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Electromotive power generated by pressure gradient in metals with the band Jahn-Teller effect
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In band Jahn-Teller (BJT) metals, some lattice distortions with their symmetries different from that of the
bulk structure can linearly couple to the BJT electrons, so pressures to produce or enhance such distortions can
affect the BJT electrons near the Fermi level. This pressure-electric effect in BJT metals is studied theoretically
on the basis of the �12 subband model for the structural transition in A15 compounds. The applied pressure
is assumed to consist of a spatially uniform pressure and a local pressure. The former induces or enhances a
uniform distortion, which contributes to the redistribution of electrons between the �12 subbands, while the
latter produces a local distortion with its gradient, which causes flows of band electrons between different
regions in space. The steady electronic state under the uniform and local pressures is obtained by use of the
Boltzmann equation and the relaxation-time approximation. It is clarified that the local pressure with its gradient
can generate an electromotive power when the degeneracy of the BJT subbands is lifted spontaneously and/or
by the external uniform pressure. The obtained pressure-gradient electric effect is predicted to be a probe into
BJT effects which may work in some metals with structural transitions.
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I. INTRODUCTION

When electronic bands are degenerate in the wave-vector
k space near the Fermi level εF in a metal, the metal is
sometimes unstable against a bulk structural change. This
phenomenon is called the band Jahn-Teller (BJT) effect.
An intuitive model for a system consisting of degenerate
electronic bands and distortions was presented five decades
ago by Labbé and Friedel [1] to explain the origin of
cubic-to-tetragonal transitions which occur in some A15
compounds. They assumed that in these compounds, three
one-dimensional electronic bands spreading along three or-
thogonal directions cross the Fermi level εF in the k space, and
showed that the total energy of electrons in these bands can
be decreased by the tetragonal distortion. However, the later
sophisticated band calculation on V3Si and Nb3Sn revealed
no one-dimensional band but rather doubly degenerate and
three-dimensional bands near the Fermi level [2]. On the basis
of this band calculation, another BJT model was proposed,
in which the doubly degenerate �12 subbands are responsi-
ble for the appearance of the tetragonal distortions in A15
compounds [3,4]. This �12-subband model could successfully
explain some characteristic properties of the structural transi-
tions, such as the elastic softenings and the second-order-like
structural transitions, observed in both V3Si and Nb3Sn. Ear-
lier works on A15 compounds were reviewed by Weger and
Goldberg [5] and Izyumov and Kurmaev [6]. In a later theory
on A15 compounds, Yu and Anderson [7] proposed a local-
phonon model, in which double-well potentials for atoms
result from strong interactions between atoms and itinerant
electrons. In the present paper, we concentrate our attention
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on the �12 subband model as a prototype of the BJT effect
model.

Much more recently, martensitic transitions in some ferro-
magnetic shape-memory alloys with Heusler-type structures
have been attracting the attention of researchers [8,9]. Many
of them are considering that the appearances of those marten-
sitic transitions can be ascribed to the BJT effect [10–14]. In
addition, the appearance of structural transitions in vanadium
under high pressures was attributed to the BJT effect [15].
In fact, electronic band calculations showed that the total
energies of these distorted metals are lower than those of the
undistorted ones. Nevertheless, it seems that the question as
to whether the BJT effect works on these metals still remains
to be answered from both experimental and theoretical points
of view.

In the past, extensive experimental and theoretical studies
on the JT effect have already been performed, which were
summed up by Kaplan and Vekhter [16] and Bersuker [17].
In this paper, we aim to clarify an aspect of BJT metals, i.e.,
an effect of an external pressure on band electrons pertain-
ing to the BJT effect. We consider the case where a local
pressure, i.e., a space-dependent pressure at the position x,
δP(x), induces a local distortion δu(x). The induced distortion
δu(x) changes locally the energy of BJT electrons and causes
flowing of the BJT electrons in space. These considerations
inspire us to investigate an electromotive power generated by
pressures with their gradients, i.e., pressure-gradient electro-
motive power.

Generally speaking, band electrons in usual metals with
no BJT effect can be moved, more or less, by producing
local distortions which have the same symmetry of the bulk
crystal. Such local distortions can change locally the band
electronic states and force electrons to flow into low-energy
states. However, the BJT metals are expected to behave
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differently from the usual metals, because in the BJT met-
als, BJT distortions have symmetries different from those
of original bulk crystals and couple differently to electrons
in different BJT electronic bands. In the present paper, we
will study the questions as to how each of the �12 subbands
contributes to the pressure-gradient electromotive power and
how the structural instability affects this power. Especially, we
will be interested in the effect of the elastic softening resulting
from the BJT structural instability on the pressure-gradient
electromotive power.

In the next section, we view the equilibrium state of the
BJT electron-lattice system under uniform pressures within
the �12-subband model. In Sec. III, the elastic softenings
accompanied by the BJT structural transition under some uni-
form pressures are described. In Sec. IV, the steady state of the
BJT electron system under a local pressure is derived by use of
the Boltzmann equation. In Sec. V, the obtained steady state
is shown to give the pressure-gradient electromotive power. In
Sec. VI, a measurement system for the pressure-gradient elec-
tromotive power is proposed. Finally (in Sec. VII), summary
and concluding remarks are given.

II. EQUILIBRIUM ELECTRON-LATTICE SYSTEM
UNDER UNIFORM PRESSURES

The electronic band calculations on some A15 compounds
with the cubic structure already showed that �12 doublet states
�2 and �3 appear at the � point and two electronic bands
evolve from the �12 states near the Fermi level εF [2]. The
two bands, say the �12 subbands, are very flat and almost
degenerate around εF. Assuming that the �12 subbands are
responsible for the structural transition in A15 compounds, we
pay attention to the two �12 subbands centered at the � point
in the k space. The two bands can couple to bulk distortions,
i.e., an orthorhombic distortion u2 and a tetragonal distortion
u3, which are defined by

u2 = (exx − eyy)/
√

2 and u3 = (2ezz − exx − eyy)/
√

6, (1)

where eii (i = x, y, and z) are the strain components. More-
over, the A15-type structure has internal ionic displacement
(optic) modes Q2 and Q3, which have the same symmetry as
those of u2 and u3, respectively. Although the �12 subbands
can also couple to Q2 and Q3 [4], effects of Q2 and Q3 are
neglected in the present paper because these optic modes do
not change the qualitative nature of the structural transition.

