
PHYSICAL REVIEW B 105, 214305 (2022)

Symmetry and topological classification of Floquet non-Hermitian systems

Chun-Hui Liu,1,2,* Haiping Hu,1,† and Shu Chen 1,2,3,‡

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China

(Received 14 December 2021; revised 22 April 2022; accepted 16 May 2022; published 15 June 2022)

Recent experimental advances in Floquet engineering and controlling dissipation in open systems have
brought about unprecedented flexibility in tailoring novel phenomena without any static and Hermitian ana-
logues. It can be epitomized by the various Floquet and non-Hermitian topological phases. Topological
classifications of either static/Floquet Hermitian or static non-Hermitian systems based on the underlying sym-
metries have been well established in the past several years. However, a coherent understanding and classification
of Floquet non-Hermitian (FNH) topological phases have not been achieved yet. Here we systematically classify
FNH topological bands for 54-fold generalized Bernard-LeClair (GBL) symmetry classes and arbitrary spatial
dimensions using K theory. The classification distinguishes two different scenarios of the Floquet operator’s
spectrum gaps [dubbed as Floquet operator (FO) angle-gapped and FO angle-gapless]. The results culminate
into two periodic tables, each containing 54-fold GBL symmetry classes. Our scheme reveals FNH topological
phases without any static/Floquet Hermitian and static non-Hermitian counterparts. And our results naturally
produce the periodic tables of Floquet Hermitian topological insulators and Floquet unitaries. The framework can
also be applied to characterize the topological phases of bosonic systems. We provide concrete examples of one-
and two-dimensional fermionic/bosonic systems. And we elucidate the meaning of the topological invariants and
their physical consequences. Our paper lays the foundation for a comprehensive exploration of FNH topological
bands. And it opens a broad avenue toward uncovering unique phenomena and functionalities emerging from the
synthesis of periodic driving, non-Hermiticity, and band topology.
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I. INTRODUCTION

Over the past decades, topological phase of matter [1–5]
has become one of the major research fields in the inter-
disciplinary areas of condensed matter physics, photonics,
cold-atom physics, electrical circuits, acoustics, etc. In topo-
logical matter, symmetry plays a central role: The topological
matter can be categorized into distinct classes based on its
underlying symmetries, and the appearance of gapless surface
states is protected against symmetry-preserving perturbations.
Quite recently, the topological phases well studied in iso-
lated quantum systems described by Hermitian Hamiltonians
have been extended to the non-Hermitian regime [6–14],
partially fueled by the explosive research advancements in
a diverse set of, e.g., atomic, molecular, and optical plat-
forms [15–21]. Non-Hermitian Hamiltonian emerges as an
effective description of a variety of quantum and classical
systems, ranging from condensed matter materials with finite-
lifetime quasiparticles [22–30], bosonic particles governed by
Bogoliubov-de-Gennes (BdG) equations [31–46], open quan-
tum systems dictated by quantum master equation [47–50], to
photonic setups with gain and loss [9,51–66]. Compared to the
Hermitian case, non-Hermitian Hamiltonians generally have
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complex eigenenergies, giving rise to a plethora of intriguing
phenomena without any Hermitian analogues [66–89].

Floquet engineering is the control of a system through
the periodic drive, which has been widely utilized in pho-
tonic systems and ultracold atoms [90–97] and provides a
powerful tool for tailoring topologically nontrivial band struc-
tures. In Floquet systems, the Hamiltonian is periodic in time
H (t + τ ) = H (t ), with τ the driving period [98–101], and
ω = 2π/τ the driving frequency. The topological phases in
static Hermitian systems have also been generalized to the
Floquet Hermitian systems [102–105]. Stroboscopically, the
time evolution over one period is effectively described by the
so-called Floquet Hamiltonian (FH), with its spectra called
quasienergies. The quasienergies are only well defined up to
integer multiples of the driving frequency ω. Due to such
periodicity of the quasienergy, the topological properties of
Floquet systems turn out to be much richer than static cases.
Typical examples include the anomalous Floquet topological
phases [106–113], with the appearance of boundary states
even when the bulk quasienergy bands are trivial. The anoma-
lous Floquet phases are intrinsically dynamical without static
counterparts, and their topological characterization requires a
scrutinization of the time-evolution operator inside the whole
driving period [106].

For a comprehensive understanding of the various topolog-
ical phases and their associated unique features, a coherent
topological classification according to basic symmetry classes
is the key step. The topological classifications for either the
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static (time-independent) Hermitian or Floquet Hermitian sys-
tems have previously been obtained. For the static case, taking
into account the three fundamental internal symmetries: time-
reversal, particle-hole, and chiral symmetry, yields the famous
Altland-Zirnbauer (AZ) tenfold way [114–120]. For example,
the Chern insulator and quantum spin Hall insulator belong
respectively to class A and class AII. They are described by
the Z and Z2 invariants, respectively. For the FH real-gapped
Floquet case, the dynamics of the system are dictated by its
unitary time-evolution operator U (k, t ). From a homotopic
point of view, the unitary operator U (k, t ) can be decomposed
into a unitary loop operator followed by a constant evolution
of the effective Floquet Hamiltonian. A complete understand-
ing of the bulk topology involves the analysis of the effective
Floquet Hamiltonian and the classification of the loop unitary
through K theory. The results are listed in the Floquet AZ
periodic table [103,104].

The extension of the AZ tenfold way of the Hermitian
Hamiltonians to the undriven non-Hermitian systems accom-
plished during the past several years is highly nontrivial.
First, the complex eigenenergies of a generic non-Hermitian
Hamiltonian bring more possibilities for the energy gap.
Generally speaking, the non-Hermitian Hamiltonians feature
either point-like or line-like gaps, as sketched in Fig. 1
or separable bands without any band singularities [121].
Second, the non-Hermiticity ramifies the celebrated AZ sym-
metry classes to the Bernard-LeClair (BL) symmetry classes
[122,123] due to the nonequivalence between complex con-
jugation and transposition for non-Hermitian operators. For
separable band structures without any symmetries, a purely
homotopical classification [124–126] by taking into account
the band braidings is carried out. Further refining to spec-
tra to possess point-like or line-line gaps, the 38-fold BL
classifications and 54-fold generalized BL (GBL) classifi-
cations have been obtained, respectively [14,127–131]. The
last quarter of the whole classification map—the Floquet
non-Hermitian (FNH) system, is not yet touched upon. The
theoretical explorations of the richness of FNH topological
phases are still in their early stages. A complete topologi-
cal classification of FNH systems based on their underlying
symmetries is not only of fundamental significance but also
experimentally relevant. A periodically driven non-Hermitian
system features nonunitary quantum dynamics. And it de-
scribes a variety of physical settings, e.g., photonic systems
with gain and loss or nonreciprocal effects under Floquet
driving [132–141], ultracold atoms with dissipation inter-
acting with an external electromagnetic field [27,142–146],
and nonunitary quantum walks [58,62,63,88,147]. In this
paper, we develop a systematic topological classification of
FNH systems according to the internal symmetries based on
K theory. We demonstrate that there exist 54-fold distinct
GBL classes for time-dependent non-Hermitian systems. In
contrast to the previous classification frameworks of static
point gap non-Hermitian Hamiltonians [14,127–131], a more
natural spectrum gap is defined directly through the Floquet
operator (FO) U (k, τ ). We distinguish two different scenar-
ios of the spectra of U (k, τ ) on the complex plane and dub
them FO angle-gapped and FO angle-gapless, respectively.
As depicted in the left panel Fig. 1(d), the FO angle-gapped
spectra manifest as the appearance of angle gaps in the spectra

FIG. 1. Schematics of the spectrum gaps for the four dif-
ferent types (static Hermitian/non-Hermitian and Floquet driven
Hermitian/non-Hermitian) of systems. (a) The energy gap of a static
Hermitian Hamiltonian. A topological transition happens through
band touching at the Fermi energy EF accompanied by gap closing.
(b) Energy gaps for a static non-Hermitian Hamiltonian. As the
eigenenergies are complex, the band gaps can be line-like (left panel)
or point-like (right panel). The line gap (orange line) separates the
bands (blue) into two distinct regions. For the point-gap case, the
complex bands (blue) do not touch a reference point Er (orange, here
set to be at zero). (c) The spectrum gaps of the Floquet operator
U (k, τ ) for a Floquet driven Hermitian system. The spectra (blue)
lie on the unit circle (dotted gray) as the Floquet operator is unitary.
(d) The spectra (blue) of the Floquet operator for a Floquet driven
non-Hermitian system. Left panel is the FO angle-gapped case. The
spectra are split into several disjoint pieces around the origin by the
radial lines (red), with the FO angle gaps denoted as AG-1, AG-2, …,
AG-n. Unlike the Floquet Hermitian system, the spectra of U (k, τ )
do not necessarily lie on the unit circle as the Floquet operator is
nonunitary. Right panel is the FO angle-gapless case. The Floquet
operator spectra encircle the origin without any FO angle gaps.

of Floquet operator. From a well-defined loop operator and a
well-defined static Hamiltonian, we obtain the periodic table
containing each symmetry class and its associated topological
invariants, summarized in Table I. For the FO angle-gapless
case, the spectra of U (k, τ ) enclose the origin, leaving no
additional constraints on the Floquet Hamiltonian. The topo-
logical classification is to find all the nonequivalent homotopy
classes of the Floquet operator, culminating in the second
periodic table summarized in Table II. A part of our classifica-
tion reproduces/consistents of Roy and Harper’s periodic table
of Floquet Hermitian topological insulators [103–105] and
Higashikawa, Nakagawa, and Ueda’s periodic table of Flo-
quet unitaries [148]. Our frameworks can be directly applied
to characterize the Floquet dynamics of bosonic systems.
We consider concrete examples in one and two-dimensional
fermionic/bosonic systems and elucidate the meaning of the
topological invariants and their physical consequences.
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TABLE I. Periodic table of Floquet non-Hermitian topological phases for FO angle gapped case. d is the spatial dimension. Each row
corresponds to a specific generalized Bernard-LeClair (GBL) symmetry class, labeled by its name in the first column. The second column lists
the symmetry-generator relations, including the signs of time-flipping, operator involution, and commutation relations. For the classes with P
and at least one of the Q and K symmetries, only the cases of εq = 1 or εk = 1 are listed in the table. This is because the classes of εq = −1 or
εk = −1 are equivalent to the corresponding classes of εq = 1 or εk = 1 in the presence of P symmetry, as can be seen from Eqs. (10)–(13).
The third column gives the classifying space of each symmetry class. In the table, n ∈ Z+ is the total number of relevant spectrum gaps.
np = nq + nr . And nr ∈ {1, 2} counts the relevant FO angle gaps at 0 and π . nq ∈ Z+ ∪ {0} is the number of pairs of FO angle gaps at (θm,
−θm) (m = 1, 2, . . . , nq, θm �= 0, π ). The topological numbers in the table are stable strong topological numbers.

GBL Gen. Rel. Cl d = 0 1 2 3 4 5 6 7

Non C×n
0 Z×n 0 Z×n 0 Z×n 0 Z×n 0

P C
×np
1 0 Z×np 0 Z×np 0 Z×np 0 Z×np

Qa εq = 1 C×2n
0 Z×2n 0 Z×2n 0 Z×2n 0 Z×2n 0

Qb εq = −1 C
×np
1 0 Z×np 0 Z×np 0 Z×np 0 Z×np

K1a εk = 1, ηk = 1 R×n
0 Z×n 0 0 0 2Z×n 0 Z×n

2 Z×n
2

K1b εk = −1, ηk = 1 R
×np
2 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np 0

K2a εk = 1, ηk = −1 R×n
4 2Z×n 0 Z×n

2 Z×n
2 Z×n 0 0 0

K2b εk = −1, ηk = −1 R
×np
6 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0

C1 εc = 1, ηc = 1 R×n
0 Z×n 0 0 0 2Z×n 0 Z×n

2 Z×n
2

C2 εc = 1, ηc = −1 R×n
4 2Z×n 0 Z×n

2 Z×n
2 Z×n 0 0 0

C3 εc = −1, ηc = 1 R
×np
2 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np 0

C4 εc = −1, ηc = −1 R
×np
6 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0

PQ1 εq = 1, εpq = 1 C
×2np
1 0 Z×2np 0 Z×2np 0 Z×2np 0 Z×2np

PQ2 εq = 1, εpq = −1 C
×np
0 Z×np 0 Z×np 0 Z×np 0 Z×np 0

PK1 εk = 1, ηk = 1, εpk = 1 R
×np
1 Z

×np
2 Z×np 0 0 0 2Z×np 0 Z

×np
2

PK2 εk = 1, ηk = −1, εpk = 1 R
×np
5 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0 0

PK3a εk = 1, ηk = 1, εpk = −1 R
×np
7 0 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np

PK3b εk = 1, ηk = −1, εpk = −1 R
×np
3 0 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np

PC1
εc = 1, ηc = 1, εpc = 1

εc = −1, ηc = 1, εpc = 1
R

×np
1 Z

×np
2 Z×np 0 0 0 2Z×np 0 Z

×np
2

PC2
εc = 1, ηc = 1, εpc = −1

εc = −1, ηc = −1, εpc = −1
R

×np
7 0 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np

PC3
εc = 1, ηc = −1, εpc = 1

εc = −1, ηc = −1, εpc = 1
R

×np
5 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0 0

PC4
εc = 1, ηc = −1, εpc = −1
εc = −1, ηc = 1, εpc = −1

R
×np
3 0 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np

QC1a εq = 1, εc = 1, ηc = 1, εqc = 1 R×2n
0 Z×2n 0 0 0 2Z×2n 0 Z×2n

2 Z×2n
2

QC1b εq = −1, εc = 1, ηc = 1, εqc = 1 R
×np
1 Z

×np
2 Z×np 0 0 0 2Z×np 0 Z

×np
2

QC2a εq = 1, εc = 1, ηc = 1, εqc = −1 C×n
0 Z×n 0 Z×n 0 Z×n 0 Z×n 0

QC2b εq = −1, εc = 1, ηc = 1, εqc = −1 R
×np
7 0 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np

QC3a εq = 1, εc = 1, ηc = −1, εqc = 1 R×2n
4 2Z×2n 0 Z×2n

2 Z×2n
2 Z×2n 0 0 0

QC3b εq = −1, εc = 1, ηc = −1, εqc = 1 R
×np
5 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0 0

QC4a εq = 1, εc = 1, ηc = −1, εqc = −1 C×n
0 Z×n 0 Z×n 0 Z×n 0 Z×n 0

QC4b εq = −1, εc = 1, ηc = −1, εqc = −1 R
×np
3 0 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np

QC5a εq = 1, εc = −1, ηc = 1, εqc = 1 R
×2np
2 Z

×2np
2 Z

×2np
2 Z×2np 0 0 0 2Z×2np 0

QC5b εq = −1, εc = −1, ηc = 1, εqc = 1 R
×np
1 Z

×np
2 Z×np 0 0 0 2Z×np 0 Z

×np
2

QC6a εq = 1, εc = −1, ηc = 1, εqc = −1 C
×np
0 Z×np 0 Z×np 0 Z×np 0 Z×np 0

QC6b εq = −1, εc = −1, ηc = 1, εqc = −1 R
×np
3 0 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np

QC7a εq = 1, εc = −1, ηc = −1, εqc = 1 R
×2np
6 0 0 2Z×2np 0 Z

×2np
2 Z

×2np
2 Z×2np 0

QC7b εq = −1, εc = −1, ηc = −1, εqc = 1 R
×np
5 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0 0

QC8a εq = 1, εc = −1, ηc = −1, εqc = −1 C
×np
0 Z×np 0 Z×np 0 Z×np 0 Z×np 0

QC8b εq = −1, εc = −1, ηc = −1, εqc = −1 R
×np
7 0 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np

PQC1
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = 1
R

×2np
1 Z

×2np
2 Z×2np 0 0 0 2Z×2np 0 Z

×2np
2

PQC2
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = −1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = −1
C

×np
1 0 Z×np 0 Z×np 0 Z×np 0 Z×np

PQC3
εc = 1, ηc = 1, εpq = −1, εpc = −1, εqc = 1

εc = −1, ηc = −1, εpq = −1, εpc = −1, εqc = −1
R

×np
0 Z×np 0 0 0 2Z×np 0 Z

×np
2 Z

×np
2
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TABLE I. (Continued.)

GBL Gen. Rel. Cl d = 0 1 2 3 4 5 6 7

PQC4
εc = 1, ηc = 1, εpq = −1, εpc = −1, εqc = −1

εc = −1, ηc = −1, εpq = −1, εpc = −1, εqc = 1
R

×np
6 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0

PQC5
εc = 1, ηc = −1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = −1, εpq = 1, εpc = 1, εqc = 1
R

×2np
5 0 2Z×2np 0 Z

×2np
2 Z

×2np
2 Z×2np 0 0

PQC6
εc = 1, ηc = −1, εpq = 1, εpc = 1, εqc = −1

εc = −1, ηc = −1, εpq = 1, εpc = 1, εqc = −1
C

×np
1 0 Z×np 0 Z×np 0 Z×np 0 Z×np

PQC7
εc = 1, ηc = −1, εpq = −1, εpc = −1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc = −1, εqc = −1
R

×np
4 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0 0 0

PQC8
εc = 1, ηc = −1, εpq = −1, εpc = −1, εqc = −1
εc = −1, ηc = 1, εpq = −1, εpc = −1, εqc = 1

R
×np
2 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np 0

PQC9a
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

εc = −1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
R

×2np
7 0 0 0 2Z×2np 0 Z

×2np
2 Z

×2np
2 Z×2np

PQC9b
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = −1

εc = −1, ηc = −1, εpq = 1, εpc = −1, εqc = −1
C

×np
1 0 Z×np 0 Z×np 0 Z×np 0 Z×np

PQC10a
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc = 1, εqc = −1
R

×np
0 Z×np 0 0 0 2Z×np 0 Z

×np
2 Z

×np
2

PQC10b
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = −1
εc = −1, ηc = 1, εpq = −1, εpc = 1, εqc = 1

R
×np
2 Z

×np
2 Z

×np
2 Z×np 0 0 0 2Z×np 0

PQC11a
εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
εc = −1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

R
×2np
3 0 Z

×2np
2 Z

×2np
2 Z×2np 0 0 0 2Z×2np

PQC11b
εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc = −1
εc = −1, ηc = 1, εpq = 1, εpc = −1, εqc = −1

C
×np
1 0 Z×np 0 Z×np 0 Z×np 0 Z×np

PQC12a
εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc = 1

εc = −1, ηc = −1, εpq = −1, εpc = 1, εqc = −1
R

×np
4 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0 0 0

PQC12b
εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc = −1
εc = −1, ηc = −1, εpq = −1, εpc = 1, εqc = 1

R
×np
6 0 0 2Z×np 0 Z

×np
2 Z

×np
2 Z×np 0

The remainder of this paper is organized as follows.
Section II illustrates the classification scheme of generic
time-dependent non-Hermitian systems, which contains three
subsections. Section II A explores all the symmetry classes
of time-dependent non-Hermitian systems. Consider time-
reversal symmetry, chiral symmetry, and particle-hole sym-
metry as primary symmetries, the combinations of these
primary symmetries produce all the 54 non-Hermitian GBL
classes. Section II B deals with the gap conditions of the
nonunitary Floquet operator, whose spectra on the complex
plane can be either FO angle-gapped or FO angle-gapless.
Section II C introduces the composition of the time-evolution
operator and the concepts of homotopy and homeomorphic.
These concepts are widely used in identifying topologically
equivalent operators or spaces for later discussions. In Sec. III,
we provide a complete classification of FNH systems for all
the 54 GBL classes based on K theory. We explicitly work
out the extension problem of Clifford algebra in each sym-
metry class. Then we obtain periodic Table I and Table II
corresponding to the FO angle-gapped and FO angle-gapless
cases, respectively. In Sec. IV, we illustrate the FNH topology
in fermionic systems through two simple examples, cor-
responding to the FO angle-gapped and FO angle-gapped
cases, respectively. And we explain the physical meanings
of the topological invariants. Section V applies the classi-
fication scheme developed in Sec. III and Sec. IV to the
bosonic systems. Instead of the Hamiltonian itself, the dy-
namics of bosonic systems are governed by the M matrix.
We conclude in Sec. VI and leave the technical details of
derivations/calculations in the Appendices.

