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We investigate quench dynamics across many-body localization (MBL) transition in an interacting one-
dimensional system of spinless fermions with aperiodic potential. We consider a large number of initial states
characterized by the number of kinks Ny in the density profile, such that the equal number of sites are occupied
between any two consecutive kinks. We show that on the delocalized side of the MBL transition the dynamics
becomes faster with increase in Ny such that the decay exponent y in the density imbalance increases with
increase in MNyinks- The growth exponent of the mean square displacement which shows a power-law behavior
(x2(t)) ~ t? in the long-time limit is much larger than the exponent y for one-kink and other low-kink states
though B ~ 2y for a charge density wave state. As the disorder strength increases yy,,, — 0 at some critical
disorder, hy,, ., which is a monotonically increasing function of Nyjnis. A one-kink state always underestimates
the value of the disorder at which the MBL transition takes place but 4k coincides with the onset of the
subdiffusive phase preceding the MBL phase. This is consistent with the dynamics of interface broadening for
the one-kink state. We show that the bipartite entanglement entropy has a logarithmic growth a In(Vt) not only
in the MBL phase but also in the delocalized phase and in both the phases the coefficient a increases with Nyks
as well as with the interaction strength V. We explain this dependence of dynamics on the number of kinks in

terms of the normalized participation ratio of initial states in the eigenbasis of the interacting Hamiltonian.
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I. INTRODUCTION

The interplay of disorder and interactions results in exotic
phenomena. Many-body localization (MBL) is one such a
phenomenon where Anderson localization [1] persists even
in the presence of interactions, at least for certain range of
interactions [2—8]. Theoretically MBL has been proved to ex-
ist in one-dimensional systems with short-range interactions
[9]. MBL to delocalization transition is associated with a
transition from a nonergodic to ergodic phase and hence can
be characterized by statistics of level spacing of the many-
body eigenspectrum [10-12] and eigenstate thermalization
hypothesis [13—15]. Though the localized nature of many-
body eigenstates is identified using the statistics of many-body
eigenfunctions in the Fock space [7,16—19], scaling of subsys-
tem entanglement entropy [7,12,20-23], and scaling of local
density of states and scattering rates [24].

MBL systems have strong memory of initial states which
is a reflection of their nonergodic nature. Starting from any
initial state the system in the MBL phase carries strong sig-
natures of it even at very long time. Therefore long-time
dynamics of the density imbalance starting from a charge
density wave (CDW) state has been used extensively, both
experimentally [25-27] and computationally [28-32] to track
the MBL transition. On the delocalized side of the MBL
transition, the density imbalance decays to zero in the long-
time limit because the system looses memory of the initial
state while in the MBL phase, the imbalance saturates to
a finite value in the long-time limit. Furthermore, in the
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delocalized phase, the density imbalance shows a power-law
decay I(t) ~ ¢t~V [26-30,33,34] after the initial rapid decay.
As the disorder strength increases, the decay exponent de-
creases and at the MBL transition point y — 0 [26,27]. In
systems with random disorder, a large regime of the delo-
calized phase has a subdiffusive dynamics (with y < 1/2)
preceding the MBL phase [26-31] which is associated with
the presence of rare-extremely localized regions in otherwise
delocalized phase (Griffiths effects) [35,36]. Interestingly, the
slow subdiffusive dynamics has also been seen in systems
with quasiperiodic potential [26,27,29,37,38] but there is no
consensus on the mechanism behind slow dynamics in these
deterministic systems.

Thus quench dynamics has played a crucial role in under-
standing the delocalized side of the MBL transition. It has
also raised some subtle issues about the MBL transition point
and the stability of the MBL phase. Imbalance calculations
for large size chains have shown that the decay exponent
remains nonzero for much larger values of disorder strength
beyond the transition point known from other criterion like
the level spacing ratio which are generally obtained from
exact diagonalization for smaller systems [28,39]. However,
surprisingly almost all the computational and experimental
works in this direction have focused on CDW as the initial
state. Recently, in an experiment on two-dimensional bosons,
the density imbalance was studied starting from an initial state
in which all the particles are confined to one half of the system
[40] followed up by theoretical works on similar initial state
for one-dimensional models [30,31,41,42], but a systematic
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FIG. 1. For a half-filled system of spin-less fermions, we study
various initial states characterized by the number of kinks in the
density profile such that equal number of sites are occupied between
any two consecutive kinks. Schematic diagram of initial states with
1, 2, 3, and 5 kinks for L = 24 sites chain is shown here.

quench analysis for many different initial states has not been
performed in detail in most of the earlier works barring a few
exceptions [43,44]. Hence, many interesting questions like
how the dynamical exponent and the critical disorder at which
y ~ 0 depends on the initial state have remained unanswered.
Previous numerical works have also indicated that the expo-
nent from the density imbalance obeys a simple relation with
the exponent obtained from the time evolution of the mean
square displacement of a density fluctuation obtained from the
time dependent density-density correlation function [18,33].
However, the quench dynamics depends upon the initial state
in which the system is prepared while the density-density
correlation function is obtained from an infinite temperature
ensemble average and hence is independent of the initial state.
A natural question that arises is how the decay exponents from
the imbalance starting from various initial states are related to
the exponent obtained from an initial state independent mean
square displacement? These are some important questions
which have been addressed in this work.

With this motivation, we study quench dynamics across
MBL transition starting from a large number of matrix product
initial states which are characterized by the number of kinks in
the density profile of the chain such that equal number of sites
are occupied between any two consecutive kinks. A schematic
of initial states with different number of kinks Ny;ns i shown
in Fig. 1. A one-kink state has all the particles on one half
of the chain while the CDW state has Nyjns = L — 1 kinks
in it. We study time evolution of the corresponding density
imbalance and the sublattice entanglement entropy for various
initial states across the MBL transition. We also calculate the
mean square displacement (x>(t)) from the density-density
correlation function and compare the decay exponent from
the quench dynamics of various initial states with the growth
exponent of (x?(¢)) on the ergodic side of the MBL transition
point. To be specific, we study quench dynamics in a system of
spinless fermions in one dimension in the presence of a deter-
ministic aperiodic potential and nearest-neighbor interactions.

This model has been studied before in detail in context of
MBL [22,23,38,45,46] but the quench dynamics in the pres-
ence of nearest-neighbor interactions has not been explored
yet even for a CDW initial state. Below we summarize the
main results from this work.

