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A reentrant localization transition was predicted recently in a one-dimensional quasiperiodic lattice with
dimerized hopping between the nearest-neighbor sites [Roy et al., Phys. Rev. Lett. 126, 106803 (2021)]. It
was shown that the interplay between the hopping dimerization and a staggered quasiperiodic disorder manifests
two localization transitions through two intermediate phases, resulting in four critical points as a function of the
quasiperiodic potential. In this paper, we study the critical nature of the states across the localization transitions
by computing the mass exponents and the corresponding fractal dimensions of the states through a multifractal
analysis. Moreover, we analyze the phenomenon of this reentrant localization transition by examining the
spectral properties of the eigenstates. By performing a systematic finite-size scaling analysis for a fixed value of
the hopping dimerization, we obtain accurate critical disorder strengths for different transitions and the associated
critical exponents. Further, we complement the critical nature of the energy spectrum by computing the Hausdorff
dimensions.
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I. INTRODUCTION

Anderson localization is a ubiquitous phenomenon in con-
densed matter that involves lattices with random on-site
disorder [1]. The phenomenon, which is marked by the tran-
sition of all the extended/delocalized single-particle states
to localized states at a critical disorder strength, is absent
in one and two dimensions [2]. However, an intermediate
between periodic and fully disordered systems, namely, the
quasiperiodic lattice, exhibits localization transitions in low
dimensions [3]. This remarkable property of quasiperiodic
lattices has encouraged the study of localization transitions
in various different models [4–8]. Due to the easier exper-
imental access over random lattices, quasiperiodic lattices
have been created and studied in different experimental setups
such as in optical lattices, photonic lattices, optical cavities,
superconducting circuits, etc. [9–12]. These developments
have facilitated observations of interesting physical phenom-
ena such as Anderson localization [13–16], Bose glasses
[17–21], the emergence of long-range periodic order [22,23],
and many-body localization [24–26].

Among the various quasiperiodic lattice models, the sim-
plest interesting model is the Aubry-André (AA) model [8],
which exhibits a sharp localization transition. The transition
occurs at an exact critical value of the quasiperiodic poten-
tial due to the self-dual nature of the AA model [6,8,27].
The sharp localization transition dictates the absence of any
energy-dependent mobility edge (ME; the critical energy
which separates the localized and delocalized states) at the
transition. Hence, the system undergoes a transition from all
states extended to all states localized through the critical point.
However, the breaking of the self-duality of the AA model

or further generalizations of it have exhibited the localiza-
tion transition through intermediate/critical regions hosting
the ME, e.g., zigzag lattices [28], flat-band lattices [29],
quasiperiodic mosaic lattices [30], shallow bichromatic po-
tentials [31], lattices with longer-range hopping [32], and the
generalized AA model [33–39]. Furthermore, quasiperiodic
lattices exhibit a plethora of unique characteristics, including
critical spectra, multifractal wave functions at and away from
the critical points corresponding to the localization transition,
and the existence of mixed phases hosting the likes of both
localized and delocalized states, which have been studied in
great detail in various systems [6,31,32,40–48].

Recently, in the context of quasiperiodic lattices, a reen-
trant localization transition was predicted by some of us in
Ref. [49]. It was shown that a one-dimensional quasiperiodic
model of AA type with dimerized hopping and staggered
quasiperiodic disorder can undergo two localization transi-
tions at the single-particle level. In other words, for some
specific dimerization strengths and as a function of dis-
order, the system first undergoes a localization transition
where all the single-particle states get localized. A further
increase in the disorder strength makes some of the local-
ized states extended, and eventually, the system undergoes
another localization transition at a larger disorder strength
where all the single-particle states get localized for the sec-
ond time. Both localization transitions are found to occur
through two intermediate regions hosting the MEs, resulting
in four critical points as a function of the quasiperiodic po-
tential strength. While the detailed phase diagram depicting
the reentrant localization transition associated with this model
was discussed in Ref. [49], a thorough understanding of the
phase transitions can be unveiled via a quantitative analysis
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of the critical properties, which is relevant and of topical
interest.

