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Variational polaron equations applied to the anisotropic Fröhlich model

Vasilii Vasilchenko ,1 Andriy Zhugayevych ,1 and Xavier Gonze 1,2

1Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow 143026, Russia
2European Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain,

Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-Neuve, Belgium

(Received 1 April 2022; accepted 1 June 2022; published 7 June 2022)

Starting from recent advances in the first-principles modeling of polarons, variational polaron equations in the
strong-coupling adiabatic approximation are formulated in Bloch space. In this framework, polaron formation
energy as well as individual electron, phonon, and electron-phonon contributions are obtained. We suggest an
efficient gradient-based optimization algorithm and apply these equations to the generalized Fröhlich model
with anisotropic nondegenerate electronic bands, both in two- and three-dimensional cases. The effect of
the divergence of Fröhlich electron-phonon matrix elements at � point is treated analytically, improving the
convergence with respect to the sampling in reciprocal space. The whole methodology is validated by obtaining
the known asymptotic solution of the standard Fröhlich model in isotropic scenario and also by comparing
our results with the Gaussian ansatz approach, showing the difference between the numerically exact and
Gaussian trial wavefunctions. Additionally, decomposition of the energy into individual terms allows one to
recover the Pekar’s 1:2:3:4 theorem, which is shown to be valid even in the anisotropic case. We expect that
the improvements in the formalism and numerical implementation will be applicable beyond the large polaron
hypothesis inherent to Fröhlich model.
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I. INTRODUCTION

A polaron is a quasiparticle formed when an electron or
a hole couple to the lattice vibrations of a system. Polaron
formation leads to effective mass renormalization, lattice de-
formation, and potential self-trapping of the carrier. This
process occurs in various classes of materials: organic crystals
[1], perovskites [2,3], oxides [4], metal-ion storage materials
[5], 2D semiconductors [6,7]. Since many of these systems
find their applications in electronics, and polarons in turn
affect their optoelectronic properties, accurate prediction of
polaronic effects is important. Indeed, many recent state-of-
the-art experimental and theoretical studies are devoted to the
polaron physics [8] and encourage further investigations in
this field.

A polaron has several characteristics, like its formation
energy, effective mass, mobility, and optical response. The
first approach for the determination of polaron properties was
suggested by Landau and Pekar [9]. They made the hypothesis
of large spatial extension of the quasiparticle compared to the
lattice periodicity (large polaron), hence neglecting the atomic
details of the crystal. They also treated the lattice deformation
using classical mechanics, the deformation adjusting instan-
taneously and self-consistently to the charge carrier density.
We will refer to this second hypothesis as the strong-coupling
adiabatic approximation. In this approach a charge carrier can
be trapped in the deformation field it induces, a phenomenon
called “self-trapping”.

Two other noticeable approaches were introduced later by
Fröhlich [10] and Holstein [11,12]. The Fröhlich model takes

into account coupling of a single electron to a dispersionless
longitudinal optical (LO) phonon mode and also washes out
the atomic details with a continuum approximation, describ-
ing large polarons [13,14], like Landau and Pekar approach,
albeit with a quantum treatment of such phonon modes. The
Fröhlich model has been the subject of sustained attention
for several decades. One can treat rather easily two regimes,
depending on the strength of the electron-phonon coupling:
The above-mentioned strong-coupling limit, yielding a self-
trapped state, and the weak-coupling limit that can be treated
using perturbation theory [15]. Fröhlich polarons in the weak-
coupling scenario can also be described with variational
formalism based on canonical transformation as in Lee-Low-
Pines theory [16]. The treatment of the intermediate regime is
more challenging, and can be done approximately using, e.g.,
Feynman’s path integral approach [17], or by diagrammatic
Monte Carlo techniques [18]. The Holstein approach is a
lattice model that considers local couplings to intramolecular
vibrations describing small polarons and is commonly used to
study polaronic properties of organic semiconductors [19,20].

These models, however, are not able to describe the full
complexity of real materials, with arbitrary degenerate elec-
tronic and phonon dispersion and complex electron-phonon
interactions. Such features in general can only be taken into
account by first-principles calculations, like density functional
theory (DFT). DFT-based calculations of polaron properties
have already shown their predictive power for describing po-
larons either in weak-coupling [21–32] or strong-coupling
regimes [33–39]. In the weak-coupling regime, the po-
laron formation energy is often termed the zero-point
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renormalization of the electronic band edge energy. The
electronic structure, i.e., Kohn-Sham (KS) states and eigenen-
ergies in the DFT case, is affected by the atomic displace-
ments, either perturbatively, in the weak-coupling case, or
self-consistently, in the strong-coupling case. However, first-
principles calculations in the strong-coupling regime are
rather limited in the number of atoms that can be treated.
Besides, intermediate coupling strength region is more chal-
lenging to address with first-principles approaches, while a
large number of interesting materials might resort to such
regime.

A step towards unified modeling of polarons in Bloch
space, fully based on first principles, has recently been made
by Sio, Verdi, Poncé, and Giustino (SVPG) [33,40]. Within
some well-justified approximations, they derive from first
principles a model Hamiltonian, in real space, then transform
it into the basis of KS states and phonon modes. The SVPG
approach is more general than both Fröhlich and Holstein
ones in the sense that it is applicable to both small and large
polarons. It includes electronic, phonon, and electron-phonon
terms, albeit for a single phonon-dressed charge carrier, like in
these models. After having reduced the many-electron prob-
lem to a one-electron problem, Sio and coworkers solve this
Hamiltonian in the strong-coupling adiabatic approximation.
Another formalism applicable to first-principles Hamiltonians
is based on canonical transformation allowing for efficient
consideration of nonadiabatic effects [41–43]. Both afore-
mentioned approaches can provide a foundation for further
developments in the field of polaron physics.

In the present paper, we reexamine the SVPG formalism,
provide several improvements, and apply it to the general-
ized Fröhlich model, to compare with known reference data.
The generalized Fröhlich model introduced by Miglio et al.
[31] and later examined by Guster et al. [44] extends the
original Fröhlich model by taking into account degeneracy
and anisotropy of electronic bands and their coupling to
several LO phonon branches. It can be considered in both
weak- and strong-coupling limits, nevertheless retaining the
large polaron hypothesis (ignoring atomic details). Such gen-
eralization captures the essential effects of electron-phonon
interaction in oxides and II-VI materials as shown by Miglio
et al. [31]. Guster and coworkers further investigated this
model using a Gaussian ansatz approach for a set of cubic ma-
terials, determining effective masses and localization lengths
of polarons in the weak-coupling and strong-coupling limits,
respectively. However, the trial Gaussian wavefunction used
in the strong-coupling limit may not be sufficient for a polaron
wavefunction approximation when electronic bands are highly
anisotropic, and in this case self-consistent methods may yield
more accurate results.