(1) On the delocalized side of the MBL transition point
where the imbalance has a power-law decay, I(t) ~ 77, in an
intermediate to a long-time regime, y increases monotonically
with Nyinks being maximum for the CDW state. In the MBL
phase, the imbalance saturates after initial time decay for all
the kink states but the saturation value I, decreases as Ninks
increase, being minimum for the CDW state (Fig. 2). We
explain this trend of dynamics in terms of the normalized
participation ratio of the initial state in the eigenbasis of the
Hamiltonian under consideration.

(2) Generally delocalization to MBL transition point is
identified as the disorder strength at which y — 0 coming
from the delocalized side [26-30]. We show that for a Nyinks
initial state y goes to zero at some critical field, Ay, , such
that Ay, 1s a monotonically increasing function of Nyinks
(Fig. 4). Thus, as the disorder strength increases, y — 0 first
for the one-kink state such that & < A and the imbalance
from large kink states (e.g., a CDW state) continues to show
a power-law decay with a finite y for a much larger value
of disorder with hcpw > h.. Here, h, is the transition point
determined from level spacing ratio of eigenenergies.

(3) The dynamics from the time evolution of mean square
displacement (x?), obtained from the time dependent density-
density correlation function, is much faster than that from
the density imbalance of low-kink states. (x*(¢)) shows a
power-law growth in the long-time limit, (x?(¢)) ~ t#, with
B > Y1kink, V3kinks though B/2 is close to y from initial state
with large number of kinks (Fig. 6).

(4) We also study the melting of interface as an alternate
probe of dynamics for one-kink state. The melting dynamics
of the interface is completely consistent with the time evolu-
tion of the density imbalance for a one-kink state and is much
slower than the dynamics of the CDW state (Fig. 8). Thus
a quench dynamics study starting from a one-kink or other
low-kink state will always underestimate the critical value of
disorder required to cause many-body localization. In fact,
one-kink and other low-kink states only indicate the onset of
localization of a finite fraction of many-body states and hence
the subdiffusive phase which appears due to multifractal na-
ture of eigenstates close to the MBL transition.

(5) The sublattice entanglement entropy shows a logarith-
mic growth S(¢) ~ aIn(Vt) after initial rapid growth, both, for
the ergodic phase as well as the MBL phase. The coefficient
of the In(V't) term not only increases monotonically with the
number of kinks being maximum for the CDW state (Fig. 11),
but also increases significantly with the interaction strength V
(Fig. 12) indicating that the dependence on V is faster than
In(Vt). The coefficient of In(Vt) term inside the MBL phase
is vanishingly small. All these observations put a question
mark on earlier explanations of the logarithmic growth of
entanglement entropy in terms of the local integrals of motion
which exist only in the MBL phase [16].

The rest of the paper is organized as follows. In Sec. II,
we introduce the model explored in this work. In Sec. III,
we describe the dynamics from time evolution of the density
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FIG. 2. The density imbalance /(¢) as a function of time ¢ for & = 5ty and 10¢y at V =, and L = 24 for various kink initial states. The
MBL transition point for the model in Eq. (1) is &, = 6.3y atV = 1, (Fig. 13). Dashed lines show the power-law fit to the form 7. [(b) and (d)]
Imbalance decay exponent y obtained from power-law fits for 7 = 5t, and 10¢,, respectively. Dashed red line in these panels is the exponent
B/2 obtained from mean square displacement. Note that y ~ O for all the initial states deep in the MBL phase though one can still see y

increasing monotonically with Nyps.

imbalance for various kink initial states. We also compare
the dynamics obtained from imbalance with that from time
dependent mean square displacement which is the second mo-
ment of the density-density correlation function. In Sec. 1V,
we study the melting of the interface for a one-kink state and
show that it is consistent with imbalance for a one-kink state
having a dynamics much slower than that of a CDW state.
In Sec. V, we discuss the growth of sublattice entanglement
entropy starting from various kink initial states. Finally we
summarize our results and conclude with some remarks and
open questions.

II. MODEL

We consider a 1D model of spinless fermions in the
presence of an aperiodic potential and nearest-neighbor inter-
actions described by the Hamiltonian:

H = —t, Z(cjcj +Hc)
(i,J)
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FIG. 3. (a) Comparison of y with NPR at & = 5t;, V =1t, for
L = 16. Like y, NPR also increases monotonically as we go from a
one-kink state to higher kink states, being maximum for the CDW
state indicating that the CDW state gets contribution from a larger
fraction of eigenstates. In (b), we show I, along with the diagonal
and off-diagonal elements of /(t = 0) for various kink initial states
at h = 5ty, V =ty for L = 16.

Here h; = hcos(2mai” + ¢) represents a deterministic aperi-
odic potential with strength £, « is an irrational number which

we chose to be (@), ¢ € [0, 27) is a random phase taken
from a uniform distribution and » is a real number. fy is the
strength of nearest-neighbor hopping amplitude and V' is the
strength of nearest-neighbor repulsion between fermions. We
study this model at half-filling with open boundary conditions.

For the noninteracting model (V = 0), all the single-
particle states are localized for any value of n for h > 2¢,.
For n < 1, the system shows single particle mobility edges
at E. = |2ty — h| for h/ty < 2 [47-49], while forn = 1, h(i)
gives the quasiperiodic Aubry-Andre potential [S0]. We chose
to work with n = 0.5 for which all the many-body eigenstates
of the noninteracting half-filled system are delocalized for
h < 2ty [23,45], while for h > 2fy, all the many-body eigen-
states of the noninteracting system are localized. To obtain the
critical disorder 4. at which delocalization to MBL transition
takes place in the presence of interactions, we calculated the
average level spacing ratio for several system sizes. The crit-
ical disorder from the data collapse is h. ~ 6.31y for V = t,.
Details are given in Appendix A.

Though the interacting model in Eq. (1) has been studied
before in the context of MBL [23,38,45,46] but the quench dy-
namics and the dynamics from the mean square displacement
has not been explored yet for this model. In the following
sections, we discuss the quench dynamics across the MBL
transition in this model starting from various kink initial states
shown schematically in Fig. 1 and show its comparison with
the time evolution of the density-density correlation function,
which is calculated in the limit of infinite temperature en-
semble average. Most of the result presented below are for
V =1y = 1 unless specified.