After the k · p perturbation theory [4,18] is applied to the
two �12 subbands in the presence of the bulk distortions u2

and u3, the effective Hamiltonian of the total electron-lattice
system with crystal volume V is found to be approximately
expressed as follows [3,4]:

H = 1

2
V c0u2 + V P3u3 +

∑
ν=2,3

∑
k,σ

εk,νa†
k,ν,σ ak,ν,σ , (2)

εk,ν = εk + (−1)ν
√

c0vcg0u,

(
εk = h̄2k2

2m∗

)
, (3)

u =
√

u2
2 + u2

3. (4)

The first term in Eq. (2) is the elastic energy in the
presence of bulk distortions u2 and u3. The elastic constant

c0 = c0
11 − c0

12 is defined to be the one in the absence of
the BJT effect. The second term is the energy change by
application of an external uniform stress P3 to affect only u3.
For convenience, the stresses P3 are always called pressures
by defining that a positive or negative P3 corresponds to a
compressive or tensile stress, respectively. See Appendix A
for relations between uniaxial pressures Pi (i = x, y, and z)
and the pressures for normal modes of bulk distortion.

The third term in Eq. (2) is the energy of electrons in
the �12 subbands, which consist of two bands labeled ν = 2
and ν = 3. a†

k,ν,σ and ak,ν,σ are the creation and annihilation
operators, respectively, of the electron with wave vector k and
spin σ =↑ or ↓ in the ν band. Its one-electron energy εk,ν is
given by Eq. (3). As seen in Eq. (3), the two �12 subbands have
the same effective mass m∗. The expression of εk,ν , Eq. (3),
includes the BJT-coupling term, (−1)ν

√
c0vcg0u, in which vc

is the volume of a unit cell and g0(> 0) is the constant of
the BJT coupling between the band electrons and the bulk
distortions. The nonvanishing BJT-coupling term splits the
two degenerate bands. The lower and upper bands are named
ν = 3 and ν = 2, respectively, irrespective of the signs of u2

and u3.
The BJT coupling in Eq. (3) is isotropic in the u2 − u3

plane because of the symmetry of the �12 states. Anisotropic
natures of H (except for the P3 term) in the u2 − u3 plane
should originate from some higher order terms of u2 and
u3, which are not included in Eq. (2). One of such term is
the anharmonic elastic energy, whose effect on the structural
transition will be described in Appendix B. Putting this anhar-
monic elastic energy together with the pressure term in Eq. (2)
in mind, we consider tetragonal structures with u3 �= 0 and
u2 = 0 for equilibrium ones.

The free energy of the �12 subband electrons-distortion
system with a tetragonal structure under a pressure P3 can be
derived by use of Eqs. (2)–(4) as follows:

F/V = 1

2
c0u2

3 + P3u3 + μn − kBT
∑
ν=2,3

∫ ∞

0
D(ε)

× ln

{
1 + exp

[
−

(
ε + (−1)ν

√
c0vcg0|u3| − μ

kBT

)]}
dε,

(5)

D(ε) = 1

2π2

(
2m∗

h̄2

)3/2√
ε, (6)

where D(ε) is the density of states with spin degeneracy
per unit volume for each �12 subband at energy ε which is
measured from the bottom of the degenerate �12 subbands in
the cubic phase, T is temperature, μ is the chemical potential,
and n is the total electron number in the �12 subbands in unit
volume.

In Eq. (5), it has already been assumed that a total electron
number n in the �12 subbands is independent of the distortions
u2 and u3. In real crystals, however, �12 subbands usually
overlap with other bands near the Fermi level. Therefore, a
splitting of the �12 subbands by distortions causes redistribu-
tions of electrons between the �12 subbands and others, and
then n depends on the distortion. Nevertheless, we proceed
with the study on the BJT effect under the constant n by taking
into account the following: (1) When the band splitting is
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small enough to allow both bands to be partially occupied by
electrons, an increase and decrease in the electron numbers
of the bands ν = 3 and 2, respectively, roughly cancel each
other. (2) So long as the change in n by the distortions is small,
various aspects of the BJT effect are expected to be un-
changed.

In the equilibrium state, u3 and μ should satisfy the condi-
tions (∂F/∂u3) = 0 and a constant n, which are expressed by
the following equations:

u3 = −P3

c0
+

√
vc

c0
g0 sgn(u3)

∫ ∞

0
D(ε)[ f3(ε) − f2(ε)]dε,

(7)

n =
∫ ∞

0
D(ε)[ f3(ε) + f2(ε)]dε, (8)

fν (ε) =
{

1 + exp

[
ε + (−1)ν

√
c0vcg0|u3| − μ

kBT

]}−1

, (9)

where fν (ε) is the Fermi distribution function of the electron
with ε in the ν band. In obtaining Eq. (7), we have used |u3| =
sgn(u3)u3, where sgn(u3) is the sign function of u3. Note that
Eq. (7) gives sgn(u3) = −sgn(P3).

As already clarified in Ref. [4] and as also will be seen
in the next section of the present paper, Eqs. (7)–(9) in the
case of P3 = 0 can show that the second-order transition from
the cubic phase into the phase with the BJT distortion u3 �= 0
can appear by decreasing T and the appearance of the BJT
transition is dominated by a parameter α which is defined by

α = 2vcD(εF)g2
0

= 2vc

(
3n

16π4

)1/3(2m∗

h̄2

)
g2

0, (10)

where εF is the Fermi energy of the undistorted crystal. The
second equation in Eq. (10) has been derived by use of Eqs. (6)
and (8) at absolute zero. It is noted that the BJT structural
transition can occur only when α > 1. This is because for
α � 1, a decrease of the electronic energy by the appearance
of u3 cannot overcome the increase of the elastic energy
(1/2)c0u2

3.
Figure 1 gives the calculated phase diagram in the α − T

plane under P3 = 0. This figure is derived from the fact that
the elastic constant (c11 − c12) at u3 = 0 becomes 0 at the
second-order structural transition temperature TM and is ob-
tained by solving Eqs. (22) and (23) in the next section. As
seen in this figure, the cubic (u3 = 0) and tetragonal (u3 �= 0)
phases are separated by the phase boundary, on which the
cubic-to-tetragonal transition occurs. When α � 1, the cubic
crystal is always stable and has degenerate bands as shown
in Fig. 2(a). When α > 1, the crystal with a nonvanishing
distortion u3 �= 0 is stable below TM. In this case, both of the
two �12 subbands are partially occupied by electrons as shown
in Fig. 2(b). Then, the electron-lattice system has a minimum
free energy at a u3 �= 0 below TM but the equilibrium u3 �= 0 is

FIG. 1. Phase diagram of the equilibrium lattice structure in the
α-T plane under no external pressure. α is a parameter to dominate
the BJT structural transition. The cubic-to-tetragonal transition oc-
curs at the transition temperature TM. It is noted that the tetragonal
phase does not appear when α � 1

transitioned to u3 = 0 at T = TM. At absolute zero, the upper
band becomes empty when α exceeds a critical value of α, α0,
which is given by

α0 = 3/(24/3)(∼ 1.19). (11)

Since, however, the equilibrium u3 decreases with increas-
ing T , the two bands ν = 2 and 3 again become partially
occupied, similarly to those in the case of 1 < α < α0, at
temperatures except for low temperatures.