The present paper utilizes the aforementioned SVPG the-
oretical framework [33,40]. By reformulating their approach
we first derive general variational equations for polaronic
energy, in the basis of KS states and vibrational eigenmodes,
and suggest efficient minimization algorithms. Then we apply
our approach to the generalized 2D and 3D Fröhlich model
in the adiabatic strong-coupling limit considering only the
anisotropic nondegenerate electronic bands as extension to the
standard Fröhlich model. We also provide special treatment
for the Fröhlich electron-phonon matrix elements at � point

similar to Miglio et al. [31], as in common representation
they diverge at band edges. The results are compared with
the known asymptotic solution of the classic (isotropic) Fröh-
lich model in the strong-coupling limit as well as with the
adiabatic Gaussian ansatz approach suggested in Ref. [44].
In particular, we find that the Gaussian ansatz delivers an
accurate polaron formation energy for the whole range of
anisotropy parameter, be it in 2D or 3D. In passing, we per-
form the decomposition of the energy of the Fröhlich model
in the strong-coupling limit into individual terms and recover
the Pekar’s 1:2:3:4 theorem, which we show to be valid even
in the anisotropic case.

The paper is structured as follows. In the next sec-
tion (Sec. II), we give some background material and also
provide notations for the reminder of the paper. Explicitly,
we recall the SVPG approach (with an additional discussion
of the choice of phase), and give an account of the stan-
dard (isotropic) Fröhlich model with several well-established
results. Then, in Sec. III, we present our methodological
advances, namely (i) a generalization of SVPG approach,
which yields variational polaron equations in Bloch space,
and is free of the phase convention on which SVPG relied,
(ii) the formulation of the anisotropic Fröhlich model with
these variational polaron equations, (iii) a treatment of the
infrared divergence of the electron-phonon coupling, and (iv)
the formulation of a preconditioned conjugate gradient algo-
rithm to address the variational polaron equations in Bloch
space. In Sec. IV, we deal with the 2D- and 3D-Fröhlich
model, isotropic and anisotropic using the above-mentioned
algorithm. We analyze numerical aspects of this treatment
as well as the physical characteristics of the polaron. Three
appendices focus on the choice of phase for electron-phonon
equations, on Pekar’s 1:2:3:4 theorem, and on the scaling of
the minimization algorithm.

II. BACKGROUND

A. First-principles modeling of a polaron

The SVPG approach [33,40] starts from the DFT total
energy of a semiconductor or an insulator with the fully
occupied valence bands and empty conduction bands. Upon
addition or removal of a single electron from a system,
the charge change is in one well-defined spin channel, the
system is thus spin-polarized, but SVPG assumes that the
change in the overall electronic density is negligible. The
ground-state total energy is expanded to the second order in
displacements as

E [{ψnk}, {τκ p}] = E
[{

ψ0
nk

}
,
{
τ0

κ p

}]
+ 1

2

∑
καp

κ ′α′ p′

C0
καp,κ ′α′ p′�τκαp�τκ ′α′ p′

+ O(�τ 3), (1)

where ψnk are the KS wavefunctions of the occupied states,
and general ionic coordinate of an atom κ in a pth supercell
along the α direction τκαp = τ 0

καp + �τκαp is written as dis-
placement �τκαp from the equilibrium atomic position τ 0

καp,
and C0

καp,κ ′α′ p′ is the matrix of interatomic force constants
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[29,45]. The wavefunctions at distorted geometries ψnk are
self-consistently optimized to minimize the total energy, so
they are functions of τκ p, although this dependence is not
mentioned explicitly in Eq. (1). The energy is defined for a
Born-von Karman (BvK) supercell containing Np unit cells.
The derivation of the formalism for electron and hole polarons
is symmetrical and we will follow the authors’ approach de-
scribing further only the electron polaron case.

Equation (1) is then combined with the expression for the
DFT total energy to obtain the DFT functional of a polaron
with the associated wavefunction ψ , for which the change of
electronic density is ψ∗ψ = �ρ, which is negligible by the
author’s assumption (�ρ � ρ):

Ep[ψ, {�τκαp}] = E
[{

ψ0
nk

}
,
{
τ0

κ p

}]
+ 1

2

∑
καp

κ ′α′ p′

C0
καp,κ ′α′ p′�τκαp�τκ ′α′ p′

+
∫

drψ∗(r)ĤKS[ρ, {τκ p}](r)ψ (r). (2)

The third term describes electron and electron-phonon parts
of the energy and contains the KS Hamiltonian of the system
without addition of an electron, expanded up to the first order
in �τκαp:

ĤKS[ρ, {τκ p}] = ĤKS
[
ρ0,

{
τ0

κ p

}] +
∑
καp

∂V 0
KS

∂τκαp
�τκαp, (3)

where V 0
KS denotes the KS self-consistent potential at equilib-

rium.
The formation energy of the polaron is then obtained from

the minimization of Eq. (2) as

�Ep = minEp[ψ, {�τκαp}]
− minEp[ψ, {�τκαp = 0}]. (4)

The SVPG minimization formalism in real space is not pre-
sented here and can be found in the original paper. This yields
self-consistent equations for the electron wavefunction and
the atomic displacements, with a Lagrange multiplier associ-
ated to the norm conservation of the electronic wavefunction.
Then, these equations are transformed to the basis of the
Bloch electronic wavefunctions (KS basis in the DFT case)
and phonon normal modes.

The polaronic wavefunction in the basis of the Bloch (KS)
electronic wavefunctions reads as

ψ (r) = 1√
Np

∑
nk

Ankψ
0
nk(r) (5)

and must be normalized∫
dr|ψ (r)|2 = 1, (6)

so the electronic coefficients Ank satisfy the following condi-
tion:

1

Np

∑
nk

|Ank|2 = 1. (7)

For an electron polaron, only unoccupied wavefunctions are
used in Eq. (5), while for a hole polaron, only occupied states
are used.

Atomic displacements in turn are expressed in terms of the
phonon coefficients Bqν that represent the contribution of the
normal modes to the displacements:

�τκαp = − 2

Np

∑
qν

B∗
qν

(
1

2Mκωqν

)1/2

eκα,ν (q)eiq·Rp, (8)

where Mκ denotes the mass of the κ atom, eκα,ν (q) is the
orthonormal eigenmode of the corresponding phonon branch,
and Rp is a vector of the unit cell p in real space. Np is
the number of primitive cells in a BvK supercell that hosts
a polaron. In Bloch space formulation this supercell is defined
by the sampling of the Brillouin zone (BZ), namely, a uniform
�-centred k-point grid, with N being the linear size of the
grid. In this sense for example a 10 × 10 × 10 k-point grid in
reciprocal space corresponds to an equivalent 10 × 10 × 10
supercell in real space.