In this paper, we study the critical properties of the
reentrant localization transition described above. By using
appropriate finite-size scaling analysis, we explore the crit-
ical points associated with different transition types, that
is, an extended-intermediate-localized-intermediate-localized
transition, as a function of the strength of the quasiperiodic
disorder. While from our analysis we are able to obtain
the critical points, critical exponents, and scaling behav-
ior associated with the first localization transition, that is,
the extended-intermediate-localized-intermediate transition,
at the second localization transition, the scaling behavior is
not well captured. We further analyze the eigenspectra near
the localization transitions and find the existence of multifrac-
tal states and identify the critical regimes.

The remainder of this paper is organized as follows. First,
we describe the model that exhibits the reentrant localization
transition and the approach in detail in Sec. II. In Sec. III,
we discuss our main results, which included the multifractal
analysis and the critical state analysis. Finally, in Sec. IV we
provide a brief conclusion.

II. MODEL AND APPROACH

The Hamiltonian with hopping dimerization and staggered
quasiperiodic disorder on a one-dimensional chain is written
as [49]

HDIM = −t1

N∑
n=1

(ĉ†
n,Bĉn,A + H.c.)

− t2

N−1∑
n=1

(ĉ†
n+1,Aĉn,B + H.c.)

+
N∑

n=1

λAn̂n,A cos[2πβ(2n − 1) + θ ]

+
N∑

n=1

λBn̂n,B cos[2πβ(2n) + θ ], (1)

where L = 2N , with N being the number of unit cells that
are denoted by the index n and L is the total system size.
Here, a unit cell comprises two sublattice sites, namely, A
and B, and the corresponding creation (annihilation) operators
are denoted ĉ†

n,A (ĉn,A) and ĉ†
n,B (ĉn,B), respectively. n̂n,A and

n̂n,B are the number operators at the two sublattice sites. The
intercell hopping between the two sublattices is denoted by t2,
and t1 refers to the intracell hopping. The hopping dimeriza-
tion is introduced by defining δ = t2/t1 and setting δ �= 1. We
have taken t1 as the unit of energy throughout the study. The
on-site quasiperiodic potential at sublattice site A (B) is given
by λA (λB). The quasiperiodicity is achieved by considering
an irrational β. In particular, we take it to be the inverse of the

golden mean, namely, β = (
√

5−1)
2 [42]. θ denotes the phase

difference between the lattices that form the quasiperiodic
lattice. In our studies, we consider very large system sizes L
up to a maximum of 35 422 sites for which θ can be set to
zero without any loss of generality.

Since the primary focus of our studies lies in the critical
state analysis and the spectral properties of the model shown
in Eq. (1), in the following we outline the details of the
approach. In this context, a single-particle state can be written
as an eigenstate |m〉 corresponding to the eigenspectrum Em

of HDIM as

|ψ〉 =
L∑

i=1

φ
(m)
i |m〉, (2)

where φm
i defines the probability amplitude corresponding

to a lattice site i and m denotes the eigenstate index. An
overall understanding of the physical properties of the sys-
tem can be achieved just by studying the eigenstate |ψ〉 and
eigenspectrum Em. Here, we study the scaling behavior of
the eigenspectrum by analyzing the Hausdorff dimension. An
elaborate discussion will be provided in the following section.
In addition, the scaling nature of the eigenstates is done by
studying the multifractal analysis. Classification of the eigen-
states, such as localized, extended, or critical states, can be
performed by computing the inverse participation ratio (IPR).
The IPR of the mth eigenstate is defined as

IPR(m) =
L∑

i=1

∣∣φ(m)
i

∣∣4
. (3)

Since an IPR value is not sufficient to describe the underlying
physics of an eigenstate associated with the critical nature, the
higher moment of the IPR is more fundamental in that case.
Therefore, a multifractal nature of the eigenstates can be iden-
tified through the generalized IPR and its scaling exponent τq

[32,45,50] using the relation

IPR(m)
q =

L∑
i=1

∣∣φ(m)
i

∣∣2q → L−τq , (4)

where τq is also known as the mass exponent and q is a real
number. The mass exponent vanishes for the localized states,
whereas it varies linearly with the system dimension d for the
delocalized state as τq = d (q − 1). Furthermore, the scaling
exponents of the multifractal states can be characterized by a
nonlinear relation where d (see above) is no longer an integer
and further acquire q dependence, which can be written as

τq = Dq(q − 1), (5)

where Dq denotes the fractal dimension of the eigenstates.
Therefore, an extended state and a localized state have, re-
spectively, 1 and 0 as their fractal dimensions, while an
intermediate value of Dq (between 1 and 0) denotes the fractal
nature of the eigenstates.