III. DENSITY IMBALANCE FOR VARIOUS
KINK INITIAL STATES

We study dynamics of the system after a quench starting
from various kink initial states which are schematically shown
in Fig. 1. For one-kink states, all the particles are located in
the first half of the chain such that |Wo) = [1¢ ™" ¢/|0). For
two-kink states, all the particles are distributed in the middle
of the lattice leaving equal number of empty sites on both
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FIG. 4. The density imbalance /(¢) as a function of time ¢ for one-, three-, seven-kink and CDW initial states for various disorder strengths
atV =1y for L = 24. (e) y as a function of disorder strength %/#, for various initial states. Starting from a one-kink initial state /(t) shows
saturation after the initial rapid decay for & > hj i = 4#p which is less than i, = 6.3¢, obtained from level spacing ratio (Fig. 13), while for a
higher kink state, such as a three-kink or seven-kink initial state, imbalance shows power-law decay up to much larger values of the aperiodic

potential.

sides of the kinks such that | W) = ]_[fif; i clT |0). For higher
kink states with Nyinks number of kinks in the density profile,
an equal number of particles are distributed between any two
consecutive kinks. The CDW state has Ny = L — 1 fora L
site chain with |Wp) = ]_[{‘z/ 371 ¢5;10). The particle-hole sym-
metric counterparts of these states have the same dynamics as
these states.

The corresponding density imbalance for the half-filled
system is defined as

2
0=z [Z(nil (1) — Dnio(z»}, 2

i iy

where i; represent the occupied sites at t =0 and i, are
the unoccupied sites at + = 0 for a particular initial state.
Starting from |Wy), we let the state evolve with respect to
the Hamiltonian in Eq. (1) to obtain the time evolved state
|W(t)) = exp(—iHt)|y¥o) and calculate I(¢) as a function of
time which is then averaged over many independent disorder
realizations. Time evolution is carried out numerically using
Chebychev polynomial method [51-55]. The results presented
below are for L = 24 sites chain and disorder averaging was
done over 150 independent configurations.

After the initial rapid decay, I(¢) follows a power-law
decay I(t) ~t~7 for intermediate to large time which has
also been observed in various previous works [28,29,33]. The
power-law decay in the delocalized phase can be explained in
terms of the mixing of slow and fast modes [34]. The exponent

y has been used as a measure of the nature of transport; with
y = 1/2 for a diffusive system, y = 1 for a ballistic system
while y = 0 for a localized system.

Figure 2 shows the density imbalance /(¢) on two sides of
the MBL transition point /., namely, for 7 = 5fy and h = 10¢.
As shown in Fig. 2, even on the delocalized side of the MBL
transition point, the dynamics is not the same for all the initial
states. For initial states with one-kink and two-kink states,
after initial rapid decay, the imbalance does not show any
power-law decay such that y ~ 0 and the imbalance saturates
in the long-time limit. Interestingly, y increases monotoni-
cally with Nyinis in the initial states, being maximum for the
CDW initial state. This indicates that the system relaxes faster
if prepared in initial states with larger number of kinks. Deep
in the MBL phase, that is for 7 = 10¢y, V = 1y, the imbalance
does not show any significant decay after the initial rapid
decay and y < 0.01 for all the kinks. However, the saturation
value of the imbalance I, decreases as Nyinks increases, being
largest for the one-kink state and minimum for the CDW state
again indicating faster relaxation of the system for the CDW
state compared to initial states with less number of kinks.
Interestingly, time evolution of the density imbalance in the
MBL phase is very similar to that for an Anderson local-
ized phase of the corresponding noninteracting system though
the dynamics in the delocalized phase of the interacting and
noninteracting system are very different. In the noninteracting
case, there is no power-law decay for any initial state even in
the delocalized phase as shown in Appendix B.

0
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FIG. 5. [(a) and (b)] lgiag and Iyfrqiag(t = 0) as a function of the disorder strength h/fy for various kink initial states for L = 16. As the
strength of aperiodic potential increases, Iy, approaches 1 first for lower kink states while the higher kink initial states require much larger
to get Igipe — 1. (c) NPR of various initial states in the eigenbasis of the Hamiltonian vs .
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FIG. 6. (a) Mean square displacement (x?(¢)) vs ¢ for various
values of V at h = 5t,. For small values of V, (x?(¢)) saturates after
the initial rapid growth but for larger values of V, (x(t)) increases
as t# in the long-time regime. (b) shows comparison of 8/2 with y
obtained from the density imbalance for various kink initial states for
various values of interaction strength V and & = 5¢y. For any finite
value of V, 8/2 > y for one-kink and other lower kink states. §/2
is closest to y obtained for larger kink states like CDW state.

In contrast to this, deep in the delocalized phase (e.g.,
h =V =1ty) where all the many-body eigenstates are ex-
tended, initial states with less number of kinks show slower
decay of the density imbalance compared to initial states with
large MNyinks only for a short time which can be explained
in terms of the lower connectivity of low-kink states in the
Fock space compared to larger kink states for a system with
nearest-neighbor hopping. However, eventually in the long-
time limit, the decay rate increases for all the initial states
such that imbalance goes to zero as it should for an ergodic
system. The long-time imbalance seems to decay faster than
a power law, though in the limit of long time, the power-law
fit seems to work well with decay exponent y > 1 for some
of the initial states. It indicates the ballistic or superballistic
transport, which is a reminiscent of the ballistic transport in
the corresponding noninteracting models with deterministic
potentials. The long-time decay rates do not show a systematic
trend as a function of number of kinks in the initial state
deep inside the delocalized phase as shown in Appendix C.
Therefore a monotonic trend of y as a function of Ny 1S @
good indicator of the fact that the system has at least a finite
fraction of the many-body states localized.