Figure 3 shows the T dependence of the equilibrium u3(>
0) which was calculated for α = 1.08 under some fixed uni-
form pressures P3(< 0). Nonvanishing pressures P3 can easily
destroy the second-order transition under P3 = 0 but make the
BJT distortion remain even at T > TM. Figure 3 holds also for
the case where u3(< 0) and P3(> 0) by changing the signs of
u3 and P3 in the figure.

When P3(> 0) is applied to a crystal with an elongation
u3(> 0), or P3(< 0) is applied to a crystal with a contraction
u3(< 0), those pressures P3 with large magnitudes can convert
the equilibrium distortions between u3 > 0 and u3 < 0. This

FIG. 2. Schematic diagram of the �12 subbands εk,ν (ν = 2 and
3) with the band Jahn-Teller (BJT) effect. k is an electron’s wave
vector around the � point. (a) Case of no BJT distortion (α � 1).
The two �12 subbands are degenerate around the � point and have
the Fermi energy εF. (b) Case of a BJT distortion u3 �= 0. The two
�12 subbands are split by u3 �= 0. When the splitting is small, both
the bands are partially occupied by electrons.
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FIG. 3. Temperature dependence of the equilibrium BJT distor-
tion u3(> 0) calculated for α = 1.08 under some uniform pressures
P3(� 0). The units of u3 and P3 are u0 = εF/(

√
c0vcg0) and P0 =√

c0/vc(εF/g0), respectively. Under no uniform pressure, the second-
order BJT transition occurs at the transition temperature TM (∼
0.27εF/kB for α = 1.08). This figure holds also when the signs of
u3/u0 and P3 are changed to be negative and positive, respectively,
but with same magnitudes as those in the figure.

conversion is out of the scope of the present theory, but will
be mentioned in Sec. VI in relating to measurement system
for the pressure-gradient electromotive power.

III. ELASTIC CONSTANTS AFFECTED BY THE BAND
JAHN-TELLER EFFECT

As will be seen in the following sections, the elastic soft-
ening plays an important role in the pressure-electric effect
which is the subject of the present theory. Some characteristics
of the elastic constants affected by the BJT effect were already
studied before [4]. In this section, we extend this study to the
case of the elastic constants under uniform pressures P3. Also
in these elastic constants, the effects of the optic modes of
ionic displacement Q2 and Q3 are not taken into account.

Starting from an equilibrium electron-lattice system with
u3 �= 0 and u2 = 0 under pressure P3, we introduce further
uniform distortions δu2 and δu3 as well as a further uniform
pressure δP3 with small magnitudes. Then, the free energy F
has the form as

F= F0 +V δP3δu3 + 1
2V {C2(P3, T )(δu2)2 +C3(P3, T )(δu3)2},

(12)

where F0 is the free energy of the equilibrium state at δu2 =
δu3 = 0 and δP3 = 0, being obtained by substituting the solu-
tions u3 �= 0 and u2 = 0 of Eqs. (7) and (8) into Eq. (5).

In Eq. (12), C2,3(P3, T ) are elastic constants, which are
referred to a specimen distorted tetragonally. The usual elastic
constants ci j , on the other hand, are defined to be referred to
a cubic specimen, even when the crystal is distorted from its
cubic structure. The relations between C2,3(P3, T ) and ci j are
given in Ref. [19]. Especially when |u3| is sufficiently smaller
than 1, C2(P3, T ) ≈ (c11 − c12) and C3(P3, T ) ≈ (c33 − c13)
in the tetragonal phase, while C2(0, T ) = C3(0, T ) = (c11 −
c12) in the cubic phase. To the following studies, C2,3(P3, T )

are suitably applied, rather than the elastic constants ci j them-
selves.

To obtain C3(P3, T ) in the tetragonal phase, we substitute
(u3 + δu3) for u3 in F given by Eq. (5) and expand F in
powers of δu3 up to the second-order term (δu3)2. After the
expanded F is compared with the one given by Eq. (12), we
have

C3(P3, T ) = c0

− 1

kBT

{[√
c0vcg0 sgn(u3)−

(
∂μ

∂u3

)
0

]2

W2(P3, T )

+
[√

c0vcg0 sgn(u3) +
(

∂μ

∂u3

)
0

]2

W3(P3, T )

}
, (13)

with

Wν (P3, T ) =
∫ ∞

0
D(ε) fν (ε)(1 − fν (ε))dε, (ν = 2 or 3),

(14)

where (∂μ/∂u3)0 and Wν (P3, T ) are their quantities at δu2 =
δu3 = 0 and δP3 = 0. Noting that μ is an implicit function
of u3 through Eqs. (8) and (9), we differentiate both sides of
Eq. (8) with respect to u3 to obtain(

∂μ

∂u3

)
0

= √
c0vcg0 sgn(u3)

[
W2(P3, T ) − W3(P3, T )

W2(P3, T ) + W3(P3, T )

]
.

(15)

Substitution of Eq. (15) into Eq. (13) gives

C3(P3, T ) = c0[1 − αX (P3, T )], (16)

where X (P3, T ) has been defined by

X (P3, T )−1 = 1
2 kBT D(εF)[W2(P3, T )−1 + W3(P3, T )−1],

(17)

and α was already presented in Eq. (10). C3(P3, T ) given by
Eq. (16) does not depend on the sign of P3.

The obtained C3(P3, T ) expressed by Eq. (16) can be used
to know the equilibrium distortion δu3 induced by δP3. Mini-
mizing F given by Eq. (12) with respect to δu3, we get

δu3

δP3
= − 1

C3(P3, T )
. (18)

Similar calculations on C2(P3, T ) to the above show that
C2(P3, T ) is also strongly affected by the BJT structural tran-
sition. However, we do not go into the details of C2(P3, T ),
which is not used in the following arguments.

On the other hand, the elastic constant in the cubic phase
above TM under no pressure, C3(0, T ), is known by use of
Eqs. (16), (17), and (14) at u3 = 0 as follows:

C3(0, T )(= c11 − c12)

= c0[1 − α

kBT D(εF)

∫ ∞

0
D(ε) f (ε, T )(1 − f (ε, T ))dε],

(19)

where f (ε, T ) is defined by

f (ε, T ) = {1 + exp[(ε − μ)/kBT )]}−1, (20)
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FIG. 4. Temperature dependence of the elastic constant
C3(P3, T ) calculated in the equilibrium state with u3(< 0)
under some uniform pressures P3(> 0). The unit of P3 is
P0 = √

c0/vc(εF/g0 ). The solid lines were calculated for α = 1.08,
which gives TM ∼ 0.27εF/kB. It is noted that softenings of C3(P3, T )
appear at temperatures near TM but remain even at low temperatures.
The dot-dash lines were calculated for α = 0.98, which does not
make appearance of the BJT transition. This figure holds also when
the signs of P3 in the figure are changed to be negative without
changing their magnitudes.

with μ satisfying

n = 2
∫ ∞

0
D(ε) f (ε, T )dε. (21)

At the second-order-transition temperature T = TM, the above
C3(0, T ) should become 0, so TM is obtained by solving nu-
merically the simultaneous equations for TM and μ as follows:

α

D(εF)

∫ ∞

0
D(ε) f (ε, TM))[1 − f (ε, TM)]dε = kBTM, (22)

n = 2
∫ ∞

0
D(ε) f (ε, TM)dε. (23)

The obtained TM was already shown as a function of α in
Fig. 1.