II. NONUNITARY TIME-EVOLUTION
AND SYMMETRY CLASSES

In this section, we provide the classification scheme for
generic FNH systems. The classification involves two basic
ingredients, i.e., to find out all the possible symmetry classes
and to identify the spectrum gaps of the Floquet operator. We
start by considering a time-dependent non-Hermitian system
with Hamiltonian H (t ). In general, H (t ) �= H†(t ). The dy-
namics of the system is governed by the Schrödinger equation:

i
d

dt
|�(t )〉 = H (t )|�(t )〉, (1)

with |�(t )〉 the time-dependent wave function. Suppose the
initial state at t = ti is |�(ti )〉 and the time-evolved state at
t = t f (t f > ti) is |�(t f )〉. The time-evolution can be formally
represented as |�(t f )〉 = U (t f , ti )|�(ti)〉, where

U (t f , ti ) := T exp

[
−i

∫ t f

ti

dt H (t )

]
(2)

is the time-evolution operator. Here T takes the time-ordering
product. For tb > ta, we define U (ta, tb) := U −1(tb, ta). We
denote U (t ) := U (t, 0) for brevity. As the Hamiltonian is non-
Hermitian, the time-evolution operator U (t ) is nonunitary.

A. Symmetry classes

In this subsection, we build all the internal (nonspatial)
symmetry classes of the time-dependent non-Hermitian sys-
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TABLE II. Periodic table of Floquet non-Hermitian topological phases for FO angle gapless case. d is the spatial dimension. The first two
columns are the same as those of Table I. Each row corresponds to a specific generalized Bernard-LeClair (GBL) symmetry class, labeled
by its name in the first column. The second column lists the symmetry generator relations, including the signs of time-flipping, operator
involution, and commutation relations. The third column gives the classifying space of each symmetry class in the FO angle-gapless case,
which is different from Table I. The topological numbers in the table are stable strong topological numbers.

GBL Gen. Rel. Cl d = 0 1 2 3 4 5 6 7

Non C1 0 Z 0 Z 0 Z 0 Z

P C0 Z 0 Z 0 Z 0 Z 0

Qa εq = 1 C2
1 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z

Qb εq = −1 C0 Z 0 Z 0 Z 0 Z 0

K1a εk = 1, ηk = 1 R7 0 0 0 2Z 0 Z2 Z2 Z

K1b εk = −1, ηk = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

K2a εk = 1, ηk = −1 R3 0 Z2 Z2 Z 0 0 0 2Z

K2b εk = −1, ηk = −1 R5 0 2Z 0 Z2 Z2 Z 0 0

C1 εc = 1, ηc = 1 R7 0 0 0 2Z 0 Z2 Z2 Z

C2 εc = 1, ηc = −1 R3 0 Z2 Z2 Z 0 0 0 2Z

C3 εc = −1, ηc = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

C4 εc = −1, ηc = −1 R5 0 2Z 0 Z2 Z2 Z 0 0

PQ1 εq = 1, εpq = 1 C2
0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0

PQ2 εq = 1, εpq = −1 C1 0 Z 0 Z 0 Z 0 Z

PK1 εk = 1, ηk = 1, εpk = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

PK2 εk = 1, ηk = −1, εpk = 1 R4 2Z 0 Z2 Z2 Z 0 0 0

PK3a εk = 1, ηk = 1, εpk = −1 R6 0 0 2Z 0 Z2 Z2 Z 0

PK3b εk = 1, ηk = −1, εpk = −1 R2 Z2 Z2 Z 0 0 0 2Z 0

PC1
εc = 1, ηc = 1, εpc = 1

εc = −1, ηc = 1, εpc = 1
R0 Z 0 0 0 2Z 0 Z2 Z2

PC2
εc = 1, ηc = 1, εpc = −1

εc = −1, ηc = −1, εpc = −1
R6 0 0 2Z 0 Z2 Z2 Z 0

PC3
εc = 1, ηc = −1, εpc = 1

εc = −1, ηc = −1, εpc = 1
R4 2Z 0 Z2 Z2 Z 0 0 0

PC4
εc = 1, ηc = −1, εpc = −1
εc = −1, ηc = 1, εpc = −1

R2 Z2 Z2 Z 0 0 0 2Z 0

QC1a εq = 1, εc = 1, ηc = 1, εqc = 1 R2
7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z

QC1b εq = −1, εc = 1, ηc = 1, εqc = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

QC2a εq = 1, εc = 1, ηc = 1, εqc = −1 C1 0 Z 0 Z 0 Z 0 Z

QC2b εq = −1, εc = 1, ηc = 1, εqc = −1 R6 0 0 2Z 0 Z2 Z2 Z 0

QC3a εq = 1, εc = 1, ηc = −1, εqc = 1 R2
3 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z

QC3b εq = −1, εc = 1, ηc = −1, εqc = 1 R4 2Z 0 Z2 Z2 Z 0 0 0

QC4a εq = 1, εc = 1, ηc = −1, εqc = −1 C1 0 Z 0 Z 0 Z 0 Z

QC4b εq = −1, εc = 1, ηc = −1, εqc = −1 R2 Z2 Z2 Z 0 0 0 2Z 0

QC5a εq = 1, εc = −1, ηc = 1, εqc = 1 R2
1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

QC5b εq = −1, εc = −1, ηc = 1, εqc = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

QC6a εq = 1, εc = −1, ηc = 1, εqc = −1 C1 0 Z 0 Z 0 Z 0 Z

QC6b εq = −1, εc = −1, ηc = 1, εqc = −1 R2 Z2 Z2 Z 0 0 0 2Z 0

QC7a εq = 1, εc = −1, ηc = −1, εqc = 1 R2
5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0

QC7b εq = −1, εc = −1, ηc = −1, εqc = 1 R4 2Z 0 Z2 Z2 Z 0 0 0

QC8a εq = 1, εc = −1, ηc = −1, εqc = −1 C1 0 Z 0 Z 0 Z 0 Z

QC8b εq = −1, εc = −1, ηc = −1, εqc = −1 R6 0 0 2Z 0 Z2 Z2 Z 0

PQC1
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = 1
R2

0 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2

PQC2
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = −1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = −1
C0 Z 0 Z 0 Z 0 Z 0

PQC3
εc = 1, ηc = 1, εpq = −1, εpc = −1, εqc = 1

εc = −1, ηc = −1, εpq = −1, εpc = −1, εqc = −1
R7 0 0 0 2Z 0 Z2 Z2 Z
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TABLE II. (Continued.)

GBL Gen. Rel. Cl d = 0 1 2 3 4 5 6 7

PQC4
εc = 1, ηc = 1, εpq = −1, εpc = −1, εqc = −1

εc = −1, ηc = −1, εpq = −1, εpc = −1, εqc = 1
R5 0 2Z 0 Z2 Z2 Z 0 0

PQC5
εc = 1, ηc = −1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = −1, εpq = 1, εpc = 1, εqc = 1
R2

4 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0

PQC6
εc = 1, ηc = −1, εpq = 1, εpc = 1, εqc = −1

εc = −1, ηc = −1, εpq = 1, εpc = 1, εqc = −1
C0 Z 0 Z 0 Z 0 Z 0

PQC7
εc = 1, ηc = −1, εpq = −1, εpc = −1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc = −1, εqc = −1
R3 0 Z2 Z2 Z 0 0 0 2Z

PQC8
εc = 1, ηc = −1, εpq = −1, εpc = −1, εqc = −1
εc = −1, ηc = 1, εpq = −1, εpc = −1, εqc = 1

R1 Z2 Z 0 0 0 2Z 0 Z2

PQC9a
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

εc = −1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
R2

6 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0

PQC9b
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = −1

εc = −1, ηc = −1, εpq = 1, εpc = −1, εqc = −1
C0 Z 0 Z 0 Z 0 Z 0

PQC10a
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc = 1, εqc = −1
R7 0 0 0 2Z 0 Z2 Z2 Z

PQC10b
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = −1
εc = −1, ηc = 1, εpq = −1, εpc = 1, εqc = 1

R1 Z2 Z 0 0 0 2Z 0 Z2

PQC11a
εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
εc = −1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

R2
2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0

PQC11b
εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc = −1
εc = −1, ηc = 1, εpq = 1, εpc = −1, εqc = −1

C0 Z 0 Z 0 Z 0 Z 0

PQC12a
εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc = 1

εc = −1, ηc = −1, εpq = −1, εpc = 1, εqc = −1
R3 0 Z2 Z2 Z 0 0 0 2Z

PQC12b
εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc = −1
εc = −1, ηc = −1, εpq = −1, εpc = 1, εqc = 1

R5 0 2Z 0 Z2 Z2 Z 0 0

tems. We begin with the primary symmetries that relate the
dynamics at time t and −t :

UT1 H∗(−t )U −1
T1

= H (t ), UT1U
∗
T1

= ±I, (3)

UT2 H (−t )U −1
T2

= −H (t ), U 2
T2

= I. (4)

For t = 0, Eqs. (3) and (4) reduce to the time-reversal
symmetry and chiral symmetry of Hermitian Hamiltonian,
respectively. Here in the time-dependent settings, we dub
them time-reversal symmetry (TRS) and chiral symmetry
(CS), respectively. The TRS and CS keep the Schrödinger
equation Eq. (1) unchanged under the transformation t → −t .
Besides the TRS and CS, we need to consider the particle-hole
symmetry (PHS) as another primary symmetry. The PHS does
not flip time and is preserved if the system has superconduct-
ing pairing or is described by a BdG-type Hamiltonian. The
symmetry reads:

UPHT(t )U −1
P = −H (t ), UPU ∗

P = ±I. (5)

Starting from the above three primary symmetries, we can
generate all the possible symmetry classes. For example, the
combination of TRS and CS produces a K-type symmetry
H (t ) = −kH∗(t )k−1; the combination of CS and PHS pro-
duces a C-type symmetry H (t ) = cHT(−t )c−1 in the GBL
class. All the possible symmetries generated from TRS, CS,
and PHS are listed below:

H (t ) = εkkH∗(−εkt )k−1, kk∗ = ηkI, K sym. (6)

H (t ) = εqqH†(εqt )q−1, q2 = I, Q sym. (7)

H (t ) = εccHT(−εct )c−1, cc∗ = ηcI, C sym. (8)

−H (t ) = pH (−t )p−1, p2 = I. P sym. (9)

Fourier transforms Eqs. (6)–(9) into momentum space, we get
that,

H (k, t ) = εkkH∗(−k,−εkt )k−1, kk∗ = ηkI, K sym.
(10)

H (k, t ) = εqqH†(k, εqt )q−1, q2 = I, Q sym. (11)

H (k, t ) = εccHT(−k,−εct )c−1, cc∗ = ηcI, C sym.
(12)

−H (k, t ) = pH (k,−t )p−1, p2 = I, P sym. (13)

where ηk, ηc, εk, εq, εc = ±1. k, q, c, k are four unitary matri-
ces, satisfying

c = εpc pcpT, k = εpk pkpT, c = εqcqcqT, p = εpqqpq†,

(14)
with εpc, εpk, εqc, εpq = ±1. By a full counting of the
four types of symmetries P, Q, C, K , the signs of time
flipping εk, εq, εc, the signs of symmetry-operator invo-
lution ηk, ηc, and the signs in the commutation relations
εpc, εpk, εqc, εpq, we obtain 54-fold nonequivalent symme-
try classes (details in Appendix A). Each class is specified
by a definite choice of the symmetries and signs. To avoid
confusion, we stress that these symmetries are for time-
dependent Hamiltonians. Yet we still utilize the convention
for static line gap non-Hermitian Hamiltonians and call the
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54-fold classes the GBL classes [130]. They are labeled as
[130] Non, P, Qa-b, K1-2a-b, C1-4, PQ1-2, PK1-2, PK3a-
b, PC1-4, QC1-8a-b, PQC1-8, PQC9-12a-b in Table I and
Table II.

The 54-fold GBL classes were first constructed in
Ref. [130] to get a consistent description of line gap static non-
Hermitian systems. And in the Appendix E of Ref. [14], there
is a detailed review of the 54-fold GBL classes. However,
Ref. [14] still call it Bernard-LeClair class. The derivation
of 38-fold Bernard-LeClair (BL) classes needs to use the
H → iH as an equivalent transformation, and the trans-
formation needs to relate two symmetry classes for some
cases.

For static point gap non-Hermitian topology, we set the
point gap at 0. H → iH transformation did not change the
gap, and we can regard it as an equivalent transformation.
And H → iH transformation relate two static GBL symme-
tries, for example H = kH∗k−1 (kk∗ = I) and H = −kH∗k−1

(kk∗ = I). Thus, part of 54-fold GBL classes can be regarded
as equivalent if we only consider point gap topology. By
subtracting the redundant equivalence classes, we get 38-fold
BL classes. However, static point gap non-Hermitian topology
also can be described by 54-fold GBL classes. It is due to the
redundant equivalence classes did not lead to any inconsistent
conclusion.

We consider static line gap non-Hermitian topology, H →
iH transformation changes the gap, and we cannot regard it
as an equivalent transformation. Thus, static line gap non-
Hermitian topology is described by 54-fold GBL classes. If
we use the 38-fold BL classes to describe the static line
gap non-Hermitian topology, it leads to inconsistent con-
clusions. For example, a non-Hermitian system with H =
kH∗k−1 (kk∗ = I) symmetry and a non-Hermitian system
with H = −kH∗k−1 (kk∗ = I) symmetry belong to the same
class in the 38-fold BL classes description (BL class). For a 1-
dimensional real line gap system with H = kH∗k−1 (kk∗ = I)
symmetry, the topological classification is 0 [128,130]. For
a 1-dimensional real line gap system with H = −kH∗k−1

(kk∗ = I) symmetry, the topological classification is Z2

[128,130]. These conclusions contradict the uniqueness of the
topological classification in a certain dimension and symme-
try class.

For time-dependent non-Hermitian systems, two differ-
ent GBL symmetry classes did not relate to each other by
the H → iH transformation. For example, type-K symmetry
takes the form of Eq. (6) in the time-dependent system. The
H → iH transformation did not transform type-K symmetry
with εk = 1 and ηk = 1 into type-K symmetry with εk = −1
and ηk = 1. However, the H → iH transformation did trans-
form type-K symmetry with εk = 1 and ηk = 1 into type-K
symmetry with εk = −1 and ηk = 1 in static limit (hint: let
t = 0).

Fifty four is the total number of group structures generated
by Eqs. (6)–(9). Thus, there is no inconsistent conclusion
if we use 54-fold GBL classes to describe the general non-
Hermitian system. If we use 38-fold BL classes to describe
non-Hermitian systems, sometimes, it leads to inconsistent
conclusions.

The four types of symmetries of Eqs. (10)–(13) on H (k, t )
induce the symmetries on the time-evolution operator U (k, t )

as follows:

U ∗(−k,−t ) = k−1U (k, εkt )k, kk∗ = ηkI, K sym.
(15)

[U †(k, t )]−1 = q−1U (k, εqt )q, q2 = I, Q sym. (16)

[U T(−k, t )]−1 = c−1U (k,−εct )c, cc∗ = ηcI, C sym.
(17)

U (k,−t ) = p−1U (k, t )p, p2 = I. P sym. (18)

The derivation of Eqs. (15)–(18) is given in Appendix B.
The above discussions in this section are for generic time-
dependent systems. Now we restrict to the Floquet system
with a time-periodic Hamiltonian

H (k, t + τ ) = H (k, t ), (19)

where τ is the driving period. The Floquet operator is defined
as the time-evolution operator over one period. From now on,
we concisely denote the Floquet operator as U (k) := U (k, τ ).
Starting from Eqs. (15)–(18), we can obtain the symmetry
operations on the Floquet operator:

[U ∗(−k)]−εk = k−1U (k)k, kk∗ = ηkI, K sym. (20)

[U †(k)]−εq = q−1U (k)q, q2 = I, Q sym. (21)

[U T (−k)]εc = c−1U (k)c, cc∗ = ηcI, C sym. (22)

[U (k)]−1 = p−1U (k)p, p2 = I. P sym. (23)

The derivation of Eqs. (20)–(23) is given in Appendix C.

B. Gap condition of the Floquet operator

The gap condition is an essential ingredient in the clas-
sification theory. A spectrum gap means a region without
any spectrum. Two Hamiltonian operators (or time-evolution
operators in the driven case) are equivalent if they can
continuously transform into each other while keeping the
gap open and preserving their corresponding symmetries.
Topological transition happens accompanied by gap closings.
Here we compare the spectrum gaps for the four differ-
ent cases: static Hermitian/non-Hermitian Hamiltonian and
Floquet Hermitian/non-Hermitian Hamiltonian. For a static
Hermitian Hamiltonian, all eigenvalues are real, and the spec-
trum gap is defined on the real-energy axis when the energy
bands do not touch the Fermi energy EF , as depicted in
Fig. 1(a). For a static non-Hermitian Hamiltonian, its eigen-
values are complex. As shown in Fig. 1(b), the spectrum gap
can be either a line-like region or a point-like region on the
complex-energy plane [128–130]. Correspondingly, the spec-
trum of the non-Hermitian Hamiltonian possesses a line-like
gap or point-like gap.

For Floquet Hermitian/non-Hermitian systems, we con-
sider the spectra of the Floquet operator (FO) U (k). We
denote the spectra of FO as ξn(k), and n is the band in-
dex. A FO angle gap at θ (θ ∈ R) is defined as ∀ρ >

0,∀n s.t. ξn(k) �= ρe−iθ . If a Floquet Hermitian/non-
Hermitian system has a FO angle gap, we call such system FO
angle-gapped. If a Floquet Hermitian/non-Hermitian system
doesn’t have any FO angle gap, we call such system FO
angle-gapless.
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We can define a widely used concept—the Floquet Hamil-
tonian (FH) as:

HF := i

τ
ln(H (k)). (24)

The Floquet Hamiltonian’s definition Eq. (24) is the same as
previous articles. We denote the spectra of FH as εn(k). εn(k)
usually be called quasienergies. The quasienergies are only
well defined up to integer multiples of the driving frequency
ω = 2π/τ since ln() is a multivalued function. A FH real gap
at E0 (E0 ∈ R) defined as: ∀ j ∈ Z,∀n s.t. Re(εn(k)) �=
E0 + 2π j/τ . Here, Re(εn(k)) takes the real part of εn(k).