Electronic Ank and phonon Bqν parts of the polaron forma-
tion are coupled through the electron-phonon matrix elements
[29] that represent the probability of scattering of an electron
from the state ψ0

nk into the state ψ0
mk+q through a phonon of

the branch ν with momentum q:

gmnν (k, q) =
∑
καp

(
1

2Mκωqν

)1/2

eκα,ν (q)eiq·Rp

×
∫

drψ0∗
mk+q(r)

∂V 0
KS

∂τκαp
ψ0

nk(r). (9)

At this point it is worth mentioning SVPG relies on the
time-reversal symmetry of the electron-phonon matrix ele-
ments for the electron-phonon Hamiltonian to be Hermitian:

gmnν (−k,−q) = g∗
mnν (k, q). (10)

This relation comes from the Born and Huang convention,
Eq. (24.18) of Ref. [46], for the symmetry of eigenmodes:

eκα,ν (−q) = e∗
κα,ν (q). (11)

Alternatively, one can use Leibfried (p. 104 of Ref. [47])
convention:

eκα,ν (−q) = −e∗
κα,ν (q). (12)

The choice of convention affects the form of some relations
in Sec. II B, see Ref. [48]. In later sections dealing with the
Fröhlich model, we will use Born and Huang convention.
Nonetheless, gmnν (k, q) obtained from first-principles
calculation have gauge arbitrariness due to the arbitrary
phase factor of KS wavefunctions and phonon eigenmodes
that enter Eq. (9), so none of the conventions remain valid,
generally speaking. While SVPG suggests a computational
framework to get a unique gauge for all these quantities and
work with Born and Huang convention, in Sec. III A we use
an alternative approach to explicitly make the Hamiltonian
hermitian. Additionally, general discussion on how arbitrary
phase factor of eκα,ν affects electron-phonon equations is
provided in Appendix A.
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From Eqs. (4)–(9) the following self-consistent eigenvalue
problem in Bloch space is obtained:

2

Np

∑
qmν

Bqνg∗
mnν (k, q)Amk+q = (εnk − ε)Ank, (13)

Bqν = 1

Np

∑
mnk

A∗
mk+q

gmnν (k, q)

ωqν

Ank. (14)

Parameters that enter these equations are eigenergies εnk of
the relevant KS states, phonon frequencies ωqν , and electron-
phonon matrix elements gmnν (k, q). All these quantities can
be obtained from the first-principles calculations [29] and
their initialization allows one to start a self-consistent iterative
procedure to solve Eqs. (13) and (14) for electron and phonon
parts of the polaron wavefunction A and B (here we use
italicized bold symbols to denote a set of coefficients, i.e.,
A ≡ {Ank}), and polaron eigenvalue ε.

Resulting polaron eigenvalue ε can be interpreted as en-
ergy of the localized state in the bandgap once the polaron
is formed, with εCBM being the conduction band minimum.
Electron polaron formation energy in terms of A, B is
given as

�Ep(A, B) = 1

Np

∑
nk

|Ank|2(εnk − εCBM)

− 1

Np

∑
qν

|Bqν |2ωqν . (15)

This equation is not variational and relies on iterative solution
of Eqs. (13) and (14) with convergence criteria being the ab-
solute difference between �Ep at consequent steps becoming
lower than a certain threshold.

In this paper we will derive a variational expression for
�Ep(A, B), allowing for an employment of various iterative
minimization algorithms [49–52], more efficient than the one
suggested in the original paper.

B. Fröhlich model

The Fröhlich model, either standard or generalized, starts
from the following Hamiltonian:

ĤFr = ĤFr
e + ĤFr

ph + ĤFr
el-ph, (16)

which, similar to Eq. (2), has electron, phonon, and electron-
phonon terms that contribute to the total energy of a system.

The original model suggested by Fröhlich implies the fol-
lowing approximations: (i) there is one isotropic electronic
band with effective mass m∗, (ii) coupling is considered only
to one dispersionless LO phonon mode with frequency ωLO,
(iii) the character of a crystal is ignored and one deals with
continuum limit. In this simplified scenario the terms of
Eq. (16) become

ĤFr
e =

∑
k

k2

2m∗ ĉ†
kĉk, (17)

ĤFr
ph =

∑
q

ωLOâ†
qâq, (18)

ĤFr
el-ph =

∑
kq

gFr(q)ĉ†
k+qĉk(âq + â†

−q), (19)

where ĉk/ĉ†
k and âq/â†

q are the electron and phonon
creation/annihilation operators respectively. Electron-phonon
matrix elements are given as

gFr
3D(q) = 1

|q|
(

2πωLO

Np�0
ε∗−1

)1/2

(20)

in the three-dimensional case, and as

gFr
2D(q) = 1

|q|1/2

(
πωLO

Np�0
ε∗−1

)1/2

(21)

in the two-dimensional case [53]. This definition of the 2D
Fröhlich coupling has been the basis of several investiga-
tions, including, e.g., a diagrammatic Monte Carlo reference
study [54]. However, it corresponds to a idealized strictly
2D system. By contrast, the study of realistic systems with
2D characteristics embedded in 3D space, like free-standing
monolayers or slabs, or even such systems deposited on
surfaces, yield a different, much more complex, functional
behavior [55–59]. As our purpose is to compare our approach
to reference data, we stick to the idealized 2D functional form
Eq. (21).

In Eqs. (20) and (21), we have followed the Born and
Huang choice of phase, as explained in Appendix A, and in
Ref. [48]. Here ε∗ is the effective permittivity due only to
the ionic movements, defined from the difference of inverse
high-frequency and static permittivities ε∞ and ε0:

(ε∗)−1 = (ε∞)−1 − (ε0)−1. (22)

Volume (area) of the 3D (2D) BvK supercell are denoted by
Np�0, where �0 is the volume (area) of the corresponding
primitive cell.

It is convenient to introduce the dimensionless parameter,
the so-called Fröhlich coupling constant,

α =
(

m∗

2ωLO

)1/2

(ε∗)−1. (23)

Depending on the value of α the model has asymptotic so-
lution. In the strong-coupling regime, one takes the limit
α → ∞, and the polaron formation energy in 3D [60] and 2D
[61] cases is expanded as

�E3D
p ≈ −ωLO(0.1085α2 + 2.836 + O(1/α2)), (24)

�E2D
p ≈ −ωLO(0.4047α2 + O(α0)). (25)

The strong-coupling case is also captured by the variational
approach [9], in which both electronic and phonon parts
(displacements) of the polaron wavefunction are frozen self-
consistently, and one works in the adiabatic approximation.

Alternatively, Fröhlich model can be solved asymptotically
in the weak-coupling regime (α → 0) with polaron formation
energy showing leading linear dependence on α [62,63]. Qual-
itative breakdown between the weak- and strong-coupling
regimes occurs at α ≈ 6, and treatment of such intermediate
coupling requires more sophisticated approaches [17,18].