Above results indicate that as long as the system has a finite
fraction of many-body states localized, we see a systematic
dependence of the long-time dynamics on the number of kinks
in initial states, either in terms of the kink dependence of y
or Iy,.. We explain these results in the following way. Any
initial state |Wy), with Nyins number of kinks, can be written
as a linear combination of the many-body eigenstates of the
Hamiltonian in Eq. (1) as |¥y) = Zn C, (Nink)| ®,,), where
H|®,) = E,|®,). We estimate the fraction of eigenstates that
contribute to a given initial state through the calculation of
normalized participation ratio (NPR)

1 1
NPR(Ngjn) = —————,
N YN G (N1

where N is the dimension of the Fock space. Note that NPR
calculation requires exact diagonalization of the Hamiltonian

3

in Eq. (1), and hence we have shown results for L = 16 though
imbalance in all earlier plots has been calculated for L = 24.
Figure 3 shows NPR versus Nyjnks for = 5¢9, V = 1y, which
has been averaged over many independent disorder configu-
rations. NPR is vanishingly small for a one-kink state and
it increases monotonically as we go from a one-kink state
to higher kink states, being maximum for the CDW state.
This implies that larger fraction of eigenstates contribute to
the CDW state as compared to the one-kink and other lower
kink states. Thus CDW state will have faster time evolution
resulting in faster decay of the density imbalance compared to
the case of one-kink or other lower kink states. This is clearly
visible in Fig. 3 where we have shown a comparison of y and
NPR both calculated for L = 16 and h = 5fy, V = ty. Deep
in the MBL phase, lower values of NPR for lower kink initial
states, again imply slower decay rate of these initial states
for the initial time resulting in larger saturation values of the
density imbalance I, for lower kink states.

Using the expansion of the initial state in terms of the
eigenstates of Hamiltonian in Eq. (1), we further express the
density imbalance as

1(1) =) C,Cue " En 500, || D). )

n,m

This can be written as the sum of diagonal and off-diagonal
terms as follows:

I(t) = Z |Cn|2Mnn + Z CnCme_il(Em_En)Mnm

n n#m
= ljiag + Iott-diag(?), 5)

where 1 is the operator corresponding to the density imbalance
for the corresponding initial state and M,,,, = (P, |f |®,,). The
decay in imbalance happens only through the off-diagonal
elements and the saturation value of the density imbalance
in the long-time limit is given by Iy, provided there are no
degeneracies in the eigenspectrum. The right panel of Fig. 3
also shows a comparison of the long-time value of imbalance
I, with the diagonal element Ig,e. We see that Iy ~ Igiag
indicating that Iy, really provides a good estimate of the
saturation value.

In the right panel of Fig. 3, we have also shown the off-
diagonal elements of I(r = 0) for various kink initial states
for h = 5ty, V =19, and L = 16. Note that Ijjag + Iofr-giag(t =
0) = 1 by definition. The diagonal elements decrease as the
number of kinks increase, while the off-diagonal elements in-
crease with increase in the number of kinks in the initial states.
This also shows that the saturation value of the imbalance,
which is close to Igiag, decreases as the number of kinks Nyinks
increases.

A. Critical disorder for various kink initial states

Now we study the disorder dependence of the density im-
balance for various kink states. Figure 4 shows I(¢) versus
time for V =ty and various disorder strengths with /# > 21,
which is the transition point of the corresponding noninteract-
ing system. As the disorder strength increases, the power-law
decay in the density imbalance slowly gets suppressed and
y decreases monotonically with & for all the initial states.
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FIG. 7. (a) Normalized energy of the initial state {Enom) Vs h for various kink initial states at V = to and for L = 24. [(b)—(d)] Overlap |c?|
of an initial state with the eigenstates of the Hamiltonian vs the normalized eigen energy E for various values of 4 for one-kink, seven-kink,

and CDW initial states, respectively.

Starting from a one-kink initial state /(¢) shows saturation
after the initial rapid decay for h > hjyjnx = 4#9. Note that
hikink < he = 6.3ty obtained from the level spacing ratio.
Thus the density imbalance from one-kink state underesti-
mates the value of MBL transition point. However, 7 inx
indicates the onset of localization of a fraction of many-
body eigenstates or else the imbalance would have decayed
to zero. Furthermore, the density imbalance starting from
higher kink states, such as a seven-kink or CDW initial state,
shows power-law decay with nonzero value of y for much
larger values of the aperiodic potential. The critical disorder
Iy, at which the density imbalance of a Ny initial state
starts showing a saturation with y ~ 0, which is generally
considered to be an indication of the onset of MBL phase
[28,30], is a monotonically increasing function of Nyjnks. The
transition point obtained from the time evolution of imbalance
for large kink states like a seven-kink state is close to the one
obtained from the level spacing ratio A7yinks ~ h.. However,
for the CDW state, which has been most extensively used in
experimental and theoretical studies Acpw > h,.

The behavior of y as a function of & for various initial
state can be explained in terms of the disorder dependence
of NPR of the corresponding initial states in the eigenbasis
of the Hamiltonian. Panel (c) of Fig. 5 shows NPR versus &
for V =1, and L = 16 for various kink initial states. As the
disorder strength increases and a significant fraction of many-
body eigenstates get localized, the fraction of eigenstates that

contribute to the one-kink state reduces significantly such that
NPR ~ 10~* for h > 4ty. This is consistent with y — 0 for
h > 4ty for a one-kink initial state. In fact as & increases, NPR
decreases for all the initial states and the disorder values at
which NPR for Mnks state vanishes is close to the Ay, at
which exponent y ~ 0. We have also shown the trend of the
diagonal and off-diagonal elements of I(t = 0) as a function
of & in Fig. 5. In the completely delocalized phase, Igiag = 0
for all the initial states but for any finite fraction of localized
many-body eigenstates, Igi,g 1S finite and is larger for initial
states with lower values of Nynks. As the strength of the
aperiodic potential increases the diagonal elements approach
one indicating suppressed decay of the density imbalance and
stronger memory of the initial state.

There are a few more important observations to be made
from this entire analysis. Firstly, even the CDW initial state,
which has the fastest dynamics, shows y < 1/2 for inter-
mediate values of h (479 < h < h, for V =ty) indicating a
subdiffusive phase preceding the MBL phase. Generally a
subdiffusive phase before the MBL transition is associated
with rare highly localized regions in otherwise delocalized
system [28,30,31,33,35,36,56,57]. However, since the model
we are working with has a deterministic potential rather
then a random disorder, Griffiths effect can not be the cause
for the subdiffusive phase. Interestingly, the disorder value
at which the dynamics becomes subdiffusive for the CDW
initial state coincides with /s Where y — 0 for the one-

’
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FIG. 8. (a) Density imbalance /(¢) as a function of ¢ for a one-kink initial state while (b) shows the first moment of the particle density
m(t) across the interface of a one-kink for various strengths of the aperiodic potential 7 at V = #;. In (c), we show the comparison of exponents

and y'/2.
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kink state. This indicates that the slow dynamics is induced
when a significant fraction of many-body states are localized
and the extended states of nearby energy are multifractal
[18]. For even smaller values of disorder (2fy < h < 4tg) a
power law fit to the density imbalance starting from a CDW
initial state gives a superdiffusive transport with y > 1/2.
This is a characteristic of generalized Aubry-Andre models
where the noninteracting delocalized states are ballistic
[28,29,55].

