure of
this time-evolved correlation function, both on the light cone
and away from it. In the rest of this section we will consider
that time has been rescaled such that

t → vefft/2, (41)

and that we are considering a single contribution to the form
factor, i.e., a single value of p in Eq. (34).

A. Asymptotic expansion along the light cone

Let us start with expression (25) for the time-evolved corre-
lation function in the dimer case. The asymptotic expansions

of Jx(2t ) in the vicinity of the light cone x = 2t is given by

Jx(x) ∼ 21/3

32/3�(2/3)

1

x1/3
, x → ∞. (42)

Now replacing Jx−1 and Jx+1 by Jx, we get

C(x = 2t ) ≈ ei ( j′+ j+1)π
2

232/3�(2/3)

1

t1/3
. (43)

This implies a behavior t−1/3 for the correlator exactly on
the light cone x = 2t . This behavior is expected in all our
cases, since the correlation matrix is a sum of terms, each
one of them associated with a light cone, and all of them
presenting a behavior similar to (43). Indeed, this is proved to
be the case in Fig. 8, where we show the decay along the light
cone of the correlation for most of our states, always using
N = 240. For the dimer and the rainbow the power-law decay

0.01

0.1

001011

|C
1
,v

t(
t)
|

Time, t

Dimer
Rainbow
Dimer-1
Dimer-2
Dimer-3
Island-3

FIG. 8. Decay of the correlation between site 1 and site j = veff t
as a function of time for a system with N = 240 sites, for most of
our initial states, using always the maximal velocity veff for which a
light cone appears. The continuous black straight line correspond to
the theoretical prediction, C ∼ t−1/3.
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FIG. 9. (a) Space-time diagram of the evolution of the correlation of the dimer state after a quench obtained using Eq. (25) for the
region x � 1. The diagram shows the correlation between the leftmost site with all other sites, Cx = |〈�(t )|c†

1c1+x|�(t )〉|. Each of the lines
approximately corresponds to a maximum (or a minimum) of |Cx| that can be obtained by putting the argument of cosine in Eq. (49) to be
integer (half integer) multiple of π . For instance, the dashed line corresponds to a maximum of |Cx| where the argument of cosine in Eq. (49)
takes the value 2π . (b) Comparison of the values of correlator |Cx| obtained using Eqs. (25) (violet) and (49) (green) along the dashed line
shown in panel (a).

is very clean. For all the other states we have chosen the most
intense light cone, and the results present oscillations which
partially mask the universal features. Yet, we can see that in
all the considered cases (dimer-1, dimer-2, dimer-3, and island
states) the t−1/3 scaling is respected to a good approximation.

B. Asymptotic expansion away from the light cone

There is another interesting asymptotic behavior that
emerges following the approximation of the Bessel functions
[33], given by

Jν (ν + zν1/3) ∼ (2/ν)1/3 Ai(−21/3z), ν → ∞, (44)

where Ai(z′) is the Airy function. Now one can use the asymp-
totic behavior of Ai(z′) given by

Ai(−z′) ∼ π−1/2z′−1/4 sin(ζ + π/4), |z′| � 1, (45)

and consider z′ > 0, with ζ = 2
3 z′3/2. Plugging (45) into (44)

yields

Jν (ν + zν1/3) ∼ 21/4

π1/2ν1/3z1/4
cos

(
(2z)3/2

3
− π

4

)
. (46)

These expressions give the asymptotics of Jx(2t ) with the
identifications

x = ν, 2t = ν + zν1/3 → z = 2t − x

x1/3
. (47)

Plugging that into Eq. (46) we get

Jx(x + zx1/3) ∼ 21/4

π1/2x1/4(2t − x)1/4

× cos

(
(4t − 2x)3/2

3x1/2
− π

4

)
, (48)

which may lead to another prediction for the correlators within
the light cone,

C(x, t ) � ei ( j′+ j+1)π
2

23/4π1/2x1/4(2t − x)1/4
cos

(
(4t − 2x)3/2

3x1/2
− π

4

)
.

(49)

In Fig. 9(a) we plot the behavior of C(x, t ) obtained using
Eq. (25), for the region x � 1, and identify that the maximum
(minimum) in Fig. 9(a) is obtained when the argument of the
cosine in Eq. (49) becomes an integer (half integer) multiple
of π . For instance, the dashed line in Fig. 9(a) corresponds to
(4t−2x)3/2

3x1/2 − π
4 = 2π . Hence, one can find that along such lines,

correlators again approximately behave similarly to the light
cone,

C(x, t ) � ei ( j′+ j+1)π
2

23/4π1/2x1/3z1/4
. (50)

An exact comparison of |Cx| obtained using Eq. (25) to
that obtained using Eq. (49) along this line is presented in
Fig. 9(b).