It is worth stressing that a Floquet system has a FO angle
gap at θ (θ ∈ R) is equivalent to the Floquet system has an FH
real gap at θ/τ . For the Floquet Hermitian system, U (k) is
unitary, giving rise to real quasienergies. The spectra of U (k)
lie on the unit circle. Figure 1(c) is the schematic diagram
of the spectrum of a Floquet Hermitian system, and it is FO
angle-gapped. We can directly extend this scenario to the
driven non-Hermitian systems. Note that the Floquet operator
U (k) is nonunitary in FNH systems, and its spectra do not
necessarily lie on the unit circle. Figure 1(d) is the schematic
diagram of the spectrum of an FNH system, Fig. 1(d) (left
panel) is FO angle-gapped, and Fig. 1(d) (right panel) is FO
angle-gapless.

C. Composition of evolution operators, homotopy
and homeomorphic

For the classification problem, a widely-used concept is
the composition of two time-evolution operators [104]. Given
that U1 is the time-evolution operator generated by Hamilto-
nian H1(t ) and U2 is the time-evolution operator generated
by Hamiltonian H2(t ), we define the composition of U1 and
U2 as U1 ∗ U2, which is the time evolution generated by the
following Hamiltonian:

H (t ) =

⎧⎪⎨
⎪⎩

H2(k, 2t ) 0 � t � τ/4,

H1(k, 2t − τ/2) τ/4 < t < 3τ/4,

H2(k, 2t − τ ) 3τ/4 � t � τ.

(25)

The above operator composition is consistent with all the GBL
symmetries. In fact, we have:

Lemma 1. If H1(t ) and H2(t ) belong to the same GBL class
defined in Eqs. (10)–(13) and the first two columns of Table I,
then the composed Hamiltonian H (t ) belongs to the same
GBL class of H1(t ) and H2(t ).

The proof of Lemma 1 is provided in Appendix D. Besides
the operator composition, another two widely-used mathe-
matical concepts in the topological classification of Floquet
systems are homotopy and homeomorphic [104]. They are
defined below. (1) Homotopy: Suppose that the two operators
g and h satisfy the same symmetry condition and constraint,
and the operator g is homotopic to h if and only if there exists
a continuous operator function ft (t ∈ [0, 1]) with f0 = g and
f1 = h. And ft satisfies the same symmetry condition and
constraint as g or h. (2) Homeomorphic: Space A is homeo-
morphic to space B, if and only if there exists a continuous
function F : A → B. F is a one-to-one, onto function and
has a continuous inverse. The mapping F preserves all the

topological properties of a given space. Two homeomorphic
spaces are the same from a topological point of view.

III. TOPOLOGICAL CLASSIFICATION OF FLOQUET
NON-HERMITIAN SYSTEMS

This section is devoted to a complete classification of
the FNH band topology, which contains both the FO angle-
gapped and FO angle-gapless cases. We have demonstrated
that for the FO angle-gapped case, there exists FH real gap.
Thus, we also call the FO angle-gapped topological classifi-
cation as FH real-gapped topological classification. For the
FO angle-gapped case, two time-evolution operators are con-
sidered topologically equivalent if they can be continuously
transformed to each other while preserving the FO angle
gaps and corresponding symmetries. It turns out the band
topology of a FO angle-gapped system is not fully encoded
in the Floquet Hamiltonian itself [103,104,106–113] due to
the periodicity of the quasienergy zone. In fact, a FO angle
gap naturally defines the branch cut of the Floquet Hamil-
tonian. To complete the topological classification, both the
branch-cut-dependent Floquet Hamiltonian and its associated
loop operator should be taken into account. While for the FO
angle-gapless system, there is no additional spectrum restric-
tion on the quasienergies. And the Floquet Hamiltonian is not
always continuous in the Brillouin zone (BZ) for any chosen
branch cut in the absence of the FO angle gap. For the FO
angle-gapless systems, the band topology is only extracted
from the Floquet operator [101,148,149]. Thus, we also call
the FO angle-gapless topological classification as the Floquet
operator’s topological classification.

To proceed, we expand the Floquet operator U (k) accord-
ing to its eigenenergy spectra:

U (k) =
∑

n

ξn(k)|ψn,R〉〈ψn,L|. (26)

Here n is the band index. As U (k) is nonunitary, the expansion
involves both the left and right eigenvectors [150], which
are defined as U (k)|ψn,R〉 = ξn(k)|ψn,R〉 and U †(k)|ψn,L〉 =
ξ ∗

n (k)|ψn,L〉. We further define the logarithm function lnα as

elnα (z) := z, and α < Im[lnα (z)] < α + 2π. (27)

Here, Im(z) takes the imaginary part of z. We have set the
branch cut of the logarithm lnα at α, and it is a single-valued
function. For example, let us suppose φ1, φ2 ∈ R (R is real
number field) and α < φ1 < α + 2π . According to our defi-
nition, lnα[ei(φ1+2πN1 )+φ2 ] = iφ1 + φ2, for any N1 ∈ Z. Using
the above logarithm function with a definite branch cut α, we
define the effective Floquet Hamiltonian at a branch cut θ as
follows:

HF,θ := i

τ
ln−θ [U (k)] =

∑
n

i

τ
ln−θ (ξn)|ψn,R〉〈ψn,L|. (28)

The Floquet Hamiltonian defined above explicitly depends
on the branch cut θ . A suitable choice of the branch cut is
important when we consider the topological equivalence in
the following discussions. According to Eqs. (27) and (28),
the definition of HF,θ requires a FO angle gap at θ . And HF,θ

is a continuous function in BZ. With a bit of abuse of notation,
we still call the spectrum of HF,θ as the quasienergy spectrum.
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From Eqs. (27) and (28), it is easy to see the real part of the
quasienergy spectrum of HF,θ lies inside ((θ − 2π )/τ, θ/τ ).

Correspondingly, from HF,θ and the time-evolution opera-
tor U (k, t ) [note that in general, U (k, t ) �= U (k, t + τ )], we
can define a time-periodic evolution operator

Ul,θ (k, t ) := U (k, t ) ∗ eiHF,π (k)t . (29)

Ul,θ (k, t ) satisfies Ul,θ (k, t + τ ) = Ul,θ (k, t ) and is usually
called as the loop operator [103–105]. The definition of HF,θ

and Ul,θ (k, t ) both require a FO angle gap at θ . And Ul,θ (k, t )
is a continuous function of (k, t). For generic settings of the
time evolution (it may not have a FO angle gap), we cannot
define HF,θ , which is a well-defined single-value continuous
function in BZ.

It is worth stressing that a Floquet system haven n FO angle
gaps at θ̃1, θ̃2, . . . , θ̃n (θ̃ j ∈ [θ̃1 − 2π, θ̃1], j = 1, 2, . . . , n) is
equivalent to the Floquet system haven n FH real gaps at
θ̃1/τ, θ̃2/τ, . . . , θ̃n/τ . It is also is equivalent to the HF,θ̃1

of this
system haven n − 1 real gaps at θ̃2/τ, θ̃3/τ, . . . , θ̃n/τ . The θ̃1

is chosen as the branch cut and does not contribute to a HF,θ̃1

real gap.

A. FO angle-gapped case

In this subsection, we consider the topological classifica-
tion for the FO angle-gapped FNH systems. We first elaborate
on the simplest case with only a FO angle gap at θ0 = π in the
Floquet operator spectra and explicitly work out the Clifford
algebra’s extension problem for all the symmetry classes. The
discussions are then extended to the generic cases with more
real gaps allowed by their underlying symmetries. The results
are listed in the topological classification Table I for all the FO
angle-gapped FNH topological phases.

1. Only one FO angle gap at θ0 = π

For the simple case, when the quasienergy spectra possess
one FO angle gap at θ0 = π , we have

Lemma 2. The loop operator Ul,π (k, t ) and time-evolution
operator U (k, t ) have the same symmetries. The Floquet
Hamiltonian HF,π and the initial Hamiltonian H (k, t = 0)
also have the same symmetries.

The proof of Lemma 2 is provided in Appendix E for
mathematical rigorousness. Following Lemma 2, we can de-
compose the time-evolution operator U (k, t ) into two separate
parts, which is described below.

Theorem 1. The time-evolution operator U (k, t ) with FO
angle gap at π can be continuously transformed to Uf (k, t ) =
L ∗ C, where L is a loop operator satisfying L(t ) = L(t + τ )
and C is a constant evolution generated by a time-independent
Hamiltonian. Here L and C are unique up to homotopy. The
loop operator can be chosen as L = Ul,π (k, t ). Correspond-
ingly, C is the constant evolution of Hamiltonian HF,π . The
continuous transformation preserves all the GBL symmetries.

Theorem 1 can be regarded as a nonunitary and GBL
symmetries generalization of the Theorem III.1 in Ref. [104].
The detailed proof of Theorem 1 is provided in Appendix F.
Theorem 1 indicates that the topological classification for
FNH systems with FO angle gap at π reduces to the topolog-
ical classification of Ul,π (k, t ) and HF,π . The latter has been
previously investigated for static non-Hermitian Hamiltonians

[128–130]. For the simplest case with only a single FO an-
gle gap at θ0 = π (it is equivalent to only a single FH real
gap at E0 = π/τ ), the spectra of HF,π can be continuously
contracted to a single point since there is no FH real gap
that separates them. Therefore we only need to consider the
topological classification of the loop operator Ul,π .

The topological classification of Ul,π (k, t ) can be obtained
through a “Hermitianization” procedure. We consider the fol-
lowing Hermitian operator:

H̃ (k, t ) =
[

0 Ul,π (k, t )

Ul,π (k, t )† 0

]
. (30)

The mapping from Ul,π (k, t ) to H̃ (k, t ) is homeomorphic
since det (Ul,π (k, t )) �= 0 implies det (H̃ (k, t )) �= 0. The Her-
mitianization procedure greatly simplifies the classification
problem, e.g., we can continuously transform H̃ (k, t ) into
a band-flattened Hamiltonian [i.e., (H̃ (k, t ))2 = I] without
altering any symmetries [119]. According to Lemma 2,
Ul,π (k, t ) and U (k, t ) belong to the same GBL symmetry
class. From the symmetries of the loop operator Ul,π (k, t ) as
described in Eqs. (15)–(18), we obtain the symmetries:

H̃ (−k,−εkt ) = K̃H̃ (k, t )K̃−1, kk∗ = ηkI, K sym.
(31)

H̃ (k, εqt ) = Q̃H̃ (k, t )Q̃−1, q2 = I, Q sym. (32)

H̃ (−k,−εct ) = C̃H̃ (k, t )C̃−1, cc∗ = ηcI, C sym. (33)

H̃ (k,−t ) = P̃H̃ (k, t )P̃−1, p2 = I, P sym. (34)

satisfied by the Hamiltonian H̃ (k, t ). Here K̃ = σ0 ⊗ kK,
Q̃ = σ0 ⊗ q, P̃ = σ0 ⊗ p, and C̃ = σ0 ⊗ cK. K is the complex
conjugate. The derivation of Eqs. (31)–(34) is given in Ap-
pendix G. Besides, the Hamiltonian H̃ (k, t ) has an additional
chiral symmetry � = σz ⊗ I, with

�H̃ (k) = −H̃ (k)�. (35)

We then utilize K theory to deal with the topological classi-
fication of H̃ (k, t ) for each of the 54 GBL symmetry classes.
According to the standard classification scheme in terms of
Clifford algebra [117], we represent H̃ (k, t ) as

H̃ (k, t ) = mγ̃0 + k1γ̃1 + · · · + kd γ̃d + t γ̃t . (36)

Here, γ̃0, γ̃i (i = 1, . . . , d ) and γ̃t are the basis of the Clif-
ford algebra; they anticommute with each other and square
to the identity. mγ̃0 is the mass term. From the commutation
relations of the symmetry operators and Hamiltonian, we can
construct the Clifford algebra’s extension for each symmetry
class. The space of the mass term is obtained through its
correspondence with Clifford algebra’s extension. (See Table I
and Table VI of Ref. [130].) Once the space of the mass term is
obtained, we finalize the topological classification by calculat-
ing its 0th homotopy group. We illustrate the above procedure
by an explicit example of the class Non in Table I. The
generators of this class are {γ̃0, γ̃1, . . . , γ̃d , γ̃t , �}. The Clif-
ford algebra’s extension of this class is {γ̃1, . . . , γ̃d , γ̃t , �} →
{γ̃0, γ̃1, . . . , γ̃d , γ̃t , �} = Cld+2 → Cld+3. The space of the
mass term follows as Cd+2, and the topological classification
of the Non class is given by the homotopy group: π0(Cd+2) =
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Z (0) for even (odd) d (d is the spatial dimension). The clas-
sifying space is equal to the space of mass term at d = 0. In a
similar vein, we can construct the Clifford algebra’s extension
for all the other GBL classes, as summarized in Table IV.

2. Complete classification for classes without P, Q (εq = −1),
C (εc = −1) and K (εk = −1) symmetry

In this part, we discuss the classification for classes without
any of the P, Q (εq = −1), C (εc = −1), or K (εk = −1)
symmetry. For these classes, the FO angle gap could be
along any radial line emitted from the origin, with the spectra
satisfying the full symmetry of the system. Let us consider
a FO angle gap at θ0 and a constant Hamiltonian evolu-
tion Uc(k, t ) = e−itθcI/τ , with θc a real constant. The Uc(k, t )
preserves the full symmetry of the system. The composi-
tion Ū (k, t ) = U (k, t ) ∗ Uc(k, t ), which is homeomorphic to
U (k, t ). Ū (k, t ) preserves the full symmetry of U (k, t ) and
has a gap located at θ̃0 = θ0 + θc. In general, there may exist
multiple FO angle gaps. For the Floquet spectra with n FO
angle gaps, we can always continuously shift one of the FO
angle gaps to π by adjusting θc without altering any symmetry
of Ū (k, t ). Thus, we can focus on the case that U (k) has a FO
angle gap at π and n − 1 FO angle gaps at other angles. From
Theorem 1, we conclude a complete topological classification
of U (k, t ) is equivalent to the topological classification of
HF,π with n − 1 real gaps in (−π/τ, π/τ ) [128] plus the topo-
logical classification of loop operator Ul,π , as demonstrated in
Sec. III A 1.

3. Complete classification for classes with P or Q (εq = −1)
or C (εc = −1) or K (εk = −1) symmetry

In this part, we demonstrate the complete classification for
classes when any of the P or Q (εq = −1) or C (εc = −1) or
K (εk = −1) symmetry exists. For these classes, the FO angle
gaps are pinned at θ0 = 0 or π or a pair of FO angle gaps
located at (θi, −θi) to make the spectra have the full symmetry
of the system [128]. In the following, we elaborate on the
different situations of the FO angle gap configurations.

S1: There is only one FO angle gap at π or 0. The topolog-
ical classification for the former is given in Sec. III A 1. For
the latter, we can shift the FO angle gap at 0 to π through
a homeomorphic mapping. As a representative example, we
consider the class P with p = σz. The constant evolution
U0(k, t ) = e−iπσxt/τ fulfills the P symmetry. The composition
Ū (k, t ) = U0(k, t ) ∗ U (k, t ) is homeomorphic to U (k, t ) and
preserves the symmetry of U (k, t ), while its associated Flo-
quet spectra possess a FO angle gap at π . It follows that
the system with only one FO angle gap at 0 has the same
topological classification as that with only one FO angle gap
at π . Similarly, we can shift the FO angle gap from 0 to π for
all the other GBL classes.

S2: There are two FO angle gaps at 0 and π . According
to Theorem 1, the topological classification is reduced to the
topological classification of HF,π with an real gap at 0 [128]
plus the topological classification of Ul,π , which is demon-
strated in Sec. III A 1.

S3: There are one FO angle gap at π or 0 and nq pairs
of FO angle gaps at (θm, −θm) (m = 1, 2, . . . , nq). Here
0 < θ1 < θ2 < · · · < θnq < π . Thus, there are one FH real

gap at π/τ or 0 and nq pairs of FH real gaps at (θm/τ,−θm/τ )
(m = 1, 2, . . . , nq). For the former case, when one of the FO
angle gaps is located at π and nq pairs of FO angle gaps
at (θm, −θm) (m = 1, 2, . . . , nq), HF,π possesses nq pairs
of real gap at (θm/τ , −θm/τ ), π is chosen as the branch
cut and does not contribute to a HF,π real gap. HF,π is
formally written as HF,π = ∑

j E j |ψR
j 〉〈ψL

j |. According to
Theorem 1, the topological classification is reduced to the
classification of HF,π plus Ul,π . We rearrange the spectra
of HF,π according to its real gaps and decompose HF,π into
nq + 1 sub-Hamiltonians HF,π = H1 + H2 + · · · + Hnq+1.
Here H1 = ∑

j E j |ψR
j 〉〈ψL

j | with −θ1/τ < Re(E j ) < θ1/τ ,
Hnq+1 = ∑

j E j |ψR
j 〉〈ψL

j | with Re(E j ) ∈ (−π/τ,−θnq/τ ) ∪
(θnq/τ, π/τ ), and Hm = ∑

j E j |ψR
j 〉〈ψL

j | with Re(E j ) ∈
(−θm/τ,−θm−1/τ ) ∪ (θm−1/τ, θm/τ ) for 1 < m < nq + 1.
Each sub-Hamiltonian belongs to the same symmetry
class as HF,π . And Hn (n = 1, 2, . . . , nq + 1) possesses an
real gap at 0 except for H1. Thus H1 is contractible to a
trivial constant Hamiltonian. Combine the classification of
Hn (n = 2, 3, . . . , nq + 1) with an real gap at 0 [128] and the
topological classification of loop operator Ul,π in Sec. III A 1,
we obtain the full classification of the system.

The discussion for the latter case when one of the FO angle
gaps is located at 0 and nq pairs of FO angle gaps at (θm, −θm)
(m = 1, 2, . . . , nq) is similar to that in S1. We still take class
P with p = σz as an example. The homeomorphic mapping
Ū (k, t ) = U0(k, t ) ∗ U (k, t ) does not alter any symmetry of
U (k, t ); while its associated Floquet spectra possess FO angle
gap at π , θm − π and π − θm (m = 1, 2, . . . , nq). It follows
the topological classification is the same as the former case.
Such a homeomorphic mapping works for all the other GBL
classes.

S4: There are both FO angle gaps at 0 and π and nq pairs
of FO angle gaps at (θm,−θm), where m = 1, 2, . . . , nq and
0 < θ1 < θ2 < · · · < θnq < π . It is equivalent to there are
both FH real gaps at 0 and π/τ and nq pairs of FH real
gaps at (θm/τ,−θm/τ ), where m = 1, 2, . . . , nq. According
to Theorem 1, the topological classification is reduced to the
classification of HF,π plus Ul,π . For this case, the HF,π has
one real gap at 0, and nq pairs of real gaps at (θm/τ,−θm/τ ),
π is chosen as the branch cut and does not contribute to
a real gap. We can decompose the Floquet Hamiltonian
into nq + 1 constant Hamiltonians according to quasienergy
gaps: HF,π = H1 + H2 + · · · + Hm + · · · + Hnq+1. Here
H1 = ∑

j E j |ψR
j 〉〈ψL

j | with Re(E j ) ∈ (−θ1/τ, 0) ∪ (0, θ1/τ );
Hnq+1 = ∑

j E j |ψR
j 〉〈ψL

j | with Re(E j ) ∈ (−π/τ,−θnq/τ ) ∪
(θnq/τ, π/τ ); and Hm = ∑

j E j |ψR
j 〉〈ψL

j | with Re(E j ) ∈
(−θm/τ,−θm−1/τ ) ∪ (θm−1/τ, θm/τ ) for 1 < m < nq + 1.
All the sub-Hamiltonians Hm belong to the same symmetry
class as HF,π and have a real gap located at 0. Combine
the classification of Hn (n = 1, 2, . . . , nq + 1) with a
real gap at 0 [128] and the classification of Ul,π in
Sec. III A 1, we obtain a full topological classification for the
system.