Also, it has been shown [64] that the 1:4 relation of the
so-called 1:2:3:4 theorem of Pekar is valid for all ranges of α.
In adiabatic regime this theorem establishes the ratio between
the effective kinetic energy of the electron trapped inside a
polaron Eel, the lattice distortion energy Eph, the energy of a
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localized polaronic state ε and the electron-phonon interaction
energy Eel-ph:

Eel : Eph : −ε : −Eel-ph = 1 : 2 : 3 : 4. (26)

Further discussion on this relation is also provided in Ap-
pendix B.

In addition, some of the aforementioned restrictions can
be bypassed by considering the generalized Fröhlich model
[31,44]. It allows to take into account degeneracy and
anisotropy of the electronic bands and their coupling to sev-
eral possible LO phonon modes instead of only one. The
electron-phonon coupling then becomes more complex, but
reduces to Eq. (20) and (21) not only in the limit of standard
approximations, but also when electronic bands are parabolic
and nondegenerate.

III. THEORY AND IMPLEMENTATION

A. Variational polaron equations in Bloch space

In order to formulate a variational expression for �Ep in
Bloch space we start from Eq. (2), which is variational in real
space under the normalization constraint Eq. (6).

It is convenient to split the polaron energy into four parts,
namely constant ground-state term and electron, phonon, and
electron-phonon terms:

Ep = E0 + Eel + Eph + Eel-ph, (27)

where

Eel =
∫

drψ∗(r)Ĥ0
KS(r)ψ (r), (28)

Eph = 1

2

∑
καp

κ ′α′ p′

C0
καp,κ ′α′ p′�τκαp�τκ ′α′ p′ , (29)

Eel-ph =
∫

drψ∗(r)
∑
καp

∂V 0
KS(r)

∂τκαp
�τκαpψ (r). (30)

Such splitting will allow us to separately reformulate each
part in terms of A, B in Bloch space and later examine their
individual contribution to the formation of a polaron.

Starting first with the electron part, we rely on the expan-
sion of the polaron wavefunction ψ in basis of KS states given
by Eq. (5), keeping in mind that they are orthonormalized
eigenfunctions of the KS Hamiltonian. By combining Eqs. (5)
and (28) one obtains

Eel = 1

Np

∑
nk

|Ank|2εnk, (31)

which is in agreement with Eq. (15).
For the phonon term we use the explicit expression for the

matrix of interatomic force constants,

C0
καp,κ ′α′ p′ = (MκMκ ′ )1/2

Np

∑
qν

eκα,ν (q)

× ω2
qνe∗

κ ′α′,ν (q)eiq·(Rp−Rp′ ), (32)

and Eq. (8) for the displacements �τκαp. In order to be con-
sistent with the Eq. (15) and obtain |Bqν |2 in the final result,
we also note that �τκαp = �τ ∗

καp since the displacements are

real quantities. Hence after combining Eqs. (8), (29), and (32)
the phonon part of the polaron energy reads as

Eph = 1

Np

∑
qν

|Bqν |2ωqν . (33)

This term comes into the variational equation with a different
sign than in Eq. (15) and clearly indicates an increase of the
polaronic energy due to the lattice deformation.

To obtain the electron-phonon contribution to the energy,
we substitute Eqs. (5) and (8) into Eq. (30) and use Eq. (9).
After some algebra the resulting term will be as follows:

Eel-ph = − 2

Np

∑
nmν

∑
kq

A∗
mk+qAnkB∗

qνgmnν (k, q). (34)

At this point we recall the gauge arbitrariness of gmnν (k, q)
mentioned in the previous section. To tackle this problem
we note that Eel-ph has to be real, so it might me expressed
alternatively by its complex conjugate or their average

Eel-ph = − 1

Np

∑
nmν

∑
kq

(A∗
mk+qAnkB∗

qνgmnν (k, q) + (c.c.)).

(35)

This expression has advantage to always be real regardless of
electron and phonon parts of the polaron wavefunction and
gauge arbitrariness of matrix elements.

Now from Eqs. (27), (31), (33), and (35) we get the sought
variational expression for the total energy of polaron, also
using Eq. (7) with the Lagrange multiplier term to impose the
normalization condition on its wavefunction:

Ep = E0 + 1

Np

∑
nk

|Ank|2εnk

− ε

(
1

Np

∑
nk

|Ank|2 − 1

)
+ 1

Np

∑
qν

|Bqν |2ωqν

− 1

Np

∑
nmν

∑
kq

(A∗
mk+qAnkB∗

qνgmnν (k, q) + (c.c.)). (36)

This is a central result of this paper.
This expression yields minimum conditions for the polaron

formation energy �Ep by differentiation for Ank, Bqν under
constraint Eq. (7), with obvious notations for their real or
imaginary parts, respectively:

0 = ∂Ep(A, B)

∂ Re/Im(An′k′ )
= 2

Np
Re/Im(An′k′ )(εn′k′ − ε)

− 2

N2
p

∑
nνq

Re/Im (Ank′−qB∗
qνgn′nν (k′ − q, q)

+ Ank′+qBqνg∗
nn′ν (k′, q)), (37)

0 = ∂Ep(A, B)

∂ Re/Im(Bq′ν ′ )
= 2

Np
Re/Im(Bq′ν ′ )ωq′ν ′

− 2

N2
p

∑
nmk

Re/Im (A∗
mk+q′Ankgmnν ′ (k, q′)). (38)

From Eqs. (37) and (38) one obtains the eigenvalue problem
similar to the one defined by Eqs. (13) and (14). However, the

214301-5



VASILCHENKO, ZHUGAYEVYCH, AND GONZE PHYSICAL REVIEW B 105, 214301 (2022)

result is more general, with Eq. (13) now becoming

1

Np

∑
qmν

(Bqνg∗
mnν (k, q)Amk+q

+ B∗
qνgmnν (k − q, q)Amk−q) = (εnk − ε)Ank.

(39)

This expression might be applied to situations when the phase
choice breaks time-reversal symmetry or when noncollinear
magnetism is present.