VI. CONCLUSIONS AND FURTHER WORK

We have considered the time evolution of several quantum
states on a periodic chain with spatial patterns under the mass-
less free-fermion Hamiltonian, finding that all of them present
one or several light cones with different velocities, which
can be read from the form factor, i.e., the initial correlation
matrix in momentum space. As we have been able to check,
in all the considered cases the form factor is concentrated on
straight lines, and the momentum shift associated with each of
them provides an effective light-cone velocity. In some cases
we were able to find a single light cone, but with a velocity
lower than the Fermi velocity associated with the considered
Hamiltonian and filling factor, bearing some similarities to
the recent experiments in which a light beam can be seen
to propagate in vacuum with a velocity lower than c, due to
interference effects associated with its internal structure.

Moreover, we have found that this complex light-cone
structure shows up in the time evolution of the entanglement
entropy. In the case of initial states which give rise to a single
light cone we were able to collapse the EE as we rescale both
time and the entropy to its maximal saturation value, which
also differs from one state to others. Yet, for the complex
light-cone structures we observe that the EE growth presents
several linear regimes before saturation. This behavior can be
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explained within the quasiparticle picture, if we assume that
there are several species of quasiparticles. We would like to
remark that the entropy production depends on the initial state.
In our case, the dimer-q states reach the maximum possible
value for the entropy, Ssat = � ln(2), while other states seem
to reach lower values for the saturation, implying that their
quasiparticles do not carry enough entanglement among them.

It is relevant to ask about the nature of these quasiparticles,
which is hidden inside the form factor. Indeed, it can be shown
that certain pairs of momenta are strongly entangled among
themselves, and this entanglement is preserved along the time
evolution. For example, the frozen rainbow state entangles
momenta k and −k, and the dimer state entangles momenta
k and k ± π . An analysis of entanglement in Fourier space
would be of much help to elucidate this question [34].

Beyond the existence of the light cone and its velocity, we
found that each straight-line term in the form factor gives rise
to a term in the correlation matrix that decays like t−1/3 at
large distances. Moreover, the lost correlation spreads away
from the light cone in a way that is also predicted by the theory
in the continuum limit.

It is relevant to ask whether these structures can be seen
in interacting systems, either integrable or nonintegrable. The

dynamics of interacting systems is very different from the
free theory considered in our case, because our form factor
is preserved through the evolution. In this regard, we may
conjecture that a quench to a conformally symmetric Hamil-
tonian will tend to give rise to a light cone, and the spread
velocity dependence on the state will also appear in those
cases.
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APPENDIX: COMPUTATION OF THE FORM FACTORS

In this Appendix we evaluate the exact form factors for some of the states discussed in the main text.

1. Form factor for the rainbow state

Let us now compute the form factor for the rainbow state as follows,

Fk,k′ = 1

2N

∑
�

([(−1)η�ei[�k−σ (�)k′] + ei[kσ (�)−�k′]] + [ei(�k−�k′ ) + ei[σ (�)k−σ (�)k′]])

= 1

2N

N/2∑
�=1

(−1)�+N/2[ei[k�−(N+1−�)k′] + ei[k(N+1−�)−�k′]] + 1

2N

N/2∑
�=1

[ei�(k−k′ ) + ei(N+1−�)(k−k′ )], (A1)

where we have used � ∈ A = {1, 2, 3, . . . N/2}, and σ (�) ∈ Ā = N, N − 1, . . . , N + 1 − �, η� = N/2 + �. Now let us consider
each term separately.

1

2N

N/2∑
�=1

(−1)�+N/2[ei[k�−(N+1−�)k′]] = 1

2N
e−ik′(N+1)

N/2∑
�=1

(−1)�+N/2ei�(k+k′ ). (A2)

Now using the formula
∑N/2

n=0 xn = xN/2+1−1
x−1 , and thus

∑N/2
n=1 xn = xN/2+1−1

x−1 − 1 = xN/2+1−x
x−1 , we get

(−1)N/2

2N
e−ik′(N+1)

N/2∑
�=1

(−1)�ei�(k+k′ ) = (−1)N/2+1

2N
e−ik′(N+1)

[
(−1)N/2+1ei(N/2+1)(k+k′ ) + ei(k+k′ )

ei(k+k′ ) + 1

]
. (A3)

Similarly, for the second term, in Eq. (A3) we have to replace k by −k′ and we will get

(−1)N/2

2N
eik(N+1)

N/2∑
�=1

(−1)�[e−i�(k+k′ )] = (−1)N/2+1

2N
eik(N+1)

[
(−1)N/2+1e−i(N/2+1)(k+k′ ) + e−i(k+k′ )

e−i(k+k′ ) + 1

]
, (A4)

whereas the third and the fourth terms give

1

2N

N/2∑
�=1

[ei�(k−k′ ) + ei(N+1−�)(k−k′ )] = δk,k′

2
. (A5)
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Now plugging these back in Eq. (A1), we get

Fk,k′ = (−1)N/2

2N

N/2∑
�=1

(−1)�[ei[k�−(N+1−�)k′] + ei[k(N+1−�)−�k′]] + 1

2N

N/2∑
�=1

[ei�(k−k′ ) + ei(N+1−�)(k−k′ )]