The discussions in Sec. III A 1–3 cover all the 54 GBL
symmetry classes and the possible FO angle gap conditions
of the Floquet spectra, culminating in a complete topological
classification of all the FO angle-gapped FNH topological
phases as summarized in the periodic Table I.
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B. FO angle-gapless case

For the FO angle-gapless case, the spectra of the Floquet
operator winds around the origin without any FO angle gaps
[see Fig. 1(d)]. We remind that the FO angle gap is not allowed
to be closed in the topological classification in the previous
FO angle-gapped case. If there is a FO angle gap at θ , we can
define HF,θ , which is a continuous function. In the FO angle-
gapless case, there is no such spectrum restriction, and we
cannot define HF,θ . But Floquet operator U (k) is a continuous
function. To extract the band topology of the Floquet operator
U (k), we consider the following Hermitian operator:

H̃ (k) =
[

0 U (k)

U (k)† 0

]
. (37)

As det (U (k)) �= 0 is equivalent to det (H̃ (k)) �= 0, the map-
ping from U (k) to H̃ (k) is homeomorphic, yielding that
U (k) has the same topology as H̃ (k). We can continuously
transform the Hermitian operator H̃ (k) into a band-flattened
Hamiltonian H̃ (k) [(H̃ (k))2 = 1] without altering any sym-
metry [119]. When U (k) satisfies the symmetries described
by Eqs. (20)–(23), the corresponding symmetries satisfied by
the band-flattened Hamiltonian H̃ (k) are:

H̃ (−k) = K̄H̃ (k)K̄−1, kk∗ = ηkI, K sym. (38)

H̃ (k) = Q̄H̃ (k)Q̄−1, q2 = I, Q sym. (39)

H̃ (−k) = C̄H̃ (k)C̄−1, cc∗ = ηcI, C sym. (40)

H̃ (k) = P̄H̃ (k)P̄−1. p2 = I. P sym. (41)

Here K̄ = σx ⊗ kK if εk = 1 and K̄ = σ0 ⊗ kK if εk = −1;
Q̄ = σ0 ⊗ q if εq = 1 and Q̄ = σx ⊗ q if εq = −1; P̄ = σx ⊗
p; C̄ = σx ⊗ cK if εc = 1 and C̄ = σ0 ⊗ cK if εc = −1. The
derivation of Eqs. (38)–(41) is given in Appendix H. Besides,
the Hamiltonian H̃ (k) possesses an additional chiral symme-
try (� = σz):

�H̃ (k) = −H̃ (k)�. (42)

We then use the K theory to obtain the topological classi-
fication of H̃ (k) for each of the 54 GBL classes. Following
the standard classification scheme [117] in terms of Clifford
algebra, we represent H̃ (k) as

H̃ (k) = mγ0 + k1γ1 + · · · + kdγd . (43)

Here, γ0, γi (i = 1, . . . , d ) anticommute with each other and
square to identity. Using the commutation relations of the
symmetry operators and H̃ (k), we construct the Clifford al-
gebra’s extension for each symmetry class. We can get the
space of mass term from the Clifford algebra’s extension. (See
Table I and Table IV of Ref. [130].) By calculating the 0th
homotopy group of the space of the mass term, we obtain
the topological classification of the FO angle-gapless FNH
topological phase for all the GBL classes. We still take the
Non class as an example, with the generators of this class
given by {γ0, γ1, . . . , γd , �}. The Clifford algebra’s exten-
sion of this class is {γ1, . . . , γd , �} → {γ0, γ1, . . . , γd , �} =
Cld+1 → Cld+2. The space of the mass term is Cd+1, and
the classifying space is C1. The topological classification for
the Non class is then π0(Cd+1) = 0 (Z) for even (odd) d .

We note that it is different from the FO angle-gapped case
(see Sec. III A 1), for example, the additional time dimension
in FO angle-gapped case. We can similarly work out the
Clifford algebra’s extension for all the other GBL classes,
as demonstrated in Table. V of Appendix I. The topological
classification for all the GBL classes in the FO angle-gapless
case is summarized in Table II.

C. Relations with Floquet Hermitian topological phases

Our classification for the FNH topological phases fully
covers the previous topological classifications of Floquet Her-
mitian topological phases [104,148] as the special cases. In
fact, the Hermitian constraint H (k, t ) = H†(k, t ) can be rep-
resented by a type-Q (εq = 1, ηq = 1, and q = I) symmetry
of the GBL classes in Eq. (11). Thus, the Hermitian A, AIII,
AI, AII, C, D, CI, CII, BDI, and DIII classes of the AZ tenfold
way correspond to the non-Hermitian Qa, PQ1, QC1a, QC3a,
QC7a, QC5a, PQC9a, PQC5, PQC1, and PQC11a classes of
the GBL 54-fold way, respectively.

Here we derive this conclusion. The Hermitian constraint is
a type-η (pseudo-Hermitian) symmetry in the paper of Kawa-
bata et al. [128]. Due to the Hermitian operator commute with
TRS, PHS, and CS operators, the Hermitian A, AIII, AI, AII,
C, D, CI, CII, BDI, and DIII classes of the AZ tenfold way
corresponds to the non-Hermitian η+A, η+AIII, η+AI, η+AII,
η++C, η++D, η++CI, η++CII, η++BDI, and η++DIII classes
of the GBL 54-fold way in Kawabata-Shiozaki-Ueda-Sato’s
notation, respectively. According to the correspondence re-
lations between Kawabata-Shiozaki-Ueda-Sato notation and
Ref. [130]’s notation in Table VIII of Ref. [130], the non-
Hermitian η+A, η+AIII, η+AI, η+AII, η++C, η++D, η++CI,
η++CII, η++BDI, and η++DIII classes of the GBL 54-fold
way in Kawabata-Shiozaki-Ueda-Sato’s notation correspond
to the non-Hermitian Qa, PQ1, QC1a, QC3a, QC7a, QC5a,
PQC9a, PQC5, PQC1, and PQC11a classes of the GBL 54-
fold way in Ref. [130]’s notation, respectively.

For the above 10 classes, our classification for the FO
angle-gapped case in Table I reproduces Roy and Harper’s
periodic table [104] of Floquet Hermitian topological insu-
lator with FH real gaps (or FO angle gaps). While for the FO
angle-gapless case, our classification in Table II reproduces
Higashikawa, Nakagawa, and Ueda’s periodic table [148] of
unitary Floquet operator. The superficial doubling of the topo-
logical invariants Z×2n, Z×2np , Z×2n

2 , or Z
×2np

2 appeared in
Table I and II comes from the existence of the Q (εq = 1)
symmetry, which enforces the H̃ (k, t ) in Eq. (30) and H̃ (k)
in Eq. (37) to be diagonalized into two irreducible blocks.
Each block either corresponds to the 1 or the −1 eigenvalue
of Q̃ (note that Q̃2 = 1), respectively. Consider Hermitian as
a type-Q symmetry, we have εq = 1, ηq = 1, and q = I, the
−1 eigensubspace of Q̃ is vanish. By kicking out the half
topological numbers that correspond to –1 eigensubspace, we
are left with only the half topological numbers that correspond
to the 1 eigensubspace and fully recover previous results for
Floquet Hermitian topological phases.

We stress that the classification of Floquet topological in-
sulator is equivalent to the topological classification of FO
angle gapped Hermitian system. And unitary Floquet opera-
tor’s topological classification is equivalent to the topological
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classification of FO angle gapless Hermitian system. They are
different names for the same thing.

For example, according to Table I, the topological classifi-
cation of the non-Hermitian 1-dimensional GBL PQC1 class
FO angle gapped system is Z2np . Consider Hermitian as a
type-Q symmetry, and we have q = I. Thus, the −1 eigen-
subspace of Q̃ vanish, we should kick out the half topological
number (they correspond to −1 the eigensubspace and must
be trivial). And the topological classification is Znp . Accord-
ing to Ref. [104] the topological classification of Hermitian
1-dimensional AZ BDI class Floquet topological insulator is
Znp . Thus, our result is consistent with Roy and Harper’s re-
sult [104]. Similarly, it is not difficult to verify that our results
are consistent with Roy and Harper’s results [104] for any
dimensional and symmetry class. According to Table II, the
topological classification of the non-Hermitian 1-dimensional
GBL Qa class FO angle gapless system is Z2. Consider Her-
mitian as a type-Q symmetry, and we have q = I. Thus, the
−1 eigensubspace of Q̃ vanish, we should kick out the half
topological number (they correspond to −1 the eigensubspace
and must be trivial). And the topological classification is Z.
According to Ref. [148], the topological classification of Her-
mitian 1-dimensional A class unitary Floquet operator is Z.
Thus, our result is consistent with Higashikawa, Nakagawa,
and Ueda’s result [148]. Similarly, it is not difficult to verify
that our results are consistent with Higashikawa, Nakagawa,
and Ueda’s results [148] for any dimensional and symmetry
class.

IV. EXAMPLES OF FLOQUET NON-HERMITIAN
TOPOLOGICAL PHASES

To get an intuitive understanding of our topological clas-
sification and the novel features of FNH topological phases,
we demonstrate two explicit examples in this section. They
correspond to the FO angle-gapped and FO angle-gapless
cases, respectively. And we extract the physical meanings of
the topological invariants.

A. FO angle-gapped topology

Let us consider a periodically driven two-dimensional hon-
eycomb lattice, which contains two sublattices (denoted as A
and B), as depicted in Fig. 2(a). The Floquet dynamics is im-
plemented through a seven-step driving sequence, with each
step described by a constant Hamiltonian Hj for time-lapse
nτ + j−1

7 τ � t < nτ + j
7τ (n ∈ Z, j = 1, 2, . . . , 7), τ is the

driving period. The driving protocol is schematically shown
in Fig. 2(b). The first three steps involve only nonreciprocal
hoppings between the neighboring A, B sites along three
different edges, respectively. Their Hamiltonians are given by

H1(k) =
[

0 eg+ik·a1

e−g−ik·a1 0

]
;

H2(k) =
[

0 e−g+ik·a2

eg−ik·a2 0

]
;

H3(k) =
[

0 e−g+ik·a3

eg−ik·a3 0

]
, (44)

FIG. 2. Anomalous non-Hermitian edge modes on a two-
dimensional Floquet driven honeycomb lattice. (a) Honeycomb
lattice structure. Filled and open circles represent A and B sites,
respectively. Red and green arrows depict the trajectories of a par-
ticle initially at the bottom edge A site and top edge B site in a
driving period t ∈ [0, τ ], respectively. A bulk particle follows the
blue trajectory cyclically. (b) Driving protocol. In the first six steps,
the spatially homogeneous hopping amplitudes are varied in a chiral
way. In each step, only nonreciprocal hoppings along one specific
bond are allowed. The dotted-blue arrows and solid-blue arrows de-
note hopping amplitudes e−g and eg, respectively. In the last step, the
potential −V and V are applied on the A and B lattice, respectively.
(c) Quasienergy spectra (real part). The red and blue bands are for the
chiral edge modes at the bottom and top zigzag edges, respectively;
the flat bulk bands (blue) are pinned at ε = π/τ . The parameters are
V = 0, τ = 3.5π , and g = π .

on the sublattice basis. Here a1 = (− a
2 ,− a

2
√

3
), a2 = (0, a√

3
),

a3 = ( a
2 ,− a

2
√

3
), and a = 1 is the lattice constant. g is the

nonreciprocal coefficient. When g �= 0, the Hamiltonian is
non-Hermitian. The next three steps repeat the first three steps,
The final step is an on-site chemical potential term, i.e.,

H4 = H1, H5 = H2, H6 = H3, H7 = −V σz. (45)

Here σz is Pauli matrix. This model can be regarded as a
non-Hermitian generalization of Kitagawa et al.’s model [101]
and belongs to class Non in the GBL class. We start from the
ideal case with V = 0, τ = 3.5π , and consider the motion of a
single particle in the geometry depicted in Fig. 2(a). The Flo-
quet dynamics are exactly solvable and depicted in Fig. 2(a).
The bulk Floquet operator is U (k) = −I. An initial particle
at the A site in bulk travels along the blue loci cyclically.
And the particle returns to its initial position after one whole
period. Similar, the particle at the bulk B site also returns to its
initial position after one whole period. Thus, the bulk Floquet
operator is trivial. The dynamics exhibit different behaviors on
the edges. First, we consider the top edge. An initial particle
located at B site moves along the edge towards the right (green
arrow), and after one driving cycle, it passes through two unit
cells. In comparison, an initial particle located at A site returns
to itself. Second, we consider the bottom edge. An initial
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particle at A site moves along the bottom edge towards the left
(red arrow) and passes through two unit cells after one driving
cycle, while an initial particle at B site returns to itself. The
topological edge modes at the top and bottom edge possess
different imaginary quasienergies, which are also different
from the imaginary quasienergies of the bulk modes. We can
explicitly work out the edge dynamics of the ideal case. The
effective Floquet Hamiltonians for the four edges are given by
(up to 2π j/τ , j ∈ Z)

ĤT =
[−π

τ
0

0 2kx+4gi
τ

]
; ĤB =

[− 2kx+4gi
τ

0
0 −π

τ

]
;

ĤL =
[− 2kr

τ
0

0 −π
τ

]
; ĤR =

[−π
τ

0
0 2kr

τ

]
. (46)

where T , B, L, and R refer to the top, bottom, left, and right
edges, respectively. The kx and kr are the momenta along x
and r directions labeled in Fig. 2(a).

The quasienergy spectra of the above ideal case are illus-
trated in Fig. 2(c). Besides the flat bulk quasienergy bands
located at π/τ , there exist two sets of chiral edge modes
shown by the red and green lines. These edge modes de-
scribe the chiral motion on the top and bottom edges. The
appearance of these edge modes in the π/τ real gap of
the quasienergy spectra cannot be understood from the bulk
Floquet Hamiltonian itself. These chiral edge states are intrin-
sically dynamical, and the system is in the Floquet anomalous
topological phase. The dynamical topology can only be re-
vealed from the time-evolution operator. According to Table I
for the Non class, the topological invariant is Z×n with n the
number of FO angle gaps. Formally, we can define the loop
operator from HF,θ = i

τ
ln−θ [U (k)] as Ul,θ = U (k, t ) ∗ eiHF,θ t ,

here U (k, t ) is the time evolution operator of the system.
The topological invariant defined for the loop operator is as
follows:

Wθ = 1

8π2

∫ 2π

0
kx

∫ 2π

0
dky

∫ τ

0
dt

× Tr
(
U −1

l,θ ∂tUl,θ
[
U −1

l,θ ∂kxUl,θ ,U −1
l,θ ∂kyUl,θ

])
. (47)

Wθ is the so-called three-winding number in the momentum-
time space and directly gives the number of chiral edge modes
located at the FO angle gap θ (equivalent to FH real gap θ/τ ).
For Fig. 2(c) case, W0 = 2, which is consistent with the chiral
motion across two unit cells in Fig. 2(a). There may exist
multiple FO angle gaps when deviating from the ideal case.
By tuning the parameters g, V , and T in this model, various
FNH topological phases can appear. Let us consider four
typical examples, with their spectra of the Floquet operator on
the complex plane illustrated in Fig. 3. In Fig. 3(a), the spectra
exhibit both 0 and π FO angle gaps. There is no topologically
nontrivial edge state in these FO angle gaps, consistent with
their topological invariants (W0,Wπ ) = (0, 0). By tuning pa-
rameters, the FO angle gap at 0 closes and further reopens,
accompanied by the emergence of one chiral edge state (at
the top edge) at the FO angle gap 0 as shown in Fig. 3(b).
For this case, the topological invariants are (W0,Wπ ) = (1, 0).
Figure 3(c) depicts an anomalous case when the bulk Floquet
Hamiltonian is topologically trivial. We can verify the Chern
number for each Floquet operator band is zero. However, there

FIG. 3. Spectra of the Floquet operator for four topologically
distinct FO angle-gapped phases. (a) g = 0.01π , τ = π , and V =
0.5π . The (W0,Wπ ) = (0, 0) phase when both 0 and π FO angle
gaps exist. (b) g = 0.05π , τ = π , and V = 0.05π . The (W0,Wπ ) =
(1, 0) phase with both 0 and π FO angle gaps. The colors repre-
sent the value of inverse partial ratio (IPR), which is defined as
IPR = (

∑
j |ψ j |4)/(

∑
j |ψ j |2), where j is the site index. The IPR

clearly shows the appearance of edge states inside the 0 FO angle
gap. (c) g = 0.01π , τ = 2.5π , and V = 0.5π . The (W2,Wπ ) = (2, 2)
phase with both 0 and π FO angle gaps. This is an anomalous
Floquet phase with zero Chern number for each Floquet operator
band. (d) g = 0.05π , τ = 3.2π , and V = 0.01π . The W0 = 2 phase
is unique to Floquet non-Hermitian system. There is only one FO
angle gap at 0. The edge modes are fully detached from the bulk
bands.

exist both edge states inside the 0 and π FO angle gaps, dic-
tated by topological invariants (W0,Wπ ) = (2, 2). In Fig. 3(d),
we illustrate an unexpected case when there is no FO angle
gap at π , and the Floquet operator possesses a FO angle gap at
0. The topological invariant for the FO angle gap 0 is W0 = 2.
Contrary to the general picture of boundary states connect-
ing bulk bands in the two-dimensional Hermitian topological
phases, the two chiral edge states are fully detached from the
bulk. They can be engineered independently without changing
the bulk invariants. We emphasize that such a phase is intrinsic
to Floquet non-Hermitian system and can be utilized, e.g., in
boundary-state engineering in photonic waveguides [137].

B. FO angle-gapless topology

When the spectra of the Floquet operator enclose the origin
without any FO angle gaps, the topology of the system is car-
ried by its Floquet operator. We consider a one-dimensional
two-band system with a two-step driving sequence generated
by Hamiltonian Ĥo1 and Ĥo2. The time-lapse of each step is
τ/2. The expressions of Ĥo1 and Ĥo2 are

Ĥo1 = −π

τ

[
0 eik

e−ik 0

]
; Ĥo2 = π

τ

[
0 eg

e−g 0

]
. (48)

214305-13



CHUN-HUI LIU, HAIPING HU, AND SHU CHEN PHYSICAL REVIEW B 105, 214305 (2022)

FIG. 4. Spectra of the FO angle-gapless system. (a) Quasienergy
spectra (real part) with respect to momentum k. The two bands with
opposite chirality wind around the quasienergy zone. (b) Spectra
of the Floquet operator on the complex plane. The inner (outer)
circle with winding number W± = ±1 encloses the origin counter-
clockwise (clockwise) by increasing k from 0 to 2π .