In general, localization in a disordered system can also
be characterized by using the normalized participation ratio
(NPR), which for the mth eigenstate is defined as

NPR(m) =
[

L
L∑

i=1

∣∣φ(m)
i

∣∣4

]−1

= PR(m)

L
, (6)

where L is the system size and PR is the participation ratio.
In the extended regime, PR grows linearly with system size L,
while it vanishes in the localized regime in the thermodynamic
limit. For further analysis, we consider the average value of
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the NPR. Using the averaged NPR values, we can identify the
order parameter for the localization transition as

σ =
√

PR

L
=

√
NPR. (7)

In the vicinity of the phase transition, the observables display
power law behavior, with their critical exponents behaving as
[51]

σ ∼ (−ε)β, PR ∼ ε−γ , ξ ∼ |ε|−ν . (8)

Here, ε = (λ − λc)/λc is the reduced disorder potential
strength, with λc being the critical disorder strength for the
localization transitions, and ξ is the correlation (or localiza-
tion) length. β, γ , and ν are the order parameter exponent,
the participation ratio exponent, and the correlation length
exponent, respectively.

Following Ref. [51], the order parameter σ associated with
two different system sizes yields a function R[L, L′], which is
given by

R[L, L′] = ln
(
σ 2

L /σ 2
L′
)

ln(L/L′)
+ 1. (9)

The critical point for the transition λc and the critical expo-
nent ratio γ /ν are determined using the above two-system
size-variable function R[L, L′]. The curves corresponding to
R[L, L′] as a function of the strength of the potential in the
vicinity of the critical point for several pairs of the system
of sizes L and L′ intersect each other at a common fixed
point. The critical potential strength λc and the exponent ratio
γ /ν are determined from the abscissa and the ordinate of the
common crossing point, respectively.

In the vicinity of the critical point, a finite-size scaling form
of the order parameter σ for a finite system is defined by

σ = L−β/νF (εL1/ν ), (10)

where F is a scaling function. Similarly, a finite-size scaling
form of the PR for a finite-size system is defined by

PR = Lγ /νG(εL1/ν ), (11)

where G is another scaling function. Using Eq. (7), Eq. (11)
can be rewritten as

σ 2L = Lγ /νG(εL1/ν ), (12)

which can be further expressed as

σ 2 = Lγ /ν−1G(εL1/ν ). (13)

Hence, a plot of σ 2L1−γ /ν versus εL1/ν for different system
sizes L should fall onto a single curve denoted by G(εL1/ν )
if the critical potential strength λc and the critical exponents
are correctly determined. In the following we will utilize
the above prescription to study the critical properties of the
reentrant localization transitions.

III. RESULTS

The localization properties of the model shown in Eq. (1)
were discussed in detail in Ref. [49]. It was shown that the
system exhibits a reentrant localization transition in the limit
of staggered disorder, i.e., λA = −λB = λ, which is depicted

FIG. 1. The phase diagram is plotted as a function of hopping
dimerization δ and disorder strength λ in (a). In (b), a schematic
picture of the series of transitions is shown for δ = 2.2 [marked by
the dashed line in (a)] [49].

as a phase diagram in the δ-λ plane in Fig. 1 (see Ref. [49]
for details). Note that the phase diagram shown in Fig. 1(a)
was obtained by utilizing the behavior of the average par-
ticipation ratios, such as the average inverse and normalized
participation ratios, as a function of λ. Here, IPR and NPR
are calculated by taking the average over all the eigenstates
corresponding to the Hamiltonian shown in Eq. (1) [49], and
they are given by

IPR = 1

m

∑
m

IPR(m),

NPR = 1

m

∑
m

NPR(m). (14)