= (−1)N/2+1

4N

ei k−k′
2 (eikN/2 + (−1)N/2+1e−ik′N/2)2

cos( k+k′
2 )

+ δk,k′

2
. (A6)

2. Form factor for frozen rainbow

The form factor for the frozen-rainbow state for |k + k′| �= 0, 2π, 4π is given by

Fk,k′ = 1

2N

N/2∑
�=1

[ei[k�−(N+1−�)k′] + ei[k(N+1−�)−�k′]] + 1

2N

N/2∑
�=1

[ei�(k−k′ ) + ei(N+1−�)(k−k′ )]

= 1

2N

[
e−ik′(N+1) ei(k+k′ )(N/2+1) − ei(k+k′ )

ei(k+k′ ) − 1
+ eik(N+1) e−i(k+k′ )(N/2+1) − e−i(k+k′ )

e−i(k+k′ ) − 1

]

= 1

2N

[
eik(N/2+1)−ik′N/2 − eik−ik′N

ei(k+k′ ) − 1
+ eikN/2−ik′ (N/2+1)− − eikN−ik′

e−i(k+k′ ) − 1

]
+ δk,k′

2
, (A7)

whereas, for |k + k′| = 0, 2π, 4π, Fk,k′ is given by

Fk,k′ = e−ik′(N+1) + eik(N+1)

4
+ δk,k′

2

= e−ik′(N+1)

2
δ|k+k′|,0 + δk,k′

2
. (A8)

3. Form factor for dimer-1

We derive the form factor for the dimer-1 state as follows:

Fk,k′ = 1

2N

N/2∑
�=1

([(−1)η�ei[�k−σ (�)k′] + ei[kσ (�)−�k′]] + [ei(�k−�k′ ) + ei[σ (�)k−σ (�)k′]])

= 1

2N

N/2∑
�=1

([(−1)�ei[(2�−1)k−2�k′] + ei[k2�−(2�−1)k′]] + [ei(�k−�k′ ) + ei[σ (�)k−σ (�)k′]])

= 1

2N
(e−ik

N/2∑
�=1

(−1)�ei2�(k−k′ ) + eik′
N/2∑
�=1

(−1)�ei(�k−�k′ ) ) + δ|k−k′ |,0
2

,

Fk,k′ = e−ik + eik′

4
(δ|k−k′ |,π/2 + δ|k−k′ |,3π/2) + δ|k−k′ |,0

2
. (A9)

4. Form factor for the dimer-2 and any general dimer-q state

We now aim to derive the form factor of the dimer-q state for any general q. For that we first present the case for q = 2:

Fk,k′ = 1

2N

(
N/4∑
�=1

(−1)η� [ei[k(4�−3)−k′(4�−2)] + ei[k(4�−1)−k′ (4�)]] +
N/4∑
�=1

(−1)η� [ei[k(4�−2)−k′(4�−3)] + ei[k(4�)−k′(4�−1)]]

+
N/2∑
�=1

[ei(�k−�k′ ) + ei(σ (�)k−σ (�)k′ )]

)
(A10)

= 1

2N

(
e−i(3k−2k′ )

N/4∑
�=1

(−1)η�ei[4�(k−k′ )] + e−ik
N/4∑
�=1

(−1)η�ei[4�(k−k′ )] + ei(3k′−2k)
N/4∑
�=1

(−1)η�ei[4�(k−k′ )]

+ eik′
N/4∑
�=1

(−1)η�ei[4�(k−k′ )]

)
+ δk,k′

2
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= 1

8

(
e−i(3k−2k′ )(δ|k−k′|, π

4
+ δ|k−k′ |, 3π

4
+ δ|k−k′ |, 5π

4
+ δ|k−k′ |, 7π

4

) + e−ik
(
δ|k−k′ |, π

4
+ δ|k−k′ |, 3π

4
+ δ|k−k′ |, 5π

4
+ δ|k−k′ |, 7π

4

)
+ ei(3k′−2k)(δ|k−k′ |, π

4
+ δ|k−k′|, 3π

4
+ δ|k−k′ |, 5π

4
+ δ|k−k′|, 7π

4

) + eik′(
δ|k−k′ |, π

4
+ δ|k−k′|, 3π

4
+ δ|k−k′ |, 5π

4
+ δ|k−k′ |, 7π

4

))
+ δk,k′

2
(A11)

= 1

8

(
δ|k−k′|, π

4
+ δ|k−k′ |, 3π

4
+ δ|k−k′|, 5π

4
+ δ|k−k′ |, 7π

4

)(
e−i(3k−2k′ ) + e−ik + ei(3k′−2k) + eik′) + δk,k′

2
. (A12)

Hence, the form factor for any general dimer-q state is given by

Fk,k′ = δk,k′

2
+ 1

4q

(
q∑

p=1

(
e−i[(2p−1)k−2(p−1)k′] + e−i[2(p−1)k−(2p−1)k′]))(

q∑
p=1

(
δ|k−k′ |, π (2p−1)

2q
+ δ|k−k′|,2π− π (2p−1)

2q

))
. (A13)
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