The Floquet operator U (k) = e−iHo2τ/2e−iHo1τ/2 is

U (k) =
[

e−ik+g 0

0 eik−g

]
. (49)

This model can be regarded as a non-Hermitian generaliza-
tion of Budich, Hu, and Zoller’s model [151]. The system
belongs to the Non class, and Floquet operator U (k) is a
reducible matrix. The quasienergy spectra of the Floquet
Hamiltonian and the spectra of the Floquet operator are
depicted in Figs. 4(a) and 4(b), respectively. Due to the ab-
sence of the FO angle gap, the Floquet Hamiltonian bands
(real part) wind around the quasienergy zone ([0, 2π/τ )) and
possess different imaginary parts (i.e., lifetimes). Such band
structures only exist in Floquet driven systems and describe
the chiral motions of opposite chirality. Each irreducible
block (U+ := e−ik+g and U− := eik−g) is characterized by a
winding number: W+ = i

2π

∫ 2π

0 dkU −1
+ ∂kU+ = 1 for U+ and

W− = i
2π

∫ 2π

0 dkU −1
− ∂kU− = −1 for U−. W± corresponds to

the number of right/left-moving chiral fermions in the Floquet
Hamiltonian bands. Similarly, we can consider FO angle-
gapless model in other dimensions. The above topological
number in the FO angle gapless case gives rise to unidirec-
tional topological charge pumping differs from the physical
meaning of angle gapped topological number [138].

V. BOSONIC SYSTEMS

Our topological classification can be equally applied to the
Floquet driving bosonic systems. Usually, the bosonic particle
number is not conserved [152] in realistic experimental set-
tings. Let us formally consider a generic tight-binding bosonic
BdG-type Hamiltonian:

Ĥb =
∑
i j;μν

(
hiμ, jν â†

iμâ jν + 1

2
�iμ, jν â†

iμâ†
jν + 1

2
�∗

iμ, jν âiμâ jν

)
.

(50)
Here â†

iμ (âiμ) is the creation (annihilation) operator of
bosonic particles. i and μ label the unit cell and some
internal degrees of freedom (e.g., spin, sublattice, or
orbit), respectively. They satisfy the standard bosonic
commutation relation [âiμ, â†

jν] = δi jδμν . �iμ, jν = � jν,iμ

is the pairing term. We define the two field operators:
�̂ = (â11, . . . , â1m, â21, . . . , â2m, . . . , âL1, . . . , âLm)T, and
¯̂� = (â†

11, . . . , â†
1m, â†

21, . . . , â†
2m, . . . , â†

L1, . . . , â†
Lm)T. The

Heisenberg equation of motion of the system is

d

dt

(
�̂

¯̂�

)
= −iM(t )

(
�̂

¯̂�

)
, (51)

where

M(t ) :=
(

h �

−�∗ −hT

)
. (52)

The single-particle Hamiltonian h can be either Hermitian
or non-Hermitian. The dynamics of the bosonic system are
fully governed by the M matrices. M plays a similar role as
the time-dependent Hamiltonian in the fermionic system. The
topological classification of the bosonic system is for the M(t )
matrix, and our conclusions of FNH symmetry and topol-
ogy can be directly applied. Specifically, for a Hermitian Ĥb

with BdG pairing, the M matrix fulfills τxM(t )τx = −M∗(t ),
τzM(t )τz = M†(t ), and τyM(t )τy = −MT(t ). Thus, the M(t )
belongs to the GBL class QC8a. According to Table I, the
topological invariant for the bosonic system in even (odd)
dimensions is Znp (0) if the system is FO angle-gapped. Here
np = 1 if there is only one FO angle gap at 0 or π , and np = 2
if there exist both 0 and π FO angle gaps. According to Ta-
ble II, the topological invariant for the bosonic system in even
(odd) dimensions is 0 (Z) if the system is FO angle-gapless.
In the following, we consider two representative examples to
illustrate our classifications for the bosonic systems. One is a
two-dimensional Floquet bosonic topological superconductor
with FO angle gaps, which hosts anomalous Floquet bosonic
edge modes without any static counterparts. The other one is
a one-dimensional Floquet bosonic system without any FO
angle gap, which can exhibit nontrivial spectral windings.

First example: FO angle-gapped bosonic system. We con-
sider a similar driving protocol as in Fig. 2(a) on a bosonic
honeycomb lattice, with bosons on neighboring sites paired
together. There are seven driven steps, each step determined
by driven time τ/7 and a static Hamiltonian. Written on the
sublattice and BdG basis, the static Hamiltonian for each step
is

Ĥb j =
∑

k

[
(a†

kA, a†
kB)Hj (k)

(
akA

akB

)
+ (a†

kA, a†
kB)�(k)

(
a†

kA

a†
kB

)

+ (akA, akB)�†(k)

(
akA

akB

)]
. (53)

Here Hj (k) is given by Eqs. (44) and (45), and g = 0 in
these equations. �(k) = �0σ0, and �0 is a complex number.
The field operators are denoted by �̂ = (akA, akB)T and ¯̂� =
(a†

kA, a†
kB)T. When �0 = 0, the model reduces to the bosonic

version of the model in Sec. IV A. For the generic case with
�0 �= 0, the Floquet dynamics is described by the M matrix
in Eq. (52). Similar to the fermionic case, we can discuss the
spectra and topological invariants of the M matrix. The system
exhibits various topological phases by tuning the parameters
�0, V , and τ . Figures 5(a)–5(d) depict the spectra of the
M matrix’s Floquet operator for four typical phases. Their
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FIG. 5. Spectra of the M matrix’s Floquet operator for four dis-
tinct FO angle-gapped bosonic topological phases. (a) �1 = 0.1π ,
τ = 0.5π , and V = π . The (W0,Wπ ) = (0, 0) phase when both 0
and π FO angle gaps exist. (b) �1 = 0.1π , τ = 1.7π , and V = π .
The (W0,Wπ ) = (0, 2) phase with both 0 and π FO angle gaps.
(c) �1 = 0.1π , τ = 3π , and V = π . The (W2,Wπ ) = (4, 4) phase
with both 0 and π FO angle gaps. It is an anomalous Floquet phase
with zero Chern number for each Floquet operator band. (d) �0 =
0.01π , τ = 3.5π , and V = 0. The W0 = 4 phase is unique to Floquet
non-Hermitian system. There is only one FO angle gap at 0. The
edge modes are detached from the bulk bands. The colors represent
the value of IPR, which clearly shows the appearance of edge states.

topological invariants (W0,Wπ ) are (0,0), (0,2), (4,4), and
(4, undefined ), respectively. The third case shown in Fig. 5(c)
is dynamically anomalous, i.e., the bulk Chern number of each
Floquet operator band is zero, yet with the appearance of edge
states. For the fourth case shown in Fig. 5(d), there is only
one FO angle gap at 0, and the topological invariant Wπ is
ill-defined due to the lack of a branch cut at the π FO angle
gap. It is different from the fermionic Non class. Firstly, the
M matrix’s FO angle gaps, if any, must be pinned at either 0
or π or pairs at (θm, −θm), compared to the fermionic Non
class where the FO angle gap can be tuned anywhere. It is
due to the additional symmetry constraints on the M matrix.
Secondly, The topological invariants for the bosonic system
are doubled due to the existence of BdG pairing.

Second example: FO angle-gapless bosonic system. We
consider a two equal-step driving sequence described by Her-
mitian Hamiltonian Hbo1 = −π

τ
τ0 ⊗ [cos(k)σx − sin(k)σy],

and

Hbo2(k) = π

τ
(τ0 ⊗ σx + �1τx ⊗ σz ) (54)

Here τ0 is a 2 × 2 identity matrix, τx,y,z are the Pauli matrices
in the particle-hole space. �1 is the real pairing amplitude.
It is easy to check the M matrix of each step for this
bosonic system is Mboj = (τz ⊗ σ0)HBoj ( j = 1, 2). The Flo-
quet operator of M matrices is Ubo(k, τ ) = e−iMbo2

τ
2 e−iMbo1

τ
2 =

e−ikτ0⊗σz+ π�1
2 τy⊗σz . The M matrices’ Floquet operator is re-

ducible into four irreducible subblocks: U1 = e−ik−π�1/2,
U2 = e−ik+π�1/2, U3 = eik+π�1/2, and U4 = eik−π�1/2. The
corresponding M matrices’ Floquet Hamiltonians for the four
blocks are 1

τ
(±k ± i π�1

2 ). They describe the chiral bosonic
modes, where the pairing term contributes to the lifetime of
these modes. For each block, we can define an integer wind-
ing number as Wm = i

2π

∫ 2π

0 dkU −1
m ∂kUm (m = 1, 2, 3, 4). It

follows that W1 = W2 = 1 and W3 = W4 = −1. The number
and chirality of each chiral bosonic mode are given by |Wm|
and the sign of Wm, respectively.

VI. CONCLUSIONS

In summary, we have developed a comprehensive classifi-
cation of FNH topological phases using the K theory based
on the internal symmetries of the system and the FO an-
gle gaps. We have demonstrated there exist 54 distinct GBL
classes for time-dependent non-Hermitian Hamiltonians. We
have obtained two periodic tables for the FO angle-gapped
and FO angle-gapless FNH topological phases, respectively.
Our scheme fully covers the previous topological classifica-
tions of Floquet Hermitian topological insulators and Floquet
unitaries. Our classification can also be utilized to character-
ize the Floquet topological phases of bosonic systems. We
have unveiled the physical meanings and consequences of
the topological invariants through explicit examples, like the
appearance of edge states in the FO angle gaps and charge
transport.

Our topological classification of the FNH topological
phase is based on the periodic boundary condition or Bloch
Hamiltonian. According to the previous study of the topo-
logical classification of static non-Hermitian systems, the
conclusions of topological classification do not change when
the periodic boundary condition is transformed into the open
boundary condition. The topological phase transition points
may change due to the non-Hermitian skin effect. To re-
cover the topological phase transition points, we can use
non-Bloch band theory [75], biorthogonal bulk-boundary cor-
respondence [76], or real space topological number [153].
Similarly, we think our results of topological classification
do not change when the periodic boundary condition is trans-
formed into the open boundary condition. We may need to
use non-Bloch band theory, biorthogonal bulk-boundary cor-
respondence, or real space topological number to define the
topological number in the open boundary condition when
there is the non-Hermitian skin effect.

Our framework, together with the previous AZ tenfold
way of static Hermitian topological phases [114–120], Roy
and Harper’s periodic table of Floquet Hermitian topological
insulators, [104] and Higashikawa, Nakagawa, and Ueda’s
periodic table of Floquet unitaries [148] and the most recent
classifications of static non-Hermitian Hamiltonians [14,127–
131], hence completes the whole classification map based on
the internal symmetries. Our scheme may be extended to in-
clude other types of symmetries, e.g., crystalline symmetries
[117,118,131,156], and to higher-order Floquet topological
phases [108–113]. Our scheme should be readily extended
to include defects by changing H (k, t ) to H (k, r, t ) [130],
and include Floquet dislocation-induced non-Hermitian skin
effect by discussing the wave function of HF [154,155].
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Beyond its immediate significance for understanding the
various topological phases unique to Floquet and non-
Hermitian systems, our scheme should open a broad avenue
to explore the novel dynamical phenomena and topologi-
cal effects originating from the interplay of non-Hermiticy,
topology, and Floquet engineering and further guide the ex-
perimental design and application in atomic and photonic
systems.

ACKNOWLEDGMENTS

The work is supported by the NSFC under Grants No.
12174436 and No. 11974413 and the Strategic Priority Re-
search Program of Chinese Academy of Sciences under Grant
No. XDB33000000.

APPENDIX A: A FULL COUNTING OF THE GBL CLASSES

In this section, we give the details of the full count of
the GBL classes. We need to count all possible group struc-
tures generated by Eqs. (6)–(9). From that the Hamiltonian
is irreducible, we can get that p2 = I, q2 = I, cc∗ = ±I, and
kk∗ = ±I. From the P, Q, C, and K commute with each other,
we can get Eq. (14). And we can prove the following three
propositions:

Proposition 1. If there are P and Q symmetry, we can define
another Q-type symmetry labeled as Q′ with εq = −εq′ .

Proposition 2. If there are P and C symmetry, we can define
another C-type symmetry labeled as C′ with εc = −εc′ .

Proposition 3. If there are P and K symmetry, we can define
another K-type symmetry labeled as K ′ with εk = −εk′ .

The proof of Proposition 1: The system has Q and P sym-
metries, then it satisfies Eqs. (7) and (9). Then we can get
that

H (k, t ) = εqqH†(k, εqt )q−1

= εqq[−pH (k,−εqt )p−1]†q−1

= −εqqpH†(k,−εqt )(qp)−1. (A1)

According to Eq. (A1), we can define another type-Q symme-
try, and we label it as Q′ and εq′ = −εq, q′ = √

εpqqp. Thus,
we get the proof of Propositions 1. Similarly, we can prove
Propositions 2 and 3.

According to Propositions 1, 2, and 3, if the system has
type-P symmetry, we can fix εq = εc = εk = 1. To count all
possible group structures, we should consider all possible
situations:

TABLE III. Counting all possible group structures generated by
Eqs. (6)–(9).

System’s The variable Number of group
symmetries can be ±1 structures

Non 1
P 1
Q εq 21 = 2
C εc, ηc 22 = 4
K εk, ηk 22 = 4
P,Q εpq 21 = 2
P,C ηc, εpc 22 = 4
P,K ηk, εpk 22 = 4
Q,C εq, εc, ηc, εqc 24 = 16
P,Q,C ηc, εpc, εpk, εqc 24 = 16

(1) When there is no symmetry, the number of group struc-
tures is one.

(2) When there is only type-P symmetry, the number of
group structures is one.

(3) When there are only type-P and type-Q symmetries, we
can fix εq = 1. εpq = ±1, the number of group structures is
21 = 2.

(4) When there are only type-P, type-Q, and type-C sym-
metries, we can fix εq = εc = 1. ηc, εpq, εpc, εqc = ±1, the
number of group structure is 24 = 16.

Similarly, when there is only type-Q symmetry, the number
of group structures is two. When there is only type-C sym-
metry, the number of group structures is four. When there
is only type-K symmetry, the number of group structures
is four. When there are only type-P and type-C symme-
tries, the number of group structures is four. When there are
only type-P and type-K symmetries, the number of group
structures is four. When there are only type-C and type-Q
symmetries, the number of group structures is 16. We sum-
marize these conclusions in Table III. Adding all numbers of
group structures of different situations, 1 + 1 + 2 + 4 + 4 +
2 + 4 + 4 + 16 + 16 = 54. Thus, the total number of group
structures is 54.

APPENDIX B: DERIVATION OF EQS. (15)–(18)
FROM EQS. (10)–(13)

In the following, we derive the symmetry transformations
on the time-evolution operator U (k, t ) [Eqs. (15)–(18)] from
the symmetry transformations on the time-dependent Hamil-
tonian H (k, t ) [Eqs. (10)–(13)].

1a. From H (k, t ) = kH∗(−k,−t )k−1 to U ∗(−k,−t ) =
k−1U (k, t )k.

k−1U (k, t )k = [1 − i�tk−1H (k, t )k][1 − i�tk−1H (k, t − �t )k] . . . [1 − i�tk−1H (k,�t )k]

= [1 − i�tH∗(−k,−t )][1 − i�tH∗(−k,−t + �t )] . . . [1 − i�tH∗(−k,−�t )]

= {[1 − i�tH (−k,−�t )] . . . [1 − i�tH (−k,−t + �t )][1 − i�tH (−k,−t )]}−1∗

= [U ∗(−k, 0,−t )]−1 = U ∗(−k,−t ). (B1)
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1b. From H (k, t ) = −kH∗(−k, t )k−1 to U ∗(−k, t ) = k−1U (k, t )k.

k−1U (k, t )k = [1 − i�tk−1H (k, t )k][1 − i�tk−1H (k, t − �t )k] . . . [1 − i�tk−1H (k,�t )k]

= [1 + i�tH∗(−k, t )][1 + i�tH∗(−k, t − �t )] . . . [1 + i�tH∗(−k,�t )]

= {[1 − i�tH (−k, t )][1 − i�tH (−k, t − �t )] . . . [1 − i�tH (−k,�t )]}∗
= U ∗(−k, t ). (B2)

2a. From H (k, t ) = qH†(k, t )q−1 to [U †(k, t )]−1 = q−1U (k, t )q.

q−1U (k, t )q = [1 − i�tq−1H (k, t )q][1 − i�tq−1H (k, t − �t )q] . . . [1 − i�tq−1H (k,�t )q]

= [1 − i�tH†(k, t )][1 − i�tH†(k, t − �t )] . . . [1 − i�tH†(k,�t )]

= {[1 − i�tH (k, t )][1 − i�tH (k, t − �t )] . . . [1 − i�tH (k,�t )]}†−1

= [U †(k, t )]−1. (B3)

2b. From H (k, t ) = −qH†(k,−t )q−1 to [U †(k,−t )]−1 = q−1U (k, t )q.

q−1U (k, t )q = [1 − i�tq−1H (k, t )q][1 − i�tq−1H (k, t − �t )q] . . . [1 − i�tq−1H (k,�t )q]

= [1 + i�tH†(k,−t )][1 + i�tH†(k,−t + �t )] . . . [1 + i�tH†(k,−�t )]

= {[1 − i�tH (k,−�t )] . . . [1 − i�tH (k,−t + �t )][1 − i�tH (k,−t )]}†

= [U (k, 0,−t )]† = [U †(k,−t )]−1. (B4)

3a. From H (k, t ) = −cHT(−k, t )c−1 to [U T(−k, t )]−1 = c−1U (k, t )c.

c−1U (k, t )c = [1 − i�tc−1H (k, t )c][1 − i�tc−1H (k, t − �t )c] . . . [1 − i�tc−1H (k,�t )c]

= [1 + i�tHT(−k, t )][1 + i�tHT(−k, t − �t )] . . . [1 + i�tHT(−k,�t )]

= {[1 − i�tH (−k, t )][1 − i�tH (−k, t − �t )] . . . [1 − i�tH (−k,�t )]}−1T = [U T(−k, t )]−1. (B5)

3b. From H (k, t ) = cHT(−k,−t )c−1 to [U T(−k,−t )]−1 = c−1U (k, t )c.

c−1U (k, t )c = [1 − i�tc−1H (k, t )c][1 − i�tc−1H (k, t − �t )c] . . . [1 − i�tc−1H (k,�t )c]

= [1 − i�tHT(−k,−t )][1 − i�tHT(−k,−t + �t )] . . . [1 − i�tHT(−k,−�t )]

= {[1 − i�tH (−k,−�t )] . . . [1 − i�tH (−k,−t + �t )][1 − i�tH (−k,−t )]}T

= [U T(−k, 0,−t )] = [U T(−k,−t )]−1. (B6)

4. From H (k, t ) = −pH (k,−t )p−1 to U (k,−t ) = p−1U (k, t )p.

p−1U (k, t )p = [1 − i�t p−1H (k, t )p][1 − i�t p−1H (k, t − �t )p] . . . [1 − i�t p−1H (k,�t )p]

= [1 + i�tH (k,−t )][1 + i�tH (k,−t + �t )] . . . [1 + i�tH (k,−�t )]

= {[1 − i�tH (k,−�t )] . . . [1 − i�tH (k,−t + �t )][1 − i�tH (k,−t )]}−1

= [U (k, 0,−t )]−1 = U (k,−t ). (B7)

APPENDIX C: DERIVATION OF EQS. (20)–(23) FROM EQS. (15)–(18)

First, we need to show:
Lemma 3. U (k, ετ ) = [U (k)]ε , where ε = ±1.
Proof. ε = 1 is obvious. If ε = −1. We have

U (k,−τ ) = U (k,−τ, 0) = U (k, 0, τ ) = [U (k, τ, 0)]−1 = [U (k)]−1. (C1)

1. From U ∗(−k,−t ) = k−1U (k, εkt )k to [U ∗(−k)]−εk = k−1U (k)k. First, we have U ∗(−k,−τ ) = k−1U (k, εkτ )k. Thus,

[U ∗(−k)]−εk = [U ∗(−k,−τ )]εk = [k−1U (k, εkτ )k]εk = {k−1[U (k)]εk k}εk = k−1U (k)k. (C2)

2. From [U †(k, t )]−1 = q−1U (k, εqt )q to [U †(k)]−εq = q−1U (k)q. First, we have [U †(k, τ )]−1 = q−1U (k, εqτ )q. Thus,

[U †(k)]−εq = [U †(k, τ )]−εq = [q−1U (k, εqτ )q]εq = {q−1[U (k, τ )]εq q}εq = q−1U (k, τ )q. (C3)
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3. From [U T(−k, t )]−1 = c−1U (k,−εct )c to [U T(−k)]εc = c−1U (k)c. First, we have [U T(−k, τ )]−1 = c−1U (k,−εcτ )c.
Thus,

[U T(−k)]εc = [U T(−k, τ )]εc = [c−1U (k,−εcτ )c]−εc = {c−1[U (k, τ )]−εc c}−εc = c−1U (k, τ )c. (C4)

4. From U (k,−t ) = p−1U (k, t )p to [U (k)]−1 = p−1U (k)p. First, we have U (k,−τ ) = p−1U (k, τ )p. Thus,

[U (k)]−1 = U (k,−τ ) = p−1U (k, τ )p = p−1U (k)p. (C5)

APPENDIX D: PROOF OF LEMMA 1

Lemma 1 states that the composition of two time-evolution
generated by Hamiltonian H1(k, t ) and H2(k, t ) does not al-
ter the underlying symmetry class. Here we consider all the
four symmetries K, Q,C, P and denote the composition as
H (k, t ) = H1 ∗ H2.