The different phases in the phase diagram are computed using
a quantity η [49,52] which is defined as

η = log10(IPR×NPR). (15)

In the phase diagram in Fig. 1(a), the red regions corre-
spond to the extended and localized phases, and the central
blue region bounded by the dark symbols is the intermediate
phase. It can be seen from the phase diagram that for a range
of values of δ, the system undergoes two localization transi-
tions as a function of λ, indicating the reentrant localization
transition. Although the reentrant localization is feasible in
both regimes of hopping dimerization corresponding to δ < 1
and δ > 1 [49], for our discussion we restrict ourselves to the
regime of δ > 1 for concreteness. For our analysis, we explore
the critical properties of a cut through the phase diagram along
the y axis at δ = 2.2 [dashed yellow line in Fig. 1(a)]. As λ is
increased, the system as a whole undergoes two localization
transitions through two intermediate phases exhibiting a series
of transitions from extended to intermediate to localized to in-
termediate to localized phases occurring at four critical points,
λ1, λ2, λ3, and λ4, as schematically depicted in Fig. 1(b). In
the following our focus is on studying the fractal nature of
the eigenstates and eigenspectra across these transitions and
determining the transition points through a finite-size scaling
analysis.

A. Multifractal analysis

As already discussed in the previous section, the two local-
ization transitions in this case occur through two intermediate
regions. In analogy with the direct localization transition in
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FIG. 2. The generalized IPR is plotted as a function of different
system sizes L corresponding to different moments of the intensity
q. The slopes of the curves are characterized by the mass exponent
τq. We show three distinguishing behaviors of τq by considering
the potential strength λ in the extended, multifractal, and localized
regions in (a), (b), and (c), respectively. We consider λ = 0.5 and
eigenstate index m/L = 0.5 in (a), λ = 0.903 (first critical point) and
eigenstate index m/L = 0.1 in (b), and λ = 4 and eigenstate index
m/L = 0.5 in (c). For all cases, we take δ = 2.2.

the case of the AA model and other models in which the
localization transition occurs through an intermediate region,
we expect the existence of multifractal eigenstates in the inter-
mediate phases. Thus, to explore deeper into the nature of the
states in different regions we perform a multifractal analysis
[32,45] of the eigenstates and calculate the associated fractal
dimensions to arrive at an intuitive picture of the critical
regions.

In our analysis, by following Eqs. (4) and (5), we first ob-
tain the correlation dimension, denoted by D2, corresponding
to q = 2, from the relation

IPRn
2 ∝ L−D2 . (16)

D2 can be obtained as the slope of the log(IPR2) versus
log(L) plot corresponding to different states, as shown in
Fig. 2 (red circles). Furthermore, in order to gain insights
into the variation of D2 over the entire spectrum, we plot
D2 as a function of the eigenstate index and λ at δ = 2.2 in
Fig. 3, which clearly shows the existence of the extended,
localized, and multifractal states. While the expected reen-
trant feature can be seen in Fig. 3, a clear understanding of
this can be obtained from the structure of the eigenstates.
In this regard, we plot the eigenstates for different values of
λ, namely, λ = 1.0, 1.5, 2.0, 2.5, and 3.5 for a particular

FIG. 3. The values of D2 as a function of λ and eigenstate index
(m/L) are plotted for δ = 2.2.

FIG. 4. (a)–(e) show the eigenstates as a function of site index i
corresponding to λ = 1.0, 1.5, 2.0, 2.5, and 3.5 for the eigenstate
index (m/L = 0.5) and δ = 2.2. As a comparison, (f)–(j) represent
the eigenstate behavior corresponding to δ = 1.5 and m/L = 0.5.
The system size taken for the calculation is L = 3194.

eigenstate with index m/L = 0.5 as a function of the site index
i in Figs. 4(a)–4(e). It is observed that the wave functions at
λ = 1.0 and λ = 1.5 spread uniformly over the entire lattice,
indicating their extended nature. Further, a localized state is
observed at λ = 2.0. However, at λ = 2.5, the extended char-
acter reemerges, and finally, as expected, the wave function
becomes completely localized at λ = 3.5. As a further check,
we plot the eigenstates corresponding to identical values of
λ (λ = 1.0, 1.5, 2.0, 2.5, and 3.5) for another dimerization
strength, δ = 1.5, as a function of site index i in Figs. 4(f)–
4(j), where the reentrant behavior is absent.