B. Variational anisotropic Fröhlich model

In order to apply Eq. (36) to the Fröhlich case, this varia-
tional framework needs to be reformulated by imposing the
model approximations. At this point one can waive some
restrictions of the original model, e.g., consider the case of
parabolic energy bands with anisotropic effective masses to
get results beyond the classic solutions. The electronic part of
the Fröhlich Hamiltonian Eq. (17) is then

ĤFr
e =

∑
k

ε(k)ĉ†
kĉk, (40)

with

ε(k) = 1

2

(
k2

x

m∗
x

+ k2
y

m∗
y

+ k2
z

m∗
z

)
. (41)

We now reformulate Eq. (36) by taking into account the
anisotropic Fröhlich model approximations. In the electronic
part of Eq. (36) we switch from the KS to the planewave basis,
as these are eigenfunctions of the free electron Hamiltonian,
so ψ0

nk(r) in Eq. (5) becomes

ψ0
Gk(r) = 1√

Np�0
ei(k+G)·r, (42)

where the band index n now refers to a 3-dimensional index ni

that defines coordinates of a reciprocal lattice vector G. The
associated energy given by Eq. (28) in this basis reads as

EFr
el = 1

Np

∑
Gk

|AGk|2ε(G + k). (43)

To approach the phonon part we recall that in the Fröhlich
model only LO phonon mode couples with electrons and we
work in the macroscoping limit, ignoring atomic details. The
vibrational energy is then modeled by Einstein oscillators with
frequency ωLO. Taking these approximations into account, in
Eq. (8) we switch from atoms to Einstein oscillators, each is
indexed with κ and have mass M0. An oscillator κ is moved
by a mode ν only when ν = κ , and no coordinate index α is
needed, since transverse optical modes are neglected. Thus

�τκ p = − 2

Np

∑
q

B∗
qκ

(
1

2M0ωLO

)1/2

eiq·Rp, (44)

and one can make an additional Fourier transform to work
with the reciprocal lattice vectors G instead of each index κ to
characterize the B∗ coefficients, since the Einstein oscillators

are homogeneously spread:

B∗
qκ = 1√

NG

∑
G

ei(q+G)·τκ B∗
Gq, (45)

where NG = Nκ is the number of the oscillators, and their
homogeneous spread is given by the sum rule∑

κ

ei(G−G′ )τκ = δGG′Nκ . (46)

From Eqs. (33), (45), and (46) the associated energy is ob-
tained:

EFr
ph = 1

Np

∑
Gq

|BGq|2ωLO. (47)

Lastly, the electron-phonon contribution defined by
Eq. (34) after some renaming becomes

EFr
el-ph = − 1

N2
p

∑
Gk

∑
G′k′

A∗
GkAG′k′B∗

(G−G′+U)(k−k′−U)

× gFr(G − G′ + k − k′) + (c.c), (48)

where U ≡ U(k, k′) is the Umklapp vector of the reciprocal
lattice that translates q = k − k′ − U into the first BZ (possi-
bly U = 0). Electron-phonon matrix elements gFr(q) are given
by Eqs. (20) and (21) for a primitive unit cell, since Np is
already present in the prefactor of Eq. (48).

In these equations we consider a simple cubic cell with a
cubic symmetry and BvK periodic boundary conditions. One
also needs to truncate the summation over (G, k) and (G, q)
in the electron and phonon parts, respectively. We note that
a uniform k grid and corresponding q grid (q = k − k′ − U)
are simply determined by the size of the BvK supercell. These
grids have to always contain the � point, but in case when
linear size of a grid is even the cubic symmetry will be bro-
ken. On the other hand, electron G grid and corresponding
phonon grid (G − G′ + U) act as counterparts for definition
of electronic bands and phonon modes in Eq. (36) and define
reciprocal lattice points. In order to preserve the symmetry
and always work with �-centred grids, we utilize the straight-
forward planewave energy cutoff approach: On the infinite
grid for the electron part we select (G, k) with nonzero value
of AGk only when for a predefined value of εcut

εcut � εGk. (49)

Similarly, the phonon coefficients BGq are selected only when
they connect nonzero electronic coefficients.

Keeping in mind the aforementioned cutoff procedure and
combining Eqs. (43), (47), and (48), we arrive at the varia-
tional polaron expression applied to the Fröhlich model:

�EFr
p (A, B) = 1

Np

∑
Gk

|AGk|2εGk + 1

Np

∑
Gq

|BGq|2ωLO

− 1

N2
p

∑
Gk

∑
G′k′

(A∗
GkAG′k′B∗

(G−G′+U)(k−k′−U)

× gFr(G − G′ + k − k′) + (c.c)). (50)

Minimization of this expression yields polaronic energy in
adiabatic approximation, since A and B are correlated by
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Eqs. (37), (38), and strong-coupling scenario of the Fröhlich
model is captured by this variational approach. In this case
only the quadratic terms of �Ep(α) expansions given by
Eqs. (24) and (25) can be obtained and serve as a benchmark
for numerical minimization.

C. Special Treatment of the Fröhlich Electron-Phonon
Matrix Elements

Before detailing the minimization algorithm, we note that
gFr(q) diverges at � point. Instead of setting gFr(0) = 0, we
average this quantity in the neighbourhood of � point simi-
larly to the approach used in the Supporting Information of
Ref. [31]. For this purpose it is convenient to rewrite Eq. (48),

EFr
el-ph = − 1

N2
p

∑
Gq

(∑
G′k

A∗
(G+G′−U)(k+q+U)AG′k

)
B∗

Gq

× gFr(G + q) + (c.c). (51)

Similar to Eq. (15) we obtain the relation between BGq and
AGk:

BGq = 1

Np

∑
Gk

A∗
(G′+G−U)(k+q+U)

gFr(G′ + q)

ωLO
AGk. (52)

We also note that exactly at � point (q = 0, G = 0) the term
in parenthesis in Eq. (51) equals Np due to the normalization:∑

G′k

A∗
G′kAG′k = Np. (53)

Now, combining Eqs. (51)–(53) we express the average con-
tribution of the electron-phonon term of the total energy in the
neighborhood of � point:

EG=0,q→0
el-ph

∼= − 1

�q=0N2
pωLO

∫
�q=0

dq
q2

(qgFr(q))2, (54)

where the area of the spherical q = 0 neighborhood is
denoted by

�q=0 = 4
3πq3

c (55)

with the cutoff radius

qc = 2π

(
3

4π�0

)1/3

N−1/3
p . (56)

The term in parenthesis in Eq. (54) is roughly constant and
after integration one obtains

EG=0,q→0
el-ph � − lim

q→0

(qgFr(q))2

N2
pωLO

3

(2π )2

(
3

4πNp�0

)−2/3

. (57)

Alternatively, the same contribution can be obtained if around
� point gFr(q) is replaced by gFr(0), which is constant:

E
G=0,q→0
el-ph � − 1

Np

gFr(0)2

ωLO
. (58)

From Eqs. (57) and (58) one obtains the expression for gFr(0).
The same procedure can be done in 2D case and corrections
to the electron-phonon matrix elements at � point become

gFr
3D(0) =

√
3

2π

(
4πNp�0

3

)1/3(2πωLO

Np�0
ε∗−1

)1/2

, (59)

gFr
2D(0) = 1√

π
(πNp�0)1/4

(
πωLO

Np�0
ε∗−1

)1/2

. (60)

These constants indeed tend to zero for infinitely large super-
cells, but to a large extent can remove the convergence error
of a minimization algorithm at low-density grids.