1. K symmetry with εk = 1. We have H1(k, t ) =
kH∗

1 (−k,−t )k−1 and H2(k, t ) = kH∗
2 (−k,−t )k−1. We need

to derive H (k, t ) = kH∗(−k,−t )k−1. The conditions are
equivalent to H1(−k,−t ) = kH∗

1 (k, t )k−1 and H2(−k,−t ) =
kH∗

2 (k, t )k−1.
1a. When 0 � t � τ/4,

kH∗(k, t )k−1 = kH∗
2 (k, 2t )k−1 = H2(−k,−2t ), (D1)

H (−k,−t ) = H (−k, τ − t ) = H2(−k, 2τ − 2t − τ )

= H2(−k,−2t ). (D2)

Thus, kH∗(k, t )k−1 = H (−k,−t ).
1b. When τ/4 < t < 3τ/4,

kH∗(k, t )k−1 = kH∗
1 (k, 2t − τ/2)k−1

= H1(−k, τ/2 − 2t ), (D3)

H (−k,−t ) = H (−k, τ − t ) = H1(−k, 2τ − 2t − τ/2)

= H1(−k, τ/2 − 2t ). (D4)

Thus, kH∗(k, t )k−1 = H (−k,−t ).
1c. When 3τ/4 � t � τ ,

kH∗(k, t )k−1 = kH∗
2 (k, 2t − τ )k−1 = H2(−k, τ − 2t ),

(D5)

H (−k,−t ) = H (−k, τ − t ) = H2(−k, 2τ − 2t )

= H2(−k, τ − 2t ). (D6)

Thus, kH∗(k, t )k−1 = H (−k,−t )
2. K symmetry with εk = −1. From H1(k, t ) =

−kH∗
1 (−k, t )k−1 and H2(k, t ) = −kH∗

2 (−k, t )k−1 to
H (k, t ) = −kH∗(−k, t )k−1.

2a. When 0 � t � τ/4,

− kH∗(−k, t )k−1 = −kH∗
2 (−k, 2t )k−1

= H2(k, 2t ) = H (k, t ). (D7)

Thus, −kH∗(−k, t )k−1 = H (k, t ).
2b. When τ/4 < t < 3τ/4,

− kH∗(−k, t )k−1 = −kH∗
1 (−k, 2t − τ/2)k−1

= H1(k, 2t − τ/2) = H (k, t ). (D8)

Thus, −kH∗(−k, t )k−1 = H (k, t ).

2c. When 3τ/4 � t � τ ,

− kH∗(−k, t )k−1 = −kH∗
2 (−k, 2t − τ )k−1

= H2(k, 2t − τ ) = H (k, t ). (D9)

Thus, −kH∗(−k, t )k−1 = H (k, t ).
3. Q symmetry with εq = −1. From H1(k, t ) =

−qH†
1 (k,−t )q−1 and H2(k, t ) = −qH†

2 (k,−t )q−1

to H (k, t ) = −qH†(k,−t )q−1. It is equivalent to
“From H1(k,−t ) = −qH†

1 (k, t )q−1 and H2(k,−t ) =
−qH†

2 (k, t )q−1 to H (k,−t ) = −qH†(k, t )q−1.”
3a. When 0 � t � τ/4,

− qH†(k, t )q−1 = −qH†
2 (k, 2t )q−1 = H2(k,−2t ), (D10)

H (k,−t ) = H (k, τ − t ) = H2(k, 2τ − 2t − τ )

= H2(k,−2t ). (D11)

Thus, H (k,−t ) = −qH†(k, t )q−1.
3b. When τ/4 < t < 3τ/4,

− qH†(k, t )q−1 = −qH†
1 (k, 2t − τ/2)q−1

= H1(k, τ/2 − 2t ), (D12)

H (k,−t ) = H (k, τ − t ) = H1(k, 2τ − 2t − τ/2)

= H1(k, τ/2 − 2t ). (D13)

Thus, H (k,−t ) = −qH†(k, t )q−1.
3c. When 3τ/4 � t � τ ,

− qH†(k, t )q−1 = −qH†
2 (k, 2t − τ )q−1 = H2(k, τ − 2t ),

(D14)

H (k,−t ) = H (k, τ − t ) = H2(k, 2τ − 2t − τ )

= H2(k, τ − 2t ). (D15)

Thus, H (k,−t ) = −qH†(k, t )q−1.
4. Q symmetry with εq = 1. From H1(k, t ) =

qH†
1 (k, t )q−1 and H2(k, t ) = qH†

2 (k, t )q−1 to H (k, t ) =
qH†(k, t )q−1.

4a. When 0 � t � τ/4,

qH†(k, t )q−1 = qH†
2 (k, 2t )q−1 = H2(k, 2t ) = H (k, t ).

(D16)

Thus, H (k, t ) = qH†(k, t )q−1.
4b. When τ/4 < t < 3τ/4,

qH†(k, t )q−1 = qH†
1 (k, 2t − τ/2)q−1

= H1(k, 2t − τ/2) = H (k, t ). (D17)

Thus, H (k, t ) = qH†(k, t )q−1.
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4c. When 3τ/4 � t � τ ,

qH†(k, t )q−1 = qH†
2 (k, 2t − τ )q−1

= H2(k, 2t − τ ) = H (k, t ). (D18)

Thus, H (k, t ) = qH†(k, t )q−1.
5. C symmetry with εc = 1. From H1(k, t ) =

cHT
1 (−k,−t )c−1 and H2(k, t ) = cHT

2 (−k,−t )c−1

to H (k, t ) = cHT(−k,−t )c−1. It is equivalent to
“From H1(−k,−t ) = cHT

1 (k, t )c−1 and H2(−k,−t ) =
cHT

2 (k, t )c−1 to H (−k,−t ) = cHT(k, t )c−1.”
5a. When 0 � t � τ/4,

cHT(k, t )c−1 = cHT
2 (k, 2t )c−1 = H2(−k,−2t ), (D19)

H (−k,−t ) = H (−k, τ − t ) = H2(−k, 2τ − 2t − τ )

= H2(−k,−2t ). (D20)

Thus, H (−k,−t ) = cHT(k, t )c−1.
5b. When τ/4 < t < 3τ/4,

cHT(k, t )c−1 = cHT
1 (k, 2t − τ/2)c−1 = H1(−k, τ/2 − 2t ),

(D21)

H (−k,−t ) = H (−k, τ − t ) = H1(−k, 2τ − 2t − τ/2)

= H1(−k, τ/2 − 2t ). (D22)

Thus, H (−k,−t ) = cHT(k, t )c−1.
5c. When 3τ/4 � t � τ ,

cHT(k, t )c−1 = cHT
2 (k, 2t − τ )c−1 = H2(−k, τ − 2t ),

(D23)

H (−k,−t ) = H (−k, τ − t ) = H2(−k, 2τ − 2t )

= H2(−k, τ − 2t ). (D24)

Thus, H (−k,−t ) = cHT(k, t )c−1.
6. C symmetry with εc = −1. From H1(k, t ) =

−cHT
1 (−k, t )c−1 and H2(k, t ) = −cHT

2 (−k, t )c−1 to
H (k, t ) = −cHT(−k, t )c−1.

6a. When 0 � t � τ/4,

− cHT(−k, t )c−1 = −cHT
2 (−k, 2t )c−1

= H2(k, 2t ) = H (k, t ). (D25)

Thus, H (k, t ) = −cHT(−k, t )c−1.
6b. When τ/4 < t < 3τ/4,

− cHT(−k, t )c−1 = −cHT
1 (−k, 2t − τ/2)c−1

= H1(k, 2t − τ/2) = H (k, t ). (D26)

Thus, H (k, t ) = −cHT(−k, t )c−1.
6c. When 3τ/4 � t � τ ,

− cHT(−k, t )c−1 = −cHT
2 (−k, 2t − τ )c−1

= H2(k, 2t − τ ) = H (k, t ). (D27)

Thus, H (k, t ) = −cHT(−k, t )c−1.
7. P symmetry. From −H1(k, t ) = pH1(k,−t )p−1 and

−H2(k, t ) = pH2(k,−t )p−1 to −H (k, t ) = pH (k,−t )p−1.
It is equivalent to “From −H1(k,−t ) = pH1(k, t )p−1 and
−H2(k,−t ) = pH2(k, t )p−1 to −H (k,−t ) = pH (k, t )p−1.”

7a. When 0 � t � τ/4,

pH (k, t )p−1 = pH2(k, 2t )p−1 = −H2(k,−2t ), (D28)

− H (k,−t ) = −H (k, τ − t ) = −H2(k, 2τ − 2t − τ )

= −H2(k,−2t ). (D29)

Thus, −H (k,−t ) = pH (k, t )p−1.
7b. When τ/4 < t < 3τ/4,

pH (k, t )p−1 = pH1(k, 2t − τ/2)p−1 = −H1(k, τ/2 − 2t ),
(D30)

− H (k,−t ) = −H (k, τ − t ) = −H1(k, 2τ − 2t − τ/2)

= −H1(k, τ/2 − 2t ). (D31)

Thus, −H (k,−t ) = pH (k, t )p−1.
7c. When 3τ/4 � t � τ ,

pH (k, t )p−1 = pH2(k, 2t − τ )p−1 = −H2(k, τ − 2t ),
(D32)

− H (k,−t ) = −H (k, τ − t ) = −H2(k, 2τ − 2t )

= −H2(k, τ − 2t ). (D33)

Thus, −H (k,−t ) = pH (k, t )p−1.

APPENDIX E: PROOF OF LEMMA 2

To prove Lemma 2, we first need to show Lemma 4–9 as
listed below.

Lemma 4. For a complex number λ and lnθ (λ) is well
defined, lnθ (λ) + ln−θ (λ−1) = 2π i.

Proof. There always exist φ1 ∈ (θ, θ + 2π ) and φ2,
satisfying eiφ1+φ2 = λ. lnθ (λ) = iφ1 + φ2 and −φ1 ∈
(−θ − 2π,−θ ). Thus, −φ1 + 2π ∈ (−θ,−θ + 2π ).
ln−θ (λ−1) = ln−θ (e−iφ1−φ2 ) = −iφ1 + 2π i − φ2. Hence
lnθ (λ) + ln−θ (λ−1) = 2π i. �

Lemma 5. For a complex number λ and ln−θ (λ) is well
defined, ln−θ (λ∗) − [lnθ (λ)]∗ = 2π i.

Proof. There always exist φ1 ∈ (θ, θ + 2π ) and φ2,
satisfying eiφ1+φ2 = λ. lnθ (λ) = iφ1 + φ2 and −φ1 ∈
(−θ − 2π,−θ ). Thus, −φ1 + 2π ∈ (−θ,−θ + 2π ).
ln−θ (λ∗) = ln−θ (e−iφ1+φ2 ) = −iφ1 + 2π i + φ2. Hence
ln−θ (λ∗) − [lnθ (λ)]∗ = 2π i. �

Lemma 6. For a complex number λ and lnθ (λ) is well
defined, lnθ (λ) + 2π i = lnθ+2π (λ).

Proof. There always exist φ1 ∈ (θ, θ + 2π ) and φ2,
satisfying eiφ1+φ2 = λ. lnθ (λ) = iφ1 + φ2. And φ1 + 2π ∈
(θ + 2π, θ + 4π ). Thus, lnθ+2π (λ) = lnθ+2π (eiφ1+φ2 ) =
iφ1 + 2π i + φ2. Hence lnθ (λ) + 2π i = lnθ+2π (λ). �

Lemma 7. HF,θ + 2π
τ

= HF,θ+2π .
Proof.

HF,θ + 2π

τ
= i

τ
ln−θ [U (k)] + 2π

τ

=
∑

n

i

τ
ln−θ (λn)|ψn,R〉〈ψn,L| + 2π

τ

=
∑

n

i

τ
(ln−θ (λn) − 2π i)|ψn,R〉〈ψn,L|
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=
∑

n

i

τ
(ln−θ−2π (λn))|ψn,R〉〈ψn,L| = HF,θ+2π .

(E1)

�
Lemma 8. For any unitary matrix p1 and any evolution

operator U (k), lnθ [p−1
1 U (k)p1] = p−1

1 lnθ [U (k)]p1.
Proof.

lnθ

[
p−1

1 U (k)p1
] =

∑
n

i

τ
lnθ (λn)p−1

1 |ψn,R〉〈ψn,L|p1

= p−1
1

[ ∑
n

i

τ
lnθ (λn)|ψn,R〉〈ψn,L|

]
p1

= p−1
1 lnθ [U (k)]p1.

�
Lemma 9. If H (k, t ) satisfies Eqs. (10)–(13), then HF,θ

respectively satisfies Eqs. (E2)–(E5) below:

HF,θ (k) = − (1 − εk )π

τ
+ εkkH∗

F,εkθ
(−k)k−1,

kk∗ = ηkI, K sym. (E2)

HF,θ (k) = − (1 − εq)π

τ
+ εqqH†

F,εqθ
(k)q−1,

q2 = I, Q sym. (E3)

HF,θ (k) = − (1 − εc)π

τ
+ εccHT

F,εcθ
(−k)c−1,

cc∗ = ηcI, C sym. (E4)

HF,θ (k) = −2π

τ
− pHF,−θ (k)p−1, p2 = I. P sym.

(E5)

Proof. We go through the four symmetries one by one. �
1. From U ∗(−k) = k−1U (k)k to HF,θ (k) = − 2π

τ
−

kH∗
F,−θ (−k)k−1. It is equivalent to “From i

τ
ln−θ [U ∗(−k)] =

i
τ

ln−θ [k−1U (k)k] to k−1HF,θ (k)k = − 2π
τ

− H∗
F,−θ (−k).”

i

τ
ln−θ [U ∗(−k)]

=
∑

n

i

τ
ln−θ [λ∗

n(−k)]|ψ∗
n,R(−k)〉〈ψ∗

n,L(−k)|

=
∑

n

i

τ
[[lnθ [λn(−k)]]∗ + 2π i]|ψ∗

n,R(−k)〉〈ψ∗
n,L(−k)|

= −2π

τ
+

∑
n

i

τ
[lnθ [λn(−k)]]∗|ψ∗

n,R(−k)〉〈ψ∗
n,L (−k)|

= −2π

τ
−

[∑
n

i

τ
lnθ [λn(−k)]|ψn,R(−k)〉〈ψn,L(−k)|

]∗

= −2π

τ
− H∗

F,−θ (−k). (E6)

And we have

i

τ
ln−θ [k−1U (k)k] = k−1 i

τ
ln−θ [U (k)]k = k−1HF,θ (k)k.

(E7)

Thus, k−1HF,θ (k)k = − 2π
τ

− H∗
F,−θ (−k).

2. From U ∗−1(−k) = k−1U (k)k to HF,θ (k) =
kH∗

F,θ (−k)k−1. It is equivalent to “From i
τ

ln−θ [U ∗−1(−k)] =
i
τ

ln−θ [k−1U (k)k] to k−1HF,θ (k)k = H∗
F,θ (−k).”

i

τ
ln−θ [U ∗−1(−k)]

=
∑

n

i

τ
ln−θ

[
λ∗−1

n (−k)
]|ψ∗

n,R(−k)〉〈ψ∗
n,L(−k)|

=
∑

n

i

τ

[[
lnθ

[
λ−1

n (−k)
]]∗ + 2π i]|ψ∗

n,R(−k)〉〈ψ∗
n,L (−k)|

=
∑

n

i

τ
[[− ln−θ [λn(−k)] + 2π i]∗ + 2π i]|ψ∗

n,R(−k)〉

× 〈ψ∗
n,L(−k)|

=
∑

n

i

τ
[− ln−θ [λn(−k)]]∗|ψ∗

n,R(−k)〉〈ψ∗
n,L(−k)|

=
[ ∑

n

i

τ
ln−θ [λn(−k)]|ψn,R(−k)〉〈ψn,L(−k)|

]∗

= H∗
F,θ (−k). (E8)

And we have

i

τ
ln−θ [k−1U (k)k] = k−1 i

τ
ln−θ [U (k)]k = k−1HF,θ (k)k.

(E9)

Thus, k−1HF,θ (k)k = H∗
F,θ (−k).

3. From [U †(k)] = q−1U (k)q to HF,θ (k) = − 2π
τ

−
qH†

F,−θ (k)q−1. It is equivalent to “From i
τ

ln−θ [U †(k)] =
i
τ

ln−θ [q−1U (k)q] to q−1HF,θ (k)q = − 2π
τ

− H†
F,−θ (k).”

i

τ
ln−θ [U †(k)]

=
∑

n

i

τ
ln−θ [λ∗

n(k)]|ψn,L(k)〉〈ψn,R(k)|

=
∑

n

i

τ
[[lnθ [λn(k)]]∗ + 2π i]|ψn,L(k)〉〈ψn,R(k)|

= −2π

τ
+

∑
n

i

τ
[lnθ [λn(k)]]∗|ψn,L(k)〉〈ψn,R(k)|

= −2π

τ
−

[ ∑
n

i

τ
lnθ [λn(k)]|ψn,R(k)〉〈ψn,L(k)|

]†

= −2π

τ
− H†

F,−θ (k). (E10)
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And we have

i

τ
ln−θ [q−1U (k)q] = q−1 i

τ
ln−θ [U (k)]q = q−1HF,θ (k)q.