IV. MEAN SQUARE DISPLACEMENT AND
DENSITY-DENSITY CORRELATION FUNCTION

In this section, we calculate the time dependent density-
density correlation function G(x,t) = (n,(t)no(t = 0)). It
gives the probability of finding a particle at site x at time
¢t if initially there was a particle at site 0. In the infinite
temperature limit, G(x, ¢) is defined as

1
Glx, 1) = = D (@ylne(tno(t = 0)|Dy). 6)

n

Here Z is the partition function in the infinite temperature limit
and |®,) is an eigenstate of H with eigenvalue E,. We replace
the ensemble average in Eq. (6) by the trace over random
states |W,) using the concept of dynamical typicality [33,58]
such that

Ng

1
Gx,1) = Ny Z(‘Prlnx(t)no(t = 0)|¥,) N

r=1

with N being the number of random vectors {|W,)} used
in the trace. Time evolution is carried out using Chebyshev
polynomial method. The resulting correlation function G(x, t)
for a given disorder configuration is averaged over many
independent disorder configurations to obtain G(x, ¢). We fur-
ther calculate the second moment of the correlation function,
which is analog to the mean square displacement of a classical
particle

(1) =Y _x*(Glx, 1) — Gx, 1 = 0)). ®)

In the results presented, we used number of random initial
states in Eq. (7) as Ng = 32 and disorder averaging was done
over 50 random configurations for L = 24. For smaller L
values we used nz upto 80 and disorder configurations upto
150.

Figure 6 shows (x’(t)) as a function of time for & = 51,
and various interaction strengths V. After the initial rapid
growth, which is common for all the parameters, followed by
an oscillatory growth (x?(¢)) saturates for small values of V
where the system is fully localized. However, for V > 0.31,
(x2(t)) shows a significant power-law growth (x?(¢)) ~ t#
in the long-time limit. The growth exponent g is larger for
system with stronger interactions due to enhanced delocal-
ization of states but for all the values of V studied, 8 < 1
for h = 51, indicating the existence of a sub-diffusive phase
on the delocalized side of the MBL transition point. This is
consistent with the analysis of the density imbalance starting
from a CDW initial state.

0.3

4.0f,0.24 bpé” b
o 02l | e
= 7 s
51.5 " 0.1
’
70T 107 10¢ %245 510
(b) 1yl LZan
T 10% 10" 102 10% 10*
tyt

FIG. 9. (a) shows the variance of the particle distribution and
(b) presents AN(¢) vs ¢ for various values of the aperiodic potential
h/ty at V =t for a one-kink initial state. Dashed lines show the
fittings of the form t?, and the exponents bay v.r have been plotted
as a function of disorder /1, in the inset of (b).

We compare the exponent 8 obtained from (x?(¢)) with the
exponent y obtained from the density imbalance for various
kink initial states. For V = 0, where the system is fully lo-
calized B ~ y ~ 0 for all the initial states. As V increases,
the system gets more delocalized and this is indicated in
increasing value of y for higher kink states though 1kink and
three-kink states have y ~ 0O for all the values of interactions
studied here. Thus, for any finite strength of V, /2 is close
to y obtained only from the CDW or other higher kink initial
states but 8/2 >> Y1 kink, V3kinks- Lhis is because the long-time
growth of (x?(t)) is dominated by extended states while the
long-time behavior of the density imbalance is dominated by
localized states. Hence, one-kink state which gets a contribu-
tion from very few eigenstates shows dynamics much slower
than that of (x?(¢)) while for the CDW state the imbalance
keeps decaying due to the contribution of a finite fraction of
extended states even at long time. Therefore, using one-kink
state to track the MBL to delocalization transition as done
in some experimental [40] as well as in theoretical works
[30,31,41,42] will not determine the correct MBL transition
point. Lower-kink states will always overestimate the critical
V. for a given disorder strength or will underestimate the
critical disorder A, for a given interaction strength.

V. ENERGY OF VARIOUS INITIAL STATES

At this end, we would like to discuss the energy of vari-
ous initial states considered in this work. We calculate E;, =
(Wo|H|Wy) for various kink initial states. In the thermody-
namic limit, for any odd-kink state Ej, = V ( NkinIl:s -7 — 1) such
that Ej, is maximum for a one-kink state and goes to zero for
the CDW state. Even number of kink states are a bit more
tricky. An even number of kink state and its particle-hole
counterpart state do not have the same energy. For example,
a two-kink state as in Fig. 1, has energy equal to the one-
kink state, but the two-kink state obtained by particle-hole
inversion, has energy equal to a three-kink state. Hence, we
have mainly focused on odd number of kink states in this
work. Figure 7 shows energy of initial states normalized with
respect to the range of eigenspectrum Eyomm = bfi:’# for
each disorder configuration which is then averaged over many
independent disorder configurations resulting in (Eyorm). As
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FIG. 10. System size analysis of /(¢) for various kink initial states at & = 5t;, V = ;. For one-kink and three-kink initial states, the
long-time decay rate of the imbalance decreases as L increases resulting in either smaller values of y or larger saturation value of imbalance
Ly, In contrast, for the CDW state, the decay gets faster in the long-time limit resulting in larger values of y for larger L. This is consistent

with faster growth of (x(¢)) in the long-time limit.

shown in Fig. 7, a one-kink state has maximum energy due to
maximum contribution of the interaction term while the CDW
state has the lowest energy. For initial states with one kink to
seven kinks, (E,om) shows a slight decrease as the disorder
strength increases while for the CDW state, (Eyom) increases
as the disorder strength increases from 2f to 10¢.