D. Preconditioned Conjugate Gradient Algorithm

The major challenge of the variational approach is the large
size of the real space supercell (or equivalently the number
of k points Np) required in the minimization procedure and
associated computational complexity. Since the gradient of
the Fröhlich variational expression can be easily obtained,
see the general Eqs. (37) and (38), we can utilize an efficient
conjugate gradient algorithm and suggest a possible precon-
ditioner to improve the convergence [50,65]. In Appendix C
we provide its scaling analysis and show that it has a more
favorable scaling than the algorithm utilized by Sio et al. [33].
The present section focuses on the implementation details.

First of all, we note that A and B are linked, as in Eq. (14)
of the original model:

BG′′q = 1

Np

∑
Gk

∑
G′k′︸ ︷︷ ︸

k−k′−U=q
G−G′+U=G′′

A∗
G′k′

gFr(G − G′ + k − k′)
ωLO

AGk.

(61)

This allows one to perform the minimization only in the elec-
tronic subspace since the phonon part of the gradient can be
always set to zero using Eq. (61), whatever the value of A. The
electronic part of the gradient, which we denote as D, is easily
obtained from Eq. (50) to give the adaptation of Eq. (37) to
the Fröhlich case:

DG′k′ = 2

Np
AG′k′ (εG′k′ − ε)

− 2

N2
p

∑
Gk

(AGkB∗
(G′−G+U)(k′−k−U)

× gFr(G′ − G + k′ − k) + AGkB(G−G′+U)(k−k′−U)

× gFr∗(G − G′ + k − k′)). (62)

The iterative minimization process itself is as follows. Let
at nth step Dn be the electronic part of the gradient at a certain
point. In order to retain the normalization condition imposed
on A we apply the approach similar to Ref. [65]. Firstly, using
the Gram-Schmidt process from Dn a vector orthogonal to
the An is obtained, which we refer to as D⊥n. The conjugate
gradient direction is calculated as

Qn = D⊥n + γnQ⊥(n−1) (63)

with

γn =
{

0 n = 0
(D⊥n )∗·(D⊥n−Q⊥(n−1) )

|Q⊥(n−1)|2 otherwise
(64)

and orthogonalization is also performed to yield Q⊥n.
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Then the energy is minimized along the path

�EFr(θ ) = �EFr(An cos θ + Q⊥n sin θ ) (65)

to find the starting point of the next iteration step

A(n+1) = An cos θmin + Q⊥n sin θmin. (66)

The process terminates once the squared norm of the gradient
||D||2 becomes lower than a certain threshold.

A natural preconditioner for the gradient comes from the
first term of Eq. (37). By taking its inverse for the Fröhlich
case one obtains the preconditioner

PGk = Np(εGk − εmod)−1, (67)

where εmod is the fraction of ε. While the optimal choice of
ε can be a challenge in full first-principles calculations, since
the target value of this quantity cannot be estimated before
the minimization, Pekar’s 1:2:3:4 theorem allows its precise
definition for the standard Fröhlich model and gives qualita-
tive estimation in case of generalized Fröhlich model. Hence,
instead of simple gradient D, one can use the preconditioned
gradient DPC, with components DPC

Gk = PGkDGk, to reach the
solution significantly faster.

We also note that if Eq. (50) is minimized at A, it reaches
the minimum at A∗ as well, which implies that electronic
coefficients are real-valued. In addition the polaron wavefunc-
tion inherits the symmetries of the problem and this allows a
reduction of computational time and memory by evaluating A,
B and gFr(q) only in the irreducible part of the BZ defined by
its symmetries.

Finally, since the minimum of �Ep is obtained for a finite
supercell defined by the size of a k grid, we make a series of
optimizations for several grids and then perform an extrapola-
tion similar to the Makov-Payne extrapolation [66] to obtain
the polaron formation energy in the infinite limit �E∞

p :

�Ep(Np) = �E∞
p + aN−1

p + O
(
N−n

p

)
, (68)

where N is the linear size of a grid and n = 2/3 in 2D/3D
case. The leading size-dependent term is coherent with
Eq. (58).

IV. RESULTS AND DISCUSSION

We begin the analysis of the variational Fröhlich model
by comparing the efficiency of different gradient-based al-
gorithms applied to the polaron energy minimization. Along
with the preconditioned conjugate gradient (PCG) mentioned
in Sec. III D we also consider conjugate gradient without
preconditioning (CG) and steepest descent (SD), which are
obtained from PCG by setting PGk = 1 and also γn = 0 in case
of SD. Figure 1 shows that PCG decreases the squared norm of
the gradient ||D||2 most rapidly, and the other two methods are
substantially slower. This behavior is consistent for various
range of the model parameters and thus PCG is the best choice
for optimization. It should be noted that in the original SVPG
paper [40], the authors employ a parallel SD method, but even
in such general first-principles model, implementation of PCG
can be a major improvement that increases convergence rates
of the iterative minimization, see Appendix C.

In order to validate the optimization results we compare
polaron formation energies obtained in the isotropic case with

FIG. 1. Performance comparison of gradient-based optimization
algorithms applied to the variational Fröhlich model. The model is
2D isotropic with m∗ = 1, ε∗ = 1 and 20 × 20 k-point grid.

the asymptotic solution of the Fröhlich model. Figure 2 shows
that the extrapolation yields �E∞

p that is in agreement with
the asymptotic solution with the small difference due to the
finite size of the k grids employed. It is the leading term
γ = �E∞

p /(α2ωLO) (strong-coupling coefficient) in Eqs. (24)
and (25) that can be obtained in the adiabatic strong-coupling
approximation, and calculations give γ = −0.4046 in 2D and
γ = −0.1074 in 3D, while the reference values are −0.4047
and −0.1085, respectively. Corrections of gFr(q) at � do not
affect the extrapolated energy value since they vanish when
Np → ∞. However, at low-density k-point grids they allow
to obtain formation energies much more accurate than the
calculations done with gFr(0) = 0. Thus one can qualitatively
estimate the value of �E∞

p already with a small k grid without
an extrapolation. Additionally, there exist k-point grids or
alternatively supercells of critical size up to which there is
no polaron formation. This behavior is similar to the one that
can be found in Refs. [33,40] and is explained by the transition
from a delocalized electronic state to a localized (self-trapped)
state, i.e., periodic images of the polaron interact and form