(E11)

Thus, q−1HF,θ (k)q = − 2π
τ

− H†
F,−θ (k).

4. From [U †(k)]−1 = q−1U (k)q to HF,θ (k) =
qH†

F,θ (k)q−1. It is equivalent to “From i
τ

ln−θ [U †(k)]−1 =
i
τ

ln−θ [q−1U (k)q] to q−1HF,θ (k)q = H†
F,θ (k).”

i

τ
ln−θ [U †(k)]−1

=
∑

n

i

τ
ln−θ

[
λ∗−1

n (k)
]|ψn,L(k)〉〈ψn,R(k)|

=
∑

n

i

τ

[[
lnθ

[
λ−1

n (k)
]]∗ + 2π i

]|ψn,L(k)〉〈ψn,R(k)|

=
∑

n

i

τ
[[− ln−θ [λn(k)] + 2π i]∗ + 2π i]|ψn,L(k)〉〈ψn,R(k)|

=
∑

n

i

τ
[− ln−θ [λn(k)]]∗|ψn,L(k)〉〈ψn,R(k)|

=
[ ∑

n

i

τ
ln−θ [λn(k)]|ψn,R(k)〉〈ψn,L(k)|

]†

= H†
F,θ (k). (E12)

And we have

i

τ
ln−θ [q−1U (k)q] = q−1 i

τ
ln−θ [U (k)]q = q−1HF,θ (k)q.

(E13)

Thus, q−1HF,θ (k)q = H†
F,θ (k).

5. From [U T(−k)] = c−1U (k)c to HF,θ (k) =
cHT

F,θ (−k)c−1. It is equivalent to “From i
τ

ln−θ [U T(−k)] =
i
τ

ln−θ [c−1U (k)c] to c−1HF,θ (k)c = HT
F,θ (−k).”

i

τ
ln−θ [U T(−k)]

=
∑

n

i

τ
ln−θ [λn(−k)]|ψ∗

n,L(−k)〉〈ψ∗
n,R(−k)|

=
[ ∑

n

i

τ
ln−θ [λn(−k)]|ψn,R(−k)〉〈ψn,L(−k)|

]T

= HT
F,θ (−k). (E14)

And we have

i

τ
ln−θ [c−1U (k)c] = c−1 i

τ
ln−θ [U (k)]c = c−1HF,θ (k)c.

(E15)

Thus, c−1HF,θ (k)c = HT
F,θ (−k).

6. From [U T(−k)]−1 = c−1U (k)c to HF,θ (k) =
− 2π

τ
− cHT

F,−θ (−k)c−1. It is equivalent to “From
i
τ

ln−θ [U T(−k)]−1 = i
τ

ln−θ [c−1U (k)c] to c−1HF,θ (k)c =

− 2π
τ

− HT
F,−θ (−k).”

i

τ
ln−θ [U T(−k)]−1

=
∑

n

i

τ
ln−θ

[
λ−1

n (−k)
]|ψ∗

n,L(−k)〉〈ψ∗
n,R(−k)|

=
∑

n

i

τ
[− lnθ [λn(−k)] + 2π i]|ψ∗

n,L(−k)〉〈ψ∗
n,R(−k)|

= −2π

τ
+

∑
n

i

τ
[− lnθ [λn(−k)]]|ψ∗

n,L(−k)〉〈ψ∗
n,R(−k)|

= −2π

τ
−

[∑
n

i

τ
lnθ [λn(−k)]|ψn,R(−k)〉〈ψn,L(−k)|

]T

= −2π

τ
− HT

F,−θ (−k). (E16)

And we have

i

τ
ln−θ [c−1U (k)c] = c−1 i

τ
ln−θ [U (k)]c = c−1HF,θ (k)c.

(E17)

Thus, c−1HF,θ (k)c = − 2π
τ

− HT
F,−θ (−k).

7. From [U (k)]−1 = p−1U (k)p to HF,θ (k) = − 2π
τ

−
pHF,−θ (k)p−1. It is equivalent to “From i

τ
ln−θ [U (k)]−1 =

i
τ

ln−θ [p−1U (k)p] to p−1HF,θ (k)p = − 2π
τ

− HF,−θ (k).”

i

τ
ln−θ [U (k)]−1

=
∑

n

i

τ
ln−θ

[
λ−1

n (k)
]|ψn,R(k)〉〈ψn,L(k)|

=
∑

n

i

τ
[− lnθ [λn(k)] + 2π i]|ψn,R(k)〉〈ψn,L(k)|

= −2π

τ
−

∑
n

i

τ
lnθ [λn(k)]|ψn,R(k)〉〈ψn,L(k)|

= −2π

τ
− HF,−θ (k). (E18)

And we have

i

τ
ln−θ [p−1U (k)p] = p−1 i

τ
ln−θ [U (k)]p = p−1HF,θ (k)p.

(E19)

Thus, p−1HF,θ (k)p = − 2π
τ

− HF,−θ (k). Combining 1-7, we
get the proof of Lemma 9. Now we are ready to prove
Lemma 2 in the main text. According to Lemma 9, if H (k, t )
satisfies Eqs. (10)–(13), then HF,π satisfies Eqs. (E20)–(E23)
below:

HF,π (k) = − (1 − εk )π

τ
+ εkkH∗

F,εkπ
(−k)k−1,

kk∗ = ηkI, K sym. (E20)

HF,π (k) = − (1 − εq)π

τ
+ εqqH†

F,εqπ
(k)q−1,

q2 = I, Q sym. (E21)

214305-21



CHUN-HUI LIU, HAIPING HU, AND SHU CHEN PHYSICAL REVIEW B 105, 214305 (2022)

HF,π (k) = − (1 − εc)π

τ
+ εccHT

F,εcπ
(−k)c−1,

cc∗ = ηcI, C sym. (E22)

HF,π (k) = −2π

τ
− pHF,−π (k)p−1, p2 = I. P sym.

(E23)

According to Lemma 7, we have:

− (1 − εk )π

τ
+ εkkH∗

F,εkπ
(−k)k−1

= εkkH∗
F,εkπ+(1−εk )π (−k)k−1 = εkkH∗

F,π (−k)k−1, (E24)

− (1 − εq)π

τ
+ εqqH†

F,εqπ
(k)q−1

= εqqH†
F,εqπ+(1−εq )π (k)q−1 = εqqH†

F,π (k)q−1, (E25)

− (1 − εc)π

τ
+ εccHT

F,εcπ
(−k)c−1

= εccHT
F,εcπ+(1−εc )π (−k)c−1 = εccHT

F,π (−k)c−1, (E26)

− 2π

τ
− pHF,−π (k)p−1

= −pHF,−π+2π (k)p−1 = −pHF,π (k)p−1. (E27)

Combining Eqs. (E20)–(E27), we can conclude that if H (k, t )
satisfies Eqs. (10)–(13), then HF,π satisfies:

HF,π (k) = εkkH∗
F,π (−k)k−1, kk∗ = ηkI, K sym. (E28)

HF,π (k) = εqqH†
F,π (k)q−1, q2 = I, Q sym. (E29)

HF,π (k) = εccHT
F,π (−k)c−1, cc∗ = ηcI, C sym. (E30)

HF,π (k) = −pHF,π (k)p−1, p2 = I. P sym. (E31)

Thus, HF,π (k) and H (k, t ) belong to same GBL class. The
loop operator is Ul,π (k, t ) = U (k, t ) ∗ eiHF,π (k)t . According to
Lemma 1 in the main text, HF,π (k), Ul,π , and H (k, t ) belong
to same GBL class. We remark that HF,π (k) has (continu-
ous) time-translation symmetry but H (k) only has discrete
time-translation symmetry. In general HF,π (k) has more sym-
metries than H (k).

APPENDIX F: PROOF OF THEOREM 1

The proof can be done in a similar vein with that of the
Hermitian case (see Appendix C of Ref. [104]). Here we
decompose the proof into Lemma 10 and Lemma 11.

Lemma 10. The time evolution operator U (k, t ) with FH
real gap at π/τ can continuously transform to Uf (k, t ) = L ∗
C, with L a loop operator and C a constant (time-independent)
Hamiltonian evolution. One of the L is L = Ul,π (k, t ). And
the corresponding C is the constant evolution with Hamilto-
nian HF,π . The continuous transformation preserves the GBL
symmetries.

To see this, we define the constant evolution C±(s) :=
e∓isHF,π t . According to Lemma 9, C±(s) and U (k, t ) belong to
same GBL class. We further define U0(s) := U (k, t ) ∗ C−(s)
and h(s) := U0(s) ∗ C+(s). According to Lemma 1, C±(s),

U (k, t ), U0(s), and h(s) belong to same GBL class. h(s) is
a continuous function and satisfies:

h(0) = U (k, t );

h(1) = U0(1) ∗ C+(1) = Ul,π ∗ e−iHF,π t . (F1)

Lemma 11. In Lemma 10, if we have two Uf (k, t ) labeled
as Uf 1 and Uf 2. And Uf 1 = L1 ∗ C1 and Uf 2 = L2 ∗ C2. We
then have that L1 ≈ L2 and C1 ≈ C2. Here ≈ is the homotopy
equivalence.

As U (k, t ) ≈ Uf 1 and U (k, t ) ≈ Uf 2, we have Uf 1 ≈ Uf 2.
Thus, there exists continuous function gs(k, t ) such that g0 =
Uf 1 = L1 ∗ C1, g1 = Uf 2 = L2 ∗ C2, and time evolution oper-
ator gs(k, t ) has FH real gap at π/τ for any s. And U (k, t ) and
gs belong to same GBL class. We can define the continuous
function:

hF
s (k) := i

τ
ln−π [gs(k, τ )], (F2)

g±
s (k, t ) := e∓ihF

s t , (F3)

g1
s (k, t ) := gs ∗ g−

s . (F4)

According to Lemma 9, U (k, t ), and g±
s (k, t ) belong to same

GBL class. According to Lemma 1, U (k, t ), g±
s (k, t ), and

g1
s (k, t ) belong to same GBL class, and

g+
0 (k, t ) = e−ihF

0 t = C1; (F5)

g+
1 (k, t ) = e−ihF

1 t = C2; (F6)

g1
0(k, t ) := g0 ∗ g−

0 ≈ L1; (F7)

g1
1(k, t ) := g1 ∗ g−

1 ≈ L2. (F8)

APPENDIX G: DERIVATION OF EQS. (31)–(34)
FROM EQS. (15)–(18)

1. From U ∗
l,π (−k,−t ) = k−1Ul,π (k, εkt )k to H̃ (−k,

−εkt ) = K̃H̃ (k, t )K̃−1.

K̃H̃ (k, t )K̃−1

=
[

k 0

0 k

][
0 U ∗

l,π (k, t )

U T
l,π (k, t ) 0

][
k−1 0

0 k−1

]

=
[

0 kU ∗
l,π (k, t )k−1

kU T
l,π (k, t )k−1 0

]

=
[

0 Ul,π (−k,−εkt )

U †
l,π (−k,−εkt ) 0

]

= H̃ (−k,−εkt ). (G1)

2. From [U †
l,π (k, t )]−1 = q−1Ul,π (k, εqt )q to H̃ (k, εqt ) =

Q̃H̃ (k, t )Q̃−1.

Q̃H̃ (k, t )Q̃−1

=
[

q 0

0 q

][
0 Ul,π (k, t )

U †
l,π (k, t ) 0

][
q−1 0

0 q−1

]
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=
[

0 qUl,π (k, t )q−1

qU †
l,π (k, t )q−1 0

]

=
[

0 (U †
l,π (k, εqt ))−1

(Ul,π (k, εqt ))−1 0

]

=
[

0 Ul,π (k, εqt )

U †
l,π (k, εqt ) 0

]−1

= [H̃ (k, εqt )]−1 = H̃ (k, εqt ). (G2)

3. From [U T
l,π (−k, t )]−1 = c−1Ul,π (k,−εct )c to

H̃ (−k,−εct ) = C̃H̃ (k, t )C̃−1.

C̃H̃ (k, t )C̃−1 =
[
c 0

0 c

][
0 U ∗

l,π (k, t )

U T
l,π (k, t ) 0

][
c−1 0

0 c−1

]

=
[

0 cU ∗
l,π (k, t )c−1

cU T
l,π (k, t )c−1 0

]

=
[

0 (U †
l,π (−k,−εct ))−1

(Ul,π (−k,−εct ))−1 0

]

=
[

0 Ul,π (−k,−εct )

U †
l,π (−k,−εct ) 0

]−1

= [H̃ (−k,−εct )]−1 = H̃ (−k,−εct ). (G3)

4. From Ul,π (k,−t ) = p−1Ul,π (k, t )p to H̃ (k,−t ) =
P̃H̃ (k, t )P̃−1.

P̃H̃ (k, t )P̃−1

=
[

p 0

0 p

][
0 Ul,π (k, t )

U †
l,π (k, t ) 0

][
p−1 0

0 p−1

]

=
[

0 pUl,π (k, t )p−1

pU †
l,π (k, t )p−1 0

]

=
[

0 Ul,π (k,−t )

U †
l,π (k,−t ) 0

]
= H̃ (k,−t ). (G4)

APPENDIX H: DERIVATION OF EQS. (38)–(41)
FROM EQS. (20)–(23)

1. From [U ∗(−k)]−1 = k−1U (k)k to H̃ (−k) =
K̄H̃ (k)K̄−1 and K̄ = σx ⊗ kK. First, we have that
kU ∗(−k)k−1 = [U (k)]−1. Thus,

K̄H̃ (k)K̄−1 =
[

0 k

k 0

][
0 U ∗(k)

U T(k) 0

][
0 k−1

k−1 0

]

=
[

0 kU T(k)k−1

kU ∗(k)k−1 0

]

=
[

0 (U †(−k))−1

(U (−k))−1 0

]

=
[

0 U (−k)

U †(−k) 0

]−1

= [H̃ (−k)]−1 = H̃ (−k). (H1)

2. From U ∗(−k) = k−1U (k)k to H̃ (−k) = K̄H̃ (k)K̄−1

and K̄ = σ0 ⊗ kK. First, we have that kU ∗(−k)k−1 = U (k).
Thus,

K̄H̃ (k)K̄−1 =
[

k 0

0 k

][
0 U ∗(k)

U T(k) 0

][
k−1 0

0 k−1

]

=
[

0 kU ∗(k)k−1

kU T(k)k−1 0

]

=
[

0 U (−k)

U †(−k) 0

]
= H̃ (−k). (H2)

3. From [U †(k)]−1 = q−1U (k)q to H̃ (k) = Q̄H̃ (k)Q̄−1

and Q̄ = σ0 ⊗ q.

Q̄H̃ (k)Q̄−1 =
[

q 0

0 q

][
0 U (k)

U †(k) 0

][
q−1 0

0 q−1

]

=
[

0 qU (k)q−1

qU †(k)q−1 0

]

=
[

0 (U †(k))−1

(U (k))−1 0

]

=
[

0 U (k)

U †(k) 0

]−1

= [H̃ (k)]−1 = H̃ (k).

(H3)

4. From U †(k) = q−1U (k)q to H̃ (k) = Q̄H̃ (k)Q̄−1 and
Q̄ = σx ⊗ q.

Q̄H̃ (k)Q̄−1 =
[

0 q

q 0

][
0 U (k)

U †(k) 0

][
0 q−1

q−1 0

]

=
[

0 qU †(k)q−1

qU (k)q−1 0

]

=
[

0 U (k)

U †(k) 0

]
= H̃ (k). (H4)

5. From U T (−k) = c−1U (k)c to H̃ (−k) = C̄H̃∗(k)C̄−1

and C̄ = σx ⊗ cK.

C̄H̃∗(k)C̄−1 =
[

0 c

c 0

][
0 U ∗(k)

U T(k) 0

][
0 c−1

c−1 0

]

=
[

0 cU T(k)c−1

cU ∗(k)c−1 0

]

=
[

0 U (−k)

U †(−k) 0

]
= H̃ (−k). (H5)

6. From [U T (−k)]−1 = c−1U (k)c to H̃ (−k) =
C̄H̃∗(k)C̄−1 and C̄ = σ0 ⊗ cK.

C̄H̃∗(k)C̄−1 =
[

c 0

0 c

][
0 U ∗(k)

U T(k) 0

][
c−1 0

0 c−1

]

=
[

0 cU ∗(k)c−1

cU T(k)c−1 0

]
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TABLE IV. The construction of Clifford algebra’s extension and its corresponding classifying space (Cl) for H̃ (k, t ) in all GBL classes.
J = i is the imaginary unit.