To complement the above analysis to distinguish the nature
of the states, we compute the average values of D2 over the
eigenstates. In Fig. 5(a), we plot Davg

2 as a function of λ,
where the extended and localized phases are characterized by
Davg

2 = 1 and 0, respectively. Here, 0 < Davg
2 < 1 implies the

presence of states that are multifractal in nature. The average
value of D2 is calculated by considering some of the states
from the middle of the spectrum. In addition, we also examine
the variation of the exponents by considering different values
of q > 2 (q = 3, 4, 5) that correspond to higher moments
of the eigenstates. We obtain signatures which exactly match
the natures of the extended, multifractal, and localized states

FIG. 5. Davg
2 and Davg

q are plotted as a function of λ in (a) and (b),
respectively, for δ = 2.2.
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FIG. 6. The order parameter σ is plotted as a function of λ corre-
sponding to four different critical transition points, λ1, λ2, λ3, and λ4.
We consider states within a narrow band with indices (m/L) = [0 to
0.05], [0.45 to 0.5], [0.45 to 0.5], and [0.45 to 0.5] for the calculation
of σ in (a)–(d), respectively. Light to dark curves correspond to small
to large system sizes. The curve with deep blue color is obtained by
using finite-size extrapolation.

of the spectrum, as shown in Figs. 2(a)–2(c), respectively. A
clear understanding of these features can also be achieved by
plotting Davg

q for the entire range of λ. In Fig. 5(b), we plot
Davg

q as a function of λ for q = 2, 3, 4, and 5. The q depen-
dence of Davg

q indicates the presence of multifractal states. In
Fig. 5, different transitions are marked by the vertical dashed
lines.

B. Critical state analysis

In this section, we establish the transition points by analyz-
ing the behavior of σ which is directly related to the NPR of
the states. From the definition, σ for different lengths should
approach zero at the localization transition. Therefore, it will
be possible to estimate all the critical points by using the
finite-size extrapolation of σ . For this purpose, we compute
σ by considering the eigenstates in a narrow band near the
approximate transition boundaries. The choice of a narrow
band is due to the presence of the ME for which the transition
occurs at different critical λ for different states. We plot σ

for different system sizes, namely, L = 3194, 5168, 8362,
13 530, and 21 892 as a function of λ in Figs. 6(a)–6(d)
across the transition points λ1, λ2, λ3, and λ4, respectively.
A finite-size extrapolation reveals that for all cases, σ in the
limit of L → ∞ falls to a minimum after a critical λ for
different transitions. As an example we show a finite-size
scaling analysis of σ corresponding to several values of λ =
0.8, 0.85, 0.9, 0.95, and 1.0 across the first critical point in
Fig. 7. The extrapolated values of σ tending to zero for larger
values of λ clearly indicate a localization transition. This
analysis defines the relevant range of λ for our exploration of
the critical properties. Once the limits of λ around the critical
transition points are identified, we use them to calculate the
function R[L, L′] [see Eq. (9)].

We first focus on the first localization transition, which
involves two critical points, such as λ1 and λ2, corresponding

FIG. 7. The finite-size scaling analysis is shown for several val-
ues of λ. The system sizes are L = 3194, 5168, 8362, 13 530, and
21 892.

to the extended-intermediate and intermediate-localized tran-
sitions. Like in the case for σ , for our analysis, to compute
the function R[L, L′] we use the eigenstates corresponding to
a narrow band of the spectrum. We plot R[L, L′] as a function
of λ for both transitions around λ1 and λ2 in Figs. 8(a) and
8(b), respectively. The crossing of all the curves at a single
point in both Figs. 8(a) and 8(b) allows us to obtain the critical
points as λ1 = 0.903 and λ2 = 1.836. As already mentioned
in Sec. II, following Eq. (12), curves of σ 2L1−γ /ν versus εL1/ν