Figure 4 shows the elastic constant C3(P3, T ) calculated
under some uniform pressures P3 in the two cases of 1 <

α < α0 and α � 1. As seen in this figure, the elastic constant
C3(P3, T ) for α = 1.08 is drastically softened in a wide region
of temperature. Especially at T = TM, C3(0, T ) vanishes be-
cause of the BJT structural transition. The softenings remain
even at low temperatures, because the electronic and lattice
contributions to C3(P3, T ) partially cancel each other. These
softenings are hardly recovered by the presence of nonvanish-
ing pressures P3.

When α � 1, the BJT structural transition does not occur.
Figure 4 also shows C3(P3, T ) calculated for α = 0.98 under
some uniform pressures. As seen in this figure, C3(P3, T ) is
again considerably softened in a wide region of temperature
but especially at low temperatures. This is because the lattice
and electronic contributions to the elastic constants largely
cancel each other, although the latter can not overcome the
former.

In the case of α0 < α, C3(P3, T ) recovers to c0 at absolute
zero without exhibiting its elastic softening [4]. Nevertheless,

FIG. 5. Circuit to observe the pressure-gradient electromotive
power A(P3, T ). The sample A is a BJT metal which spreads along
the x axis from x = x1 to x = x2 under no pressure. The wire B is
a usual metal with no BJT effect. The sample A is subjected to a
uniform pressure P3 and a local pressure δP3(x). A voltmeter is set at
the position x = x0.

C3(P3, T ) is again considerably softened in a wide region of
temperature except for low temperatures because the equilib-
rium u3 is decreased with increasing temperature.

At the end of this section, we note the kind of structural
phase transitions obtained for A15 compounds. The �12 sub-
band model gives the second-order structural transition, which
is attributed to the double degeneracy of the �12 subbands. In
fact, some A15 compounds exhibit structural transitions close
to those of second order [20,21]. In general, however. real
crystals have the anharmonic elastic energy proportional to u3

3,
which was not included in Eq. (2). As will be summarized in
Appendix B, the u3

3 term changes the BJT structural transition
to be of first order and modifies the elastic constant C3(0, T ).
As a result, C3(0, T ) does not vanish at any temperature
even under no pressure. It is noted that the second-order-
like cubic-to-tetragonal transitions in A15 compounds suggest
weak effects of the anharmonic energy in these compounds.

IV. STEADY ELECTRON SYSTEM UNDER A
PRESSURE GRADIENT

Hereafter, we consider a sample of a BJT metal, whose
shape has a sufficiently long length along the x axis as
illustrated in Fig. 5. It is assumed that a local (i.e., space-
dependent) pressure at position x, δP3(x), is applied to this
sample additionally to the uniform pressure P3. The total
pressure P3,tot (x) at x is expressed by

P3,tot (x) = P3 + δP3(x). (24)

P3 affects the equilibrium BJT distortion u3 as shown in
Sec. II, but δP3(x) induces a local (i.e., space-dependent) dis-
tortion δu3(x) additional to u3. As a result, the total distortion
at x, u3,tot (x), becomes

u3,tot (x) = u3 + δu3(x). (25)

In the following, it is required that δP3(x) and δu3(x) are
almost constant on a microscopic scale, e.g., a lattice constant,
but they vary slowly with x on a macroscopic scale, e.g.,
a dimension of the sample [22]. In a region containing x,
therefore, the electron-lattice system is considered to be in a
local equilibrium state, where the distribution function of the
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electron in the (k, ν) state can be expressed by

f 0
ν (εk, x) =

{
1 + exp

[
εk + (−1)ν

√
c0vcg0|u3,tot (x)| − μ(x)

kBT

]}−1

. (26)

When the electron system is not equilibrium by some
reason, electrons flow toward the equilibrium state. Then,
the distribution function of the (k, ν) electron around x,
fν (εk, x), depends on time t . According to the Boltzmann
theory [22,23], (∂ fν (εk, x)/∂t ) arises from diffusions of the
electron in the phase space and scatterings of the electron by
various causes. After experiencing the diffusions and scatter-
ings of electrons, the electron system falls into a steady state
with (∂ fν (εk, x)/∂t ) = 0. In this steady state, (∂ fν (εk, x)/∂t )
caused by electron scatterings, (∂ fν (εk, x)/∂t )s, should satisfy
the Boltzmann equation as follows:(

∂ fν (εk, x)

∂t

)
s

=
[
vk,x

(
∂μ

∂x

)(
∂

∂μ

)

+ vk,x

(
∂δP3(x)

∂x

)(
∂δu3(x)

∂δP3(x)

)(
∂

∂δu3(x)

)

+ eEx

h̄

(
∂

∂kx

)]
f 0
ν (εk, x), (27)

where Ex is an electric field along the x axis, vk,x is the x
component of the velocity of the electron with the energy εk,ν ,
and e(< 0) is the electric charge.

The scattering term (∂ fν (εk, x)/∂t )s on the left-hand side
of Eq. (27) depends on transition probabilities between dif-
ferent electronic states. Here, the probability of an electronic
transition from a (k, ν) state into another (k′, ν ′) state is
denoted by w(k, ν → k′, ν ′). Then, the change in fν (εk, x)
by electron scatterings is written as∑

k′,ν ′
[w(k′, ν ′ → k, ν) − w(k, ν → k′, ν ′)]. (28)

The various transition probabilities w(k, ν → k′, ν ′) affect
each other through the distribution functions fν (εk, x). Af-
ter those electron scatterings are done self-consistently in a
steady state, each fν (εk, x) has its own time dependence. In
the steady state, we employ the relaxation-time approximation
as follows: (

∂ fν (εk, x)

∂t

)
s

= −� fν (εk, x)

τν (εk )
, (29)

� fν (εk, x) = fν (εk, x) − f 0
ν (εk, x), (30)

where τν (εk ) is a phenomenologically-introduced relaxation
time of the electron in the (k, ν) state. Equations (27), (29),
and (30) give

� fν (εk, x) =
(

∂ fν (εk )

∂εk

)
τν (εk )vk,x

×
[
−eEx + ∂μ

∂x

+ (−1)νsgn(u3,tot (x))

(√
c0vcg0

C3(P3, T )

)(
∂δP3(x)

∂x

)]
, (31)

where (∂ f 0
ν (εk, x))/∂εk ) has been approximated to be

(∂ fν (εk )/∂εk ) and the next relation has been used:(
∂δu3(x)

∂δP3(x)

)
=

(
∂δu3

∂δP3

)
= − 1

C3(P3, T )
. (32)

In Eq. (31), it should be noted that the pressure gradient
(∂δP3(x)/∂x) contributes to � fν (εk, x). This originates from
the fact that δP3(x) produces δu3(x), which changes locally
energies of the �12 subbands electrons.