GBL Clifford algebra’s extension Cl

Non {γ̃1, . . . , γ̃d , γ̃t , �} → {γ̃0, γ̃1, . . . , γ̃d , γ̃t , �} = Cld+2 → Cld+3 C0

P {γ̃t , �, γ̃t P̃} → {γ̃0, γ̃t , �, γ̃t P̃} = Cl3 → Cl4 C1

Qa {γ̃t , �} ⊗ {Q̃} → {γ̃0, γ̃t , �} ⊗ {Q̃} = Cl2 ⊗ Cl1 → Cl3 ⊗ Cl1 C×2
0

Qb {γ̃t , �, γ̃t Q̃} → {γ̃0, γ̃t , �, γ̃t Q̃} = Cl3 → Cl4 C1

K1a {γ̃t , J�, K̃, JK̃} → {J γ̃0, γ̃t , J�, K̃, JK̃} = Cl1,3 → Cl2,3 R0

K1b {J γ̃t , J�, K̃, JK̃} → {J γ̃0, J γ̃t , J�, K̃, JK̃} = Cl2,2 → Cl3,2 R2

K2a {γ̃t , J�, K̃, JK̃} → {J γ̃0, γ̃t , J�, K̃, JK̃} = Cl3,1 → Cl4,1 R4

K2b {J γ̃t , J�, K̃, JK̃} → {J γ̃0, J γ̃t , J�, K̃, JK̃} = Cl4,0 → Cl5,0 R6

C1 {γ̃t , J�, C̃, JC̃} → {J γ̃0, γ̃t , J�, C̃, JC̃} = Cl1,3 → Cl2,3 R0

C2 {γ̃t , J�, C̃, JC̃} → {J γ̃0, γ̃t , J�, C̃, JC̃} = Cl3,1 → Cl4,1 R4

C3 {J γ̃t , J�, C̃, JC̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃} = Cl2,2 → Cl3,2 R2

C4 {J γ̃t , J�, C̃, JC̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃} = Cl4,0 → Cl5,0 R6

PQ1 {γ̃t , �, γ̃t P} ⊗ {Q̃} → {γ̃0, γ̃t , �, γ̃t P} ⊗ {Q̃} = Cl3 ⊗ Cl1 → Cl4 ⊗ Cl1 C×2
1

PQ2 {γ̃t , �, γ̃t P̃, γ̃t P̃Q̃} → {γ̃0, γ̃t , �, γ̃t P̃, γ̃t P̃Q̃} = Cl4 → Cl5 C0

PK1 {γ̃t , J�, γt P̃, K̃, JK̃} → {J γ̃0, γ̃t , J�, γt P̃, K̃, JK̃} = Cl2,3 → Cl3,3 R1

PK2 {γ̃t , J�, γt P̃, K̃, JK̃} → {J γ̃0, γ̃t , J�, γt P̃, K̃, JK̃} = Cl4,1 → Cl5,1 R5

PK3a {γ̃t , J�, Jγt P̃, K̃, JK̃} → {J γ̃0, γ̃t , J�, Jγt P̃, K̃, JK̃} = Cl1,4 → Cl2,4 R7

PK3b {γ̃t , J�, Jγt P̃, K̃, JK̃} → {J γ̃0, γ̃t , J�, Jγt P̃, K̃, JK̃} = Cl3,2 → Cl4,2 R3

PC1 {γ̃t , J�, JP̃, C̃, JC̃} → {J γ̃0, γ̃t , J�, JP̃, C̃, JC̃} = Cl2,3 → Cl3,3 R1

PC2 {γ̃t , J�, J γ̃t P̃, C̃, JC̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃} = Cl1,4 → Cl2,4 R7

PC3 {γ̃t , J�, γt P̃, C̃, JC̃} → {J γ̃0, γ̃t , J�, γt P̃, C̃, JC̃} = Cl4,1 → Cl5,1 R5

PC4 {γ̃t , J�, Jγt P̃, C̃, JC̃} → {J γ̃0, γ̃t , J�, Jγt P̃, C̃, JC̃} = Cl3,2 → Cl4,2 R3

QC1a {γ̃t , J�, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, } ⊗ {Q̃} = Cl1,3 ⊗ Cl0,1 → Cl2,3 ⊗ Cl0,1 R×2
0

QC1b {γ̃t , J�, C̃, JC̃, γt Q̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, γt Q̃} = Cl2,3 → Cl3,3 R1

QC2a {γ̃t , J�, C̃, JC̃} ⊗ {JQ̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, } ⊗ { ˜JQ} = Cl1,3 ⊗ Cl1,0 → Cl2,3 ⊗ Cl1,0 C0

QC2b {γ̃t , J�, C̃, JC̃, Jγt Q̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, Jγt Q̃} = Cl1,4 → Cl2,4 R7

QC3a {γ̃t , J�, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, } ⊗ {Q̃} = Cl3,1 ⊗ Cl0,1 → Cl4,1 ⊗ Cl0,1 R×2
4

QC3b {γ̃t , J�, C̃, JC̃, γt Q̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, γt Q̃} = Cl4,1 → Cl5,1 R5

QC4a {γ̃t , J�, C̃, JC̃} ⊗ {JQ̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, } ⊗ { ˜JQ} = Cl3,1 ⊗ Cl1,0 → Cl4,1 ⊗ Cl1,0 C0

QC4b {γ̃t , J�, C̃, JC̃, Jγt Q̃} → {J γ̃0, γ̃t , J�, C̃, JC̃, Jγt Q̃} = Cl3,2 → Cl4,2 R3

QC5a {J γ̃t , J�, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃, } ⊗ {Q̃} = Cl2,2 ⊗ Cl0,1 → Cl3,2 ⊗ Cl0,1 R×2
2

QC5b {J γ̃t , J�, C̃, JC̃, Jγt Q̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃, Jγt Q̃} = Cl2,3 → Cl3,3 R1

QC6a {J γ̃t , J�, C̃, JC̃} ⊗ { ˜JQ} → {J γ̃0, J γ̃t , J�, C̃, JC̃, } ⊗ { ˜JQ} = Cl2,2 ⊗ Cl1,0 → Cl3,2 ⊗ Cl1,0 C0

QC6b {J γ̃t , J�, C̃, JC̃, γt Q̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃, γt Q̃} = Cl3,2 → Cl4,2 R3

QC7a {J γ̃t , J�, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃, } ⊗ {Q̃} = Cl4,0 ⊗ Cl0,1 → Cl5,0 ⊗ Cl0,1 R×2
6

QC7b {J γ̃t , J�, C̃, JC̃, Jγt Q̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃, Jγt Q̃} = Cl4,1 → Cl5,1 R5

QC8a {J γ̃t , J�, C̃, JC̃} ⊗ { ˜JQ} → {J γ̃0, J γ̃t , J�, C̃, JC̃, } ⊗ { ˜JQ} = Cl4,0 ⊗ Cl1,0 → Cl5,0 ⊗ Cl1,0 C0

QC8b {J γ̃t , J�, C̃, JC̃, γt Q̃} → {J γ̃0, J γ̃t , J�, C̃, JC̃, γt Q̃} = Cl5,0 → Cl6,0 R7

PQC1 {γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {Q̃} = Cl2,3 ⊗ Cl0,1 → Cl3,3 ⊗ Cl0,1 R×2
1

PQC2 {γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} = Cl2,3 ⊗ Cl1,0 → Cl3,3 ⊗ Cl1,0 C1

PQC3 {γ̃t , J�, J γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} = Cl2,4 → Cl3,4 R0

PQC4 {γ̃t , J�, J γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} = Cl1,5 → Cl2,5 R6

PQC5 {γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {Q̃} = Cl4,1 ⊗ Cl0,1 → Cl5,1 ⊗ Cl0,1 R×2
5

PQC6 {γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} = Cl4,1 ⊗ Cl1,0 → Cl5,1 ⊗ Cl1,0 C1

PQC7 {γ̃t , J�, J γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} = Cl4,2 → Cl5,2 R4

PQC8 {γ̃t , J�, J γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} = Cl3,3 → Cl4,3 R2

PQC9a {γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {Q̃} = Cl1,4 ⊗ Cl0,1 → Cl2,4 ⊗ Cl0,1 R×2
7

PQC9b {γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} = Cl1,4 ⊗ Cl1,0 → Cl2,4 ⊗ Cl1,0 C1

PQC10a {γ̃t , J�, γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} = Cl2,4 → Cl3,4 R0

PQC10b {γ̃t , J�, γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} = Cl3,3 → Cl4,3 R2

PQC11a {γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {Q̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {Q̃} = Cl3,2 ⊗ Cl0,1 → Cl4,2 ⊗ Cl0,1 R×2
3

PQC11b {γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} → {J γ̃0, γ̃t , J�, J γ̃t P̃, C̃, JC̃} ⊗ {JQ̃} = Cl3,2 ⊗ Cl1,0 → Cl4,2 ⊗ Cl1,0 C1

PQC12a {γ̃t , J�, γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃, γ̃t P̃Q̃} = Cl4,2 → Cl5,2 R4

PQC12b {γ̃t , J�, γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} → {J γ̃0, γ̃t , J�, γ̃t P̃, C̃, JC̃, J γ̃t P̃Q̃} = Cl5,1 → Cl6,1 R6
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TABLE V. The construction of Clifford algebra’s extension and its corresponding classifying space (Cl) for H̃ (k) in all GBL classes. J = i
is imaginary unit. For convenience, we use P, Q,C, K to represent P̄, Q̄, C̄, K̄ when we construct the Clifford algebra’s extension (in the second
column of the table).

GBL Clifford algebra’s extension Cl

Non {γ1, . . . , γd , �} → {γ0, γ1, . . . , γd , �} = Cld+1 → Cld+2 C1

P {�, P�} → {γ0, �, P�} = Cl2 → Cl3 C0

Qa {�} ⊗ {Q} → {γ0, �} ⊗ {Q} = Cl1 ⊗ Cl1 → Cl2 ⊗ Cl1 C2
1

Qb {�, Q�} → {γ0, �, Q�} = Cl2 → Cl3 C0

K1a {�,�K, J�K} → {γ0, �,�K, J�K} = Cl2,1 → Cl2,2 R7

K1b {J�, K, JK} → {Jγ0, J�, K, JK} = Cl1,2 → Cl2,2 R1

K2a {�, �K, J�K} → {γ0, �, �K, J�K} = Cl0,3 → Cl0,4 R3

K2b {J�, K, JK} → {Jγ0, J�, K, JK} = Cl3,0 → Cl4,0 R5

C1 {�,C, JC} → {Jγ0, �,C, JC} = Cl0,3 → Cl1,3 R7

C2 {�,C, JC} → {Jγ0, �,C, JC} = Cl2,1 → Cl3,1 R3

C3 {J�,C, JC} → {Jγ0, J�,C, JC} = Cl1,2 → Cl2,2 R1

C4 {J�,C, JC} → {Jγ0, J�,C, JC} = Cl3,0 → Cl4,0 R5

PQ1 {�,�P} ⊗ {Q} → {γ0, �, �P} ⊗ {Q} = Cl2 ⊗ Cl1 → Cl3 ⊗ Cl1 C2
0

PQ2 {�,�P, �PQ} → {γ0, �, �P, �PQ} = Cl3 → Cl4 C1

PK1 {�,�P, K, JK} → {Jγ0, �,�P, K, JK} = Cl1,3 → Cl2,3 R0

PK2 {�,�P, K, JK} → {Jγ0, �,�P, K, JK} = Cl3,1 → Cl4,1 R4

PK3a {�, J�P, K, JK} → {Jγ0, �, J�P, K, JK} = Cl0,4 → Cl1,4 R6

PK3b {�, J�P, K, JK} → {Jγ0, �, J�P, K, JK} = Cl2,2 → Cl3,2 R2

PC1 {�,�P,C, JC} → {Jγ0, �,�P,C, JC} = Cl1,3 → Cl2,3 R0

PC2 {�, J�P,C, JC} → {Jγ0, �, J�P,C, JC} = Cl0,4 → Cl1,4 R6

PC3 {�,�P,C, JC} → {Jγ0, �,�P,C, JC} = Cl3,1 → Cl4,1 R4

PC4 {�, J�P,C, JC} → {Jγ0, �, J�P,C, JC} = Cl2,2 → Cl3,2 R2

QC1a {�,C, JC} ⊗ {Q} → {Jγ0, �,C, JC} ⊗ {Q} = Cl0,3 ⊗ Cl0,1 → Cl1,3 ⊗ Cl0,1 R2
7

QC1b {�,C, JC, �Q} → {Jγ0, �,C, JC, �Q} = Cl1,3 → Cl2,3 R0

QC2a {�,C, JC} ⊗ {JQ} → {Jγ0, �,C, JC} ⊗ {JQ} = Cl0,3 ⊗ Cl1,0 → Cl1,3 ⊗ Cl1,0 C1

QC2b {�,C, JC, J�Q} → {Jγ0, �,C, JC, J�Q} = Cl0,4 → Cl1,4 R6

QC3a {�,C, JC} ⊗ {Q} → {Jγ0, �,C, JC} ⊗ {Q} = Cl2,1 ⊗ Cl0,1 → Cl3,1 ⊗ Cl0,1 R2
3

QC3b {�,C, JC, �Q} → {Jγ0, �,C, JC, �Q} = Cl3,1 → Cl4,1 R4

QC4a {�,C, JC} ⊗ {JQ} → {Jγ0, �,C, JC} ⊗ {JQ} = Cl2,1 ⊗ Cl1,0 → Cl3,1 ⊗ Cl1,0 C1

QC4b {�,C, JC, J�Q} → {Jγ0, �,C, JC, J�Q} = Cl2,2 → Cl3,2 R2

QC5a {J�,C, JC} ⊗ {Q} → {Jγ0, J�,C, JC} ⊗ {Q} = Cl1,2 ⊗ Cl0,1 → Cl2,2 ⊗ Cl0,1 R2
1

QC5b {J�,C, JC, J�Q} → {Jγ0, J�,C, JC, J�Q} = Cl1,3 → Cl2,3 R0

QC6a {J�,C, JC} ⊗ {JQ} → {Jγ0, J�,C, JC} ⊗ {JQ} = Cl1,2 ⊗ Cl1,0 → Cl2,2 ⊗ Cl1,0 C1

QC6b {J�,C, JC, �Q} → {Jγ0, J�,C, JC, �Q} = Cl2,2 → Cl3,2 R2

QC7a {J�,C, JC} ⊗ {Q} → {Jγ0, J�,C, JC} ⊗ {Q} = Cl3,0 ⊗ Cl0,1 → Cl4,0 ⊗ Cl0,1 R2
5

QC7b {J�,C, JC, J�Q} → {Jγ0, J�,C, JC, J�Q} = Cl3,1 → Cl4,1 R4

QC8a {J�,C, JC} ⊗ {JQ} → {Jγ0, J�,C, JC} ⊗ {JQ} = Cl3,0 ⊗ Cl1,0 → Cl4,0 ⊗ Cl1,0 C1

QC8b {J�,C, JC, �Q} → {Jγ0, J�,C, JC, �Q} = Cl4,0 → Cl5,0 R6

PQC1 {�, �P,C, JC} ⊗ {Q} → {Jγ0, �, �P,C, JC} ⊗ {Q} = Cl1,3 ⊗ Cl0,1 → Cl2,3 ⊗ Cl0,1 R2
0

PQC2 {�, �P,C, JC} ⊗ {JQ} → {Jγ0, �, �P,C, JC} ⊗ {JQ} = Cl1,3 ⊗ Cl1,0 → Cl2,3 ⊗ Cl1,0 C0

PQC3 {�, J�P,C, JC, J�PQ} → {Jγ0, �, J�P,C, JC, J�PQ} = Cl1,4 → Cl2,4 R7

PQC4 {�, J�P,C, JC, �PQ} → {Jγ0, �, J�P,C, JC, �PQ} = Cl0,5 → Cl1,5 R5

PQC5 {�, �P,C, JC} ⊗ {Q} → {Jγ0, �, �P,C, JC} ⊗ {Q} = Cl3,1 ⊗ Cl0,1 → Cl4,1 ⊗ Cl0,1 R2
4

PQC6 {�, �P,C, JC} ⊗ {JQ} → {Jγ0, �, �P,C, JC} ⊗ {JQ} = Cl3,1 ⊗ Cl1,0 → Cl4,1 ⊗ Cl1,0 C0

PQC7 {�, J�P,C, JC, J�PQ} → {Jγ0, �, J�P,C, JC, J�PQ} = Cl3,2 → Cl4,2 R3

PQC8 {�, J�P,C, JC, �PQ} → {Jγ0, �, J�P,C, JC, �PQ} = Cl2,3 → Cl3,3 R1

PQC9a {�, J�P,C, JC} ⊗ {Q} → {Jγ0, �, J�P,C, JC} ⊗ {Q} = Cl0,,4 ⊗ Cl0,1 → Cl1,4 ⊗ Cl0,1 R2
6

PQC9b {�, J�P,C, JC} ⊗ {JQ} → {Jγ0, �, J�P,C, JC} ⊗ {JQ} = Cl0,,4 ⊗ Cl1,0 → Cl1,4 ⊗ Cl1,0 C0

PQC10a {�,�P,C, JC, �PQ} → {Jγ0, �, �P,C, JC, �PQ} = Cl1,4 → Cl2,4 R7

PQC10b {�, �P,C, JC, J�PQ} → {Jγ0, �,�P,C, JC, J�PQ} = Cl2,3 → Cl3,3 R1

PQC11a {�, J�P,C, JC} ⊗ {Q} → {Jγ0, �, J�P,C, JC} ⊗ {Q} = Cl2,2 ⊗ Cl0,1 → Cl3,2 ⊗ Cl0,1 R2
2

PQC11b {�, J�P,C, JC} ⊗ {JQ} → {Jγ0, �, J�P,C, JC} ⊗ {JQ} = Cl2,2 ⊗ Cl1,0 → Cl3,2 ⊗ Cl1,0 C0

PQC12a {�,�P,C, JC, �PQ} → {Jγ0, �, �P,C, JC, �PQ} = Cl3,2 → Cl4,2 R3

PQC12b {�, �P,C, JC, J�PQ} → {Jγ0, �,�P,C, JC, J�PQ} = Cl4,1 → Cl5,1 R5
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=
[

0 (U †(−k))−1

(U (−k))−1 0

]

=
[

0 U (−k)

U †(−k) 0

]−1

= [H̃ (−k)]−1 = H̃ (−k). (H6)

7. From [U (k)]−1 = p−1U (k)p to H̃ (k) = P̄H̃ (k)P̄−1 and
P̄ = σx ⊗ p.

P̄H̃ (k)P̄−1 =
[

0 p

p 0

][
0 U (k)

U †(k) 0

][
0 p−1

p−1 0

]

=
[

0 pU †(k)p−1

pU (k)p−1 0

]

=
[

0 (U †(k))−1

(U (k))−1 0

]

=
[

0 U (k)

U †(k) 0

]−1

= [H̃ (k)]−1 = H̃ (k).

(H7)

APPENDIX I: CLIFFORD ALGEBRA’S EXTENSION
FOR H̃ (k, t ) AND H̃ (k)

Table IV and Table V list the Clifford algebra’s extensions
for H̃ (k, t ) and H̃ (k), respectively.

Lemma 12. For any GBL class in Table IV and Table V,
the classification space is Cn, C2

n , Rm, or R2
m(n = 0, 1, m =

0, 1, . . . , 7). The space of mass term of the corresponding
GBL class in dimension d is Cn−d , C2

n−d , Rm−d , or R2
m−d ,

respectively.
Proof. First for classes with K̃ and C̃. We note that the

anti-unitary symmetry operators K̃ and C̃ always reverse the
momentum (k → −k) while the unitary symmetry operators
P̃ and Q̃ do not. When adding γ1, γ2, . . . , γd into the Clifford
algebra’s extension in Table IV and Table V, the difference
between the coefficient of γ1, γ2, . . . , γd and the coefficient
of γ0 can always be chosen as J or −J . For class without
K̃ and C̃, when adding γ1, γ2, . . . , γd into the Clifford alge-
bra’s extension in Table IV and Table V, the coefficients of
γ1, γ2, . . . , γd and the coefficient of γ0 are can be chosen as
the same. Hence Lemma 12 is proved. Let us consider for
example: �

Class P in Table IV. The Clifford algebra’s ex-
tension in d dimensions is {γ̃t , γ1, γ2, . . . , γd , �, γ̃t P̃} →
{γ̃0, γ1, γ2, . . . , γd , γ̃t , �, γ̃t P̃} = Cl3+d → Cl4+d . The space
of mass term is C3+d � C1−d .

Class Qa in Table IV. The Clifford algebra’s extension
in d dimensions is {γ̃t , γ1, γ2, . . . , γd , �} ⊗ {Q̃} → {γ̃0, γ1,

γ2, . . . , γd , γ̃t , �} ⊗ {Q̃} = Cl2+d ⊗ Cl1 → Cl3+d ⊗ Cl1.
The space of mass term is C2

2+d � C2
−d .

Class K1a in Table IV. The Clifford algebra’s extension
in d dimensions is {γ̃t , γ1, γ2, . . . , γd , J�, K̃, JK̃} →
{J γ̃0, γ1, γ2, . . . , γd , γ̃t , J�, K̃, JK̃} = Cl1,3+d → Cl2,3+d .
The space of mass term is R−d .

Class QC1a in Table IV. The Clifford algebra’s extension
in d dimensions is {γ̃t , γ1, γ2, . . . , γd , J�, C̃, JC̃} ⊗ {Q̃} →
{J γ̃0, γ1, γ2, . . . , γd , γ̃t , J�, C̃, JC̃, } ⊗ {Q̃} = Cl1,3+d ⊗
Cl0,1 → Cl2,3+d ⊗ Cl0,1. The space of mass term is R2

−d .
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