for different system sizes, L = 8362, 13 530, 21 892, and
35 422, collapse with the estimated critical strength λ1 =
0.903. A perfect data collapse is obtained by considering
γ /ν = 0.83 ± 0.05 and ν = 1.8 for λ1 = 0.903, as shown in
the inset in Fig. 8(a). Similarly, for the second critical point
(λ2 = 1.836), a perfect data collapse is obtained by setting
γ /ν = 0.77 ± 0.04 and ν = 1.7 [inset of Fig. 8(b)]. Note that
the γ /ν considered for the data collapse matches fairly well
the ordinate corresponding to the points of intersection of
R[L, L′] as a function of λ in Figs. 8(a) and 8(b).

We now turn our focus to the second localization transition
through the second critical region as depicted in Fig. 1. This
involves two transitions, namely, localized-intermediate and
intermediate-localized transitions at critical points λ3 and λ4,
respectively. Following a scaling hypothesis similar to that
above, for the localized-intermediate transition, we obtain
the crossing of R[L, L′] data at a single point, as depicted
in Fig. 8(c), resulting in a value of λ3 = 2.127. Further, by
using the value of λ3, a perfect data collapse is achieved in
the σ 2L1−γ /ν versus εL1/ν plot by setting γ /ν = 0.79 ± 0.03
and ν = 1.7, as shown in the inset of Fig. 8(c). This suggests
that the two transitions occurring at λ2 and λ3 correspond-
ing to the transitions to and from the first localized phase
(intermediate-localized and localized-intermediate) belong to
the same universality class.

It is now expected that the transition to the second localized
phase, i.e., the fourth transition occurring at λ4, falls in the
same universality class as that of the second and third transi-
tions observed at λ2 and λ3. However, in our scaling analysis,
we find an anomalous scaling behavior of R[L, L′], which is
why we have failed to achieve an accurate critical point λ4 and
the associated exponents (see Fig. 9). The actual reason for
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FIG. 8. Shown are plots of R [L, L′] in the vicinity of the first
critical quasiperiodic potential strength λ1 in (a), the second critical
quasiperiodic potential strength λ2 in (b), and third critical quasiperi-
odic potential strength λ3 in (c), corresponding to δ = 2.2. The insets
show the data collapse with the σ 2 data in the vicinity of the first,
second, and third critical points. Good data collapse is observed for
all the transition points. The existence of single universal scaling
functions can easily be inferred from the data collapse. We have done
the calculations by taking an average over the states in the band with
indices m/L = [0 to 0.05] for the first critical point and the states in
the band with indices m/L = [0.45 to 0.5] for the second and third
critical points of the energy spectrum in this study.

this behavior can be attributed to the anomalous distribution
of the extended state (NPR �= 0) near the transition.

Furthermore, we reconfirm that the critical exponents from
the scaling relation of PRL, which denotes the participation
ratio corresponding to different system sizes using Eq. (8),
can be written as PRL ∼ Lγ /ν . From this relation, a plot of
log(PRL ) versus log(L) for different lengths L at the critical
point should result in a straight line with slope γ /ν. We per-

FIG. 9. The functions R[L, L′] are plotted as a function of λ in
the vicinity of the fourth critical point λ4 at δ = 2.2. We have done
the calculations by taking an average over the states in the band with
indices m/L = [0.45 to 0.5] of the energy spectrum in this study.

form this analysis at all three critical points, λ1, λ2, and λ3, in
Fig. 10 and obtain values of γ /ν of 0.83 ± 0.05, 0.77 ± 0.04,
and 0.79 ± 0.03, respectively. The exponents obtained in our
analysis should satisfy a hyperscaling law expressed as [51]

2β

ν
+ γ

ν
= 1. (17)

Using the hyperscaling relation given in Eq. (17), it is possible
to extract another ratio of the exponents, i.e., β/ν, via

β

ν
= 1

2

(
1 − γ

ν

)
. (18)

Since at the critical point ξ = L, from Eq. (8) we have σL ∼
L−β/ν . In order to establish the hyperscaling relation we plot
log(σL) as a function of log(L) for different system sizes
corresponding to critical points λ1, λ2, and λ3 in Fig. 11.
The slopes of the curves yield the exponent ratios β/ν =
0.086 ± 0.03, 0.116 ± 0.02, and 0.1 ± 0.02 for λ1 = 0.903,
λ2 = 1.836, and λ3 = 2.127, respectively. These values of the
exponent ratios γ /ν (0.83, 0.77, and 0.79) and β/ν (0.086,
0.116, and 0.100) clearly satisfy the hyperscaling relation
[Eq. (17)] at the critical points.