Using the expansion of the initial state in terms of eigen-
states of the Hamiltonian as done in Sec. III, one can write
the energy of initial state as a linear combination of eigen-
state energies, i.e., Ein = ), |C,|E,,. Panels (b)—(d) of Fig. 7
show the overlap |C,|? of the initial state with the many-body
eigenstates of normalized eigenenergy E. A one-kink state has
larger overlap with eigenstates at the edge of the spectrum.
Since the many-body states at the edge of the spectrum gets
localized first as the disorder 4 increases, a one-kink state
shows y — 0 for smaller value of disorder. In contrast, a
larger number of kink state, e.g., a seven-kink state gets largest
contribution from eigenstates in the middle of the spectrum
which require largest strength of disorder to get localized.
Hence, a seven-kink state shows y — 0 at larger values of
disorder. CDW state is very unique. At small values of dis-
order h, it gets largest contribution from eigenstates at the
bottom of the spectrum. As h increases it gets more contri-
bution from states in the middle of the spectrum. In short,
eigenstates over a broad energy range contribute to all the
initial states studied.

This analysis shows that the initial states considered here
do not represent eigenstates in a narrow energy window
around the energy of the initial state. Hence, time evolution
of various kink initial states can not be used to probe the
properties of eigenstates at a specific energy (Enom) as was
done in some of the recent works [43,44]. In fact dynamics
of any initial state should not depend on its energy instead
it depends on how many eigenstates contribute to it. If an
initial state gets contribution from very few eigenstates in a
narrow energy window, then the initial state will have slow
dynamics while the initial states having contribution from a
large number of eigenstates should have faster decay. In this
sense the analysis of various initial states presented in this

work is very different from the initial states studied recently
in context of many-body mobility edges [43,44].

VI. INTERFACE MELTING FOR ONE-KINK
STATE AND MBL TRANSITION

In this section, we analyze the melting or broadening of
the interface for a one-kink state as an alternative probe of
dynamics. We calculate the following quantities to analyze the
broadening of the interface.

(1) The first moment of the particle density m(z) which is
defined as

L

m(t) = ilnit) = nit = 0)].

i=1

©))

By definition, m(t = 0) = 0 and m(¢) increases with time.
The initial growth is common to all the parameters studied
but in the long-time limit m(¢) has a power-law growth 7.
Since m(t) scales as square of the interface width, y’ should
be compared with the 2y. A similar analysis of a one-kink
state has been done for a 1D model with random box disorder
case [30] where the dynamical exponent y’/2 from a one-kink
state was found to be comparable to the exponent ycpw of the
density imbalance obtained for a CDW initial state. However,
our calculation of m(¢) for the aperiodic model leads to a
completely different conclusion as shown below.

@ AN®Y =), 2 n;(t) which gives the number of par-
ticles emitted through the kink or the interface at any time 7.

(3) We also calculate the variance of the particle distribu-
tion across the kink

Sicry Pnit) B (Zi<L/2 In[(t)>2 (10)
AN(1) AN(1)

Var(t) =

Both these quantities, AN(¢) and Var(¢), have been explored
for a 1D model with random box disorder [41].

In Fig. 8, we first compare the dynamics obtained from the
time evolution of the density imbalance and the first moment
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FIG. 11. Disorder dependence of the bipartite entanglement entropy starting from various kink initial states. [(a)—(d)] Show S(z) as a
function of time ¢ for one-, three-, seven-kink and CDW initial states for various disorder strengths at V = #, for L = 24. Dashed lines show
the fitting to the logarithmic form S(¢) ~ aIn(Vt). (e) Coefficient a as a function of disorder strength h/fy. Note that h, = 6.31y from level

spacing ratio (Fig. 13).

of the particle density m(¢) across the interface of a one-
kink state for various strengths of the aperiodic potential / at
V=1u.

The first moment m(z) shows saturation after initial rapid
growth for h > 41, while m(t) ~ " in the long-time limit
for h < 4ty. This is completely consistent with y yjnx — O at
h = 4ty. The exponent ' ~ 2y xink as shown in the right most
panel of Fig. 8. We would like to stress that on the delocalized
side of the MBL transition, both y;, and y’/2 are much
less compared to the exponent ycpw obtained from the time
evolution of the imbalance starting from a CDW state. Though
deep in the MBL phase ¥ ink ~ ¥’ ~ ycpw ~ 0.

Now, we analyze the other two diagnostics of the interface
broadening defined above. Figure 9 shows AN(t) vs t for
various values of the aperiodic potential h atV = #y. Att = 0,
AN = 0, because all the particles are located in the first half
of the chain. As time increases, more particles get transmitted
to the other half of the chain and AN increases with time. For
h > 4ty, AN(t) saturates after an initial rapid growth, very
similar to m(t). For h < 4ty, where almost all the many-body
eigenstates are delocalized for V =y, AN(t) ~ t*»¥ in the
long-time limit. The inset in the right panel of Fig. 9 shows
the exponent by versus A, which has a trend exactly similar
to the exponent ykink obtained from the imbalance I(¢) for
one-kink state. We further, analyze the time evolution of the
variance Var(¢) of the number of particles, shown in the left
panel of Fig. 9. Var(¢) also increases with time, showing
saturation after initial rapid growth for larger values of ape-
riodic potential i > 4fy and a long-time power-law growth
Var(t) ~ t? appears only for /1 < 4ty. The exponent by, ~
ban ~ Yikink s shown in the inset of the right panel of Fig. 9.
We would like to stress that this is in contrast to the domain
wall analysis done for the random box disorder model [41]
where the interface melting dynamics has been shown to give
a transition point consistent with the level spacing ratio.

The detailed analysis of the interface broadening for the
one-kink initial state further confirms that the dynamics ob-
tained from a one-kink state, whether it is through the density
imbalance or interface broadening, is much slower than the
dynamics obtained from the time evolution of the density im-
balance starting from a CDW or any other higher kink initial
state. In fact on the delocalized side of the MBL transition,
the dynamics of a one-kink and other low-kink states is very

different from that of the CDW state. This is clearly supported
by the system size dependence of the density imbalance for
one-kink and three-kink states compared with that of a CDW
state shown in Fig. 10 for A = 5fy and V = ¢;. For a CDW
state, the long-time imbalance shows faster decay resulting in
larger values of ycpw as L increases. A similar trend is seen
in the system size dependence of (x?(¢)) which shows a faster
growth in the long-time limit for larger values of L. In contrast
to this, for one-kink and three-kink initial states, the long-time
decay rate of the imbalance decreases as L increases resulting
in either smaller values of y or larger saturation value of the
imbalance L.