Even in the band structure of BJT metals, the Fermi level
εF also crosses some electronic bands other than the �12 sub-
bands, say ξ bands. The ξ bands around the � point do not
couple linearly to u2 and u3. As stated in Sec. II, the electron
redistribution between the ξ and ν bands is considered to be
small enough to be neglected in the case of small splittings
of the two �12 subbands. This situation corresponds to an
approximation that electrons both in the �12 and ξ bands have
a common chemical potential μ determined by Eq. (8). Then,
the deviation of the distribution function of the ξ electrons,
� fξ (εk ), is expressed as

� fξ (εk, x) =
(

∂ fξ (εk )

∂εk

)
τξ (εk )vk,x

[
− eEx + ∂μ

∂x

]
, (33)

where τξ (εk ) and vk,x are the relaxation time and the velocity
(along the x direction) of the electron with k in the ξ band. On
the right-hand side of Eq. (33), the term (∂δP3(x)/∂x) does
not appear because the ξ bands do not couple linearly to δu3.

Once the deviations of the distribution functions are ob-
tained, the total electric current along the x direction, Jx, can
be given by

Jx = 2e

{∑
k,ν

vk,x� fν (εk ) +
∑
k,ξ

vk,x� fξ (εk )

}

= 2e
∑
k,ν

(
∂ fν (εk )

∂εk

)
τν (εk )vk,xvk,x

[
−eEx + ∂μ

∂x

+(−1)νsgn(u3,tot (x))
(√

c0vcg0

C3(P3, T )

)(
∂δP3(x)

∂x

)]

+ 2e
∑
k,ξ

(
∂ fξ (εk )

∂εk

)
τξ (εk )vk,xvk,x

[
−eEx + ∂μ

∂x

]
. (34)

When Jx = 0, therefore, the electric field along the x direc-
tion at the position x, Ex(g0, x), should become

Ex(g0, x) = 1

e

{
∂μ

∂x
+ sgn(u3,tot (x))

( √
c0vcg0

C3(P3, T )

)

×
[

L2(P3, T ) − L3(P3, T )

L2(P3, T ) + L3(P3, T ) + ∑
ξ Lξ (T )

]

×
(

∂δP3(x)

∂x

)}
, (35)
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with

Lν (P3, T ) = 2

3

e2

m∗

∫ ∞

0

(
− ∂ fν (ε)

∂ε

)
τν (ε)εD(ε)dε, (36)

Lξ (T ) = 2

3

e2

m∗
ξ

∫ ∞

−∞

(
− ∂ fξ (ε)

∂ε

)
τξ (ε)εDξ (ε)dε, (37)

where m∗
ξ is the effective mass of the ξ band.

V. ELECTROMOTIVE POWER GENERATED BY A
PRESSURE GRADIENT

Let us derive the electromotive power originating from
Ex(g0, x) given by Eq. (35). To do this, we consider the elec-
tric circuit shown in Fig. 5. In this figure, sample A is the BJT
metal with the electric field Ex(g0, x) but wire B is a usual
metal with Ex(0, x) = (1/e)(∂μ/∂x). Sample A is subjected
to the pressure P3,tot (x) = P3 + δP3(x), where P3 produces or
enhances u3 and δP3(x) produces δu3(x). Then, the difference
in the electric potential φ, �φ, at x0 is given by

�φ = −
∫ x1

x0

Ex(0, x)dx −
∫ x2

x1

Ex(g0, x)dx

−
∫ x0

x2

Ex(0, x)dx

= −sgn(u3,tot (x))
1

e

( √
c0vcg0

C3(P3, T )

)

×
[

L2(P3, T ) − L3(P3, T )

L2(P3, T ) + L3(P3, T ) + ∑
ξ Lξ (T )

]

× [δP3(x2) − δP3(x1)], (38)

where
∮

(∂μ/∂x)dx = 0 has been already taken into account.
This means that the electric field at x along the x direction,
Ex(x), in sample A is given by

Ex(x) = A(P3, T )

(
∂|δP3(x)|

∂x

)
, (39)

A(P3, T ) = sgn(u3,tot (x))sgn(δP3(x))

× A0

(
c0

C3(P3, T )

)[
L2(P3, T ) − L3(P3, T )

L2(P3, T ) + L3P3, T )

]
, (40)

where

A0 = 1

eλ

√
vc

c0
g0 (< 0), (41)

with

λ = 1 +
∑

ξ Lξ (T )

L2(P3, T ) + L3(P3, T )
. (42)

Especially, when P3 and δP3(x) are additive to each other,
i.e., sgn(P3) = sgn(δP3(x)), the equilibrium conditions for u3

and δu3(x), Eqs. (7) and (18), give

sgn(u3) = −sgn(P3), sgn(δu3(x)) = −sgn(δP3(x)),

and sgn(u3,tot (x)) = −sgn(δP3(x)). (43)

Then, Eq. (40) is simplified to become as follows:

A(P3, T ) = A0

(
c0

C3(P3, T )

)[
L3(P3, T ) − L2(P3, T )

L3(P3, T ) + L2P3, T )

]
, (44)

A0 being same as the one given by Eq. (41). It is noted that
A(P3, T ) given by Eq. (44) does not depend on the sign of
P3. This is because the band structure consisting of the bands
ν = 2 and ν = 3 split by the BJT coupling is independent of
the sign of u3 in Eq. (3).

Equation (39) shows that the pressure gradient generates
the electric field Ex(x) in the BJT metal and the magnitude of
the generated electromotive power is represented by the coef-
ficient A(P3, T ) defined by Eqs. (40) and (44). In the present
paper, we call A(P3, T ) the pressure-gradient electromotive
power.

The pressure-gradient electric effect derived here can be
compared with the well-established piezoelectric effect. The
latter originates from the fact that electric dipoles of ionic
pairs in dielectric crystals with no inversion center are not
canceled under uniform pressures. The former, on the other
hand, originates from flows of conducting electrons in metals
under pressures with their gradients. This situation is parallel
rather to that of the thermoelectric effect, which appears in
metals under temperature gradients.

From Eqs. (40) and (44), the following properties of
A(P3, T ) are derived. When u3 = 0 at T > TM under P3 = 0,
L2(0, T ) = L3(0, T ) and therefore A(0, T ) = 0. This is
because the contributions of the two bands ν = 2 and 3 cancel
each other in spite of their nonvanishing values in the cubic
phase. In BJT metals with α � 1, any spontaneous equilib-
rium distortion does not appear in the absence of P3. However,
a nonvanishing P3 produces u3 to give A(P3, T ) �= 0. Another
important property of A(P3, T ) given by Eqs. (40) and (44) is
that A(P3, T ) is considerably enhanced by the elastic softening
in C3(P3, T ). This enhancement appears by the following
reason: When C3(P3, T ) is softened by the BJT effect, a weak
pressure gradient (∂δP3(x)/∂x) can induce a large distortion
gradient (∂δu3(x)/∂x), as seen from the relation

(
∂δu3(x)

∂x

)
= − 1

C3(P3, T )

(
∂δP3(x)

∂x

)
. (45)

Through u3 and C3(P3, T ) in A(P3, T ), A(P3, T ) exhibits its
strong P3 and T dependencies.