FIG. 10. The exponent ratio γ /ν is calculated by plotting
ln(PRL ) as a function of ln(L) for different system sizes L =
1974, 3194, 5168, 8362, 13 530, 21 892 corresponding to three dif-
ferent critical points, λ1, λ2, and λ3.
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FIG. 11. The exponent ratio β/ν is calculated by plotting the
order parameter σL as a function of different system lengths L cor-
responding to three different critical potential strengths, namely, λ1,
λ2, and λ3.

C. Hausdorff dimension

The understanding of the details of the energy spectrum at
the critical regime can be complemented by computing the
Hausdorff dimension of the system. A direct box-counting
method is applied for this analysis [31]. Consider the total
number of boxes Nl for a given box length l such that Nl spans
the entire energy spectrum. Nl shows a power law behavior
with l as

Nl ∝ l−DH , (19)

where DH denotes the Hausdorff dimension corresponding to
the energy spectrum. In our case, we compute DH by follow-
ing Eq. (19) in two different critical regions corresponding
to λ = 1.2 and 2.5, which respectively denote the first and
second intermediate regimes. In Fig. 12, we plot Nl as a
function of l , which exhibits a power law behavior with the ex-
ponent DH = 0.61 (blue squares) and 0.85 (green diamonds)
for λ = 1.2 (first intermediate regime) and 2.5 (second inter-
mediate regime), respectively. For comparison, we plot the
corresponding AA limit (δ = 1, λA = λB = λ = 2; red cir-
cles), which yields DH = 0.5 [53]. We identify the former
case as “DIM” and the latter case as “AA.” From the analysis,
it is realized that the Hausdorff dimension, in this case, is
different from the standard AA model. At the transition point
of the AA model, all the eigenstates are critical in nature.
However, the eigenstates possess a mixture of localized and
extended features for the DIM model, thereby resulting in a
larger value of the Hausdorff dimension DH compared to that

FIG. 12. Nl is shown as a function of box length l in the log-log
scale corresponding to λ = 1.2 (blue squares) and λ = 2.5 (green
diamonds). We identify these two cases as “DIM,” and the corre-
sponding chosen δ = 2.2. For comparison, we show the result for the
pure AA limit (δ = 1, red circles). The slopes of these plots give the
Hausdorff dimensions, which are obtained as DH = 0.61 and 0.85 for
λ = 1.2 and 2.5, respectively. Note that for the AA model DH = 0.5.
The system size considered for the calculation is L = 13 530.

of the AA model. Hence, we conclude that the spectrum of the
DIM model is denser than that of the AA model.

IV. CONCLUSION

A one-dimensional quasiperiodic lattice model in the
presence of hopping dimerization and a staggered on-site
quasiperiodic potential exhibits reentrant localization tran-
sitions. The transitions occur for a range of dimerization
strengths through two intermediate phases, resulting in four
critical points. In this work, we performed a multifractal
analysis of the eigenstates and found that the states within
the intermediate phases are multifractal in nature. Further,
we characterized these transition points by using appropri-
ate finite-size scaling laws for different order parameters.
We also obtained the associated critical exponents, which
were found to obey the hyperscaling laws. We also observed
that the second (intermediate-localized) and third (localized-
intermediate) phase transitions belong to the same universality
class. Note that while we are able to accurately determine the
first three critical points associated with the first localization
transition, we fail to determine the last critical point of the
transition to the second localized phase. Finally, we calculated
the Hausdorff dimensions in the two critical regions, which
were found to be different from the standard AA limit.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[3] J. Sokoloff, Phys. Rep. 126, 189 (1985).
[4] D. R. Grempel, S. Fishman, and R. E. Prange, Phys. Rev. Lett.