VII. KINK DEPENDENT GROWTH OF SUBLATTICE
ENTANGLEMENT ENTROPY

We study the growth of sublattice entanglement entropy
after a quench from various initial states. We evaluate the
bipartite entanglement entropy (EE) by dividing the lattice
into two subsystems A and B of sites L/2 and study the time
evolution of the Renyi entropy S(t) = —log,[Tr4pa(t)*],
where ps(t) is the time evolved reduced density matrix
obtained by integrating the total density matriX P (f) =
[W(t))(W()| over the degree of freedom of subsystem B.
Again, the time evolved state |W(r)) was obtained using
Chebyshev method of time evolution.

Figure 11 shows the bipartite entanglement entropy S(¢)
as a function of time for various values of i for V = ¢, and
L = 24. Let us first understand the growth of EE for a CDW
initial state. EE shows a rapid growth at short time which is
common to all disorder strengths followed by a logarithmic
growth in the long-time limit for most of the disorder regime.
Not only in the MBL phase, but also in the delocalized phase
for weak disorder, S(¢) ~ aln(Vt) in the long-time limit.
Though in the entire parameter regime, it is possible to fit
S(t) with a t¢ form with very small power c, the error bars
from power-law fit are much larger compared to those for
the fit aIn(V't). The coefficient a of the logarithmic growth is
larger in the delocalized phase and it decreases as the strength
of disorder & increases. Deep inside the MBL phase ¢ — 0
which is analogous to the Anderson localized phase for which
the EE saturates after the initial rapid growth.

214202-9



YOGESHWAR PRASAD AND ARTI GARG

PHYSICAL REVIEW B 105, 214202 (2022)

Vit p=1.00 - CDW &
Vit p=0.50 - 11-Kink &
’8\ Vit p=0.30 - 7-Kink
< Wihy=010 -
Vit p=0.05
%]
: 3-Kink
205 T
[*5)
Y 0 ©
e vl e
% "2 4 6 8 0 2 4 6 0 4 6 % 22 6 8 0 04 0.8
In(Vt) In(Vt) In(Vt) In(Vt) Vit

FIG. 12. The bipartite entanglement entropy S(z) — Sp(00) as a function of time ¢ starting from three-, five-, seven-kink and CDW initial
states for various interaction strengths at 1 = 5t, for L = 24. Here Sy(00) is the saturation value of the EE of the corresponding noninteracting
system. (e) Coefficient a as a function of interaction strength V/1, starting from various initial states.

We would like to stress that earlier many works have
proposed logarithmic growth of EE as a signature of the
MBL phase [16,21] but all these works presented exact di-
agonalization results on very small system sizes (L < 12).
Our numerical results show that logarithmic growth of EE
seems to be a generic feature of disordered interacting system
irrespective of whether the system is delocalized or local-
ized. This puts a question mark on earlier explanations of the
logarithmic growth of entanglement entropy in terms of the
local integrals of motion which are specific to the MBL
phase [16].

Figure 11 also shows that for any value of the aperiodic
potential & > 2t the coefficient a is smaller for initial states
with lower number of kinks and a increases monotonically
with Nyinks. The value of & at which @ — 0 for a one-kink state
is much smaller compared to the corresponding value of 4 for
a larger kink state like CDW state. Interestingly, the strength
of aperiodic potential at which a — 0 is close to Ay, at
which the exponent y from the imbalance goes to zero. In
contrast to this, when the system is completely delocalized,
e.g., for h =1,V =1ty for the model in Eq. (1), EE shows
a logarithmic growth for all the initial states. The short-time
growth is slower for initial states with lower number of kinks,
but the longer time growth does not necessarily have a system-
atic dependence on the number of kinks. In short, as long as a
part of the eigenspectrum is localized, the growth coefficient
a is a monotonic function of the number of kinks in the initial
states in complete analogy with the exponent from the density
imbalance.

We further study the effect of interactions on the EE
growth. As the interaction strength, V, increases for a fixed
value of the aperiodic potential, the system gets more delo-
calized and hence the rate of growth of EE should increase
with V. This is what is exactly seen in Fig. 12 which shows
S(t) — Sp(o0) versus Vt for h = 5ty and various values of
interactions strengths. Here Sp(oo) is the saturation value
of the EE for the corresponding noninteracting system. The
most interesting feature to be noticed is that the effect of
interactions on the EE growth depends on the initial state
started with. A one-kink state, for h = 5ty shows a =0
for all the interactions studied, effectively not showing any
logarithmic growth of EE. However, for initial states with
larger number of kinks, a(V') increases as V increases such
that g—“} itself is a monotonically increasing function of the

number of kinks in the initial state as shown in panel (d) of
Fig. 12.

Hence, one-kink and other lower kink initial states have a
slower growth of EE than the initial states with larger number
of kinks in the long-time limit. This is consistent with our
earlier explanation of imbalance decay for low-kink states in
terms of the suppressed values of NPR of these states.

VIII. CONCLUSIONS AND DISCUSSIONS

In this work, we explored quench dynamics across the
MBL transition starting from various initial states charac-
terized by the number of kinks in the density profile. Each
of these states gets contribution from a wide range of en-
ergy eigenstates of the Hamiltonian under consideration. We
showed that the quench dynamics is faster for initial states
with large number of kinks, whether it is measured in terms
of the time evolution of the density imbalance, or the sublat-
tice entanglement entropy. This is because initial states with

054
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50461 | _ g o\ .,
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FIG. 13. Energy level spacing ratio of successive gaps (r) vs
disorder h. (r) is obtained by averaging r, over the entire energy
spectrum and over a large number of independent disorder configu-
rations. Inset shows the data collapse to obatin the critical disorder
h. ~ 6.3ty with exponent v ~ 1.2. The data have been averaged ove
r 10 000-150 configurations for L = 12-18.
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FIG. 14. Density imbalance /() in the localized and delocalized regime of the noninteracting system. (a) /(¢) as a function of ¢ starting
from various kink initial states at & = 5¢y for the noninteracting system for L = 24. Dynamics depends strongly on the initial states. The
saturation value I, shown in insets, decreases as the number of kinks increases in the initial states. (b) Density imbalance for 4 = 7, where

the noninteracting system has single-particle mobility edges.

larger number of kinks get contributions from a larger frac-
tion of many-body eigenstates of the Hamiltonian. This has
interesting effect on the dynamical exponents, rate of growth
of various physical quantities and the critical disorder at which
the dynamics freezes. Though our study is on a system with
aperiodic potential, but we believe that the kink dependence
observed in the quench dynamics is very generic and should
hold true even for systems with random disorder.