The quantity [L2(P3, T ) + L3(P3, T )] in Eq. (42) is shown
to be independent of the splitting of the �12 subbands and∑

ξ Lξ (T ) is expected to depend hardly on T around TM. As
a result, λ can be almost constant. Through Eq. (36), A(P3, T )
given by Eqs. (40) and (44) depends on the relaxation times
τν (ε). When, however, both τ2(ε) and τ3(ε) are approximated
to be τ (μ) in Eq. (36), τ (μ) is reducible in Eqs. (40) and (44),
being eliminated from A(P3, T ).

In the above, the case of the local pressure δP3(x) addi-
tional to the uniform pressure P3 has been considered. We
mention another case where a local pressure δP2(x) to produce
δu2(x) is applied instead of δP3(x). Since u3 �= 0 and u2 = 0
remain in the equilibrium state, we have

∂

∂x

√
(δu2(x))2 + u2

3 = ∂δu2(x)

∂x

[
δu2(x)√

(δu2(x))2 + u2
3

]
δu2(x)=0

= 0. (46)
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FIG. 6. Pressure-gradient electromotive power A(P3, T ) calcu-
lated for α = 1.08 as a function of temperature T under some
uniform pressures P3. The calculation was made by use of Eq. (44).
The unit of A(P3, T ) is A0(< 0) given by Eq. (41), while the unit of
P3 is P0 = √

c0/vc(εF/g0 ). The solid lines are A(P3, T ) in the metal
subjected to the elastic softening by the BJT effect. In the case of
P3 = 0, A(0, T ) vanishes above TM (∼0.27εF/kB for α = 1.08). For
comparison, the broken lines show A(P3, T ) calculated by assuming
[c0/C3(P3, T ))] = 1, which excludes an enhancement of A(P3, T ) by
the elastic softening. This figure holds also when the signs of P3 in
the figure are changed to be negative but with same magnitudes as
those in the figure.

This proves that a pressure gradient (∂δP2(x)/∂x) cannot gen-
erate any electromotive power in the equilibrium state with
u3 �= 0 and u2 = 0.

Figure 6 shows the calculated pressure-gradient electromo-
tive power A(P3, T ) as a function of T for α = 1.08 under
some fixed compressive stresses P3(> 0). This calculation
was made by use of Eq. (44). As shown by the solid lines in
this figure, A(P3, T ) becomes nonvanishing in a wide region
of temperature. When P3 = 0, A(P3, T ) becomes nonvan-
ishing only below TM, because the spontaneous u3 makes
L2(0, T ) �= L3(0, T ). Especially at T → TM − 0 under P3 = 0
in the tetragonal phase, A(0, T ) diverges, since C3(0, T ) = 0
at TM as shown in Fig. 4. However, this divergence is arrested
in real crystals, which have C3(P3, T ) �= 0 at any temperature
because of the presence of the anharmonic elastic energy.
(See Appendix B.) When P3 �= 0, on the other hand, A(P3, T )
becomes always nonvanishing, because u3 is induced by P3

even above TM. The peaks of A(P3, T ) are suppressed by
increasing P3(> 0). In Fig. 6, A(P3, T ) which was calculated
by excluding the effect of the elastic softening is also shown
by the broken lines. Such calculations were made by assuming
[c0/C3(P3, T )] = 1 in Eq. (44). As seen in Fig. 6, the con-
siderable enhancement of A(P3, T ) originates from the elastic
softening in C3(P3, T ). The enhancement of A(P3, T ) by the
elastic softening becomes always conspicuous at tempera-
tures near TM, so long as the BJT structural transition occurs.
A(P3, T ) is not changed even when the compressive stresses
P3(> 0) are replaced by tensile stresses P3(< 0).

Figure 7 shows A(P3, T ) calculated as a function of P3 at
some fixed temperatures above TM. This calculation is made
by use of Eq. (44). Although A(P3, T ) = 0 at P3 = 0, a non-
vanishing P3 induces A(P3, T ) �= 0, because u3 induced by P3

FIG. 7. Pressure-gradient electromotive power A(P3, T ) calcu-
lated for α = 1.08 as a function of the uniform pressure P3. The
calculations were made by use of Eq. (44) at some temperatures T
above TM (∼0.27εF/kB for α = 1.08). The unit of A(P3, T ) is A0(<
0) given by Eq. (41), while the unit of P3 is P0 = √

c0/vc(εF/g0 ). This
figure holds also when the positive values of P3/P0 in the abscissa
are changed to be negative but with same magnitudes as those in the
abscissa.

makes a difference between L2(P3, T ) and L3(P3, T ). A broad
peak in the line at T/TM ∼ 1.05 results from the strong elastic
softening in C3(P3, T ) just above TM, which is shown in Fig. 4.
Even when T is apart from TM, the large values of A(P3, T ) ap-
pear with increasing P3 because the elastic softening continues
in a wide region of T higher than TM.

Similar calculations on A(P3, T ) to those in Fig. 6 were
done in a case of α � 1, for which the BJT structural
transition does not occur. In Fig. 8, A(P3, T ) calculated
by use of Eq. (44) for α = 0.98 is shown by the solid
lines. As seen in Fig. 8, A(P3, T ) has large values at

FIG. 8. Pressure-gradient electromotive power A3(P3, T ) calcu-
lated for α = 0.98 as a function of temperature T . For this value of
α, the spontaneous BJT distortion does not occur. The calculation
was made by use of Eq. (44). The unit of A(P3, T ) is A0(< 0)
given by Eq. (41), while the unit of P3 is P0 = √

c0/vc(εF/g0 ). For
comparison, the broken lines show A(P3, T ) calculated by assuming
[c0/C3(P3, T ))] = 1, which excludes the elastic softening. The cal-
culations were made in the case where P3 > 0. This figure holds also
when the signs of P3 in the figure are changed to be negative but with
same magnitudes as those in the figure.
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low temperatures when P3 �= 0. Also in Fig. 8, A(P3, T )
calculated for [c0/C3(P3, T )] = 1 with no elastic soften-
ing is shown by the broken lines. As seen in Fig. 8,
A(P3, T ) is again enhanced by the elastic softening in
spite of no structural transition as shown in Fig. 1. This
enhancement of A(P3, T ) can be seen when α(� 1) is
close to 1.

It is noted that when α0 < α, A(P3, T ) cannot be enhanced
at low temperatures because C3(P3, T ) = c0 at absolute zero
[4]. Also in this case, A(P3, T ) is again considerably en-
hanced by the elastic softening at temperatures except for
low temperatures, so long as the BJT structural transition
occurs.