(a) (b)2D 3D

FIG. 2. Polaron formation energy �Ep for the (a) 2D and (b) 3D
isotropic Fröhlich model with m∗ = 1, ε∗ = 1, as a function of the
inverse linear size of the wavevector sampling. The square markers
denote �Ep obtained after minimization for range of k-point grids of
incrementally increasing density up to 30 × 30 and 28 × 28 × 28 in
2D and 3D cases, respectively. Black points are obtained by setting
gFr(0) = 0, while Eq. (58) is used for the blue points. The dashed
lines are the extrapolation and the red circles show asymptotic solu-
tions of the original Fröhlich model. The grey regions indicate ranges
of k-point grids for which no polaron is formed.
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FIG. 3. Comparison between the [(a), (c)] 2D and [(b), (d)]
3D generalized variational Fröhlich model and Gaussian ansatz ap-
proach in case of anisotropic electronic bands. Effective mass is
fixed along a preferred direction (m∗

x = 1) and varied along the
perpendicular ones (in 3D m∗

⊥ ≡ m∗
y = m∗

z ). Top panels represent the
dependence of the extrapolated polaron formation energies �E∞

p on
the effective masses, and bottom panels show the ratio between the
Gaussian and variational results, taking the latter as reference.

an extended wavefunction if a supercell is too small, so the
quasiparticle is fully delocalized.

Next we examine the generalized 2D and 3D Fröhlich
model when electronic bands are anisotropic and all the other
approximations of the original Fröhlich model remain valid.
We also compare our results with the ones obtained with the
Gaussian ansatz approach used by Guster et al. [44], which
treats polarons in the strong-coupling adiabatic approximation
like in the current methodology. As shown in Fig. 3, the differ-
ence is rather small, and quite independent of the anisotropy
in the shown anisotropy parameter range, with the variational
approach giving only up to 3% more accurate results. Tak-
ing into account numerical errors, the ratio between the two
methods is constant in 2D and 3D cases, which implies that
numerically exact polaronic wavefunction deviates from the
optimized Gaussian trial wavefunction in a consistent manner
regardless of the effective mass ratio as shown in Fig. 4.
However, the deviation may become more pronounced once
further generalizations to the model are introduced (degen-
eracy, multiple phonon bands), but this requires additional
investigation and is not in the scope of the current paper.

Finally, we look at the individual terms that contribute to
the polaron formation energy (Eel, Eph, Eel-ph) as well as the
eigenenergy of its localized state ε. We observe that in both
anisotropic and isotropic 2D and 3D cases Pekar’s 1:2:3:4
theorem remains valid with only small deviations due to nu-
merical inaccuracies. In Tables I and II, we report these values,
divided by the corresponding Pekar coefficient: Eel, Eph/2,
ε/3, and Eel-ph/4. We call these quantities the “reduced” en-
ergies. This behavior also supports accuracy of the obtained
results and can be used as a convergence check when the
extrapolation is performed: k-point grid density and energy
cutoff εecut are good enough if the Pekar’s 1:2:3:4 theorem
is fulfilled, and have to be increased otherwise. Additional

FIG. 4. Cross sections [(a), (c)] of the numerically exact (black
line) and optimized Gaussian (red line) wavefunctions along the kx

direction in reciprocal space with different anisotropy; [(b), (d)] in-
dicate the kxky-plane cross sections of the wavefunctions difference.

discussion on the validity of this theorem in anisotropic case
is also provided in Appendix B.

V. CONCLUSION

In this paper, starting from recent advances in the first-
principles modeling of polarons by Sio et al. [33,40] we derive
variational polaron equations in the basis of Kohn-Sham
states. We suggest an effective gradient-based optimization
algorithm and apply it to the Fröhlich model in 2D and
3D. We compare obtained results with the known isotropic
asymptotic solution, and observe an excellent agreement. We
also investigate the case of the anisotropic Fröhlich model,
showing that the full variational approach gives slightly more
accurate solution than the Gaussian ansatz technique. Apart
from that, the divergent Fröhlich electron-phonon matrix ele-
ments are corrected at the � point, reducing by a large factor
the convergence error, and allowing for qualitative estimation
of the polaron formation energy without any extrapolation.
Our methodology also allows to obtain the energy of a lo-
calized polaronic state and decompose the formation energy
into individual electronic, vibrational, and electron-phonon

TABLE I. 2D generalized Fröhlich model. Absolute values
of reduced energies: Polaron formation energy �Ep, its decom-
position into individual (reduced) electron Eel, phonon Eph/2,
electron-phonon Eel-ph/4 terms, and localized polaronic state reduced
eigenenergy ε/4, ordered as in Pekar 1:2:3:4 theorem.

m∗
y �Ep Eel Eph/2 ε/3 Eel-ph/4

1.0 0.2023 0.2026 0.2024 0.2024 0.2024
0.8 0.1806 0.1811 0.1809 0.1808 0.1809
0.6 0.1556 0.1561 0.1558 0.1557 0.1558
0.4 0.1250 0.1220 0.1235 0.1240 0.1235
0.2 0.0848 0.0849 0.0848 0.0848 0.0848
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TABLE II. 3D generalized Fröhlich model. Absolute values
of reduced energies: Polaron formation energy �Ep, its decom-
position into individual (reduced) electron Eel, phonon Eph/2,
electron-phonon Eel-ph/4 terms, and localized polaronic state reduced
eigenenergy ε/4, ordered as in Pekar 1:2:3:4 theorem.

m∗
⊥ �Ep Eel Eph/2 ε/3 Eel-ph/4

1.0 0.0537 0.0549 0.0543 0.0541 0.0543
0.8 0.0463 0.0465 0.0464 0.0463 0.0464
0.6 0.0379 0.0413 0.0396 0.0390 0.0396
0.4 0.0284 0.0282 0.0283 0.0283 0.0283
0.2 0.0168 0.0163 0.0166 0.0167 0.0166

contributions. We show that their ratio obey’s Pekar’s 1:2:3:4
rule regardless of anisotropy and dimensionality.

While the main application of the current work is on
the anisotropic Fröhlich model, further generalization can be
performed using the suggested framework. Taking also into
account possible degeneracy of electronic bands as well as
several LO phonon modes one may study wide range of real-
istic materials in scope of the generalized Fröhlich model.
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APPENDIX A: ELECTRON-PHONON PART OF THE
HAMILTONIAN WITH ARBITRARY CHOICE

OF PHONON PHASE

The general phase relation for the phonon eigenmodes with
opposite wavevectors, obtained from the diagonalization of
dynamical matrix (e.g., by numerical means) reads as

eκα,ν (−q) = eiφ(q)e∗
κα,ν (q), (A1)

with φ(q) being an arbitrary phase. This equation is valid for
nondegenerate phonon states, and should be further gener-
alized to unitary matrices for the degenerate case, although
we will not treat this further generalization in the present
Appendix. Actually, the phase eiφ(q) depends on the mode ν,
but for the sake of simplicity, we will not explicitly mention
this dependence.