We showed that the dynamical exponent y obtained from
the density imbalance increases monotonically with the num-
ber of kinks in the initial state, being maximum for the CDW
initial state. The exponent B8 from the time evolution of the
mean square displacement is consistent with y obtained from
the density imbalance only for the CDW and other initial
states with large number of kinks such that 8 ~ 2y. How-
ever, B is much larger than y obtained from one-kink and
three-kink initial states. We further showed that the threshold
strength of the aperiodic potential, hy,,, ., at which y — 0
for an N-kink state is a monotonic function of the number
of kinks in the initial state. Interestingly a seven-kink state,
which has the most symmetric distribution in the eigenbasis
of the Hamiltonian around the average energy Eyom ~ 0.5%,
shows saturation in the imbalance at /7y ~ h. while for
the most investigated CDW initial state hcpw > k.. Here h,
is the MBL transition point obtained from the level spacing
ratio.

For a one-kink initial state, the critical disorder at which the
density imbalance starts showing saturation in the long-time
limit, Ajgink, 1S smallest and is much less than A.. As an
alternative probe of dynamics for the one-kink initial state,
we also studied broadening of the kink (or interface) and
calculated various measures to quantify this broadening. All
these measures provide a dynamics consistent with time evo-
Iution of density imbalance for the one-kink state, which is
much slower than the dynamics of the CDW initial state.
Therefore a one-kink state always underestimates the criti-
cal disorder at which the transition to the MBL phase takes
place but it does indicate the onset of a finite fraction of the
many-body states or else the imbalance would have decayed
to zero. Interestingly, hjyink coincides with the strength of
aperiodic potential beyond which the quench dynamics from

the CDW initial state as well as the mean square displacement
show a subdiffusive phase preceding the MBL phase. This
provides an indirect explanation of the subdiffusive phase in
this deterministic system in terms of the multifractality of the
eigenstates close to the MBL transition [18,56,59].

Our analysis of the entanglement entropy (EE) growth for
various initial states showed that the EE shows a logarithmic
growth both in the delocalized and the MBL phase. The coef-
ficient of the logarithmic term is a monotonically increasing
function of the number of kinks in the initial state and goes
to zero for i > hy,,,. showing a complete consistency with
the time evolution of the density imbalance. Further, the co-
efficient of logarithmic growth increases with increase in the
interactions and the rate of growth with interactions itself is
a function of number of kinks in the initial states. It will be
useful to check the observations made in this work by study-
ing larger system sizes using methods like time dependent
variational principle. It will also be interesting to have an
experimental verification of our numerical results on various
kink initial states in an optical lattice experiment.
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APPENDIX A: STATISTICS OF LEVEL SPACING RATIO

To obtain the critical disorder 4. at which delocalization
to MBL transition takes place for V =1t we solved the
Hamiltonian in Eq. (1) using exact diagonalization for system
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FIG. 15. Density imbalance /(¢) in the fully delocalized regime. (a) I(¢) as a function of ¢ starting from various kink initial states at
h =1,V =ty for L = 24. The long-time fitting has been shown in (b) where power-law fits have been shown by dashed lines. In the delocalized
regime, there is no monotonic increase in y with the number of kinks in the initial states.

sizes upto 18 sites and obtained the eigenvalues E, for every
disorder configuration. We calculated the level spacing ratio
rn = 8u/0p+1 with 8, = E,y; — E, and average it over the
entire spectrum as well as over a large number of independent
disorder configurations for several system sizes to obtain av-
erage (r) shown in Fig. 13. For small values of 4, (r) increases
with the system size approaching the Wigner-Dyson value
of 0.529; while for strong disorder (r) decreases for larger
values of L approaching the Poissonian value of 0.389 [7].
The data collapse showed h. ~ 6.3ty and the exponent
v~ 12

APPENDIX B: TIME EVOLUTION OF IMBALANCE
FOR NONINTERACTING CASE

As shown in Fig. 14, for V = 0 and h = 5ty, where all the
single particle states are localized, /() shows saturation in the
long-time limit similar to the imbalance in the MBL phase.
Ly increases with Nynks in the initial state, being largest for
the one-kink state and smallest for the CDW state. Even more
interestingly, for & = #y, where the noninteracting system has
single particle mobility edges at £|2t) — k|, the imbalance
saturates in the long-time limit. The difference compared to
the fully localized case is that now I ~ O for larger kink
states including the CDW state. Thus, even if one can not
distinguish between an Anderson localized phase and MBL
phase through time evolution of imbalance, the approach to
the localized phase as disorder # is increased can distinguish
between the two localized phases. The delocalized side of
the MBL phase has power-law decay of imbalance while the
delocalized side of Anderson localized phase does not show
any power-law decay of imbalance.

APPENDIX C: DENSITY IMBALANCE FOR
A COMPLETELY DELOCALIZED PHASE

In this Appendix, we discuss the time evolution of the
density imbalance starting from various kink initial states for
h =ty and V = to where the system is completely delocalized.

In the absence of interactions, the system has single particle
mobility edges at h = #( at £|h — 21y| and all the many-body
eigenstates of the half-filled system are delocalized and bal-
listic. Figure 15 shows that the initial short-time decay of
I(t) is slower for initial states with less number of kinks.
This can be explained in terms of the lower connectivity of
initial states with less number of kinks in the Fock space
of a model with nearest-neighbor hopping. However, in the
long-time limit, the dynamics become fast due to completely
delocalized states and the imbalance 7(¢) — 0 for all the kink
states. Note that for this case of fully delocalized states, y
does not have a systematic dependence on the number of kinks
in the initial states. This is also consistent with the fact that
NPR of initial states with various number of kinks is not a
monotonic function of Ny for i < 2ty as shown in Fig. 16.
In contrast to this for 4 > 2¢;, y has a monotonic dependence
on Nyinks Which is directly related with increase of NPR of
initial state with Ny as shown in the main text.

‘h/t0‘=5.0‘.'
0.3} hitg=2.1 &
/tog=10 =
é0.2
=
%
0.1 L=16
Vit =1
o —®

1 4 7 10 13
Kinks

FIG. 16. NPR of various initial states as a function of number of
kinks in the initial state at V = f, for L = 16 sites chain. For & = ¢,
and h = 2.1y, NPR does not have a systematic dependence on the
number of kinks Ny, in initial states. This should be compared with
a systematic dependence of NPR with N for i = 5t.
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