A numerical consideration on A(P3, T ) of Nb3Sn is made
by use of its available data, given in Appendix C.

VI. MEASUREMENT SYSTEM FOR THE
PRESSURE-GRADIENT ELECTROMOTIVE POWER

After the theory presented above, some comments are
described on a possible measurement system for the pressure-
gradient electromotive power. In measurements, uniaxial
pressures are more easily realized than the pressure for the
normal mode of bulk distortion, P3, in Fig. 5. In addition,
tensile stresses are not easy to be produced in equipment.
Here, we confine ourselves to positive uniaxial pressures (i.e.,
compressive stresses) for available pressures.

First, we consider a BJT crystal which has a spontaneous
contraction u3 < 0 (c/a < 1) below T < TM. To this crystal,
uniaxial pressures, Pz(> 0), are applied along the tetragonal z
axis to enhance u3(< 0). When, on the other hand, T > TM,
the uniaxial pressures produce contractions along the same di-
rection as that of the pressures, so both directions are parallel
to the z axis.

Second, we consider another BJT crystal which has a
spontaneous elongation u3 > 0 (c/a > 1) along the z axis
below T < TM. Applications of the pressures Pz(> 0) along
the z axis can give rise to a discontinuous conversion of its
distortion from u3 > 0 to u3 < 0, when an energy decrease
of the crystal by application of Pz,tot (x) may overcome the
increase of the anisotropy energy in the u2 − u3 plane given
by Eq. (B4). We do not go into measurements on the phase
with u3 > 0 under the positive pressures. When the positive
pressures exceed a critical value and/or T is higher than TM,
the positive pressures induce contractions u3 < 0 (c/a < 1),
whose directions are parallel to that of the pressures, i.e., the
z direction.

Irrespective of the sign of the spontaneous u3 below TM,
therefore, a measurement system is proposed to measure the
pressure-gradient electromotive power of BJT crystals with
contractions c/a < 1 under positive pressures along the z axis.
The proposed configuration of the pressures and a BJT crystal
set in the circuit shown in Fig. 5 is schematically drawn in
Fig. 9(a). The specimen has a shape of a rectangular par-
allelepiped, which spreads along the x axis from x = x1 to
x = x2 under no pressure and has surface planes normal to
the tetragonal axis, i.e., the z axis.

A total uniaxial pressure at the position x along the z axis,
Pz,tot (x), consists of a uniform pressure Pz(> 0) and a local

FIG. 9. A measurement system for the pressure-gradient electro-
motive power A(P3, T ). (a) A rectangular parallelepiped BJT crystal
spreads along the x axis from x = x1 to x = x2 under no pressure. The
crystal is assumed to have a contraction along the z axis, c/a < 1.
The uniform and local pressures (compressive stresses), Pz(> 0), and
δPz(x)(> 0), respectively, are applied to the crystal along the z axis.
The position x2 is shifted to x′

2 by the pressures. (b) The uniform
pressure Pz(> 0) is shown by the broken line, while the local pressure
δPz(x)(> 0) is shown by the dot-dash line. The local pressure δPz(x)
has the constant gradient with respect to x, [δPz(x2)/(x2 − x1)], be-
tween x1 and x′

2, where δPz(x1) = 0 is assumed.

one δPz(x)(> 0) as follows:

Pz,tot (x) = Pz + δPz(x). (47)

As verified in Eqs. (A6)–(A8), any Pz produces not only P3

but also P1. A nonvanishing P1 does not affect BJT electrons,
being neglected. Equations (A8) and (18) give the following
equations:

δP3(x) =
√

2/3 δPz(x), (48)

(
∂δP3(x)

∂x

)
=

√
2

3

(∂δPz(x)

∂x

)
, (49)

(
∂δu3(x)

∂x

)
= −

√
2

3

1

C(P3, T )

(
∂δPz(x)

∂x

)
. (50)

In equipment, we produce the local pressure δPz(x)(> 0),
which varies linearly with x from δPz(0) = 0 at x1 to δPz(x2)
at x2. The constant gradient is expressed by(

∂δPz(x)

∂x

)
= δPz(x2)

x2 − x1
. (51)

The magnitude of (∂δPz(x)/∂x) given by Eq. (51) should be
small enough to satisfy the condition that the induced δu3(x)
can be regarded as an almost constant quantity on a micro-
scopic scale.

The local pressures δPz(x) induce local distortions δu3(x)
and δu1(x), which also change the length of the specimen
along the x axis to shift the end of the specimen from x2 to
x′

2. Nevertheless, the gradient given by Eq. (51) is conserved
between x = x1 and x = x′

2. Figure 9(b) shows δPz(x) thus
defined together with Pz and Pz,tot (x).

Under the application of the pressures δPz(x) which
were elaborated so as to satisfy Eq. (51), the electric field
Ex(x) = Ex is determined experimentally by measuring the
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electric-potential difference �φ at the position x = x0, which
was shown in Fig. 5. The produced gradient (∂δP3(x)/∂x)
given by Eqs. (49) and (51) and the measured Ex give the mea-
sured pressure-gradient electromotive power A(P3, T ) through
Eq. (39). Keep in mind that the experimental P3 in Eq. (40) is
the one evaluated by use of Pz through Eq. (A8).

VII. SUMMARY AND CONCLUDING REMARKS

In BJT metals, some electronic bands are almost degen-
erate near the Fermi level εF. This degeneracy is lifted by
some bulk uniform distortions which can couple to those elec-
tronic bands. A redistribution of electrons in the split bands
can decrease the total energy of the redistributed electrons.
On the other hand, local distortions which are induced by
local pressures change energies of BJT electrons locally and
force the BJT electrons to flow in space. These suggest some
pressure-electric effects characteristic of BJT metals.

In the present theory, the pressure-electric effect has
been studied on the basis of the �12 subbands, which con-
sist of the two bands labeled ν = 2 and ν = 3 near εF.
When a local pressure with a spatial gradient is applied
to induce local distortions, band electrons begin to flow
in space. The flows of band electrons are done with suf-
fering electron scatterings by various causes and finally
the electron system falls into a steady state. This steady
state was obtained by use of the Boltzmann equation to-
gether with the relaxation-time approximation. The obtained
steady state gives an electromotive power generated by
pressures with their gradients, i.e., pressure-gradient elec-
tromotive power, to which the two �12 subbands contribute
differently. The pressure-gradient electromotive power be-
comes nonvanishing in the tetragonal phase, which occurs
spontaneously and/or is induced by external uniform pres-
sures.

It is known that the BJT effect always accompanies the
elastic softenings [4]. In fact, the experimental observations
already verified that the elastic constant (c11 − c12) is ex-
tremely softened in both the cubic and tetragonal phases.
Similarly, the elastic constant C3(P3, T )(≈ c33 − c13) is also
considerably softened especially at temperatures near the BJT
structural-transition temperature TM. In the crystal with the
softened C3(P3, T ), a local pressure δP3(x) easily produces a
large local distortion δu3(x). This consideration has proven
that the elastic softening due to BJT effect can strongly en-
hance the pressure-gradient electromotive power in the BJT
metals.