There are two convenient conventions for the choice of
phase, namely φ(q) = 0 as in Born and Huang [46] and
φ(q) = π as in Leibfried [47]. The first, for example, is used
in Ref. [29]. However, without choosing any of these con-
ventions, one can obtain a generalized expression for a linear
coordinate transformation of the ionic displacements and the
accompanying electron-phonon term in the Hamiltonian.

For this purpose, we follow Appendix B of Ref. [29],
which delivers the following modified equations. Eq. (B15)
of Ref. [29] becomes

zqν = lqν (âqν + e−iφ(q)â†
−qν ). (A2)

Using this equation one gets atomic displacements

�τκαp =
(

M0

NpMκ

)1/2 ∑
qν

eiq·Rpeκα,ν (q)

× lqν (âqν + e−iφ(q)â†
−qν ) (A3)

and electron-phonon term of the Hamiltonian

Ĥel-ph = 1

N1/2
p

∑
kq

mnν

gmnν (k, q)ĉ†
mk+q

× ĉnk(âqν + e−iφ(q)â†
−qν ), (A4)

which are the sought generalized counterparts of Eqs. (20) and
(37) of Ref. [29], respectively.

Equation (A4) shows that the form of the Fröhlich Hamil-
tonian depends on the choice of phase. In the present paper
φ(q) = 0, but if Leibfrid convention were used, Eqs. (19)–
(21) would read as

ĤFr
el-ph =

∑
kq

gFr(q)ĉ†
k+qĉk(âq − â†

−q), (A5)

gFr
3D(q) = i

|q|
(

2πωLO

Np�0
ε∗−1

)1/2

, (A6)

gFr
2D(q) = i

|q|1/2

(
πωLO

Np�0
ε∗−1

)1/2

, (A7)

which is coherent, e.g., with Refs. [26,67]. See Ref. [48] for
further information about this topic.

APPENDIX B: PEKAR’S 1:2:3:4 THEOREM

In order to derive the 1:4 relation of the Pekar’s theorem
in anisotropic case, it is convenient to introduce the average
effective mass m∗ = 3

√
m∗

x m∗
y m∗

z , and rewrite the electronic
energy given by Eq. (41) as follows:

ε(k) = 1

2m∗

(
k2

x

m∗
x,r

+ k2
y

m∗
y,r

+ k2
z

m∗
z,r

)
, (B1)

where m∗
i,r = m∗

i /m∗ denotes reduced effective masses along
each direction. These reduced effective masses will stay
unchanged in what follows, which is a key point in the demon-
stration.

Then one can follow the same reasoning provided in
Ref. [64] for isotropic case. Assuming ψ0 is the ground-state
wavefunction of a polaron in the ground state, we use Fröhlich
Hamiltonian defined by Eq. (16) and Feynman-Hellman the-
orem to obtain the derivative of the polaron formation energy
with respect to inverse of the mass λ = 1/m∗:

d (�Ep)

dλ
= 〈ψ0|dHFr

dλ
|ψ0〉 = 1

λ
Eel. (B2)

After changing the Hamiltonian to dimensionless units simi-
larly to Ref. [64], it can be shown that the polaron formation
energy �Ep is the function of α only, which is the averaged
anisotropic Fröhlich coupling constant:

α =
(

m∗

2ωLO

)1/2

ε∗−1
. (B3)
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Then using the average mass dependence of this constant and
Eq. (B2), electronic contribution to the formation energy can
be expressed as derivative of α:

Eel = λ
d (�Ep)

dλ
= λ

d (�Ep)

dα

dα

dλ
= −1

2
α

d (�Ep)

dα
. (B4)

The electron-phonon interaction term, obtained in the same
way, reads as

Eel-ph = 2α
d (�Ep)

dα
. (B5)

Combining Eqs. (B4) and (B5) one obtains the 1:4 relation of
the Pekar’s theorem, that is valid regardless of the value of α:

Eel : −Eel-ph = 1 : 4. (B6)

Since the present paper describes polaron in the strong
coupling regime of adiabatic approximation, the 1:2 relation
will always hold. This immediately follows from the fact that
electron and phonon parts of the polaron wavefunctions are
correlated, see Eq. (38). Taking this into account and using
Eqs. (33) and (35), one can show that

Eel-ph = −2Eph (B7)

and, consequently, from the relation (B6) it follows that

Eel : Eph = 1 : 2. (B8)

Lastly, adiabatic approximation implies that the formation
energy of a self-trapped polaron can also be expressed as the
sum of the energy of localized polaronic state and the energy
of lattice deformation:

�Ep = ε + Eph. (B9)

Using Eq. (27) and the aforementioned ratios, one obtains the
1:3 relation:

Eel : −ε = 1 : 3. (B10)

It should be emphasized that the 1:2 and 1:3 ratios are
inherent to the adiabatic approximation and will always be
valid for the model of Ref. [33] irrespective of the form of
the electron-phonon coupling. On the other hand, the 1:4 ratio
comes from the dimensional analysis of the Fröhlich model,
which arises when one takes derivatives of the formation en-
ergy with respect to a certain parameter. Hence in the present
paper the 1:4 result is only true when the convergence with
respect to number of plane waves and number of k points is
reached.

FIG. 5. Comparison between the runtime of minimization step
for an iterative eigensolver and conjugate gradient descent algorithm.

In the weak-coupling regime, only the 1:4 relation remains.
Vibrational energy Eph in this case will depend on the α pa-
rameter, and energy of a localized polaronic state ε is not even
defined, since there is no self-trapped polaron. In this sense we
note that in Appendix B of Ref. [38] the authors erroneously
state that the Pekar’s theorem is valid for all ranges of the
coupling parameter.

APPENDIX C: SCALING OF THE MINIMIZATION
ALGORITHM

The computational complexity of the SVPG framework
and, consequently, of the variational approach to the problem
is determined by the large size of a k-point grid Np that may be
required for the extrapolation of energy. In the original papers,
authors rely on standard numerical eigensolvers to diagonalize
electronic matrix defined by Eq. (13), which scale like O(N3

p ),
i.e., as the cube of the matrix size. In their approach only the
lowest (largest) eigenvalue of the Hamiltonian is required, so
to find this value and the corresponding eigenvector one can
also benefit from iterative eigensolvers that scale like O(N2

p ).
Computation of the gradient at each minimization step

defined by Eqs. (37) and (38) scales as O(N2
p ), which is also

valid in the Fröhlich case, see Eqs. (61) and (62). This along
with the efficiency of the PCG algorithm allowed us to handle
the calculations on a laptop using Python [68] scripts, while
in Ref. [33] authors rely on a distributed-memory eigensolver
from the ScaLAPACK library [69] to deal with grids of similar
size. Also, in the matrix methods setting up the Hamiltonian
requires additional memory in comparison with the variational
approach. Figure 5 shows performance of the minimization
routines.
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