49, 833 (1982).
[5] B. Simon, Ann. Phys. (NY) 159, 157 (1985).
[6] M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983).

[7] S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D.
Siggia, Phys. Rev. Lett. 50, 1873 (1983).

[8] S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 18 (1980).
[9] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N.

Davidson, and Y. Silberberg, Phys. Rev. Lett. 103, 013901
(2009).

[10] R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K.
Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985).

214203-7

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1103/PhysRevLett.49.833
https://doi.org/10.1016/0003-4916(85)90196-4
https://doi.org/10.1103/PhysRevLett.51.1198
https://doi.org/10.1103/PhysRevLett.50.1873
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.55.1768


ROY, CHATTOPADHYAY, MISHRA, AND BASU PHYSICAL REVIEW B 105, 214203 (2022)

[11] D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin, A. Lemaître,
E. Galopin, I. Sagnes, A. Amo, J. Bloch, and E. Akkermans,
Phys. Rev. Lett. 112, 146404 (2014).

[12] P. Roushan, C. Neil, J. Tangpanitanon, V. M. Bastidas, A.
Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A.
Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jeffrey, J.
Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A.
Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis,
and J. Martinis, Science 358, 1175 (2017).

[13] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature (London) 453, 891 (2008).

[14] A. Aspect and M. Inguscio, Phys. Today 62(8), 30 (2009).
[15] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti,

D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100,
013906 (2008).

[16] H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia,
X. Li, S. Das Sarma, and I. Bloch, Phys. Rev. Lett. 120, 160404
(2018).

[17] L. Fallani, J. E. Lye, V. Guarrera, C. Fort, and M. Inguscio,
Phys. Rev. Lett. 98, 130404 (2007).

[18] G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U.
Schollwöck, and T. Giamarchi, Phys. Rev. A 78, 023628 (2008).

[19] C. D’Errico, E. Lucioni, L. Tanzi, L. Gori, G. Roux, I. P.
McCulloch, T. Giamarchi, M. Inguscio, and G. Modugno,
Phys. Rev. Lett. 113, 095301 (2014).

[20] H. Yao, T. Giamarchi, and L. Sanchez-Palencia, Phys. Rev. Lett.
125, 060401 (2020).

[21] M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt, and U.
Schneider, Phys. Rev. Lett. 125, 200604 (2020).

[22] L. Sanchez-Palencia and L. Santos, Phys. Rev. A 72, 053607
(2005).

[23] K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, and U. Schneider,
Phys. Rev. Lett. 122, 110404 (2019).

[24] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev. B
87, 134202 (2013).

[25] H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman,
U. Schneider, and I. Bloch, Phys. Rev. Lett. 119, 260401
(2017).

[26] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M.
Knap, U. Schneider, and I. Bloch, Phys. Rev. X 7, 041047
(2017).

[27] C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett. 48, 1043
(1982).

[28] F. A. An, E. J. Meier, and B. Gadway, Phys. Rev. X 8, 031045
(2018).

[29] J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, and S. Flach,
Phys. Rev. Lett. 113, 236403 (2014).

[30] Y. Wang, X. Xia, L. Zhang, H. Yao, S. Chen, J. You, Q. Zhou,
and X.-J. Liu, Phys. Rev. Lett. 125, 196604 (2020).

[31] H. Yao, H. Khoudli, L. Bresque, and L. Sanchez-Palencia,
Phys. Rev. Lett. 123, 070405 (2019).

[32] X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, and L. Santos,
Phys. Rev. Lett. 123, 025301 (2019).

[33] S. Das Sarma, S. He, and X. C. Xie, Phys. Rev. B 41, 5544
(1990).

[34] J. Biddle, B. Wang, D. J. Priour, and S. Das Sarma, Phys. Rev.
A 80, 021603(R) (2009).

[35] J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601
(2010).

[36] J. Biddle, D. J. Priour, B. Wang, and S. Das Sarma, Phys. Rev.
B 83, 075105 (2011).

[37] S. Ganeshan, J. H. Pixley, and S. Das Sarma, Phys. Rev. Lett.
114, 146601 (2015).
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