In metals which have weak BJT couplings, the structure
of those metals remains to be cubic without the appearance
of the structural transition. When such a cubic structure is
distorted to be tetragonal by uniform pressures P3 �= 0, the
split �12-subbands together with the elastic softening can give
the enhanced pressure-gradient electromotive power.

The second-order structural transition considered in the
present paper is characteristic of the BJT effect caused by
doubly degenerate BJT electronic bands. In the case of a BJT
effect by triply degenerate BJT electronic bands, the structural
transition is expected to be of the first order [1]. In both
BJT effects, however, the structural transitions become of the
first order because of the presence of the anharmonic elastic

energy. The enhancement of the pressure-gradient electromo-
tive power by the elastic softening becomes conspicuous when
structural transitions are close to transitions of the second
order which exhibit considerable elastic softenings.

In usual metals, electrons in nondegenerate states around
the � point near εF can also exhibit a pressure-electric effect
because those electrons can couple linearly to a distortion
which has the same symmetry as that of the crystal structure.
Since, however, the distortion mode in this case is different
from modes of BJT distortion, their pressure-electric effect
is insensitive to pressures and temperature without the en-
hancement of the pressure-gradient electromotive power by
the elastic softening due to the BJT effect.

Finally, it is worthwhile to note the following. The obtained
pressure-gradient electromotive power results from the flows
of electrons pertaining to the BJT effect. The flows are caused
by the local BJT distortions, which affect only the BJT sub-
bands. Therefore, the pressure-gradient electromotive power
is immediately related to existence of BJT subbands near
εF. Experimental observations of pressure and temperature
dependencies of the electromotive power can reveal the BJT
subbands existing near εF. Therefore, the pressure-gradient
electric effect can be a probe into the BJT effect, which may
work in some metals with structural transitions.

APPENDIX A: UNIAXIAL PRESSURES AND PRESSURES
FOR NORMAL MODES OF BULK DISTORTION

In this Appendix, pressures for uniaxial distortions are
expressed in terms of pressures for normal modes of bulk
distortion.

The elastic energy of a crystal is changed by applying
pressures P2, P3, and P1, which induce or enhance the bulk
normal modes of distortion u2 and u3 given by Eq. (1) and also
u1 = (exx + eyy + ezz )/

√
3. The change in the elastic energy is

written as

FP = V (P1u1 + P2u2 + P3u3). (A1)

This energy change is rewritten in terms of the uniaxial pres-
sures, Px, Py, and Pz as follows:

FP = V (Pxexx + Pyeyy + Pzezz ). (A2)

Comparing Eqs. (A1) and (A2), we obtain

Px = P1/
√

3 + P2/
√

2 − P3/
√

6, (A3)

Py = P1/
√

3 − P2/
√

2 − P3/
√

6, (A4)

Pz = P1/
√

3 + 2P3/
√

6. (A5)

It is noted that when Px = Py = 0 and Pz �= 0, we have

P1 = Pz/
√

3, (A6)

P2 = 0, (A7)

P3 = Pz/
√

3/2. (A8)
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APPENDIX B: EFFECTS OF THE ANHARMONIC
ELASTIC ENERGY ON THE STRUCTURAL TRANSITION

The free energy F of a cubic crystal is studied with includ-
ing the anharmonic elastic energy. We expand F in powers
of u2 and u3 at temperatures T near a second-order transition
temperature TM. The resultant F can be written as follows:

F =V

{
1

2
a2

(
T − TM

TM

)(
u2

2 + u2
3

)

+ 2

3
a3

(
u3

3 − 3u2
2u3

) + 1

4
a4

(
u2

2 + u2
3

)2
}
, (B1)

where a2(> 0), a3, and a4(> 0) are the expansion coefficients
independent of T .

In Eq. (B1), the term of (u3
3 − 3u2

2u3) is the anharmonic
elastic energy. This energy is anisotropic in the u2 − u3 plane,
so the equilibrium distortion below the transition temperature
is uniquely determined as follows:

u3 < 0 and u2 = 0 for a3 > 0, (B2)

u3 > 0 and u2 = 0 for a3 < 0. (B3)

The anisotropy energy in the u2 − u3 plane, i.e., the difference
between the energy of a BJT crystal with u3 > 0, Fu3>0 and
that with u3 < 0, Fu3<0 is expressed by

Fu3>0 − Fu3<0 = (4/3)Va3|u3|3. (B4)

When u2 = 0, the presence of the u3
3 term causes a first

order transition of u3, which has a transition temperature TM1.
The conditions for the first-order transition at TM1,(

∂F

∂u3

)
= 0 and F = 0 at u3 �= 0, (B5)

determine TM1 as follows:

TM1 ∼
(

1 + 2a2
3

3a2a4

)
TM. (B6)

On the other hand, the elastic constant C3(0, T ) at T = TM1

in the tetragonal phase is obtained to be

C3(0, TM1) = 1

V

(
∂2F

∂u2
3

)
T →TM1−0

∼ 2a2
3/a4. (B7)

This equation shows that C3(0, TM1) becomes nonvanishing at
TM1 because of the presence of the anharmonic elastic energy.

APPENDIX C: A NUMERICAL CONSIDERATION
ON THE PRESSURE-GRADIENT ELECTROMOTIVE

POWER

Using available observed data together with the �12 sub-
band model, we make a numerical consideration on A(P3, T )
given by Eqs. (44) and (41) in the case of Nb3Sn. The ob-
served BJT distortion of this metal is c/a − 1 = −6.2 × 10−3

[20], which gives u3 ≈ −5.0 × 10−3. This distortion causes
the splitting of the BJT subbands, 2

√
c0vcg0u3, which is esti-

mated to be 6.3 mRy by using the result of the electronic band
calculation [24]. These two values give

√
c0vcg0 ≈ 8.5 eV.

On the other hand, the temperature dependence of (c11 −
c12) in the cubic phase was measured on Nb3Sn [25]. Ex-
trapolating the measured values of (c11 − c12) to a value at
high temperatures, we employ c0 ≈ 1.5 × 1011 N/m2. The
values of

√
c0vcg0 and c0 thus obtained are used to estimate√

(vc/c0)g0 in Eq. (41). Finally, we arrive at

A(P3.T ) = −(5.6 × 10−11 V m2/N) × 1

λ

〈〈
A(P3, T )

A0

〉〉
.

(C1)

In this equation, 〈〈A(P3, T )/A0〉〉 is A(P3, T )/A0 calculated by
use of Eq. (44) and was shown in Figs. 6–8 but only for α =
1.08 or 0.98. It is noted that 〈〈A(P3, T )/A0〉〉 > 0. Further, it
is probable that λ = O(100).
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